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Abstract. Inthis paper we study new computational methods to find equilibria in general equilibrium
models. We first survey the algorithms to compute equilibria that can be found in the literature on
computational economics and we indicate how these algorithms can be improved from the compu-
tational point of view. We also provide alternative algorithms that are able to compute the equilibria
in an efficient manner even for large-scale models, based on interior-point methods. We illustrate the
proposed methods with some examples taken from the literature on general equilibrium models.
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1. Introduction

The field of computational economics has undergone a revolution as a consequence
of the recent advances in computational science. Nowadays economists use a wide
range of methods to compute equilibria in increasingly large and complicated eco-
nomic models. In practice, the criteria for choosing between these computational
methods should be based on efficiency and accuracy.

Computational methods for finding equilibria can require too much computer
time or storage, as economic models can be extremely large and nonlinear. Ineffi-
cient algorithms may make it difficult to solve an economic model. Moreover, the
success of a computational approach depends on its accuracy. An algorithm should
be able to identify a solution with precision, reducing the rounding errors that occur
when the algorithm is implement on a computer.

In this paper, we consider two ways for characterizing equilibria. The first char-
acterization uses the excess demand function, whilst the second one is based on first
order conditions of the consumers’ problems, the firms’ problems and the market
clearing conditions that define the economic model. Both characterizations can be
seen as a nonlinear complementarity problem (NLCP).

The main aim of this paper is to present an alternative algorithm for solving
NLCP based on interior-point methods. In particular, we propose to solve an NLCP
as a least-squares problem. The use of interior-point methods avoids one of the
weaknesses of the least-squares approach, namely, the ill-conditioning problem
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often observed. Moreover, as in the Gauss-Newton method, our algorithm will
exploit the special structure of the problem, omitting the second order information
of the system of equations to solve. This is a great advantage in terms of cost.

Since the 1980s, interior-point methods have become popular for solving
nonlinear constrained problems in an efficient and practical manner even for large-
scale problems, but they have not had a similar echo in the field of Computational
Economics. Although some skill is required in choosing appropriate parame-
ters, interior-point methods have proven to be an efficient alternative for solving
non-linear constrained problems (for a discussion, see Morales et al., 2001).

A second objective is to survey the main approaches for computing equilibria
in general equilibrium models and indicate how some of these methods can be
improved from the computational point of view.

We illustrate the proposed approach with some examples taken from the lit-
erature on general equilibrium models. These examples show how the proposed
interior-point approach can find accurate solutions with little computational cost.

The rest of the paper is organized as follows. In Section 2 we give a formal
description of the basic model and present the concept of equilibrium. Section 3
is devoted to briefly review the literature on computing general equilibria. Using
the excess demand function, an equilibrium can be the solution of an NLCP. In
Section 4, we present an efficient algorithm to solve NLCP based on interior-point
methods. Instead of using the excess demand function, in Section 5 we propose to
compute the equilibrium values as the solution of an alternative system of equa-
tions and some simple bounds, using the algorithm presented in Section 4 based on
interior-point methods.

2. Competitive General Equilibrium Model

In this section we first present the Competitive General Equilibrium equilibrium
model. This model was introduced by Walras (1874), and later it was formalized
by Arrow and Debreu in this century (see e.g., Arrow and Hahn, 1971; Debreu,
1959).

We consider an economy with D perfectly divisible commodities, I consumers
and J firms. We assume that all relevant information is available when agents
take decisions (i.e., perfect information). We take R” as the commodity space.
Each commodity d = 1,..., D will have associated with it a real number p,
representing its price. In what follows, x” denotes the transpose of x € R”, a D-
dimensional row vector. For any x, y € R?, x - y = xT'y denotes the inner product
of vectors x and y.

We assume that the j-th firm maximizes an objective function (e.g., its profit)
on its production set Y; < R”. A production set for the j-th firm is a set com-
posed of all production plans which are possible for such a firm, according to the
technological knowledge available. A production set Y; is commonly described



by means of a set of functions F; : R” — RX/, called transformation functions,
Yj = {yj eRP: Fj(yj) < 0}.

Usually, general equilibrium models assume that the firm’s objective is to max-
imize its profit, i.e., 0;(y;, p) = p-y;. However, in the real world the objectives of
the firm result from the objectives of those individuals who control it. For instance,
a firm might consider maximizing the expected profit, or a firm could be interested
in the maximization of its minimum profit because of its aversion to risk, or the
maximization of the short or long-term sales revenues, or the size of the firm’s
labor force (for example, in the case of a cooperative). Therefore, their objectives
may be different, and the profit maximization assumption does not apply to them.
To encompass different decision rules, we define the objective function of the j-th
firmas a function o; : Y; x R? — R, where Y is the production set and R” is the
price space. For each firm j e {1, ..., J}, the function o;(y;, p) is homogeneous
of degree « in prices p, for some o > 0. Thus, given a price vector p € R? and a
production set Y; C R?, the j-th firm faces the problem

max{o,(y;, p): p-y; = 0}. O
yi€Y;

When firms are profit maximizers and have the possibility of inaction (0 € YY),
there is no need to take into account the no-loss constraints (p - y; > 0). On the
other hand, this constraint is not too restrictive. For example, consider a static and
stochastic economy with a commaodity that can be traded at S states of the world.
Even if we require p - y = Zle ps - ys > 0, we are still allowing p; - y, < 0 fora
particular state of the world s. In an intertemporal and deterministic economy, for
some period of time 7, it may hold that p,, -y, < 0.

Under convexity and compactness assumptions, it is possible to prove the exis-
tence of a solution for this problem. This solution, known as the j-th firm supply,
is a correspondence denoted by y;(p). Furthermore, under strong convexity, such
a solution is a function. Finally, note that y;(p) is homogeneous of degree zero
whenever we assume o;(y;, p) to be homogeneous in prices. In particular, 3;(p)
is homogeneous of degree zero if we assume that firms are profit maximizers.

On the other hand, the choice set for the i-th consumer is given by a subset
X; < R which describes feasible consumption vectors. We will assume that
the consumption set of the i-th consumer is described by inequality constraints
X, = {x; € R? : G;i(x;) < 0}. Each consumer has preferences given by a
utility function u; : X; — R, and is endowed with a vector w; € X;. Assuming
private ownership market economies (the consumers own the firms), r;; € Ry
denotes the i-th consumer’s participation in the profit of the j-th firm, with
Z,.'zl rij =1,Vj=1,...,J.Given a price vector p € RP, the i-th consumer’s
demand can be expressed as the solution to the following program:

J

max yu;(x;) :p-x =p-w; ijPYj( - 2
max yui(xi) : pxi = p w+Z;r,,p Vi @)
Jj=



Under convexity and compactness assumptions, it is possible to prove the
existence of a solution for this problem. This solution, known as the i-th con-
sumer demand, is a correspondence that we will denote by x;(p). Furthermore,
under strong convexity, such a solution is a function. Finally, note that x;(p) is
homogeneous of degree zero.

An economy can thus be described by a set

E=({X;,ui}i_q, {Y;,0; jj~:1, {wi}_,, {riji.j)-

Next, we introduce the concept of equilibrium for an economy E, and review the
main results on existence of equilibria.

DEFINITION 1. Competitive equilibrium. The vector prices p* € RP, with
p* # 0, and the allocation (x*, y*) € []_; X; x H/J':l Y is an equilibrium for an
economy E, if x} solves the decision problem of the i-th consumer (2); y? solves
the decision problem of the j-th firm (1); and it is satisfied the market clearing

e 1 J 1
condition: »;_; x[ = i ¥i + D iy wi.

As a consequence of the homogeneity of degree zero of the demand and supply
functions in the prices, without loss of generality, we can define prices on the
positive simplex

D
A;: PGRDIZPd=1,pdZo,d=1,...,D
d=1

The excess demand function for an economy E is defined as

1 J 1
2p) =) _Kip) =) ip) =Y wi.
i—1 =1 i—1

In this setting, any price p* > 0 is an equilibrium price if and only if z(p*) = 0.
Therefore, p* corresponds to the solution of a system of nonlinear equations. In
general, we can define prices on

D

Ap=1{peR”:) |pad <1t,
d=1

and in this case, with locally nonsatiated preferences, a price p* € R?, with p* # 0
is an equilibrium price if and only if

z(p*) <0, p*>=0, p*-z(p*)=0. (3)

This expression says that all goods in excess supply have a zero price. The
condition p*-z(p*) = 0 is known as Walras’ law, see e.g., Arrow and Hahn (1971).



Alternatively, equilibria prices p* € A; can be characterized as a solution of the
variational inequality

z2(p")(p—p*) <0, VpeAl, (4)

whenever the function z satisfies Walras’ law. For details see Ch. 7, Nagurney
(1993).

In Optimization literature, Problem (3) is known as the basic NonLineal Com-
plementarity Problem (NLCP) and Problem (4) is known as the basic Variational
Inequality Problem (VIP). Many results for NLCP can be applied to VIP. The
survey in Harker and Pang (1990) provides an excellent introduction to these
problems.

The study of the existence of equilibria has played an important role in the
development of computational procedures. The existence proofs are often con-
structive, and therefore, suggests algorithms for computing equilibria. Most of
the recent literature on existence of Walrasian equilibria is based on fixed point
theorems, following Arrow and Debreu (1954). The idea is to find a fixed point p*
of a continuous correspondence ¢ such that z(p*) = 0 if and only if p* € g(p*).

To compute an equilibrium, it is necessary to state practical conditions that
characterize these points. The traditional literature on computing equilibria uses
the excess demand function. The main disadvantage of this approach is that equi-
libria may be difficult to compute since, in large applied models, it is difficult to
specify the functional form of excess demand functions. However, there exists an
alternative approach to avoid to compute the excess demand function.

Negishi (1960) presented an alternative proof of the existence of equilibria
based on mathematical programming techniques. Assuming that firms are profit
maximizers, he proved that a competitive equilibrium is a maximum point of a
social welfare function which is a linear combination of utility functions of con-
sumers subject to all the market clearing conditions. In other words, an equilibrium
(x* = x(8%), y* = y(8%), p* = A(§%)) is the solution of the master problem

J 1
ZSu(xl) le Zy,/+zwi )
j=1 i=1

(x;)e]_[ 1X><]_[ 1Y im1

for a certain §* such that §* > 0 and transfers

J
1(8%) = A7) - | X8 —wi — Y iy 8% | =0.

j=t

Takayama and El Hodiri (1968) and Diewert (1970) also provided a similar
result based on these techniques. A demonstration of the existence of equilibrium
when firms have a general objective to maximize can be found in Esteban-Bravo
(2000).



Therefore, under convexity assumptions, an equilibrium (x*, y*, A*) is charac-
terized by the first order conditions of the master problem and transfers equal to
zero, with 87 > 0, Vi = 1,..., 1. In other words, an equilibrium (x*, y*, 1*)
is characterized by the first order conditions of the consumers’ problems and the
firms’ problems and the market clearing conditions that define the economic model:

§¥ Ve u;i(xF) — AT — vV, Gi(x) =0,Vi=1,...,1,
vy_,-Oj()’ja )"*) - gj*)“*T - ijy,F]()’;k) = O’ v.] = 1’ DR Ja
VIGi(x) =0,Gi(x*) = 0,Vi=1,...,1,

WiFj(y7) =0,F;(y;)) <0, Vj=1,...,J, (5)
EMTyn =0Ty >0,Vj=1,...,J,

et <x;k — Wi sz'zlrijy;’f) =0,vVi=1,...,1,
I . J !
Z+l = 1Xl* = Zj=l y;k _|_ Zizl w; ;

with 87 > 0,Vi = 1,..., 1. See Judd (1999, pp. 189-190). A further discussion
of this issue can be found in Esteban-Bravo (2000).

The characterization (5) is described by inequality constraints that can be
transformed into equations by adding nonnegative slack variables. Therefore, an
equilibrium is characterized by equality constraints and bound constraints. Let
H (z) = 0 denote the system (5) of nonlinear equations that characterize an equi-
librium, where z now contains both the variables and the slacks. Also, let! <z <u
denote the bound constraints, where [ and u are vectors of lower and upper bounds
on the components of z. Some components of z may lack a lower or an upper
bound, in these cases we set the appropriate components of / and u to —oo and
+00, respectively. In Section 5 we outline how an equilibrium can be computed
using this characterization that we call Welfare Characterization.

3. Standard Numerical Methodsfor Computing Equilibria

Now, we briefly review the currently available algorithms for computing equilibria.

3.1. SIMPLICIAL METHODS

These methods are algorithms for computing fixed points of a continuous mapping
of the simplex A7 into itself, based on the constructive proof of the Brouwer fixed
point theorem (1912). The customary proof of Brouwer’s theorem makes use of the
combinatorial result known as Sperner’s lemma (1928). The use of some variant
of Brouwer’s fixed point theorem is an essential step to prove the existence of
equilibria in game theory and general equilibrium theory.

Applications of simplicial methods to general equilibrium theory are originally
due to Scarf (1967, 1982, 1998). Following Debreu (1959), he defined a continuous



mapping from the price simplex into itself, derived from the excess market demand
function for the given economy. Scarf’s method computes the fixed points of this
mapping, p* € A7, that are the equilibrium prices, using the algorithm proposed
by Lemke and Howson (1964) and Lemke (1965). The main contribution of Scarf’s
method is the use of a new combinatorial argument, more practical and efficient
than Sperner’s lemma from the computational point of view (Scarf, 1967, 1982,
1998; Scarf and Hansen, 1973).

The main criticism of these methods is that they are at best linearly convergent.
Subsequent contributions have refined Scarf’s algorithm in terms of flexibility and
speed of convergence. For example, Hansen (1968) and Kuhn (1968, 1969) im-
prove Scarf’s algorithm by giving a more efficient procedure to exchange vertices
of simplices.

In the context of NLCP, this approach is known as projection-type methods
and was proposed by Cottle (1966). The linearization methods, studied originally
by Mathiesen (1985), compute the equilibrium by solving a sequence of linear
complementarity problems using Lemke’s algorithm. However this approach is
only appropriate for providing local convergence. In 1995, Dirkse and Ferris pro-
posed an algorithm with global convergence properties via reformulation of the
problem as a nonsmooth system of equations. This algorithm is basically based
on a nonsmooth Newton method proposed by Robinson (1994). Subsequent con-
tributions have refined this approach and been implemented in the PATH solver,
see for example Ferris et al. (1999). The main difficulty associated to this solver
is that some skill is required in choosing an approriate initial point. This is due to
the fact that this Newton-based solver uses an active set approach, and it is well
known that errors in the active constraints have large effect on the accuracy of
the solution (see Fletcher, 1987, for example). Although heuristic techniques to
identify an appropriate active set are used (see, for example, Dirkse and Ferris,
1997), these algorithms may fail to find the solution.

3.2. TATONNEMENT APPROACH

Since Samuelson (1941, 1942, 1947) first formalized the concept of tatonnement,
algorithms based on this idea have become very popular. The tatonnement the-
ory describes the process of price adjustments based on the discrepancy between
supply and demand.

The intuition suggests that prices will adjust upward for goods in excess demand
and downward for those in excess supply. Therefore, the tatonnement process
can be described by a continuous dynamic system of the form p, = z(p;), or
alternatively, by the discrete analogous of the form Ap, = z(p;_1). When it is
assumed that prices cannot be negative, this process is described by p;, = G(z(p;))
or alternatively, its discrete analogue p;_1 — p; = G(z(p;_1)), where G(-) is a
function such that G(-) > 0 (see examples of functional forms of G in Arrow and
Hahn (1983)).



The dynamic behavior of both systems is analogous: both of them achieve the
same equilibria or stationary states, possess the same type of stability and rates
of convergence or divergence to equilibria are equivalent. As we are interested in
just finding equilibria (no trajectory to this equilibrium has a realistic economic
interpretation), equilibrium prices p* can be obtained by means of the continuous
or discrete system (see, e.g., Luenberger, 1979). Even though it is easier to solve the
discrete system than the continuous one, the literature on tatonnement algorithms
usually consider the continous version.

3.3. PATH FOLLOWING OR HOMOTOPY METHODS

Continuation methods are techniques for numerically approximating a solution
curve which is implicitly defined by an undetermined system of equations. The
basic idea of these algorithms is to solve ‘easy’ problems that gradually are trans-
formed into the original problem. In other words, to solve p — f(p) = 0, a
map H(p, t) is chosen such that H(p,#) = 0 is trivial to solve at + = 0 and
H(p,t) = p— f(p) = 0att = 1, which means we solve the original problem.
The function H is known as a homotopy and the sequence of solutions {p,} from
t =0tor = 1is known as the path.

These methods rely on a certain regularity condition: the Jacobian V,H (-, t)
has full rank along the path {p,}. Suppose that we want to solve H(x) = 0,
where x = (p, t). Differentiation of H(x) = 0 yields D conditions on the D + 1
unknowns, V H (x)x = 0. This system has an infinite number of solutions such as
% = (—=1)P~i+ldet(VH (x);), where VH (x); means we remove the i-th column
of VH (x). Therefore, if VH (x) is nonsingular, this differential equation leads to
a solution of H(x) = 0. Thus, to find a zero of H(x) we need to solve a system
of differential equations. These differential equations are typically solved using
numerical techniques such as Runge-Kutta methods which suggests that these
methods are of limited practical use. Note that, for example, the Runge-Kutta
method of order four requires the calculation of four matrix inversions per iteration
in contrast to the Newton’s method that just requires one matrix inversion.

In the context of computation of equilibria, the use of homotopies in simplicial
algorithms to approximate fixed points was introduced by Eaves (1972), Merril
(1972), and Van der Laan and Talman (1979). Much recent work on the com-
putation of fixed points has been based on the continuation, path following or
homotopy methods. See Eaves and Schmedders (1999). However, as Harker and
Pang (1990, p. 162) pointed out, these methods can be inappropriate from the
practical point of view due to the difficulty with solving medium to large scale
equilibrium models. Note that the computation or approximation of Jacobians will
become increasingly impractical as the problem size increases. Furthermore, these
methods may fail to compute a solution even to a quite simple set of nonlinear
equations (see Example 11.2, Nocedal and Wright, 1999).



3.4. NEWTON METHOD

The most reasonable method to solve a system of nonlinear continuously differen-
tiable equations z(p) = 0 is the use of a Newton-like algorithm. The k-th iteration
of a Newton-like method can be written as p, = pi_1 + ad, where « = 1
for the standard Newton method and d is given by Vz(pi_1)d = —z(pr_1). Its
main feature is the potential for a much more rapid rate of convergence. However,
the Newton method only ensures local convergence. Alternatives to assure global
convergence are line search methods, trust-region methods and filter-type methods
(this one is very promising but too recent). For an introduction, see Nocedal and
Wright (1999), for example.

Although there are approaches to calculate the derivatives automatically such as
automatic differentiation and symbolic differentiation techniques (see Chapter 7,
Nocedal and Wright, 1999, for further details), unfortunately there are many in-
stances where the computation of the exact formula of the Jacobian Vz(p) is a very
expensive and difficult task. In this case, quasi-Newton methods (and particularly
limited-memory quasi-Newton methods) are an efficient way to avoid the computa-
tion of Vz while preserving reasonable local convergence properties, see Nocedal
and Wright (1999) for example. Moreover, it is worthwhile using methods that
exploit the structure of Vz in order to reduce the requirements of computation and
storage to compute the direction of search d. For details, see Dennis and Schnabel
(1996).

The use of Newton method to compute equilibria is not a common practice
in the literature of computable general equilibrium, although the Newton method
is more efficient than the methods presented in previous sections. This literature
points out that this method can present problems due to the behaviour of the Ja-
cobian of the excess demand function, Vz(p*) (see, e.g., Ginsburgh and Keyzer,
1997, pp. 14-15). As a consequence of the aggregation, the excess demand func-
tion z(p) may lose most of the favorable regularity properties that characterize
the individual supply and demand functions. In particular, the Jacobian Vz(p)
could be singular or, being regular, the eigenvalues of its inverse could be close
to being zero. Even if the behavior of the matrix Vz(p) is adequate, it is possible
that Vz(p) violates the nonsingularity condition at points along the sequence of
points generated by the algorithm.

None of these problems essentially affects the convergence of the algorithm.
In fact, a large number of authors recommend the use of Newton method since it
often yields rapid solutions in practice (see, e.g., Whalley, 1973; Ginsburgh and
Waelbroeck, 1981; Adelman and Robinson, 1978, among others).

3.5. SMALE’S METHOD

An alternative algorithm for computing fixed points was developed by Smale
(1974-1976, 1982). Similarly to Scarf’s method, he showed the existence of so-
lutions for the excess demand equations using Brouwer’s theorem, but based on



different calculus. The algorithm proposed by Smale is based on a version of
Brouwer’s theorem, proposed by Hirsch (1963). A similar approach had been
suggested by Kellog, Li and Yorke (1976).

Let B be the unit disk B = {p € R” : pTp < 1}, and let g be a continuous
differentiable map ¢ : B — B. Smale proposed starting with a regular value
(p — g(p)), apoint p € dB, and then, solving A(p,)(p: — g(p;)) = p, as the
solution of this functional equation must terminate at a fixed point. Differentiating
the previous equation with respect to ¢,

AMp)T =Vg(p))pr +VA(p)(pr —g(p)) =0 &
(I —=Vegp))pr = —n(p)(p — g(p),

where w(p;) = VA(p;)/A(p;). Then, the equilibrium p* is the solution of this
system of differential equations. Unfortunately, the computation of solutions for
this type of problems may be very difficult in practice, and requires the use of
numerical techniques for solving systems of differential equations.

4. Computation of Equilibriaasan NLCP via Interior-point Methods

As discussed before, an equilibrium can be characterized by the excess demand
function. Then, an equilibrium can be seen as the solution of an NLCP, that is, to
find a vector p* € R? such that

z2(p*) <0, p*=>0, p*-z(p*)=0. (6)

An NLCP is described by inequalities that can be transformed into equations by
adding nonnegative slack variables, s, as follows

z(p)+s=0, p's=0, (7

and certain bound constraints (p, s) > 0. Assuming that z : R? — RP” is continu-
ously differentiable everywhere, the interior-point standard approach (see Wright,
1997, pp. 167-168), considers the perturbed system of equations z(py) + sy = 0,
Psy — ure = 0 to compute the solution of the original problem w; — 0, where
e is the unit vector and P, = diag(p,). However, this procedure is not always but
the recommendable one due to ill-conditioning problems as it was pointed out by
Gill et al. (1981, pp. 139-140).

The algorithm that we present in this paper differs from that in that it adopts
a least squares approach. In the proposed approach the ill-conditioning problems
seem to be less harmful than in the standard. We formulate Problem (7) as a bound-
constrained least squares problem:

min {EH (z(p)T-i-s)
2 ps

2

2
,(p,s) = 0}. (8)

10



Note that a vector p* € R? solves the Problem (6) if and only if p* € RP
solves the Problem (8) for some s* > 0 and z(p*) + s* = 0, p*Ts* = 0. To prove
this characterization of the Problem (6) is straightforward.

The methodology for solving this problem is closely related to that of the
nonlinear programming problems. The implementation of interior-point methods
lead to solve Problem (8) by formulating a sequence of unconstrained subproblems
defined as

1 (z2p)+s )| 2 2
mmEH<pTS_W z—uglogpi—uglogn. 9)

A detailed description of the proposed algorithm can be found in Appendix A.

One of the main features of our algorithm is that it exploits the special structure
of the problem as in the Gauss-Newton method, omitting the second order infor-
mation of z(p) + s = 0, what is clearly more economical in terms of function
evaluations. Moreover, the use of interior-point methods avoids one of the weak-
nesses of the least-squares approach, namely, the ill-conditioning problem often
observed as the Newton direction (Ap, As)” is computed from

T AP T w,%
J (px, Sk)ll(pk, se) 1 As J(pi» k)" H(pr, Sk) — w?
— k

E(‘)}VkW(Z); ?‘ Awt | T Py W,%l — Kie

k k Aw? SkWi — e

where J(py, sx) denotes the Jacobian matrix of H(py,si) = (Z(pk+sk )

Pysi

wh = wpet, w2 = wepet, and w = plsi/D. Another important feature of
this method is that the major computational effort in each step is the computation
of the Newton’s direction (Ap, As)T (i.e., to solve a linear system of equations).
A main advantage of this approach is that whenever Vz(p,) has full rank, the
Newton’s direction is a suitable direction for Problem (9). Therefore, given careful
attention how to solve this system of equations, this algorithm has a great potential
for the computation of equilibria in large-scale models. There is a large literature
that studies how to solve very large linear systems. An excellent book in this area
is Golub and van Loan (1996) (see also Byrd, Hribar and Nocedal, 1999).

We now present some examples of economic models that can be found in the
recent literature on economic applications of NLCP. These examples illustrate the
proposed approach, that could be easily extended to larger economic models. As we
will see, this approach successfully computes the equilibria in only few iterations.
Therefore this approach appears to be better both in terms of speed and reliability.

EXAMPLE 2. Static exchange economy (Kehoe, 1991, pp. 2066-2067). Con-
sider a static exchange economy with two consumers and two goods. The i-th

consumer has a utility function of the form u; (xq, x,) = Zizl aij (xff' —1)/b;,

11



where ¢;; = 1024 if i = j, a;; = 1ifi # j, b; = —4 and initial endowments
w;j = 1210fi = j, w; = 1ifi # j, Vi, j = 1,2. Taking as the initial point
70 = 17, the algorithm converges to

z* = [0.9518, 0.0482, 0.0002, 0.0025]"

in 13 steps. Hence, the equilibrium prices are p* = (0.9518, 0.0482)" .

EXAMPLE 3. Production economy (Kehoe, 1991, pp. 2083-2084). Consider a
production economy with two consumers and four goods. The i-th consumer has a
ut_ility function of 'fhe f_orm u;(x1, x0) = Z‘]‘.Zl a;;j log x; and w; initial endowments.
His demand function is

4
aijj E PrWik

k=1

4
Dj Z dik
k=1

xi(p1. p2) = Vi, j=1,2,

where
(080200 (0010 0
“=\o010900) “T“\looo 2)"

The production technology is specified by a 4 x 8 activity matrix

-1 0 0 0 3 5 —-1-1
0 -10 0 -1-15 5
0 0 -1 0 —-1-1-1-4
0 0 0 -1-1-4-3-1

A=

Taking as the initial point zo = 17, the algorithm converges to the equilibrium
prices p* = (0.25,0.22,0.36,0.16)7 and the equilibrium production plan y* =
(0,0,0,0,5.18,0.36, 4, 45,0)7, in 24 steps.

EXAMPLE 4. Mathiesen (1987, pp. 5-6). Consider a static production economy
with one consumer, one producer and three goods. The consumer has a demand
function of the form

(b b
dy(x1, g, xg) = 212P2 T D3P) oy g 5 g

pi
and initial endowment b = (b1, by, b3)”. The firm has a technology matrix A =
[1, -1, —1]". Takinga = 0.9 and b = (0, 5, 3)7, for example, and given the initial
point zo = 17, the algorithm converges to z* = [0.5,0.08, 0.41, 3, 0.15, 0.05,
0.01,0.03,0,0,0,0]” in 16 steps. Hence, in equilibrium, the production for the
firm is y* = 3, with the associated normalized price p* = (0.5, 0.08, 0.41)7.
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EXAMPLE 5. Pureexchange model (Scarf and Hansen, 1973, Ch. 3). Consider

a static production economy with five consumers and ten goods. Each consumer

i-th has an initial endowment w;. The consumer has a demand function of the form
oI - W;

di(w) = — 5
7Tiﬂ' Dk kT &

where «;, is the demand share parameter for consumer i and good k, and g; is the
elasticity of substitution for consumer i. Taking

1 1 301011221107

1 11 1 1 11111
a=]19901502 6 0281102],

1 2 3 4 5 6 78910

1 1311 9 4 0981210

b=(213,3,02,06)7, and

06 02022001 2 9 5 5 15
02 11 12 13 14 15 16 5 5 9
w=|04 9 8 7 6 5 4 7 12
1 5 5 5 5 &5 5 3 17
8 1 22 100309510162 11

o o1

for example, and given the initial point zo = 17, the interior-point algorithm
converges to the equilibrium prices

p* =(0.18,0.11, 0.1, 0.04,0.11, 0.07,0.11, 0.1, 0.09, 0.4)”
in 30 steps.

EXAMPLE 6. A production economy (Scarf and Hansen, 1973, Ch. 5). Con-
sider a static production economy with six consumers, eight activity sectors and
six goods. Each consumer i-th has an initial endowment w;. The consumer has a
demand function of the form

;T - Wy
Bi 1-g°
Dk T

where «; is the demand share parameter for consumer i, and 3; is the elasticity of
substitution for consumer i. The firm has a technology matrix A = [—1; B], where

4 4 16161609 7 8
-53 -5 -2 -2 -2 -1-4 -5
-2 -1 -2 -4-10 -3 =2
-1 -6-3-1-80 -1-8
0O 0 6 8 7 0 0 O
4 350 0 0 0O 0 O

di(m) =
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4 002 0 232 03 50101

040 0 064 1 00101 7 0 2
a=| 2 005 0 215, w=|020 6 01015 |,

5 0 0 02545 0 1 01 801

3 00 024 2 0 6 01050 2

and b = (1.2, 1.6, 0.8, 0.5, 0.6) for example, and given the initial point zo = 17,
the interior-point algorithm converges to the equilibrium prices p* = (0.22, 0.25,
0.16,0.05,0.1,0.2)" and the equilibrium production plan y* = (0,0,0,0, 0,0,
0.46,0,3.93,0,0,0,0.43,0)7 in 24 steps.

EXAMPLE 7. A production economy (Scarf and Hansen, 1973, Ch. 5). Con-
sider a static production economy with four consumers, twenty-six activity sectors
and fourteen goods. Each consumer i-th has an initial endowment w;. The con-
sumer has a demand function of the form d;(7) = a;7 - w;/7;, where «; is the
demand share parameter for consumer i. The activity analysis matrix and the para-
meters & and w are given in Scarf and Hansen (1973, pp. 115-116). Then, given the
initial point zo = 17, the interior-point algorithm converges to the interior-point
algorithm converges to the equilibrium prices

p* = (0.062,0.058, 0.095, 0.071, 0.065, 0.062, 0.068, 0.098, 0.09,
0.079, 0.056, 0.062, 0.036, 0.092)"

and the equilibrium production plan

y* o= ( 0,479, 0,51.9,4.04, 0,30.5,21.1, 36.8,
1x14 1x2 1x3

T
28.02,0,44.04,23.6,0,25.6,0,12.05, 0,47.2, O )
1x3 1x3

in 28 steps.

Finally, we study how an equilibrium can be computed as a solution of a
variational inequality problem (VIP). The generalization of the standard nonlin-
ear complementarity problem (3) is the mixed complementarity problem (MCP).
Given a function z : R? — RP”, the MCP is to find p* € R?, w* € R? and
v* € R? such that

2p)=wt—v 1< p*<u, (pF—D"w =0, w—p")v* =0, (10)
where [ and u denote vectors of lower and upper bounds on the components of x,
respectively. As before, this Problem (10) can be solved by means of the equivalent
inequality-constrained optimization problem:

1 zZ(p)—w+v\ 2
min E” (p—DTw l<p<u,0<w,0<vy,
2

(w—p)ov
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using the proposed algorithm. This extension is specially useful since the mixed
complementarity problem formulation includes many standard problems such as
zero-finding for a system of nonlinear or linear equations, the nonlinear or linear
complementarity problems, nonlinear problems and the finite-dimensional systems
of variational inequalities.

In general, a VIP over a nonempty subset X € R? consists of finding p* € R”
such that z(p*)" (p — p*) < 0, ¥p € X. Note that when X = R, the Problem VIP
reduces to NLCP, and when X = [/, «], the Problem VIP becomes the MCP. There-
fore, whenever the computation of equilibria is formulated as a VIP, the proposed
approach can also solve this type of problems in an efficient manner.

However, from the economic point of view, there are no advantages of using this
characterization instead of the one that characterizes an equilibrium as a solution
of a NLCP (neither when demonstrating the existence of the equilibrium nor when
calculating these equilibria).

5. Computation of Equilibria Using the Welfare Char acterization via
Interior-point Methods

Previously, we have presented an efficient algorithm based on the excess demand
function. But, as we mentioned before, it can be quite difficult to obtain its func-
tional form in general. Mantel (1971) first considered the use of Negishi’s approach
to compute equilibria. He proposed a tatonnement algorithm to solve the continu-
ous version §, = —t(8,). However, as we have outlined before, this procedure is
only useful for certain simple economies due to the numerical difficulties of solving
differential equations.

In this section we presented an alternative algorithm to compute a competitive
equilibrium using the Welfare Characterization in an efficient and practical man-
ner via interior-point methods. We also present some examples to illustrate the
proposed approach, that could be easily extended to larger economic models.

We consider the system of nonlinear equations (5), H(z) = 0, where z € RP*
and the bound constraints are of the form ! < z < u. This problem can be seen as an
NLC problem. Therefore, our approach will follow the scheme used in Section 4,
considering the alternative inequality-constrained optimization problem:

1
min Z||H(2)|13. (11)
I<z<u 2

See Appendix A for details.

We now present some examples of economic models that can be found in the
recent literature on computation of general equilibria. These examples illustrate the
proposed approach, that could be easily extended to larger economic models.

EXAMPLE 8. Static exchange economy (Kehoe, 1991, pp. 2066-2067). Con-
sider the exchange economy with two consumers and two goods described in Exam-
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ple 2. Taking as the initial point zo = [0.5, 0.5, 12, 1, 1, 12, 0.5, 0.5]7 , the interior-
point algorithm converges to z* = [1.0992, 1.0992, 10.39, 2.6, 2.6, 10.39, 0.0093,
0.0093]” in 7 steps. Note that the major computational effort in each step is the
computation of the Newton direction (Az, Aw?, Aw?); i.e., to solve a linear system
of equations. Hence, in equilibrium, the consumption for consumers 1 and 2 is
x}f = (10.39,2.6)" and x5 = (2.6, 10.39)7, respectively, with the associated price
p* = (0.0093, 0.0093)".

EXAMPLE 9. Static production economy |. Consider a static production econ-
omy with one consumer, one producer and two goods. The consumer has a utility
function of the form u(x1, x2) = x2; — (—x1 + 4)2, and an initial endowment
w = (5, 15). The firm has a production set Y = {(y1, y2) : y» = 16 — (y1 + 4)?}.
Given the initial point zo = [1, 6, 20, 1,5, 3, 1, 1]7, the interior-point algorithm
converges to

7" =[2.31,25,28.75,-2.5,13.75, 6.93, 2.31, 2.31]"

in 6 steps. Hence, in equilibrium, the consumption for the consumer is x* =
(2.5,28.75)7 and the production for the firm is y* = (—2.5,13.75)7, with the
associated price p* = (2.31, 2.31)7.

EXAMPLE 10. Static production economy II. Consider a static production
economy with two consumers, two producers and two goods. Consumers have
utility functions of the form wuq(x11, x12) = x12 — (—x11 + 4)?, and up(x21, x22) =
Xp — (—xp;1 + 6)2, and initial endowments w; = (5,15), w, = (15,5).
Firms have production sets Y1 = {(y11, y12) : y1» = 16 — (yu1 + 4)?}, and
Y, = {(ygl, ¥V22) 1 Yoo = -5 yll}- Given the initial point zo = [1,1,5, 15,15,
5,0.5,0.5,0.5,0.5,5,1,1,1]7, the interior-point algorithm converges to z* =
[1.7,8.5,1.5,34.75,14.82,5.9, —1.5,9.75, —2.18,10.9,8.5,1.7, 1.7, 1.7]" in 9
steps. Hence, in equilibrium, the consumption for consumers 1 and 2 is x; =
(1.5,34.75)" and x; = (14.82,5.9)7, respectively, the production for firms 1 and 2
is yf = (—1.5,9.75)" and y; = (—2.18,10.9)7, respectively, with the associated
price p* = (1.7,1.7)7.

EXAMPLE 11. Static production economy Il. Consider a static production
economy with one consumer, two producers and two goods. The consumer has
a utility function of the form u(xy, xp) = x2 — (—x1 + 4)?, and w = (5, 10).
Firms have production sets Y1 = {(yi1,y12) : yi2 = 16 — (yun + 4)?}
and Y, = {(y21, ¥22); 22 = 36 — (yo1 + 6)2} Given the initial point 0 =
[1,1,31,10,16,10,5,5,1, 1,117, the interior-point algorithm converges to z* =
[1.84,1, 44, —1,7, —3,27,91.9233, 1.84, 1.84, 1.84]" in 7 steps. Hence, in equi-
librium, the consumption for the consumer is x* = (1,44)”, the production for
firms 1 and 2 is y; = (—1,7)" and y; = (—3,27)7, respectively, with the
associated price p* = (1.84, 1.84)T.
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EXAMPLE 12. Static production economy IV. Consider the following sta-
tic production economy. Suppose that the firms’ objectives are the following:
01(y1. p) = 3piyu + $plyiz and 0z(y2, p) = 5pfya + 3pl y2. Given the
initial point
z0 =1[1,1,31,10,16,10,5,5,1,1,1]",
the interior-point algorithm converges to
7* =[1.88,1.42,33.89, —2.71, 14.34, —0.85, 9.55, 55.58, 1.88, 1.25, 0.62]”

in 7 steps. Hence, in equilibrium, the consumption for the consumer is x* =
(1.42,33.89)7, the production for firms 1 and 2 is y; = (—2.71,14.34)" and
y; = (—0.85,9.55)7, respectively, with the associated price p* = (1.25,0.62)".

EXAMPLE 13. Static production economy V. Consider a static production
economy with one consumer, two producers and two goods. The consumer has
a utility function of the form u(x1, x2) = x, — (—x1 + 4)?, and initial endowment
w = (5, 10). Firms have production sets

Y1 = {1, y12) : yi2 = 16 — (yu1 + 4%},
Y2 = {(y21, y22) : y22 = 36 — (y21 + 6)?},
Y3 = {(y31, y32) : y32 = 5ya1}.

Given the initial point zo = [1,1,31,10,16,10,5,1,1,5,1,1,1,1]7, the in-
terior-point algorithm converges to

¥ = [1.7,15,42,-1.5,9.75, —-3.5,29.75, 1.5, —7.5,50.9, 1.7, —1.7,
-1.7,-1.71"

in 8 steps. Hence, in equilibrium, the consumption for the consumer is x* =
(1.5,42)7, the production for firms 1, 2 and 3 is y} = (—1.5,9.75)7, y; =
(—3.5,29.75)" and y; = (1.5, —7.5)7, respectively, with the associated price
pr = (=17, -1.7)7.

EXAMPLE 14. Static production economy VI with the present of external-
ities. Consider a static production economy with one consumer, two producers
(j = 1,2) and two goods (I = 1,2). Assume that there are two externalities
affecting firm 2: one generated by consumer’s consumption of good 1 and one
generated by production of good 1 by firm 1. This can be the case when there exist
pollution of a river by city inhabitants (municipal sewage) and a firm (industrial
effluents) that affect a downstream water-using firm.

The consumer has a utility function of the form u(xy, x) = x» — (—x1 + 4)?,
and an initial endowment w = (5, 10). Firms have production sets

Y1 = {(y11, y12) : y12 = 16 — (y11 + 4)?},
Y2 = {(y21, ¥22) : y22 = 36 — y11 — (Y21 + 6 + x1)?}.
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Given the initial point zo = [1,1,31,10,16,10,5,5,1,1,1]", the interior-
point algorithm converges to z* = [78.34,0.75, 41.62, —0.75, 5.43, —3.5, 26.18,
509.23, 78.34, 78.34, 78.34]7 , in 17 steps. Hence, in equilibrium, the consumption
for the consumer is x* = (0.75, 41.62)7, the production for firms 1 and 2 is
yi = (=0.75,5.43)" and y; = (—3.5,26.18)7, respectively, with the associated
price p* = (509.23, 78.34)7.

Effectively firm 2 is adversely affected by the consumer and the firm 1 as the
profits of firm 1 and 2 in the presence of externalities are less than in the absence
of them (see Example 111 that assumes absence of any externalities).

EXAMPLE 15. A production model for the deregulated electricity market
with externalities. Consider a static production economy for electric power pro-
ducers in a deregulated market. In recent years, the ongoing liberalization process
in the electricity markets has created a significant interest in the development of
economic models that may represent their behavior. Modeling the technologies of a
generation company requires a special attention. Generators decide about produc-
tion under the restriction of their technological knowledge and in the transmission
network.

We consider two consumers (i = 1, 2), four producers (j = 1, 2, 3, 4) and four
goods (I =1, 2, 3, 4). Assume that Firms 1, 2 and 3 produce electricity using labor
and fuel as inputs, and Firm 4 produces a non-energetic commodity, which can be
read as a non-energetic industrial production index. Furthermore, we assume that
there are network capacity constraints affecting electric power firms 1, 2, 3, and
therefore the total amount of electricity that these firms can produce will be bound
by the network externalities. On the other hand, we assume that consumers’ utilities
do not depend on fuel, are positively affected by the energetic and non-energetic
commodities, and negatively by work. Moreover, Consumer 1 is endowed with fuel
and labor, whilst Consumer 2 possesses participations in all firms’ profits.

Let x1;, y1,; denote the consumption and production of non-energetic commodi-
ties, respectively; x,;, y»; denote the consumption and production of electricity,
respectively; ys; denote the demand of fuel; and x4, ys; denote the labor offer
and demand, respectively. Each commodity will have associated with it a real
nonnegative number p; representing its price.

Consumer 1 has a utility function of the Leontief form

—p —p\—1
u(x11, X21, Xa1, Xa1) = (x;” + axy )P,

where p = 0.5, a = 0.10248384, and an initial endowment w = (250, 0, 721, 0).
We assume that this consumer does not work (x4; = 0) as he/she owns all the firms.
Thus, the consumer 1 faces the problem

max (x;;’ +ax2_1p)’l/p
S.a. pix11 + paxo1 < piwi1 + psws1 + B(p, y),
X11, X21 > 0,
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where

B(p,y) = piyia+ p2(y21 + y22 + y23 — y2a)
—p3(y31 + Y32 + ¥33) — pa(yar + Yaz + yaz + yaa).

Consumer 2 has a Cobb-Douglas utility function, i.e.,

& _d d
u(X12, X22, X32, X42) = X13X55 (Wa2 — Xa2)™,

where d; = 0.5, d, = 0.11093647, d, = 0.11969204, and an initial endowment
w = (350, 0, 420, 4000). Thus, the consumer 2 faces the problem

dy d d
max x;5x,5 (wa2 — x42)*
S.a. p1X12 + paXop — paXxsr < prwi2 + p3wsz
X12, X22, Xa2 > 0, x40 < way .

We assume that all firms maximize their profits on their production set described
by means of a Cobb-Douglas production function. The network externalities affect-
ing firms 1, 2, 3 are given by the constraint y,; + y»» + y»3 < 250, therefore, each
j-th firm’s problem can be expressed by the following program:

Max pay2j — P3y3j — PaYaj
s.a. ya1 + ya2 + yo3 < 250
y2; < Aj(y3j)% (yaj)bi
0 <y =K, 35,y =0,

forall j = 1,2,3, where Ay = 2,a; = 1/2, by = 1/3, K; = 200; and A, =
1.409567, a, = 1/3, b, = 1/3, K, = 150, and A3 = 0.6350529, a3 = 1/3,
b3 =1/2, K3 = 180.

On the other hand, the 4-th firm faces the following problem:

Max pi1yia — p2Y24 — P4Ya4
s yia < Ag(324) (yaa)™,
y24, yas > 0,

where A4 = 3.535938, a4 = 1/4, by = 1/2.
Finally, note that the market clearing conditions are given as follows:

X11 + X12 = Y14 + w11 + Wi,
X21 + X22 = Y1+ Yoo + Y23 + Yoa,
0 = ya1+ y32 + ys3 + w31 + waz,
Xa2 = Ya1 + Yaz + Va3 + Yag + wa1 + Waz .

19



Thus, given the initial point zo = 17, the interior-point algorithm converges to
the equilibrium

xf = (617.47,9.66,0,0)

x; = (528.35,70.854, 0, 2784.026)7,
yi = (0,199.9, 653.35,59.8)7,

y; = (0,0,0.01,0.002)7,

y5 = (0,50.089, 487.63, 100.42)",
yi = (545.82,82.47,0,2623.8)7,
p* = (1,1.65,0.014,0.104)7,

in 360 steps. It is important to point out that the proposed algorithm obtains solu-
tions in a few seconds. Note that the major computational effort in each step is the
calculation of the Newton direction; i.e., to solve a linear system of equations.

This example could be easily extended by considering that all the goods are
indexed by a geographical location on a network. In such a case, the capacity
bounds of the transport lines would be local between each two nodes of the electric
network. This is the case of electric markets in which coordination between dif-
ferent electric power stations is required to improve the efficient use of resources
because electricity cannot be stored and requires immediate delivery.

The same arguments can be applied in transport economic models, communica-
tion models, and related spatial economic models where congestion effects play a
relevant role. This type of economic models can be extremely large and nonlinear,
and therefore economists require the use of efficient numerical methods to compute
equilibria, as the algorithm proposed.

6. Summary and Conclusions

We have seen many different methods that are available for the computation of
equilibria in general equilibrium models. We have also investigated any further
improvements in the efficiency of the existing algorithms. When the functional
form of the excess demand function is available, Newton-type methods are rec-
ommended due to their potential for a rapid rate of convergence. However, this
approach cannot deal with simple bounds, and therefore, it cannot be applied to
economic models with nonnegative prices.

In this paper we have presented a new approach to solve nonlinear comple-
mentarity problems as a least-squares problem via interior-point methods. This
methodology has better efficiency than the standard approach (see Wright, 1997,
pp. 167-168) that fails to compute a solution even to quite simple examples. This
is mainly due to the fact that ill-conditioning problems in the proposed approach
seems to be less harmful than in the standard one. Moreover, as in the Gauss-
Newton method, our algorithm will exploit the special structure of the problem,
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omitting the second order information of the system of equations to solve. This
is a great advantage in terms of cost. The proposed method has been tested on
several examples that can be found in the recent literature on computable general
equilibrium. The results show that this approach works quite well and could be
easily extended to larger economic models due to their practicability.

The recent literature on computation of general equilibria uses the excess de-
mand function, but in applied models it is difficult to specify the functional form of
the demand and supply functions. The use of the welfare approach avoids this diffi-
culty as equilibria are characterized by the first order conditions of the consumers’
problems and the firms’ problems and the market clearing conditions that define
the economic model. Using this characterization, we have proposed an algorithm
to compute equilibria as a least-squares problem via interior-point methods. The
practicability of the welfare approach and the efficiency of the proposed algorithm
applied to this characterization can be shown complex economies such as those
that present externalities.
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Appendix A: Interior Point Methods

Interior point methods are closely related to the classical logarithmic barrier meth-
ods. The barrier method is defined by introducing a parameter w, called barrier
parameter, and a logarithmic barrier function that is defined in the interior of the
feasible set of Problem (11). Problem (11) can then be solved by formulating a
sequence of uncontrained subproblems defined as:

. 1 , 1 *
min 2\ H )13 = i ;‘ log(z; — Ii) — u;‘ log(u; — z;). (12)

Under mild conditions, every limit point of a sequence {z*(w)} of local minimizers
of Problem (12) is a local minimum of the original constrained Problem (11); i.e.,
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75 () — z*. This method was studied by Fiacco and McCormick (1968). For an
n—

introduction to interior-point methods see, e.g., Wright (1991) and its references,
and for details, see Nesterov and Nemirovskii (1994).

To apply an interior-point method to Problem (2) we use the first-order
conditions:

J@OTH @) — n(Ze — L)+ w(U — Z) "t =0,

where Z;, = diag(zx), L = diag(l), U = diag(u) and J(z;) denotes the Jacobian
matrix of H. Let W} = u(Zy — L)t and W? = (U — Z;)~1, then we can rewrite
the first-order conditions as

J(z)TH(zp) — wi + w? =0,

(Zk — W — =0,

U — Z)W2 —u =0.
We will denote this system as F(z;, w}, w?) = 0, where w}, w? > 0. This system
is the standard primal-dual system slightly modified since we omit the second order

information of H(z) as Gauss-Newton method. This is the system that we will
solve using Newton algorithm (see e.g., Dennis and Schnabel, 1996, pp. 86-154).

Step 1. Letzg, wd, wiand e > 0. Setk = 1, z; < z0, wi < w}, and w? < w3.

Step 2. If || F(zx, wi, w,f)||2 < ¢, stop (the problem is solved); else, solve the

system
J ()T I (zi) -1 1 Az
wt (Zi—L) 0 Awt | = —F(z, wi, w?).
—W}? 0  (U-2Z Aw?

Step 3. Compute o, a1, a,,2 € (0, 1) such that zj41 = z + o, Az, wi,; = wi +
a,iAwt and w? = w? + a,2Aw? are feasible.

Step 4. Consider the merit function

1 , 1 1
Mz ) = SIH @I = 1 ; log(zi — i) — ;1 log(u; — zi),
and let m(a) = M(z + aAz; ).

While m(0) — m(a;) < —pa.Vm(0)T Az, where 0 < p < 1; setar, < /2
and Zkrl = 2k +a Az,
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Step 5. Update

(2 = DTw! + (u — z) w?
2D*

’

where 0 <y < 1,and k < k + 1 and go back to step 2.

Step 3 ensures strict feasibility with respect to the bound constaints (in this
context, §; > 0,Vi =1,...,I,and w > Q). The parameter w is updated in terms
of the average value of the complementarity products (z; —l)Tw,} and (u —zk)Tw,f.
The success of this algorithm depends critically on the choice of the parameters p
and y. Unfortunately, difficulties can arise if unsuitable values of these parameters
are used (see e.g., Wright, 1991).
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