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Abstract

A worst-case estimator for econometric models containing unobservable components, based on minimax principles for optimal
selection of parameters, is proposed. Worst-case estimators are robust against the averse effects of unobservables. Computing worst-
case estimators involves solving a minimax continuous problem, which is quite a challenging task. Large sample theory is considered,
and a Monte Carlo study of finite-sample properties is conducted. A financial application is considered.
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1. Introduction

The use of incomplete data has long been an issue in applied economics, and still there is no consensus about
which inference methodology should be considered to calibrate the parameters of economic models. Following
the work of Griliches (1974) and Goldberger (1974), a large body of econometrics and statistics literature has ad-
dressed the estimation of models containing unobservables. The identification of these models requires the assump-
tion of a structure for the unobservables (either assuming a probability distribution or considering proxy variables
and postulating a measurement error model); and then, the efficiency of the estimation becomes the central mat-
ter of concern to statisticians, as Horowitz and Manski (2006) point out. However, the consistency of these esti-
mators is conditioned to the validity of the postulated hypotheses. Nonobservability renders the diagnosis of these
hypotheses difficult to implement, and this limitation sometimes leads to the “illegitimate” rejection of economic
theories.

We can certainly estimate pseudo parameters in models under wrong identification assumptions, (see, e.g., White,
1994), but the risk associated to the use of these estimations in economic models is unlimited. For instance, Aigner
(1974) uses the 1967 Survey of Economic Opportunities to estimate the labor-supply function as an errors in variables
model. Hum and Simpson (1994) suggest that a bias in labor-supply estimation is caused by the omission of such
unobservable individual variables as ambition and preferences. Attempts to solve this problem using household wealth
as a proxy are unsatisfactory because wealth is endogenous, and is, itself, a source of bias. Hum and Simpson (1994)
recommend caution as there are many hidden pitfalls in the available methodology.
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In view of frequently expressed scepticism over untestable identification hypotheses in models containing unob-
servables, recent research has focused on conservative inferences enhancing the computation of finite sample bounds
for the unidentified estimators (see, e.g., Horowitz and Manski, 1998, 2000, 2006; Horowitz et al., 2003; Imbens and
Manski, 2004; Chernozhukov et al., 2004; Honoré and Tamer, 2005; see also Fishman and Rubin, 1998). However, in
the case of wide bounds there is little information about the parameter (Horowitz et al., 2003, p. 421); and again, the
parameter can be only determined invoking untestable assumptions.

The aim of this paper is to present a robust approach based on minimax principles for optimal selection and estimation
of parameters in models with unobservables. In other words, we propose a worst-case (WC) strategy to seek optimal
estimators—that we will call “worst-case” estimators—in the WC value of the unobservable components. The WC
estimation procedure guarantees best upper-bound loss in view of the WC values of the unobservable variables. The
WC estimation method should be seen as a complement approach to standard techniques that postulate distributional
assumptions for the unobservable variables. A cautious modeller should consider different estimation methods and
balance the resulting estimates to determine a robust model. Under appropriate conditions, we prove consistency
and asymptotic normality of WC estimators. From a computational point of view, computing WC estimators is quite a
challenging task, as it involves solving a minimax continuous problem. Pioneering contributions to the study of minimax
optimization have been made by Danskin (1967), Bram (1966), Rockafellar (1970), and Dem’yanov and Malozemov
(1972). We use the global optimization algorithm considered by Žaković and Rustem (2003). This approach first
specifies an equivalent semi-infinite programming problem to the original problem and then solves the semi-infinite
programming problem by a global optimization approach.

WC techniques have also been appreciated in different economic contexts. Minimax principles have been applied in
game theory in the study of decision making in n-person conflicts (see e.g., Rosen, 1965). In a WC strategy, decision
makers seek to minimize the maximum damage that their rival can inflict upon them. When the rival can be interpreted
as nature, rather than another individual, the WC strategy seeks optimal responses in the WC value of uncertainty. WC
approach has also been appreciated in finance, with applications in portfolio management, see e.g. Balbás and Ibañez
(2002), Rustem and Howe (1997, 2002). The use of minimax approaches for designing robust economic policies
has been considered by Hansen and Sargent (2001), linking max–min utility theory and robust control theory. The
robust design of monetary policies based on minimax optimization have been considered by Rustem et al. (2005,
2002), Tetlow and von zur Muehlen (2001) and the unpublished monograph of Hansen and Sargent (2005), among
others.

Minimax principles have also been applied to different statistical problems, including such problem as the statistical
efficiency of point estimators (see e.g., Lehmann, 1983, pp. 249–290), hypothesis tests for maximizing the minimum
power when there is no uniformly most powerful test (see Lehmann, 1986, Chapter 9), uniform bounds for the consis-
tency of nonparametric density estimators (see e.g., Devroye, 1987), optimal sampling designs from finite populations
(see e.g., Gabler, 1990), robust estimation of wavelet regression models with unknown disturbance components (see
e.g., Tian and Herzberg, 2006), computation of upper and lower bounds for variances of discrete variables (Fishman
and Rubin, 1998) and robust Bayesian analysis minimizing the expected loss for the WC prior (Noubiap and Seidel,
2001). Huber (1964) introduces a groundbreaking robust method of estimating location parameters for contaminated
normal distributions, minimizing the maximal (WC) asymptotic variance that can happen over a neighborhood of the
specified model (see also Huber, 1994, Chapter IV).

In Section 2 of this paper we present the WC estimation method. Section 3 is devoted to the asymptotic properties
of the WC estimators. Section 4 extends the method to overidentified problems, presenting a WC generalized method
of moments (GMM). Because minimax problems usually turn out to be too unmanageable for closed solutions Section
5 addresses the numerical computation of WC estimators. In Section 6, we conduct a Monte Carlo simulation to study
the finite sample behavior of WC estimators. Section 7 presents an illustration of the applicability of the method to
Economics. In the concluding section we summarize the findings and discuss how some regularity assumptions can be
circumvented. Proofs are placed in the appendix.

2. The estimation method

A general framework encompassing most econometric estimators is the class of M-estimators, introduced by Huber
(1964, 1967) as a generalization of maximum likelihood. Let � ⊂ RK be a compact set of parameters and (X, Y ) be a
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vector of random variables. Parameters �0 are defined as the minimizers of a loss function Q(�)=E[g(X, Y, �)] on �,
where g is a continuous function. Following the analogy principle, given a sample {Xt, Yt }Tt=1 identically distributed
as (X, Y ), parameters �0 can be consistently estimated by minimizing QT (�) = T −1∑T

t=1g(Xt , Yt , �) on �. The

minimizer �̂T is known as M-estimator.
As discussed in the Introduction, many theoretical models g(X, Y, �) are given by unknown factors Y that cannot be

easily observed, even though we roughly know their variation range Y ⊂ RS . Examples are:

(1) Nuisance parameters Y ∈ Y determined exogenously to the model, and whose values are not available or out-dated.
For example, when Y is a parameter which is expected to change due to some exogenous structural change (that
cannot be completely anticipated), and the researcher seeks a robust model against this unknown.

(2) Unobserved random variables Yt ∈ Y for which we dare not make any distributional assumption, nor postulate
any proxy and/or instruments.

In these cases the model is unidentified, and we propose a robust estimation approach based on minimax principles for
optimal selection of parameters associated to the unobservable component (i.e., we minimize the WC value of the loss
function with respect to the unobservables).

Let Q(�, y)=E[g(X, y, �)] denote the WC loss function, where � ∈ � and y is a vector of unobservable components
defined on Y ⊂ RS . The WC strategy considers parameters �wc that solves the problem

min
�∈�

max
y∈Y

Q(�, y). (1)

These parameters �wc are those that best fit the available data in view of the unobservable component Y. The WC
strategy safeguards against the WC outcomes of the unobservable element Y and makes no assumptions about the
statistical nature of Y. Given a sample {Xt }Tt=1 identically distributed as X, and the sample analog of
Q(�, y),

QT (�, y) = 1

T

T∑
t=1

g(Xt , y, �),

the WC estimator �̂wc
T of �wc is defined as the solution to

min
�∈�

max
y∈Y

QT (�, y). (2)

The WC criterion yields robust estimations in the sense that it protects against the distribution of the unobservable
variables being concentrated on the “worst” state of nature.

Here we discuss the reasons why risk averse modellers should consider WC estimators and balance the resulting
estimates to determine a robust model.Although the true loss Q(·) is unidentified whenY is unobserved, WC parameters
guarantee that the loss Q(�wc) is bounded, as we show next. If Y are deterministic nuisance parameters (a degenerate
random variable), it is trivially satisfied that

Q(�wc) = E[g(X, Y, �wc)]� max
y∈Y

E[g(X, y, �wc)] = max
y∈Y

Q(�wc, y).

Therefore, the WC parameters guarantee an improvement of the true loss function no matter which is the unknown Y,
the true loss value associated with �wc is upper bounded, and the bound can be estimated by maxy∈Y QT (̂�wc

T , y). If Y
is stochastic, the loss is also bounded under proper conditions. Let F0(x, y) be the probability distribution of (X, Y ).
We introduce the following assumptions:

H.0. F0(x, y) is absolutely continuous, and the conditional density satisfies f0(y|x)�k almost surely (and let us
define c = k · �(Y), where � is the Lebesgue measure).

H.0′. There exists a c > 0 such that supx,y{F0(x, y)/F0(y)F0(x) : F0(y) > 0, F0(x) > 0} < c.

Condition H.0′. is satisfied if X, Y are independent and then c = 1.
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Lemma 1. Assume that F0(x, y) satisfies H.0 or H.0′, and g is nonnegative. Then

Q(�wc)�c max
y∈Y

Q(�wc, y).

The proof is left to the appendix.
As discussed in the Introduction, a large body of econometrics and statistics literature has addressed the estimation

of models containing unobservable random variables, assuming a probability distribution or a reduced form model
for the unobservable. However, economists rarely have information on the probability law of the unobservables, and
the choice of their distribution is typically a matter of convenience rather than an expression of actual knowledge.
If this assumption is invalid, estimators are usually inconsistent (i.e. estimations converge in probability to a param-
eter �1 �= �0). Furthermore, the loss of the estimated parameter Q(�1) can be arbitrarily large and the fitted model
becomes unreliable. In contrast, Lemma 1 states that WC parameters guarantee an improvement of the true loss func-
tion no matter which is the unknown F0, provided that c is small. This robustness is a key characteristic of WC
methods.

An alternative procedure consists of minimizing
∫

Q(�, y)�(dy), where � is a prior probability distribution for the
unobservables. Again, a cautious modeller should consider a conservative prior distribution given by the solution to
the problem

min
�∈�

max
�∈M

∫
Q(�, y)�(dy), (3)

where M is the class of probability measures on Y. The next lemma states that the estimators given by (3) are indeed
WC estimators.

Lemma 2. Assume that g is nonnegative, then

min
�∈�

max
�∈M

∫
Q(�, y)�(dy) = min

�∈�
max
y∈Y

Q(�, y). (4)

The WC approach possesses a particular interest for economic decision makers, as these methods can be used to
reduce the damages derived from Lucas’ critique. Lucas (1976) pointed out that macro-econometric models cannot
be used for policy analysis, if implementing the policy would change the conditional model in which the policy was
based. Lucas argued that the fact that agents have rational expectations over future policy actions turns this situation
a common problem. Control variables that are not affected by this problem are called super-exogenous. Consider an
economic model where Y are variables controlled by the economic authority. If changes in the control variables Y affect
the true parameters �0, we can use the WC parameter �wc which is relatively robust to changes in the controls Y. A
model using WC estimators could be a more stable tool for designing optimal economic policies in absence of super
exogeneity.

3. Asymptotic properties of WC estimators

Next, we study the consistency and asymptotic normality of WC estimators.Additional notation should be introduced
to derive the existence, consistency and asymptotic normality of �̂wc

T . Assume Q is continuous and Y is a nonempty
compact set. For each � ∈ �, there exists a set

Y(�) =
{
y ∈ Y : Q(�, y) = max

z∈Y
Q(�, z)

}
.

Therefore, Y(�wc) is the set of the WC unobservables. This set can be estimated by means of YT (̂�wc
T ), where

YT (�) =
{
y ∈ Y : QT (�, y) = max

z∈Y
QT (�, z)

}
.

The following result summarizes some properties of min–max optimization and the WC sets.
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Lemma 3. Let � ⊂ RK and Y ⊂ RS be nonempty compact sets and Q ∈ C(� × Y). Then there exist �wc ∈ � and
ywc ∈ Y such that

Q(�wc, ywc) = min
�∈�

max
y∈Y

Q(�, y).

Furthermore, the set Y(�) satisfies the following properties: (i) If Q(�, ·) is concave on Y for each � ∈ � and Y is
convex, then the correspondence Y(�) is upper hemicontinuous and takes values that are nonempty compact convex
sets. (ii) If Q(�, ·) is strictly quasi-concave on Y for each � ∈ � and Y is convex, then Y(�) is a continuous function.
(iii) The same properties can be applied to YT (�) when QT (�, ·) is (strictly) quasi-concave for each � ∈ �.

The minimax existence follows from a standard application of the Weierstrass Theorem and Berge’s (1963) Maximum
Theorem. The result is a consequence of the Maximum Theorem under convexity assumptions (see Sundaram, 1996,
Theorem 9.17, pp. 237–238) that is a consequence of Berge’s (1963) Theorem.

3.1. Consistency

To prove consistency it is helpful to impose some regularity conditions.
A.1. For all T ,

QT (�, y) − QT (�′, y′) = K�′
,y′(�, y) − tT (�, y),

where K�′
,y′(�, y) is a nonstochastic function, and |tT (�, y)| → 0 almost surely (in probability) when T → ∞,

uniformly in � ∈ � and y ∈ Y.
A.2. For some �wc ∈ � and ywc ∈ Y(�wc), it is satisfied that, ∀� > 0, ∃� > 0,

inf
‖�−�wc‖� �

sup
y∈Y

K�wc
,ywc(�, y) > �.

The first assumption ensures that the objective function for WC estimation can be decomposed as the sum of
a deterministic function and an asymptotically negligible stochastic term. Assumption A.2 requires that �wc solves
the problem inf�∈� supy∈Y K�wc

,ywc(�, y) uniquely in a neighborhood of �wc (uniqueness is an asymptotic local
identification requirement). As in the case of M estimators, local identification is a more flexible requirement than
global identification. If there exist several local solutions, the modeller should choose the most convenient value
according to economic literature.

An alternative set of conditions to prove consistency can be given by means of the following tautology:

QT (�, y) − QT (�wc, z) = K�wc
,z(�, y) + tT (�, y),

K�wc
,z(�, y) = Q(�, y) − Q(�wc, z),

tT (�, y) = QT (�, y) − Q(�, y) + Q(�wc, z) − QT (�wc, z). (5)

Then, it is sufficient for A.1 and A.2 (and therefore the consistency of �̂wc
T ) that �wc ∈ � be a locally unique solution

to (1) and sup�∈� supy∈Y |QT (�, y) − Q(�, y)| → 0, almost surely (in probability). The uniform convergence of
QT (�, y) − Q(�, y) in � × Y can be checked using standard Uniform Laws of Large Numbers (ULLN). Dudley
(1999, Section 6.6), van der Vaart and Wellner (1996, Section 2.4) and van Geer (2000) review ULLN literature
for independent variables {Xt }. Davidson (1994, Chapter 21), Wooldridge (1994), and Pötscher and Prucha (1997,
Chapter 5) review the econometric literature, including dependent data.

Theorem 4 (consistency of WC estimators). Let �̂wc
T ∈ � ⊂ RK be the solution to (2) with QT measurable for each

� ∈ � and y ∈ Y. Assuming A.1 and A.2, then �̂wc
T → �wcalmost surely (in probability).

The next results are necessary to derive the asymptotic distribution of WC estimators. First, we study the consistency
of WC unobservables YT (̂�wc

T ) and consider the Hausdorff distance dH(A, B) between two nonempty Euclidean sets
A, B; i.e.,

dH(A, B) = max

{
sup
a∈B

d(a, B), sup
b∈B

d(A, b)

}
,
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where d(a, B) = d(B, a) = infb∈B ‖a − b‖ denotes the distance between the point a and the set B. For compact sets
A and B, it is satisfied that dH(A, B) = 0 if and only if A = B. Note that YT (̂�wc

T ) and Y(�wc) are compact when QT

and Q satisfy Statement (i) of Lemma 3.
An additional condition ensures the consistency of WC unobservables YT (̂�wc

T ).
A.3. ∀� > 0, ∃� > 0,

inf
{y1,y2∈Y:‖y1−y2‖>�}

inf
�∈�

K�,y1(�, y2) > �.

Define K�,y1(�, y2) = Q(�, y2) − Q(�, y1), as in (5). A sufficient condition for A.3 is

|Q(�, y2) − Q(�, y1)| > r(�)f (‖y2 − y1‖),
where f (x) > 0 for all x > 0, and inf�∈� r(�) > 0.

Proposition 5 (consistency of WC unobservables). Under assumptions A.1–A.3,

dH(YT (̂�wc
T ), Y(�wc)) → 0,

almost surely (in probability).

3.2. Asymptotic normality

Without loss of generality, we assume that the parameter set is of the form � = {� ∈ RK : h(�)�0}, where
h = (h1, . . . , hM) is a continuous vector function on �. Analogously to nonlinear least-squares methods, we argue
that the parametric constraints have no asymptotic effect if �wc is an interior point of �, i.e. �wc ∈ int{�} with
int{�} = {� ∈ RK : hj (�) < 0, j = 1, . . . , M}.

To establish the asymptotic normality of WC estimators �̂wc
T , we present the first order conditions for minimax

problems, that are used to prove consistency of WC multipliers {(̂�i , ŷi )}̂ki=1 associated with Problem (2). The first
order necessary conditions for the solution to (1) are usually credited to Schmitendorf (1977) (see also Shimizu and
Aiyoshi, 1980, Theorem 1). Nonetheless, first order conditions for minimax optima have been previously considered
in the Russian literature, and translated into English before 1977 (see e.g., Dem’yanov and Malozemov, 1972). Also,
there exist sufficient conditions for a point satisfying the first order conditions to be a minimax optima (e.g., Bector
and Bhatia, 1985).

Theorem 6 (first order conditions for minimax problems). Let Q : RK × RS → R be C1, � = {� ∈ RK :
h(�)�0}, where h : RK → RP are C1, and Y ⊂ RS be a nonempty compact set. Let �wc denote the solution to
min�∈� maxy∈Y Q(�, y). If vectors {∇�hj (�

wc) : hj (�
wc) = 0} are linearly independent, then there exist a positive

integer k, vectors yi ∈ Y(�wc), and multipliers �i �0 for i = 1, . . . , k, with
∑k

i=1 �i = 1, and �j �0 for j = 1, . . . , p

such that

k∑
i=1

�i∇�Q(�wc, yi) +
p∑

j=1

�j∇�hj (�
wc) = 0, (6)

p∑
j=1

�j hj (�
wc) = 0, (7)

with 1�k + p�K + 1, where p is the number of nonzero �j . If �wc ∈ int{�}, Eqs. (6) and (7) simplify to∑k
i=1�i∇�Q(�wc, yi) = 0.

The necessary conditions for the solution of minimax problems can be derived from the classical theory of op-
timization in Banach spaces. Notice that Problem (1) can be expressed as min�∈�,�∈R {� : Q(�, y)��, ∀y ∈ Y}.
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The associate Lagrange function is defined as

L = � +
∫

(Q(�wc, y) − �)�(dy) +
p∑

j=1

�j hj (�)

=
∫

Q(�wc, y)�(dy) +
p∑

j=1

�j hj (�) + �

(
1 −

∫
�(dy)

)
,

where � is a bounded Borel measure on Y. Under an appropriate constraint qualification, the first order conditions of
Problem (1) are∫

∇�Q(�wc, y)�(dy) +
p∑

j=1

�j∇�hj (�
wc) = 0, 1 −

∫
�(dy) = 0,

�j hj (�
wc) = 0, hj (�

wc)�0, �j �0, j = 1, . . . , p, (8)

and
∫
(Q(�wc, y)−�)�(dy)=0, Q(�wc, y)−��0. Therefore, as � integrates to one, �=∫ Q(�wc, y)�(dy). Furthermore,∑p

j=1�j hj (�
wc) = 0.

The Lagrange multiplier � is a discrete measure with support in Y(�wc) and can be expressed as � =∑k
i=1 �i�(yi)

for some k�K + 1 and yi ∈ Y(�wc). This is because the set of measures � satisfying the functional conditions
(8) is convex, bounded and closed in the weak-∗ topology, and is therefore weakly-∗ compact. It follows from the
Krein–Millman theorem that this set is equal to the convex hull of its extreme points. The extreme points can be
shown to be discrete measures supported on k�K + 1 points because they satisfy K + 1 equations in (8), provided
{∇�hj (�

wc) : hj (�
wc) = 0} are linearly independent vectors (see Shapiro (1994) and Shapiro (1988, pp. 112–113) for

details). Alternative arguments based on Caratéodory’s Theorem can be found in Hager and Presler (1987). Because �
is a discrete probability measure, we can express (8) as

k∑
i=1

�i∇�Q(�wc, yi) +
p∑

j=1

�j∇�hj (�
wc) = 0,

k∑
i=1

�i = 1.

Any continuous minimax problem of the form (1) satisfying the assumptions in Theorem 6 can be written as

min
�,�∈�

{� : Q(�, yi)��, i = 1, . . . , k}. (9)

The optima �wc and {yi}ki=1 ⊂ Y(�wc), and Lagrange multipliers {�i}, {�j } of Problem (1) coincide with the optima

and Lagrange multipliers of Problem (9). This result will be applied to prove consistency of multipliers {̂�i }̂ki=1 to
{�i}ki=1. To this end, the uniqueness of {�i , �j } is also required. The following result of Shapiro (1997, Proposition 3.2)
addresses this problem:

Proposition 7 (uniqueness of {�i , �j }). The following two conditions are necessary and sufficient for the uniqueness
of the Lagrange multipliers measure �wc =∑k

i=1 �i�(yi):

(1) {∇�Q(�wc, yi)}ki=1are linearly independent.
(2) For any neighborhood N of the set {yi}ki=1 there exists a 	 such that 	 · ∇�Q(�wc, yi) = 0, i = 1, . . . , k and

	 · ∇�Q(�wc, y) < 0, y ∈ Y(�wc)\N.

The next result gives sufficient conditions ensuring that {(̂�i , ŷi )}̂ki=1 converges almost surely to the WC multipliers
{(�i , yi)}ki=1 associated with Problems (2) and (1), respectively.

Proposition 8 (consistency of WC multipliers). Under the assumptions in Theorem 6, Proposition 7, A.1–A.3, if, in
addition,

max
�∈�,y∈Y

|QT (�, y) − Q(�, y)| → 0

almost surely (in probability), then {(̂�i , ŷi )}̂ki=1 converges to {(�i , yi)}ki=1 almost surely (in probability).
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Next we obtain the asymptotic distribution of WC estimators, under the following assumptions:

B.1. �wc ∈ int{�} solves (1), and �̂wc
T →p�wc,

B.2. {(̂�i , ŷi )}̂ki=1→p{(�i , yi)}ki=1,
B.3. for all T , QT (�, y) is C2,1 almost surely, Y ⊂ RS and � ⊂ RK are nonempty compact sets, and

√
T

�QT (�wc, y)

��
→dZ(y)

uniformly on C(Y), where C(Y) is the class of continuous functions on Y and Z is a second order Gaussian
process, with zero mean and covariance R(y1, y2) = E[Z(y1)Z(y2)

′],
B.4. for any sequence �̃T →p�wc,

k̂∑
i=1

�̂i

�2QT (�̃T , ŷi)

�� ��′ →pB :=
k∑

i=1

�i

�2Q(�wc, yi)

�� ��′ ,

where B is a nonsingular deterministic real matrix.

Theorem 9 (asymptotic normality). Let �̂wc
T be the solution to (2). Assume B.1–B.4. Then,

√
T (̂�wc

T − �wc)

→dN(0, B−1AB−1), where A =∑k
i=1

∑k
j=1 �i�jR(yi, yj ) is a positive definite real matrix.

Relaxing the compactness condition of Y in Theorem 9, asymptotic normality can be analogously proved, considering
Eq. (8) instead of Eqs. (6) and (7). But the estimation of the measure � becomes more involved (see the concluding
remarks).

Consistency of WC estimators and multipliers (considered inAssumptions B.1 and B.2) can be proven using Theorem
4 and Propositions 5 and 8. Assumption B.3 can be established by applying a standard functional central limit theorem
for empirical processes. These central limit theorems require weak convergence of finite-dimensional projections and
a uniform tightness Condition. For an introduction to this topic, see Billingsley’s (1968) classical monograph, Wichura
(1969), and Bickel and Wichura (1971). Pollard (1989, 1990), Dudley (1999) and van der Vaart and Wellner (1996)
review a different approach, particularly fruitful under independence assumptions. Assumption B.4 can be derived from
the uniform consistency condition∥∥∥∥�2QT (�, y)

�� ��′ − �2Q(�, y)

�� ��′

∥∥∥∥→p0

uniformly on C(Y × �), which requires a ULLN. In the appendix we provide an alternative sufficient condition for
B.4 (see Proposition 12).

Often,

R(y1, y2) = lim
T →∞

1

T

T∑
t1=1

T∑
t2=1

E

[
�g(Xt1 , yi, �)

��

�g(Xt2 , yj , �)

��′
]

.

Therefore, if {Xt } are independently distributed, A can be estimated by

ÂT =
k̂∑

i=1

k̂∑
j=1

�̂i �̂j

(
1

T

T∑
t=1

�g(Xt , ŷi , �̂
wc
T )

��

�g(Xt , ŷj , �̂
wc
T )

��′

)
,

and B by

B̂T =
k̂∑

i=1

�̂i

�2QT (̂�wc
T , ŷi)

�� ��′ =
k̂∑

i=1

�̂i

(
1

T

T∑
t=1

�2g(Xt , ŷi , �̂
wc
T )

�� ��′

)
.

8



For dependence cases, we can consider analogous expressions based on the spectral density evaluated at zero, such
as the Barlett–Newey–West estimator.

3.3. Constrained estimation and testing

Theorem 9 is useful when �wc ∈ int{�}. But often, the parametric set is defined to include some equality constraints,
meaning that �wc is not an interior point. In this section we consider the case where hj (�

wc) = 0 for j = 1, . . . , p, and
these constrains are used in the estimation process. We define

�null = {hj (�) = 0, j = 1, . . . , p} ∩ {hj (�) < 0, j = p + 1, . . . , M},
and the constrained WC estimator (CWC) of �wc given by

�̂cwc
T = arg min

�∈�null
max
y∈Y

QT (�, y).

Let us denote the Lagrange multipliers associated to the constrained minimax problem by �̂wc
T . We obtain the asymptotic

distribution of
√

T (̂�cwc
T − �wc, �̂wc

T ), which allows us to derive asymptotic parametric tests. The proof of asymptotic
normality is similar to that of Theorem 9; however, we should slightly modify Assumption B.1 as follows:

B.1′. �wc ∈ � solves (1), satisfying that hj (�
wc) = 0 for j = 1, . . . , p and hj (�

wc) < 0 for j = p + 1, . . . , M , where
{�hj (�

wc)/��}pj=1 are linearly independent. Also, �̂cwc
T →p�wc.

Theorem 10 (asymptotic normality of constrained WC estimators). Let �̂cwc
T be the solution to (2) with Lagrange

multipliers �̂
wc

. Assume B.1′, B.2, B.3 and B.4. Then,

√
T

(
�̂cwc
T − �wc

�̂wc

)
→dN(0, V ),

where

V =
(

B H ′
H 0

)−1 (
A 0
0 0

)(
B H ′
H 0

)−1

,

with H = ∇�Hp(�wc), Hp(�) = (h1(�), . . . , hp(�))′, and matrices A and B as defined in Theorem 9.

Consider(
C11 C′

12
C12 C22

)
=
(

B H ′
H 0

)−1

.

We can express the asymptotic covariance matrix as

V =
(

V11 V ′
12

V12 V22

)
=
(

C11AC11 C′
12AC11

C11AC12 C′
12AC12

)
.

The explicit form of this matrix can be obtained applying standard formulae for the inverse of a partitioned matrix,

C11 = B−1 − B−1H ′(HB−1H ′)−1HB−1,

C12 = (HB−1H ′)−1HB−1.

If A = B, we can simplify V to(
V11 V ′

12
V12 V22

)
=
(

B−1(I − H ′(HB−1H ′)−1HB−1) 0
0 (HB−1H ′)−1

)
.

9



The unrestricted WC estimate, by contrast, has an asymptotic covariance matrix B−1, and thus is generally less
efficient than the constrained WC estimator (as B−1H ′(HB−1H ′)−1HB−1 is nonnegative definite). It means that by
incorporating valid restrictions we cannot reduce efficiency, but generally improve it.

Theorem 10 can be used to test Lagrange multiplier hypotheses. For example, the statistic for testing H0 : hj (�
wc)=0

for j = 1, . . . , p, is ΥT := T �̂′V̂ −1
22 �̂→d
2

K−p, where V̂22→pV22 > 0. Other asymptotic tests, such as Wald-type tests

and generalized likelihood ratio tests, can be derived in a similar way, using
∑k̂

i=1�̂i∇�QT (�, ŷi ) as a score function.

4. WC estimation for overidentified models

Hansen’s (1982, 1985) GMM for overidentified models considers �0 as the minimizer of a quadratic loss function
Q(�)=E[g(X, Y, �)]′WE[g(X, Y, �)] on �, where W is a positive definite matrix. Following the analog principle, the
parameters are consistently estimated by the minimizer of

QT (�) =
(

T −1
T∑

t=1

g(Xt , Yt , �)

)′
WT

(
T −1

T∑
t=1

g(Xt , Yt , �)

)
,

where WT →pW . A review of the literature can be found e.g., in Wooldridge (1994).
This section shows how the WC approach is embedded in the GMM framework. Assume that Y is unobserved

and consider the loss function Q(�, y) = E[g(X, y, �)]′WE[g(X, y, �)] on � × Y. We define �wc as the solution of
min�∈� maxy∈YQ(�, y). Given the sample data {Xt }Tt=1 and the sample analog

QT (�, y) =
(

T −1
T∑

t=1

g(Xt , y, �)

)′
WT

(
T −1

T∑
t=1

g(Xt , y, �)

)
, (10)

where WT →pW almost surely (in probability), the WC–GMM estimator �̂wc
T of �wc is defined as the solution to

min�∈� maxy∈Y QT (�, y).
Consistency results derived in the previous sections are valid to this extension (see Theorem 4 and Proposition

5). However, as it is usually done for the classical GMM method, the asymptotic normality for WC–GMM can be
established using weaker conditions than those considered in Theorem 9. The following assumptions are introduced:

D.1. �wc ∈ int{�} solve min�∈� maxy∈Y Q(�, y), where

Q(�, y) = E[g(X, y, �)]′WE[g(X, y, �)],
W is positive definite, and �̂wc

T →p�wc.
D.3. g(X, �, y) ∈ C1,1(� × Y) almost surely, Y ⊂ RS and � ⊂ RK are nonempty compact sets, and

1√
T

T∑
t=1

g(Xt , y, �wc)→dG(y)

uniformly on C(Y), where G is a second order Gaussian process, with zero mean and covariance R(y1, y2) =
E[G(y1)G(y2)

′].
D.4.

T −1
T∑

t=1

�

��
g(Xt , y, �)→pS(y, �) := E

[
�

��
g(X, y, �)

]
uniformly on C(Y × �).

Theorem 11 (asymptotic normality of WC GMM). Let �̂wc
T be the solution to (2), and QT be given by (10). Assume

D.1, B.2, D.3, and D.4. Then,
√

T (̂�wc
T − �wc)→dN(0, B−1AB−1),

10



where

A =
k∑

i=1

k∑
j=1

�i�j S(yi, �
wc)WR(yi, yj )W

′S(yj , �
wc)′,

B =
k∑

i=1

�iS(yi, �
wc)WS(yi, �

wc)′.

The asymptotic variance of WC–GMM estimators is more complex than the one of the classical GMM estimators.
If R(yi, yj ) = S(yi, �

wc)S(yj , �
wc)′, the asymptotic variance is B−1AB−1 = I . In the WC context, if k > 1 it is not

straightforward to ensure that A = B−1 by an appropriate choice of W. The asymptotic distribution for WC–GMM
constrained estimators can be derived analogously to Theorem 10.

GMM is the benchmark approach for overidentified models, but other methods have been considered in the literature
and WC ideas can be adapted to their premises. For instance, some authors consider infinite moment conditions
E[gs(X, Y, �)] = 0 indexed by elements s in a Euclidean space, and the parameter �0 is identified as a minimizer of
Q(�) = ∫ |E[gs(X, Y, �)]|2�(ds) for some weight measure � (see e.g., Domiguez and Lobato, 2004). If the variable Y
is unobserved, the WC approach can be extended to this context considering

Q(�, y) =
∫

|E[gs(X, y, �)]|2�(ds).

5. Computational issues

To obtain WC estimators, we are faced with the problem of solving a minimax continuous problem. We con-
sider the global optimization algorithm developed by Shimizu and Aiyoshi (1980) and Žaković and Rustem (2003),
see also the monograph of Rustem and Howe (2002). They consider an algorithm for solving semi-infinite pro-
gramming problems, as any continuous minimax problem of the form min�∈� maxy∈Y QT (�, y) can be written as
min�∈�,�∈R {�: maxy∈YQT (�, y)��}, which is equivalent to the semi-infinite problem:

min
�∈�,�∈R

�

s.t. QT (�, y)�� for all y ∈ Y. (11)

For an introduction to semi-infinite programming, see Hettich and Kortanek (1993) and Reemtsen and Görner (1998).
The Žaković and Rustem (2003) algorithm uses a global optimization approach with respect to y ∈ Y and cutting

planes to reduce the feasible region when constraints violation is encountered. In particular, the lth iteration of this
algorithm consists of solving the problem:

min
�l+1∈�,�l+1∈R

{�l+1 : QT (�l+1, yi)��l+1, i = 1, . . . , kl}, (12)

given {yi}kl

i=1 ⊂ Y(�l ). Next we check if the solution is feasible up to an arbitrary positive tolerance �. If

max
y∈Y

QT (�l+1, y) > �l+1 + �,

iterate, otherwise if maxy∈YQT (�l+1, y)��l+1 + �, terminate and �̂wc
T = �l+1 is a solution of the minimax problem.

This algorithm terminates in a finite number of iterations. Under convexity assumptions of Problem (11), the Lagrange
multipliers {�i}ki=1 associated with the last iteration of Problem (12) are the coefficients {�i}ki=1 in Theorem 6.

The global optimization approach is essential to guarantee the robustness property of the solution of minimax
problems because one of the crucial steps in solving the semi-infinite problem is to find {yi}kl

i=1 ⊂ YT (�l ) for all
�l ∈ � by computing the global maximizers in the program maxy∈YQT (�l , y). In global optimization algorithms,
all candidates for local maximizers must usually be bracketed by a comparison of function values QT (�l , y) on a
sufficiently dense finite subset of Y. To reduce the cost of computing global optima, it is recommended that the
domains � and Y be restricted as much as possible given the information available.
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Table 1
Finite sample results for WC in model (i) with � = 0

LS Omitting Prior N Prior U WC

E [̂�] −2.05 0.2 1.67 −1.9 −2.28
−2.06 −1.98 −2.11 −2.05 −2.19

V [̂�] 3.58 20.3 19.3 6.3 4.65
3.46 20.2 15.31 4.78 4.27

MSE(̂�) 3.59 25.1 19.48 6.3 4.73
3.47 20.2 15.32 4.78 4.3

E [̂] 2.01 — 0.07 3.09 1.01
1.9 — 0.003 3.11 1.01

V [̂] 0.02 — 0.008 0.09 0.05
0.03 — 0.0079 0.09 0.05

MSE(̂) 0.02 — 3.98 1.29 0.96
0.03 — 3.99 1.34 0.97

Q(̂�, ̂) 0.92 5.6 5.5 2.58 2.03
0.93 5.5 5.6 2.57 2.12

V (̂�, ̂) 0.05 1.0 1.1 0.71 0.2
0.05 1.0 0.94 0.52 0.16

We have implemented the algorithm using MATLAB 6.5 on an Intel Centrino Pentium M 1.6 GHz with machine
precision 10−16. Each problem (11) of the Monte Carlo studies in Section 5 and the financial application in Section
6 have been computed using the MATLAB subroutine fseminf corresponding to the Optimization toolbox. This
routine is suited for optimization problems with a semi-infinitely constrained multivariable nonlinear function.

6. Monte Carlo study of finite sample behavior

A Monte Carlo study was conducted in order to study the finite sample performance of WC estimates. We first
consider the linear regression model (i) yt = �x1t + x2t + ut , where (�, ) denote the two-dimensional parameter
vector, x1t ∼ N(0, 1) and x2t=�x1t+�t , where �t ∼ exp{N(0, 0.3)} and ut ∼ N(0, 1) are identically and independently
distributed random variables, for all t = 1, . . . , T ; the expression N(0, 1) denotes the standard normal distribution.
Assuming �0 = −2 and 0 = 2, the experiment was carried out for T = 30 and 40. We also consider different levels of
dependence between x1t and x2t , setting � = 0 (independence), � = 0.3 and 0.5

Consider the problem of estimating theWC estimators for (�, ) assuming that x2 is unobservable. Following the least-
square approach, we define QT (�, , x2) = T −1∑T

t=1g(yt , x1t , x2, �, ), with g(y, x1, x2, �, )= (y − (�x1 + x2))
2

and the WC problem as

min
�∈[−5,0],∈[0,3]

max
x2∈[0,3] QT (�, , x2).

In order to illustrate the accuracy of the asymptotic distribution, we perform a Monte Carlo with N=400 realizations. We
have also considered other estimators, such as: (1) the least-squares approach assuming that both x1, x2 are observable;
(2) the least-squares estimator of � omitting x2; (3) the estimator which minimizes

T −1
T∑

t=1

∫
g(yt , x1t , x2, �, )f (x2) dx2

in �,  where f is a N(0, 1) prior density; and (4) analogous to the previous estimator with f a U(0, 1) prior density. All
these estimators are compared with the WC estimator.

For independent regressors, � = 0, Table 1 reports expectation, variance and mean square error of the consid-
ered estimators with respect to true parameters, obtained from the Monte Carlo simulation. Each cell contains two
values, the upper value refers to estimators with T = 30 and below it is the value computed for T = 40. Table 1
also reports the numerical value of the loss function Q(̂�, ̂) = E[T −1∑T

t=1g(yt , x1t , x2t , �̂, ̂)] and its variance
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Table 2
Finite sample results for WC in model (i) with � = 0.3 and 0.5

� = 0.3 � = 0.5

LS Omitting Prior N Prior U WC LS Omitting Prior N Prior U WC

E [̂�] −1.97 −0.42 −1.3 −1.5 −2.12 −2.07 −1.0 −0.71 −0.99 −1.84
−2.07 −1.47 −1.44 −1.44 −1.84 −2.22 −0.87 −0.99 −1.06 −1.89

V [̂�] 3.86 23.15 24.03 6.26 4.23 3.6 20.49 22.2 5.83 4.24
3.31 18.8 17.53 4.37 4.1 3.99 20.03 16.41 4.8 4.09

MSE(̂�) 3.86 25.65 24.5 6.51 4.24 3.6 21.49 23.86 6.85 4.026
3.32 19.08 17.83 4.68 4.12 4.04 21.28 17.42 5.69 4.1

E [̂] 2.01 — 0.004 3.1 1.01 2.0 — 0.005 3.11 1.01
2.0 — −0.008 3.12 1.02 2.0 — 0.003 3.15 1.02

V [̂] 0.02 — 0.008 0.11 0.008 0.02 — 0.007 0.10 0.006
0.03 — 0.008 0.08 0.005 0.02 — 0.008 0.08 0.007

MSE(̂) 0.02 — 3.99 1.34 0.96 0.02 — 3.98 1.35 0.96
0.03 — 4.04 1.35 0.96 0.02 — 3.99 1.4 0.95

Q(̂�, ̂) 0.96 5.7 5.47 2.64 2.09 0.94 5.57 5.59 2.64 2.08
0.9 5.6 5.66 2.6 2.14 0.94 5.69 5.63 2.65 2.06

V (̂�, ̂) 0.06 1.08 1.24 0.78 0.23 0.06 0.95 1.13 0.74 0.22
0.05 0.98 0.92 0.62 0.18 0.06 1.12 1.07 0.58 0.15

Fig. 1. Normal probability plot for �̂wc of model (i), with T = 30 and � = 0.

V (̂�, ̂) = Var[T −1∑T
t=1g(yt , x1t , x2t , �̂, ̂)], computed from the Monte Carlo simulation for each of these estima-

tors. From Table 1, it can be deduced that the WC approach is a robust strategy in the presence of unobservables, as
documented in Lemma 1. The case of dependent regressors is considered in Table 2, showing an analogous pattern.

Figs. 1 and 2 display the normal probability plot for �̂wc and ̂wc, respectively, for T = 30 and � = 0.
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Fig. 2. Normal probability plot for ̂
wc

of model (i), with T = 30 and � = 0.

Figs. 1 and 2 show that the normal approximation is satisfactory for T =30, although there is room for improvement.
Second order asymptotic methods, such as Edgeworth expansion-based corrections or some resampling methods (e.g.,
bootstrap and subsampling), seem to provide interesting approaches for WC inferences with small samples. But for
large samples they may not be worth emphasizing over first order weak asymptotic approximations, as in classical
M-estimation.

A nonlinear regression model (ii) yt = exp(�x1t + x2t ) + ut was also simulated, where (�, ) denote the two-
dimensional parameter vector, ut ∼ N(0, 1), and the regressors x1t and x2t are defined as in the model (i); i.e., x1t ∼
N(0, 1) and x2t =�x1t + �t with �t ∼ exp{N(0, 0.3)}. Assuming �0 = 0.75, and 0 = 0.2, a Monte Carlo with N = 400
realizations was carried out for T =30 and 40, and for the values �=0, 0.3 and 0.5.We consider the problem of estimating
the WC estimators for (�, ) assuming that x2 is unobservable. We define QT (�, , x2)=T −1∑T

t=1g(yt , x1t , x2, �, ),
with g(y, x1, x2, �, ) = (y − exp(�x1 + x2))

2, and the WC problem as

min
�∈[−3,4],∈[−1,1]

max
x2∈[0,2] QT (�, , x2).

Analogously to the previous example, we have also considered the estimators: (1) the nonlinear least-squares approach
assuming that both x1, x2 are observable; (2) the nonlinear least-squares estimator of � omitting x2; (3) the estimator
based on a prior N(0, 1) density, as in the previous experiment; and (4) analogous to the previous case with a prior
U(0, 2) density. These estimators are compared with WC estimator.

Table 3 reports expectation, variance and mean square error of the considered estimators with respect to true
parameters, obtained from the Monte Carlo simulation for independent regressors, � = 0. Each cell contains two
values, the upper value refers to estimators with T = 30 and below is the value computed for T = 40. Table 3
also reports the numerical value of the loss function Q(̂�, ̂) = E[T −1∑T

t=1g(yt , x1t , x2t , �̂, ̂)] and its variance
V (̂�, ̂) = Var[T −1∑T

t=1g(yt , x1t , x2t , �̂, ̂)] computed from the Monte Carlo simulation for each of these estimators.
The case of dependent regressors, � = 0.3 and 0.5, is considered in Table 4. From Tables 3 and 4 it can be deduced
that WC estimators guarantee an improvement of the true loss function and the loss associated to the WC estimators
and its variability are usually lower than the ones obtained by omitting the unobservable or considering arbitrary
priors.
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Table 3
Finite sample results for model (ii) with � = 0.

LS Omitting Prior N Prior U WC

E [̂�] 0.71 1.02 1.08 0.67 0.97
0.67 0.94 1.05 0.79 1.1

V [̂�] 1.83 3.48 4.78 2.77 3.19
1.86 3.42 3.9 2.09 2.4

MSE(̂�) 1.83 3.55 4.89 2.77 3.24
1.87 3.45 4.03 2.1 2.55

E [̂] 0.18 — 0.001 0.13 0.14
0.19 — 0.0003 0.13 0.15

V [̂] 0.016 — 0.0002 0.013 0.007
0.013 — 0.0002 0.009 0.006

MSE(̂) 0.016 — 0.03 0.017 0.01
0.014 — 0.04 0.013 0.007

Q(̂�, ̂) 2.05 2.52 2.45 2.17 2.2
2.04 2.51 2.55 2.17 2.19

V (̂�, ̂) 0.06 0.2 0.25 0.08 0.15
0.05 0.19 0.20 0.007 0.11

Table 4
Finite sample results for WC in model (ii) with � = 0.3 and 0.5

� = 0.3 � = 0.5

LS Omitting Prior N Prior U WC LS Omitting Prior N Prior U WC

E [̂�] 0.76 1.01 1.01 1.01 1.01 0.73 1.05 1.04 1.05 1.04
0.76 1.01 1.01 1.008 1.01 0.74 1.04 1.05 1.04 1.04

V [̂�] 0.06 0.003 0.003 0.0048 0.003 0.10 0.0035 0.036 0.004 0.004
0.05 0.004 0.003 0.003 0.003 0.05 0.004 0.002 0.003 0.003

MSE(̂�) 0.06 0.07 0.07 0.07 0.07 0.10 0.09 0.09 0.09 0.09
0.06 0.07 0.07 0.07 0.07 0.05 0.09 0.09 0.09 0.09

E [̂] 0.19 — 1.4 × 10−5 0.004 0.002 0.2 — −3.2 × 10−6 0.006 0.009
0.19 — −7.5 × 10−6 0.006 0.0002 0.2 — 9.1 × 10−6 0.006 0.007

V [̂] 0.03 — 1.1 × 10−7 0.003 0.001 0.04 — 1.01 × 10−7 3 × 10−4 0.002
0.03 — 6.3 × 10−8 2 × 10−4 8 × 10−4 0.02 — 8 × 10−8 0.002 0.001

MSE(̂) 0.03 — 0.039 0.038 0.04 0.04 — 0.04 0.03 0.038
0.03 — 0.04 0.03 0.04 0.02 — 0.039 0.03 0.03

Q(̂�, ̂) 4.18 4.226 4.19 4.2 4.2 4.44 4.49 4.45 4.52 4.47
4.2 4.24 4.23 4.2 4.23 4.44 4.487 4.49 4.45 4.47

V (̂�, ̂) 0.24 0.257 0.27 0.29 0.254 0.26 0.27 0.28 0.28 0.26
0.21 0.29 0.23 0.2 0.21 0.22 0.31 0.23 0.19 0.21

For model (ii) we have considered the effect of the interval for the unobservable on the WC estimators, using Monte
Carlo simulation. Table 5 shows that �̂wc and ̂wc do not suffer too strongly from an arbitrary selection of the interval
for the nonnegative variable x2.

7. A financial application in a GMM context

In this section we present an empirical application to illustrate the economic interest of the presented method. Consider
the problem given in Hansen and Singleton (1982). Assume that a representative agent decides about consumption and
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Table 5
Sensibility analysis of WC with respect to Y in model (ii), with � = 0.3 and T = 40

Y [0, 1] [0, 2] [0, 3] [0, 4]
E [̂�wc] 1.02 1.01 1.01 1.01
V [̂�wc] 0.003 0.003 0.003 0.002

MSE(̂�wc) 0.07 0.07 0.07 0.07

E [̂wc] −0.007 0.0002 −0.002 0.0009

V [̂wc] 0.001 8 × 10−4 0.002 2.2 × 10−5

MSE(̂
wc

) 0.04 0.04 0.04 0.039

Q(̂�wc, ̂
wc

) 4.27 4.23 4.21 4.21

V (̂�wc, ̂
wc

) 0.2 0.21 0.25 0.23

investment, solving the dynamic optimization problem:

max
{ct ,wt }∞t=0

⎧⎨⎩
∞∑
t=0

�r
1E[u(ct )|F0]: ct +

N∑
j=1

pj,t qj,t �
N∑

j=1

rj,t qj,t−mj
+ wt

⎫⎬⎭ ,

where ct denotes consumption, wt denotes labor income, and qt is a portfolio of N assets with respective maturities
mj , with spot price pj,t and payoff rj,t by stock at time t − mj . The utility function u satisfies uc > 0, ucc < 0, and
�1 ∈ (0, 1) is the subjective discount factor. Furthermore, F0 is the information set available at time t. The solution to
this problem satisfies,

pj,tu
′(ct ) = �

mj

1 E[rj,t+mj
u′(ct+mj

)|Ft ] ⇔

0 = E

[(
�
mj

1

u′(ct+mj
)

u′(ct )

rj,t+mj

pj,t

− 1

)∣∣∣∣Ft

]
, j = 1, . . . , N .

See Hansen and Singleton (1982) for details. Assuming that u(c)=c1−�2/1−�2, where �2 > 0, �2 �= 1 is the coefficient
of relative risk aversion, and u(c) = log c when �2 = 1, then

E

[(
�
mj

1

(
ct+mj

ct

)1−�2 rj,t+mj

pj,t

− 1

)∣∣∣∣∣Ft

]
= 0, j = 1, . . . , N .

Therefore, for any set Zt known in t, the actual � = (�1, �2)
′ satisfies

E

[(
�
mj

1

(
ct+mj

ct

)1−�2 rj,t+mj

pj,t

− 1

)
Zt

]
= 0, j = 1, . . . , N .

Following Hansen and Singleton (1982), this expression can be used to estimate by GMM when all the required
information is available.

In this financial example, Hansen and Singleton (1982) considered that a subset of rj,t+mj
/pj,t is observed for a

subgroup of the N assets. Unfortunately, the GMM methodology cannot be applied if some of these variables have not
been observed. Often, the spot price of an asset is not observed in the sampled range, but traders have an idea about
its variation rank. For example, this happens when a new asset j is introduced in the market. The WC approach can be
an useful tool to obtain an indicative value of model parameters. Then, assuming that pj,t are not observed but take
values in the range [115, 180], we consider the WC GMM estimation associated with the moment conditions

E[g(Xt , y, �)] = E

[(
�
mj

1

(
ct+mj

ct

)1−�2 rj,t+mj

y
− 1

)
Zt

]
= 0,
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with Xt = (ct , ct+mj
, rj,t+mj

, Zt ). In particular, we solve

min
0��1 �1,1��2 �30

max
115�y �180

(
1

T − 2

T −1∑
t=2

g(Xt , y, �)

)
WT

(
1

T − 2

T −1∑
t=2

g(Xt , y, �)

)
,

with WT the identity matrix, mj = 1, Zt = (rt , rt−1)
′, and Xt = (ct , ct+1, rj,t+1, Z

′
t )

′, for t = 2, . . . , T − 1.
Taking the equally weighted return on IBM stocks listed on the NewYork Stock Exchange (see http://www.princeton.

edu/∼data/datalib/timeser.html) and the real personal consumption expenditures of durable goods from the Federal
Reserve (see http://www.economagic.com/fedstl.htm#CPI) during 1986–1987, the WC parameters estimates obtained
using the described procedure are �̂1

wc = 0.85 and �̂2
wc = 1.25, the maximum optimum in YT (̂�) is ŷ1 = 155,

the associated Lagrange multiplier is �̂1 = −1, and the standard deviations are sd(̂�1
wc) = 0.2 and sd(̂�wc

2 ) = 0.12,
respectively.

Note that when a tax is about to be introduced in the financial market such that the spot prices pj,t will be modified,
the estimated WC parameters are more robust to price changes than are the ordinary parameters estimated by GMM.
Therefore, if the tax decision is based on the estimated model, an analysis based on WC modelling is less sensitive to
Lucas’ (1976) critique.

8. Concluding remarks

This paper proposes a WC or minimax approach for estimating econometric models containing unobservable com-
ponents. Instead of postulating parameters or distributional assumptions for the unobservable variables, we consider
the estimators that best fit the available data in view of the worst realization of the unobservable. This method is
robust with respect to the unknown probability distribution of unobservables. Computing WC estimators involves
solving a minimax continuous problem, which is usually analytically intractable, and the use of efficient numeri-
cal methods is required. In particular, we use the global optimization algorithm considered by Žaković and Rustem
(2003). The numerical results of Monte Carlo simulations and the financial illustration reveals that the proposed
estimation method should be seen as an effective complement to other available methodologies with unobserv-
ables.

WC estimators can be considered for other problems rather than unobservable data. For example:

• when the specification of alternative nonnested models is considered. Let g1(Xt , �), . . . , gS(Xt , �) denote alter-
native log likelihood models. Then estimators can be constructed solving

min
�∈�

max
y∈Y

{
1

T

T∑
t=1

yjgj (Xt , �)

}
,

where Y = {y ∈ RS : ∑S
j=1yj = 0, yj �0} is the positive simplex in RS ;

• in overidentified models with moment conditions E[gj (Xt , �
0)] = 0 for j = 1, . . . , S and � ⊂ RK with S > K .

When S is very large, the optimal GMM may have a high bias in small samples. To improve it, the literature
has considered a particular type of WC estimators known as generalized empirical likelihood (GEL) estimators,
given by

arg min
�∈�

max
y∈Y

⎧⎨⎩ 1

T

T∑
t=1

�

⎛⎝ S∑
j=1

yjgj (Xt , �)

⎞⎠⎫⎬⎭ ,

where Y is the positive simplex, � an appropriate function and �0 = �wc. GEL estimators have smaller high order
bias and often smaller high order variance than GMM estimators; see Newey and Smith (2004) and Newey et al.
(2005).

These two applications show that the boundedness of Y is often satisfied in practice. However, there may exist
situations in which it would be useful to relax this hypothesis and Lemma 2 can be used to overcome this issue.
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Let �wc be a unique solution of problem (4) in Lemma 2.

(1) If �wc is absolutely continuous with density function mwc(y), consider a Schauder basis {�k} for the L1 space
(although we may also assume that the density function belongs to L2 and set an orthonormal basis), then
mwc(y) =∑

kck�k(y) and we can estimate the solution to min� max�
∫

Q(�, y)�(dy) by the solution to

min
�∈�

max{c1,...,cK }

K∑
k=1

ck

∫
QT (�, y)�k(y) dy.

Often, a large but finite number of basis functions is enough to get a good approximation, and we can use the
asymptotic results of this paper. Alternatively, if K → ∞ when T → ∞ it can be seen as a sieves estimation
problem, but this case lies beyond the scope of this paper.

(2) If �wc has a finite number K of jumps, and we can estimate the solution to min� max�
∫

Q(�, y)�(dy) by the
solution to

min
�∈�

max{�i },{yi }

K∑
i=1

�i

∫
QT (�, yi).

Nonetheless, the boundedness of Y is in fact a condition that can be fully assumed in practice. Notice that economic
variables are usually bounded; e.g. variables related to wealth, human or natural resources which are scarce and limited.
Further, a practitioner can always establish the range of values of the unobservable with probability almost one from
empirical work. This range could come from market agents or economic literature.
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Appendix: Proofs

Proof of Lemma 1. Let X denote the support of X. Under H.0, for all � ∈ �,

Q(�) = E[g(X, Y, �)] =
∫

X×Y
g(x, y, �)F0(dx, dy) =

∫
Y

(∫
X

g(x, y, �)f0(y|x)F0(dx)

)
dy

��(Y) × max
y∈Y

∫
X

g(x, y, �)f0(y|x)F0(dx)�c max
y∈Y

∫
X

g(x, y, �)F0(dx) = c max
y∈Y

Q(�, y).

Under H.0′,

Q(�) =
∫

X×Y
g(x, y, �)F0(dx, dy)�c

∫
Y

{∫
X

g(x, y, �)F0(dx)

}
F0(dy)

�c max
y∈Y

∫
X

g(x, y, �)F0(dx) = c max
y∈Y

Q(�, y). �

Proof of Lemma 2. For all � ∈ � and � ∈ M,∫
Q(�, y)�(dy)� max

y∈Y
Q(�, y)

∫
�(dy) = max

y∈Y
Q(�, y).
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Furthermore, for all � ∈ �, it is satisfied that

max
�∈M

∫
Q(�, y)�(dy)�

∫
Q(�, y)�wc(dy) = max

y∈Y
Q(�, y),

where �wc is any measure of probability with all its mass in

Y(�) =
{
y ∈ Y: Q(�, y) = max

z∈Y
Q(�, z)

}
. �

Proof of Theorem 4. The supremum and infimum on Euclidean spaces are measurable functions, as a consequence
of the separability of Euclidean spaces. Then, the WC estimators can be chosen to be measurable (see e.g., Jennrich,
1969).

For any � > 0, let define B� = {� ∈ �, ‖� − �wc‖ < �} and Bc
� = �\B�. Then, as �wc ∈ B�

{‖̂�wc
T − �wc‖��} = {̂�wc

T ∈ Bc
� } ⊂

{
inf

�∈Bc
�

sup
y∈Y

QT (�, y)� inf
�∈B�

sup
y∈Y

QT (�, y)

}

⊂
{

inf
�∈Bc

�

(
sup
y∈Y

QT (�, y) − QT (�wc, ywc)

)
�0

}

=
{

inf
�∈Bc

�

sup
y∈Y

(K�wc
,ywc(�, y) − tT (�, y))�0

}

⊂
{

inf
�∈Bc

�

sup
y∈Y

K�wc
,ywc(�, y) − sup

�∈�
inf
y∈Y

|tT (�, y)|�0

}

⊂
{

sup
�∈�

inf
y∈Y

|tT (�, y)| > �

}
⊂
{

sup
�∈�

sup
y∈Y

|tT (�, y)| > �

}

but this sequence of events tends to zero almost surely (in probability) by assumption. �

Proof of Proposition 5. We will prove that supywc∈Y(�wc
) d(YT (̂�wc

T ), ywc) → 0, for any ywc ∈ Y(�wc) in Part 1.
Part 2 proves the proposition.

Part 1. For any ywc ∈ Y(�wc) and any � > 0, we define the set N�(y
wc) = {y ∈ Y: ‖y − ywc‖ < �}, and N�(y

wc)c its
complementary. Since ywc ∈ N�(y

wc), then⋃
ywc∈Y(�wc

)

{d(YT (̂�wc
T ), ywc)��} =

⋃
ywc∈Y(�wc

)

{YT (̂�wc
T ) ⊂ Nc

� (ywc)}

⊂
⋃

ywc∈Y(�wc
)

{
sup

y∈N�(ywc)c
QT (̂�wc

T , y)� sup
y∈N�(ywc)

QT (̂�wc
T , y)

}

⊂
⋃

ywc∈Y(�wc
)

{
sup

y∈N�(ywc)c
QT (̂�wc

T , y)�QT (̂�wc
T , ywc)

}

⊂
⋃

ywc∈Y(�wc
)

{
sup

y∈N�(ywc)c
(QT (̂�wc

T , y) − QT (̂�
wc
T , ywc))�0

}

=
⋃

ywc∈Y(�wc
)

{
inf

y∈N�(ywc)c
(−QT (̂�wc

T , y) + QT (̂�wc
T , ywc))�0

}
.
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Therefore, under A.1–A.3,⋃
ywc∈Y(�wc

)

{
inf

y∈N�(ywc)c
(QT (̂�wc

T , ywc) − QT (̂�wc
T , y))�0

}

⊂
⋃

ywc∈Y(�wc
)

{
inf

y∈N�(ywc)c
(K�̂wc

T ,y
(̂�wc

T , ywc) − tT (̂�wc
T , ywc))�0

}

⊂
⋃

ywc∈Y(�wc
)

{|tT (̂�wc
T , ywc)| > �} ⊂

{
sup
�∈�

sup
y∈Y

|tT (�, y)| > �

}

and the result follows.
Part 2. Note that {dH(YT (̂�wc

T ), Y(�wc)) > �} is equal to⋃
ywc∈Y(�wc

)

{d(YT (̂�wc
T ), ywc) > �}

⋃
ŷ∈YT (̂�wc

T )

{d(ŷ, Y(�wc)) > �}.

We have proved that the first set union in the right-hand side is included in {sup�∈� supy∈Y|tT (�, y)| > �}. Next we
consider the second union of sets. Let N�(ŷ) = {y ∈ Y : ‖y − ŷ‖��}, and N�(ŷ)c its complementary. Notice that

⋃
ŷ∈YT (̂�wc

T )

{d(ŷ, Y(�wc)) > �} =
⋃

ŷ∈YT (̂�wc
T )

{
inf

ywc∈Y(�wc
)
‖ŷ − ywc‖ > �

}

⊂
⋃

ŷ∈YT (̂�wc
T )

{
sup

ywc∈Y(�wc
)∩N�(ŷ)c

QT (̂�wc
T , ywc)� sup

y∈Y(�wc
)∩N�(ŷ)

QT (̂�wc
T , y)

}

⊂
⋃

ŷ∈YT (̂�wc
T )

{
sup

ywc∈Y(�wc
)∩N�(ŷ)c

(QT (̂�wc
T , ywc) − QT (̂�wc

T , ŷ))�0

}

=
⋃

ŷ∈YT (̂�wc
T )

{
inf

ywc∈Y(�wc
)∩N�(ŷ)c

(QT (̂�wc
T , ŷ) − QT (̂�wc

T , ywc))�0

}

⊂
⋃

ŷ∈YT (̂�wc
T )

{
inf

ywc∈Y(�wc
)∩N�(ŷ)c

K�̂wc
T ,ywc (̂�

wc
T , ŷ) − tT (̂�wc

T , ŷ)�0

}

⊂
⋃

ŷ∈YT (̂�wc
T )

{|tT (̂�wc
T , ŷ)| > �} ⊂

{
sup
�∈�

sup
y∈Y

|tT (�, y)| > �

}

and the result follows. �

Proof of Proposition 8. From Propositions 5 and 7, we can always take sets {ŷi }̂ki=1 ⊂ YT (̂�wc
T ), and {yi}ki=1 ⊂

Y(�wc) in such a way that dH({ŷi }̂ki=1, {yi}ki=1) → 0, and k̂ → k, almost surely (in probability), without loss of
generality. As {�i}ki=1 are the Lagrange multipliers associated with the problem

min
�

{� : Q(�wc, yi)��, i = 1, . . . , k}

and {̂�i} are Lagrange multipliers associated with the problem

min
�

{�: QT (̂�wc
T , ŷi)��, i = 1, . . . , k̂},
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it is sufficient to check that the Lagrange functions associated with these two problems,

L(�, �) = � −
k∑

i=1

�i (Q(�wc, yi) − �), LT (�, �) = � −
k̂∑

i=1

�i (QT (̂�wc
T , ŷi) − �),

converge uniformly. Since that k̂ → k, and
∑k

i=1�i = 1, with nonnegative �i , the Kolmogorov distance between
Lagrange functions satisfies

sup
�,�

|LT (�, �) − L(�, �)| = sup
�,�

∣∣∣∣∣
k∑

i=1

�i (QT (̂�wc
T , ŷi) − Q(�wc, yi))

∣∣∣∣∣+ o(1)

� max
y∈Y

|QT (̂�wc
T , y) − Q(�wc, y)| + o(1),

where the o(1) term is uniform in �, �. Next,

max
y∈Y

|QT (̂�wc
T , y) − Q(�wc, y)| → 0,

when max�∈�,y∈Y|QT (�, y) − Q(�, y)| → 0, and �̂wc
T → �wc almost surely (in probability). The result follows from

a standard application of the Consistency Theorem for extreme estimators on a compact domain (the positive simplex
in Rk , and any compact interval containing the optima �∗ = Q(�wc, yi) for all i). �

Proof of Theorem 9. Given an arbitrary vector � such that �′� = 1, let

dT = �′(B−1AB−1)−1/2
√

T (̂�wc
T − �wc).

If �wc ∈ int{�} solves problem (1) and �̂wc
T is a consistent estimator, then Pr(̂�wc

T /∈ int{�}) → 0. Therefore,

Pr(dT �x) = Pr(dT �x | �̂wc
T ∈ int{�})

+ [Pr(dT �x | �̂wc
T /∈ int{�}) − Pr(dT �x | �̂wc

T ∈ int{�})] Pr(̂�wc
T /∈ int{�})

= Pr(dT �x | �̂wc
T ∈ int{�}) + o(1)

uniformly in x.
By Theorem 6, there exists a positive integer 1� k̂�K+1, vectors ŷi ∈ Y(̂�wc

T ) and multipliers �̂i �0 for i=1, . . . , k̂

with
∑k

i=1�̂i = 1, such that

k̂∑
i=1

�̂i∇�QT (̂�wc
T , ŷi) = 0.

Applying the mean value theorem,

0 = √
T

k̂∑
i=1

�̂i

�QT (̂�wc
T , ŷi)

��
= √

T

k̂∑
i=1

�̂i

�QT (�wc, ŷi )

��
+

k̂∑
i=1

�̂i

�2QT (�̃T , ŷi)

�� ��′
√

T (̂�wc
T − �wc),

where ‖�̃T − �wc‖� ‖̂�T − �wc‖. Under B.4, it follows that:

0 = √
T

k̂∑
i=1

�̂i

�QT (�wc, ŷi )

��
+ [B + op(1)]√T (̂�wc

T − �wc).

Using conditions B.2, and B.3,

√
T

k̂∑
i=1

�̂i

�QT (�wc, ŷi )

��
→dNp(0, A).
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Thus,

B−1[B + op(1)]√T (̂�T − �0) = −B−1

⎧⎨⎩√
T

k̂∑
i=1

�̂i

�QT (�wc, ŷi )

��

⎫⎬⎭→dN(0, B−1AB−1)

and the result follows. �

Assumption B.4 can also be established applying the following result:

Proposition 12. Sufficient conditions for B.4 are

C.1. BT = ∑k̂
i=1 �̂i�

2QT (�wc, ŷi )/�� ��′→pB, and
C.2. E[sup‖�−�wc‖��supy∈Y‖�2QT (�, y)/�� ��′ − �2QT (�wc, y)/�� ��′‖]→�↓00, for all T .

Condition C.1 follows from B.2, whenever �2QT (�wc, y)/�� ��′→p�2Q(�wc, y)/�� ��′ uniformly on C(Y). For
condition C.2 it is sufficient that∥∥∥∥�2QT (�, y)

�� ��′ − �2QT (�wc, y)

�� ��′

∥∥∥∥ �fT (y)‖� − �wc‖� (13)

for some � ∈ (0, 1), and E[supy∈Y|fT (y)|] < ∞. For (13), it suffices that the elements in �2g(�, y)/�� ��′ satisfy a
Lipschitz condition.

Proof of Proposition 12. By condition C.2,

E

⎡⎣ sup
‖�−�wc‖��

∥∥∥∥∥∥
k̂∑

i=1

�̂i

(
�2QT (�, ŷi )

�� ��′ − �2QT (�wc, ŷi )

�� ��′
)∥∥∥∥∥∥
⎤⎦

�E

⎡⎣ sup
‖�−�wc‖��

sup
y∈Y

∥∥∥∥�2QT (�, y)

�� ��′ − �2QT (�wc, y)

�� ��′

∥∥∥∥ k̂∑
i=1

�̂i

⎤⎦
�

→
�↓0

0,

as
∑k̂

i=1�̂i = 1.
Next, we use that ∀� > 0,

Pr

⎛⎝∥∥∥∥∥∥
k̂∑

i=1

�̂i

�2QT (�̃, ŷi )

�� ��′ − B

∥∥∥∥∥∥> �

⎞⎠ � Pr

⎛⎝∥∥∥∥∥∥
k̂∑

i=1

�̂i

�2QT (�wc, ŷi )

�� ��′ − B

∥∥∥∥∥∥>
�

2

⎞⎠
+ Pr

⎛⎝∥∥∥∥∥∥
k̂∑

i=1

�̂i

(
�2QT (�̃, ŷi )

�� ��′ − �2QT (�wc, ŷi )

�� ��′

)∥∥∥∥∥∥>
�

2

⎞⎠ .

The first term tends to zero by condition C.1. The second term tends to zero by condition C.2 and Markov’s inequality,
since ‖�̃T − �wc‖→p0, so we can build a sequence �T → 0 such that ‖�̃T − �wc‖��T except for sets of probability
tending to zero. �

Proof of Theorem 10. The proof is analogous to that of Theorem 9. Assuming B.1′ and h is continuous, it is satisfied
that hj (̂�

cwc
T ) = 0 for j = 1, . . . , p, except for a set of probability tending to zero. Applying the mean value theorem

to the first order necessary conditions,

k̂∑
i=1

�̂i

�

��
QT (̂�cwc

T , ŷi) +
p∑

j=1

�̂j

�

��
hj (̂�

cwc
T ) = 0, hj (̂�

cwc
T ) = 0, j = 1, . . . , p,
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we obtain⎛⎜⎜⎝
k̂∑

i=1
�̂i

�

��
QT (̃�, ŷi )

�

��
Hp(̃�)′

�

��
Hp(̃�) 0

⎞⎟⎟⎠√
T

(
�̂cwc
T − �wc

�̂
wc

)
=
⎛⎝√

T
k̂∑

i=1
�̂i

�
��QT (�wc, ŷi )

0

⎞⎠ ,

where Hp(�) = (h1(�), . . . , hp(�))′. The asymptotic normality follows analogously to Theorem 9, with covariance
matrix V equal to

V =
(

B H ′
H 0

)−1 (
A 0
0 0

)(
B H ′
H 0

)−1

,

where H = �Hp(�wc)/��. �

Proof of Theorem 11. The proof is similar to that of Theorem 9. Under conditions D.1–D.4

k̂∑
i=1

�̂i

(
T −1

T∑
t=1

�

��
g(Xt , ŷi , �̂

wc
T )

)
WT

(
1√
T

T∑
t=1

g(Xt , ŷi , �
wc)

)
→dN(0, A)

applying the delta method, and for any sequence �̃T →p�wc,

k̂∑
i=1

�̂i

(
T −1

T∑
t=1

�

��
g(Xt , ŷi , �̃T )

)
WT

(
T −1

T∑
t=1

�

��
g(Xt , ŷi , �̃T )

)
→pB.

When �̂T ∈ int{�},

0 = 2
√

T

k̂∑
i=1

�̂i

�QT (̂�wc
T , ŷi)

��
= √

T

k̂∑
i=1

�̂i

(
1

T

T∑
t=1

�

��
g(Xt , ŷi , �̂T )

)
WT

(
1

T

T∑
t=1

g(Xt , ŷi , �̂T )

)
.

Applying the mean value theorem,

g(Xt , ŷi , �̂T ) = g(X, ŷi , �
wc) + �

��
g(Xt , ŷi , �̃T )(̂�T − �wc),

with ‖�̃T − �wc‖� ‖̂�T − �wc‖, and therefore

0 =
k̂∑

i=1

�̂i

(
1

T

T∑
t=1

�

��
g(Xt , ŷi , �̂T )

)
WT

(
1√
T

T∑
t=1

g(Xt , ŷi , �
wc)

)

+
k̂∑

i=1

�̂i

(
1

T

T∑
t=1

�

��
g(Xt , ŷi , �̂T )

)
WT

(
1

T

T∑
t=1

�

��
g(Xt , ŷi , �̃T )

)√
T (̂�wc

T − �wc).

It follows that:

B−1[B + op(1)]√T (̂�
wc
T − �wc) = − B−1

k̂∑
i=1

�̂i

(
1

T

T∑
t=1

�

��
g(Xt , ŷi , �̂T )

)
WT

(
1√
T

T∑
t=1

g(Xt , ŷi , �
wc)

)
→dN(0, B−1AB−1). �
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