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Abstract

Bacterial growth models are commonly used in food safety. Such models permit the
prediction of microbial safety and the shelf life of perishable foods. In this paper, we
study the problem of modelling bacterial growth when we observe multiple
experimental results under identical environmental conditions. We develop a
hierarchical version of the Gompertz equation to take into account the possibility of
replicated experiments and we show how it can be fitted using a fully Bayesian
approach. This approach is illustrated using experimental data from Listeria
monocytogenes growth and the results are compared with alternative models. Model
selection is undertaken throughout using an appropriate version of the deviance
information criterion and the posterior predictive loss criterion. Models are fitted using
WinBUGS via R2ZWinBUGS.
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1 Introduction

Bacterial growth is the division of one bacterium into two identical, daughter
cells during a process called binary fission. Both daughter cells do not necessar-
ily survive, but if, on average, at least half of the daughter cells survive, then the
bacterial population grows exponentially. In food safety experiments, bacteria
are commonly grown in petri dishes and in such experiments, bacterial growth
can be divided in four different phases. Firstly, in the lag phase the initial
colony of bacteria is adapting to the growth conditions and are not yet able to
divide. Secondly, in the ezponential phase, that is the cell doubling period - the
number of new bacteria created per unit time is approximately proportional to
the present population. Thirdly in the stationary phase, reached as the bacteria
begin to exhaust the limited resources available to them, the growth rate slows
down as a consequence of nutrient depletion and accumulation of waste. Finally,
in the death phase, there are no nutrients left and the bacteria die.

Given this type of behaviour we can model the first three phases of bacteria
growth using a sigmoidal type function. Many such models have been developed,
see e.g. Zwietering et al. (1990) for a good review and in particular, one of the
first and most popular models, which we consider in this article is the Gompertz
curve, see Gompertz (1825).

Several empirical studies of bacterial growth, such as Grijspeerdt and Van-
rolleghem (1999), estimate the parameters by nonlinear least square procedures.
Nevertheless, most of these models do not recognize explicitly that there are two
sources of indeterminacy. The first, called variability, reflects the intrinsic het-
erogeneity of the phenomenon. The second, called uncertainty, comes from the
lack of knowledge and can be reduced by additional data from further exper-
iments. Pouillot et al. (2003) and Delignette-Muller et al. (2006) propose the
use of a Bayesian approach to the estimation of uncertainty and variability in
microbial growth. In this paper, we shall also consider a Bayesian approach to
Gompertz modeling.

One of the main characteristic of bacterial growth experiments is that re-
searchers often replicate bacterial growth experiments under equal, or different,
temperature, acidity and salt levels. Up to now, however, there has been little
research on incorporating multiple experimental results into the prediction of
bacterial growth curves. In this paper, we shall consider the case where that we
observe the growth of » > 1 bacteria populations under identical environmental
conditions. To model this process, one possible approach is to assume that the
growth curve has the same nature for every experiment. We can represent this
by assuming a common model for each growth curve. A disadvantage of this
approach is that it does not take into account any specific, unobserved, charac-
teristics of each petri dish experiment which may influence bacteria growth in
that case. A second possibility is to estimate each growth curve independently,
but this does not take the fact that we should expect the different bacterial pop-
ulations to grow in a similar way under the same conditions. An alternative,
intermediate approach is to use hierarchical modeling. Under this approach
each experiment follows its own growth process that is characterized by its own



growth parameters but these parameters are considered as a sample from a
common distribution. This approach will be followed here.

The paper is organized as follows. In Section 2, we introduce the Gompertz
model for bacterial growth and develop a hierarchical version of this model to
take into account the possibility of replicated experiments. In Section 3, we
show how to undertake Bayesian inference for this model using the WinBUGS
software through the R2WinBUGS interface. In Section 4, we apply our approach
to the analysis of listeria growth curves and in Section 5, we finish with some
conclusions and possible extensions.

2 Hierarchical Gompertz model

The modified Gompertz equation is a well known model for bacterial growth
over time. This model has a sigmoidal shape which reflects the three stages
that characterize the bacterial growth process. Firstly, the lag stage reflects
the adaptation of cells inoculated in a new medium. Secondly, the exponential
stage represents the bacterial growth by binary fission and, finally, the stationary
stage which describes the decay of the growth rate as a consequence of nutrient
depletion and accumulation of waste. If IV; represents population size of bacteria
cultivated in a Petri dish experiment at time ¢ > 0, then the modified Gompertz
function is:

e(A—1t)

E[Ny|NO, D, 1, \] = NO+D exp (— exp (1 + H 5 )) =g(t,D,NO,u, \) say.
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where e is the Euler’s number, NO is the initial bacterial density, D is the
difference between the maximum bacterial density and NO, p is the maximum
growth rate and A is the time lag.

Here we wish to extend the Gompertz model to the case of hierarchial models
which take into account the case of several experiments carried out under equal,
controlled environmental conditions. Thus, we consider r bacterial populations
under the same environmental conditions. Then the hierarchical Gompertz
model can be expressed as

ie(Ai — b5
E[N”|NOZ,D“,U,Z,)\Z} = NOZ-l-Dlexp <—6Xp <1+,U/6(Z)J))>
= g(tij, Di, NOs, pis i) (2)
where ¢ = 1,...,r and the ¢’th bacterial density is measured at time points ¢;;
for j =1,...,n; where n; represents the total number of times that population

1 is observed. Here, each particular experiment grows according to its own



Gompertz curve. Now, we suppose the hierarchical formulation:

NijINO;, Dy, piy Niso ~ N (g(tj, Dy, NO;, pi, Ai), 07)
NO;|mg, 89 ~ N(mg,sg)
log Dilap,7p  ~ N(OZD,TE))
log(pi)le, 7~ N(au,ﬂ%)
log(Ai)|ax, T~ N(oq,rf)

2

where ¢ is an unknown variance assumed to be common for each growth curve
and ap,Tp, Mo, S0, Oy, Ty, O, Tx are unknown hyperparameters.

2.1 Alternative models

Alternative models can be used for the case of multiple experiments under equal
conditions. As a submodel of the previous one, it is possible to consider some of
the model parameters with individual variations and others to be equal for all the
individuals. When observing several growth curves under equal environmental
conditions, lag parameter seems to be very similar among them. So, we will
consider a second model with A assumed to be a fixed effect and p and D are
modelled as random effects with hierarchical structure. As this kind of models
incorporate both random and fixed effects they are called mixed effects models.
Our mixed model is

E[N;INO;, Dy, i, A] = NO; + D; exp (— exp (1 + ’””E(DJ)»
i

= g(tij, Di, NO;, s, A). (3)

Another approach is to assume that the growth curve has the same nature
for every experiment. That means that, when environmental conditions are
equal, each curve is described by the same growth process assuming a common
Gompertz curve for all of them. We call this a pooled model and express it in
the following form

E[N;;|NO, D, i, \] = g(t, D, NO, f1, \). (4)

Finally, the simplest model can be considered assuming that each growth
curve is independent. In such case, each curve is described by its own Gompertz
function with different parameters’ values as expressed in Equation 1.

3 Bayesian inference

In order to fit the hierarchical model described in the previous section, one pos-
sibility would be to use classical, random effects techniques, but here, we prefer
to use a fully Bayesian approach. In order to implement Bayesian inference,
we must define prior distributions for the model variance and for the unknown



hyperparameters. Firstly, we suppose little prior knowledge concerning the vari-

ance o2 and hence propose a vague, inverse-gamma, prior distribution.

0? ~IG (a,b)

Usually, we will have good prior knowledge about the average initial population
density, mg = E[NO0;|mqg, so] and the variance, sq, as typically, petri dishes are
seeded with very similar quantities of bacteria close to a known, theoretical
level, so we shall typically assume that these are known. Otherwise, a simple
non-informative prior distribution f(mo,%y) o 1/tg, where tg = 1/s2 can be
used when, immediately, we have that given the observed set of initial densities,
NO = (NO4,...,NO,),
50

2
mo‘NO,SO ~ N(ZVO,)
r

s2INO ~ IG (r—l,Z(NOi—NO)Q>

i=1

where NO = % >i_; NO; is the average initial density.
The model is completed by vague, but proper prior distributions for the
remaining hyperparameters.

ap ~N (mp,sp) 73 ~IG (rp,vp)
Q) N./\/(m)”S)\) T)\QNIQ(’I“)\,’U,\)
ay ~ N (my, s,) 7’5 ~1G (ru, vy)

Unfortunately, given the full sample of data, (N;,t;;) for i = 1,...,7, j =
0,...,n;, exact Bayesian inference for the unknown model parameters is im-
possible. However, Markov-Chain Monte-Carlo (MCMC) techniques can be
employed to allow us to generate an approximate Monte Carlo sample from the
posterior parameter distributions. In this case, we propose to use the generic
MCMC sampler, WinBUGS, as developed by Spiegelhalter et al. (1999), which
is appropriate for hierarchical modeling situations, programmed in combina-
tion with R, via R2WinBUGS. Figure 1 illustrates the dependence structure of
the model in WinBUGS style (although WinBUGS code cannot be constructed
directly from this diagram).

In the figure, random and logical nodes are represented by ellipses and fixed
nodes (independent variables) are represented by rectangles. The arrows rep-
resent dependence relationships with the single arrows showing stochastic de-
pendence and the double arrows representing logical dependence. For more
details see http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml,
the WinBUGS homepage. As WinBUGS is a generic approach to MCMC sam-
pling, it is important to check on the convergence of the sampler. Various tools



Sigmaz ML ‘%k
]

for(IM1:.m

farfi IN1 .6

Figure 1: Dependence structure of the hierarchical Gompertz model

can be used to check the convergence. In particular, as well as standard graph-
ical techniques such as looking at the trace, the evolution of the mean and the
autocorrelations of the sampled output, we also use formal diagnostic techniques
such as the modified Gelman-Rubin statistic, as in Brooks and Gelman (1998)
Inference for the mixed model can be carried out in an analogous way. All
prior and hyperprior distributions are the same as in the hierarchical model,
except for the lag parameter because it is assumed to be equal amongst all the
curves and therefore it has not a hierarchical structure. A vague log-normal prior
distribution is assigned to the lag parameter, A\|my, sy ~ LN (my, s3), where m
and si are constants. For the pooled and the independent models we follow the
same approach as before, assuming relatively uninformative log-normal prior
distributions for the non-negative Gompertz parameters D, A and u, and a
vague inverse-gamma prior distribution for 2. For the alternative models exact
Bayesian inference for the unknown model parameters is also impossible as in
the case of the hierarchical model, therefore, we propose to use WinBUGS.

3.1 Model comparison

A number of criteria have been proposed for model selection in Bayesian infer-
ence. A standard, Bayesian selection criterion which is particularly appropriate
when inference is carried out using Markov chain Monte Carlo methods is the
deviance information criterion (DIC), as proposed in Spiegelhalter et al. (2002).
Many variants of the DIC have also been considered, see e.g. Celeux et al. (2006)
and here, for simplicity of calculation, we prefer to use the DICj5 criterion of



Celeux et al. (2006). For model M with parameters 6 and observed data x the
DIC5 is defined as follows:

DICs = —4Eg|log f(x[0)[x] + 2log | | Eglf(x:(0,%)].
i=1

Celeux et al. (2006) show that this criterion performs well in number of contexts.

An alternative approach which we also consider is the posterior predictive
loss performance (PPLP) as proposed by Gelfand and Ghosh (1998). Based on
the posterior predictive distribution, this criterion consists in defining a weight
loss function which penalizes actions both for departure from the corresponding
observed value as well as for departure from what we expect the replication
to be. In this way, the approach is a compromise between the two types of
departures, fit and smoothness. It is possible to show that for squared error
loss, the criterion becomes

where p; = E(z."|x) and 0 = Var(z?|x), are respectively the mean and
the variance of the predictive distribution of z;“ given the observed data x
and k is the weight we assign to departures from the observed data. The first
term of PPLP is plain goodness-of-fit term, and the second term penalizes the
complexity and rewards parsimony.

Although the predictive distribution is useful for prediction, its use for model
checking has been criticized because of double use of the data. A preferable
approach is to consider the out of sample prediction of a model. In our hi-
erarchial models there are two possible posterior predictive distributions due
to the existence of parameters and hyperparameters. Firstly, we can consider
the prediction of the growth curve at future times for an existing growth curve
and secondly, we can predict the results from a future experiment, that is a
future curve under equal conditions, drawn from the same population. Here we
examine both.

4 Application: Listeria monocytogenes

Listeria is a bacterial genus containing six species. These species are Gram-
positive bacilli and are typified by Listeria monocytogenes. This bacteria is a
well-known food-borne pathogen (rare but fatally infections as listeriosis) and
is commonly found in soil, stream water, sewage, plants, and food. The health
and economic importance of listeriosis is supported by large amount of studies
about this bacteria (see Augustin and Carlier (2000), Delignette-Muller et al.
(2006), Pouillot et al. (2003) and Powell et al. (2006) among others). In our
application the models are fitted to listeria growth curves. Data come from an
experiment in broth monoculture where bacteria growth curves were generated



at fixed temperature, (42 °C), acidity (pH = 7.4) and salt concentration (2,5%
NaCl) levels and measured as optical density. The data set consists of 18 curves
each observed at 16 fixed time intervals of one hour. The data are illustrated in
Figure 4 where the circles representing the points for each curve are connected
by lines.
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Figure 2: Bacterial growth curves: 42 °C, pH=7,4 and 2,5% NaCl

We assume that bacteria grows according to the Gompertz function equation
expressed in Equation 1 and compare the hierarchical, independent and pooled
models described earlier in Section 2. In order to fit the models, in each case
we generated two parallel chains using different initial values with 150000 iter-
ations each, including 50000 iterations of burn-in. To diminish autocorrelation
between the generated values we also used a thinning rate of 50. Trace plots
and autocorrelation functions were used to check convergence and in all cases
it was found that the burn-in period of 50000 iterations was reasonable. Figure
3 illustrates these for the population mean lag parameter, a;y in the hierarchial
model. Furthermore, the Gelman-Rubin statistic was equal o very close to 1
after 50000 iterations, giving a good indicator of convergence.

All models described in Section 2 were fitted to this data. Figure 4 represents
the fitting of the pooled, the independent and the full hierarchial models and
the 95% credible interval computed through the percentiles of the posterior
predictive distribution. The independent model has a good fitting for curve 7,
as Figure 5(a) shows, and also for the remainder curves but the 95% credible
interval is significantly wider than for the other models. In the pooled model the
length of the interval is lower due to the more information available assuming
that all the observed curves are samples from the same common distribution.
and therefore there is only one estimated curve. Figure 5(b) represents the
estimated pooled curve and the 18 observed curves. One can observe that
almost all the curves lie inside the 95% credible interval, except for curve number
7. This estimated curve can be interpreted as a mean curve representing the
bacterial growth process under the fix environmental conditions. Finally, in the
hierarchical model there is one estimated curve for each observed curve as we



can observed in Figure 4. As is expected, the fit of the hierarchial model is
more accurate and the credible interval is narrower. For the mixed model very
similar results are found and for this reason they are not shown in the graph.
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Figure 3: Convergence diagnostic in Hierarchical Gompertz model: ay

In order to compare the different models, we computed DIC5 and PPLP. The
results are summarized in Table 1 where we also include the first term (G) and
the second term (P) of PPLP, which are given equal weight, that represent
the goodness of fit and the complexity respectively. First of all, there is no
single model that performs better under both criteria. Regarding the posterior
predictive loss criterion, the pooled model has the smallest PPLP. The reason
is that we have more information to estimate the growth parameters available
since data from all the curves are pooled and considered samples from the same
population. The uncertainty is considerably smaller than in the other cases as
indicates the small value of P. The mixed model is the second best with a value
of PPLP equal to 0.43. In this case, looking at the components, we can see
that, in contrast to the pooled model, the small value of PPLP is due to a good
fit of the model. Comparing the mixed model with the hierarchical model, there
is a slightly worse performance for the latter due to higher complexity in the
model which is not translated into a better goodness of fit. Thus, variability
of lag parameter is not too important among replications. Finally, the smaller
variance of the predictive distribution in the hierarchical model compared to
the higher variance of the independent model, is explained by the borrowing
strength effect - observing one curve we learn about other curves. Regarding
DIC'5 indicator, both hierarchical models, the full and the mixed models, have
better performance than the pooled model, being the mixed model the best one.

Table 2 shows the population parameter estimations with the standard errors
regarding the full hierarchial model, the mixed model and the pooled model.
Moreover, for the first two models, individual parameters are shown for curves
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Figure 4: Fitting Growth Curves
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Table 1: Model comparison
Model DIC3 PPLP G P

Hierarchical model —1296 0.47 0.05 0.42

Mixed model —1314 043 0.05 0.37
Separated model —325 542 0.26 5.16
Pooled model —1065 0.40 0.37 0.03

7,12, 17 and 18 - the same curves represented graphically before. Comparison
among the individual D; parameter estimations shows a range of variation be-
tween 0.80 and 0.98 indicating that even keeping constant the environmental
conditions, there are significant differences observed in the maximum absolute
growth among the curves. Differences among the other individual parameters
are also found. Comparing individual D; and u; parameters between full hi-
erarchical model and mixed model, estimations are very close. Regarding the
population parameters, we observe that D and yp have the same estimated val-
ues in both models, 0.93 and 0.25 respectively. In contrast there is a difference
in the lag estimate. In the hierarchial model the estimated value is equal to
4.26 while in the mixed model it is 4.03. In other words, for the parameters
which are considered as random effects in both models the estimated values are
equal, while for the lag parameters, considered as random in the full hierarchical
model and fixed in the mixed model, the estimated values are different. The lag
estimate in the mixed model is equal to the one in pooled model. Another im-
portant observation is that the standard errors of the estimations are smaller in
the mixed model compared with the hierarchial model. Of course, the standard
errors in the pooled model are the smallest as we explained before.

To asses the predictability of the models, now we will consider the case where
the first 17 curves are fully observed and where only the first 6 values of the
18th curve are observed, so that we can try to predict the trajectory of the rest
of the growth curve. Figure 5 shows the predictive curves for the hierarchial and
pooled models respectively. The predictive curve for the hierarchical model is
more accurate than the one for the pooled model. Moreover, when computing
the mean squared error between the predictive curve and the real curve, the
value for the former model is equal to 0.0020 while for the later is equal to
0.0042. In general, the more the growth process differs from the mean, the
better the hierarchial model performs in comparison with the pooled model.

Finally, we will consider the case of prediction for a new curve, J which
has not been observed. The procedure is as follows. First, having observed the
previous 17 curves, we will predict the cell density of the new curve at t = 0.
Then, given the true value of the bacteria density at that time, we predict
the following value and so on. Figure 6 shows the predictive curves for a new
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Table 2: Parameter estimations

Model Curve D A 1
M 7 0.98 (0.023) 4.00 (0.184)  0.25 (0.020)
12 0.80 (0.022) 4.03 (0.222) 0.22 (0.023)

17 0.88 (0.023) 3.91 (0.204)  0.23 (0.020)

18  0.94 (0.022) 3.82 (0.188)  0.25 (0.020)

Population 0.93 (0.083) 4.26 (0.367) 0.25 (0.024)

MM 7 0.98 (0.020) 0.24 (0.0169)
12 0.80 (0.019) 0.22 (0.012)

17 0.87 (0.019) 0.23 (0.013)

18 0.92 (0.019) 0.26 (0.013)

Population 0.93 (0.081) 4.03 (0.015) 0.25 (0.023)

PM  Population 0.87 (0.007) 4.03 (0.066) 0.23 (0.007)

experiment for the hierarchical model and the pooled model, respectively.

Figure 5: Predictive Future Observations

Curve 18 Curve 18

(a) Hierarchical model (b) Pooled model

Once again, the hierarchial model outperforms the pooled model with the
predicted curve being very close to the true curve. The mean square error of the
predictions are equal to 0.0006 and 0.0040, for the hierarchical and the pooled
model respectively, being significantly lower for the hierarchical model.
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Figure 6: Predictive Future Experiment
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(a) Hierarchical model (b) Pooled model

5 Conclusions

We have illustrated that hierarchical models can be used to model bacterial
growth functions when several replications of the same experiment under equal
environmental conditions such as temperature, acidity level and salt concentra-
tion are available. Sub-models, keeping fixed some of the growth parameters,
are also suitable. Hierarchical models are a good compromise between goodness
of fit and simplicity of the model as we clarify in the application. A number of
extensions to this work are possible.

Firstly, in this work we have extended the modified Gompertz equation to
the case of a hierarchical models, but the approach is equally applicable to
other bacteria growth models. Furthermore, it can also be applied to the cases
where we assume no parametric growth model and instead use a nonparametric
approach. Finally, in the present study we have considered experiments under
fixed environmental conditions. A natural extension of this work is to also
consider modeling what happens given changes in these conditions.
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