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Abstract

In the �rst chapter, a new kind of additive process is proposed. Our main goal is to de�ne, characterize
and prove the existence of the LIBOR additive process as a new stochastic process. This process will
be de�ned as a piecewise stationary process with independent increments, continuous in probability but
with discontinuous trajectories, and having "càdlàg" sample paths. The proposed process is speci�cally
designed to derive interest-rates modelling because it allows us to introduce a jump-term structure as an
increasing sequence of Lévy measures. In this paper we characterize this process as a Markovian process
with an in�nitely divisible, selfsimilar, stable and self-decomposable distribution. Also, we prove that the
Lévy-Khintchine characteristic function and Lévy-Itô decomposition apply to this process. Additionally
we develop a basic framework for density transformations. Finally, we show some examples of LIBOR
additive processes.

A no-arbitrage framework to model interest rates with credit risk, based on the LIBOR additive
process, and an approach to price corporate bonds in incomplete markets, is presented in the second
chapter. We derive the no-arbitrage conditions under di¤erent conditions of recovery, and we obtain new
expressions in order to estimate the probabilities of default under risk-neutral measure. Additionally, we
study both the approximation of a continuous-time model by a sequence of discrete-time models with
credit risk, and the convergence of price processes (in terms of the triplets) under a framework that allows
the practitioner a multiple set of models (semimartingale) and credit conditions (migration and default).

Finally, in the third chapter, we introduce a d-dimensional LIBOR additive process to model the
forward LIBOR market model with di¤erent credit ratings. Additionally, we expose the risk-neutral
and forward-neutral dynamic of forward LIBOR rates. Additionally, we introduce a new calibration
methodology for the LIBOR market model driven by LIBOR additive processes. The calibration of the
continuous part is based on a semide�nite programming (convex) problem and the calibration of the
Lévy measure is proposed using a non-parametric (non linear least-square with a regularization term)
calibration.

Thesis Supervisor: Francisco Javier Nogales
Title: Associate Professor (UC3M)

Thesis Supervisor: Winfried Stute
Title: Professor (Giessen University)
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Chapter 1

New stochastic processes to model
interest rates: LIBOR additive
processes
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1.1 Preliminaries

1.1.1 Introduction

The story of modelling �nancial markets with stochastic processes began in 1900 with the study of Louis
Bachelier (1900). He modelled stocks as a Brownian motion with drift. However, the model had
many imperfections, including, for example, negative stock prices. It was 65 years before another, more
appropriate, model was suggested by Samuelson (1965): geometric Brownian motion. Eight years later
Black and Scholes (1973) and Merton (1973) demonstrated how to price European options based on
the geometric Brownian motion. This stock-price model is now called Black-Scholes model, for which
Scholes and Merton received the Nobel Prize for Economics in 1997.

However, it has become clear that this option-pricing model is inconsistent with option data. Implied
volatility models can do better, but fundamentally, these consist of the wrong building blocks. To
improve on the performance of the Black-Scholes model, Lévy models were proposed in the late 1980s
and in the early 1990s, when there was some need for models taking into account of di¤erent stylized
features of the market.

On the other hand, traditionally, interest rates models for Treasury bonds or Corporate bonds, in
the literature, are mainly models based on Brownian motion although it is known that real-life �nancial
markets provide a di¤erent structural and statistical behavior than that implied by these models. Some
of these interest rates models have been created thinking in Black-Scholes framework, but they found a
great number of inconveniences. Also in this �eld, Lévy processes are proposed as an appropriate tool to
increase the accuracy of interest rates models. However, the nature of random sources in bond markets
is di¤erent from equity markets:

1. Modelling a term structure is completely di¤erent from modelling a simple equity. There exists
a collection of �correlated�bonds that generate a �multifactorial�term structure. In other words,
we have a stochastic surface that is strongly linked to some no arbitrage conditions, completely
di¤erent to the no-arbitrage conditions that appear in equity markets.

2. Derivative markets for interest rates (caps/�oors and swaptions markets) quote di¤erently �at-
the-money� volatilities according to the di¤erent maturities inside of the term structure (forward
volatilities). While Brownian or Lévy processes o¤er nice features in terms of analytical tractability,
the constraints of independence and stationarity of their increments prove to be very restrictive for
this market.

3. Also, these derivative markets quote, for each maturity, a di¤erent volatility for every strike (�in-
the-money� or �out-of-the-money� options). Lévy models allow for calibration to implied volatility
patterns for a single maturity but fail to reproduce option prices correctly over a range of di¤erent
maturities. In addition, the existence of this term structure of �volatility smiles�have a huge impact
in order to price not only plain vanilla interest rate options but also exotic options.

In the First Chapter 1 of the present thesis, we present a stochastic process that is speci�cally designed
to represent the random sources that appear in this market, and we develop some basic tools that any
interest rate model needs in order to reproduce the risk neutral dynamics. This Chapter is organized as
follows.

1This work has been developed under the direction of Javier Nogales and Winfried Stute. I am extremely grateful to
them. I also bene�ted greatly in my work from discussions with C. Rogers, W. Runggaldier, Rama Cont, David Nualart
and Henryk Gzyl. Comments and suggestions are welcome, all errors are my own.
Contact email: jpcolino@gmail.com
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- In Section 2 we introduce the stochastic processes of interest together with their main distributional
properties (in�nite divisibility, self-similarity, stability and self-decomposability).

- Section 3 introduces the characterization of these processes, using or adapting the well-known
Lévy-Khintchine formula to this framework.

- In Section 4 we propose some limit theorems that will be developed in detail in Chapter 2 of this
thesis.

- Section 5 is mainly devoted to the existence of this new process, mainly under the framework for
Markovian processes.

- In Section 6 we adapt the Lévy-Itô decomposition, and we deduce some interesting applications
that appear in Section 7 .

- Probably, Section 8 is the most important section in order to build models using this process. Here,
we expose the two possibilities that any �nancial engineering has in order to �nd the risk-neutral
measures: time-changes (subordination) and changes of measure.

- Finally Section 9 is devoted to expose di¤erent examples of non-homogeneous processes that can
be used as a LIBOR additive process.

1.1.2 Some frequently used notation and terminology

A probability space (
;F ;P) is a triplet of a set 
; a family F of subsets of 
; and a mapping P from F
into R+ satisfying the following conditions:

(1) 
 2 F ; ; 2 F (; is the empty set)

(2) If An 2 F for n = 1; 2; :::; then
S1
n=1An and

T1
n=1An are in F

(3) If A 2 F then Ac 2 F (Ac is 
 nA; the complement of A)

(4) 0 � P [A] � 1; P [
] = 1 and P [;] = 0

(5) If An 2 F for n = 1; 2; ::: and they are disjoint (that is An \Am = ; for n 6= m) then

P
� 1S
n=1

An

�
=

1P
n=1

P [An]

In terminology of measure theory, a probability space is a measure space with total measure 1. In
general, if F is a family of subsets of 
 satisfying (1), (2), and (3) then F is called a �-algebra on 
:
The pair (
;F) is called a measurable space. Very often in this work, we have F = F1 = _t�0Ft
where (Ft)t�0 is a non-decreasing and right-continuous family of �-algebras (in other words, Fs � Ft for
s � t; and Ft = \s>tFs). In such a situation a �ltered probability space (
;F ;P) is called a stochastic
basis : During the whole work we denote by B

�
Rd
�
the collection of all Borel subsets of Rd, called the

Borel �-algebra. It is the �-algebra generated by the open sets in Rd (that is, the smallest �-algebra
that contains all open sets in Rd). A real-valued function f (x) on Rd is called measurable if it is B

�
Rd
�

measurable.

A mapping X from 
 into Rd is an Rd-valued random variable (or random variable on Rd) if it is
F-measurable, that is f! : X (!) 2 Bg is in F for each B 2 B

�
Rd
�
: The distribution of an Rd-valued

random variable X is denoted by � = PX or L (X). Furthermore, �̂ (z) is the characteristic function of
a distribution � de�ned as

�̂ (z) =
R
Rd exp fi hz; xig� (dx) ; z 2 Rd
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and  � (z) is the cumulant of �, that is, the continuous function with  � (0) = 0 such that �̂ (z) =
exp

�
 � (z)

�
: The characteristic function of the distribution PX of a random variable X on Rd is denoted

by P̂X (z) and given as

P̂X (z) =

Z
Rd
exp fi hz; xigPX (dx)

= E [exp fi hz;Xig] ; with z 2 Rd

A sequence of probability measures �n; n = 1; 2; ::: converges to a probability measure �; written as

�n ! � as n!1;

if for every bounded continuous function f

R
Rd f (x)�n (dx)!

R
Rd f (x)� (dx) as n!1

When � and �n are bounded measures, the convergence �n ! � is de�ned in the same way. When
f�tg are probability measures, we say that

�s ! �t as s! t

if for every bounded continuous function f (x)

R
Rd f (x)�s (dx)!

R
Rd f (x)�t (dx) as s! t:

This is equivalent to saying that �s ! �t for every sequence s that tends to t:

We say that B is a �-continuity set if the boundary of B has �-measure 0: The convergence �n ! �
is equivalent to the condition that �n (B)! � (B) for every �-continuity set B 2 B

�
Rd
�
:

The convolution � of two distributions �1 and �2 on Rd denoted by � = �1��2 is a distribution de�ned
by

� (B) =

Z Z
Rd�Rd

1B (x+ y)�1 (dx)�2 (dy)

The convolution operation is commutative and associative. If X1 and X2 are independent random
variables on Rd with distributions �1 and �2; respectively, then X1 + X2 has distribution �1 � �2: The
n-fold convolution of � is denoted by �n�: A probability measure � on Rd is in�nitely divisible if, for any
positive integer n, there is a probability measure �(n) on Rd such that � = �n�(n):

A family fXt : t � 0g of random variables on Rd with parameter t 2 [0;1) de�ned on a common
probability space is called a stochastic process. For any �xed 0 � t1 < t2 < ::: < tn,

P [X (t1) 2 B1; :::; X (tn) 2 Bn]

determines a probability measure on B
��
Rd
�n�

: The family of probability measures over all choices of
n and t1; t2; :::; tn is called the system of �nite dimensional distributions of fXtg : Given two stochastic
processes fXt; t � 0g and fYt; t � 0g ; fXtg

d
= fYtg means that X and Y are identical in law or have a

common system of �nite-dimensional marginals. A stochastic process fYtg is called a modi�cation of a
stochastic process fXtg if P [Xt = Yt] = 1 for t 2 [0;1) :

We say that X is a semimartingale if it is an adapted process (Ft-measurable for every t 2 [0;1))

9



such that Xt = X0+Mt+ Vt for each t � 0; where X0 is �nite-valued and F0-measurable, fMt; t � 0g is
a local martingale (for a localizing sequence of stopping times (Tn); Mn is an adapted process, integrable
for each n 2 N+ and Mn�1 = E (Mn/Fn�1) < 1 a.s) and where fVt; t � 0g is an adapted process of
�nite variation.

Sometimes it will be necessary to work on the path space of "càdlàg" (i.e. right-continuous with left
limits) semimartingales. For I = [0; T ?] � [0;1) with T ? > 0; we denote by D = D

�
Rd; I

�
the Skorohod

space of all càdlàg functions � : I ! Rd: For I = R+ = [0;1) we denote by D0t
�
Rd
�
the �-�eld generated

by all mappings � 7! � (s) for s � t, and Dt
�
Rd
�
= \s>tD0s

�
Rd
�
: If X is a semimartingale on (
;F ;P)

such that X 2 D
�
Rd; I

�
we denote by X (t) the value of X at time t, and by X (t�) its left-hand limit

at time t (with X (0�) = X (0) by convention) and 4X (t) = X (t)�X (t�) :

We will use, during the whole work, the de�nitions as outlined in Sato (1999) of in�nite divisibility of
processes, self-decomposability (of distributions), self-similarity and stability of processes, Lévy processes,
additive processes, increasing or decreasing processes. We use �:=�to mean �is de�ned to be equal to�.
In particular we set R+ := [0;1) ; Rd+ := [0;1)

d
; Z+ := Z \ R+; Q+ := Q \ R+: Elements of Rd are

column vectors. If f and g are real numbers or real-valued functions, we de�ne f _ g := max (f; g) ;
f ^ g := min (f; g) ; f+ := f _ 0; f� := (�f)_ 0: In particular, we have f = f+ � f� and jf j = f+ + f�:

For x = (xj)1�j�d and y = (yj)1�j�d in C
d we write hx; yi =

Pd
j=1 xjyj .

1.1.3 Basics about Lévy Processes

The aim of this preliminary section is to give a brief introduction to the theory of Lévy processes.
Inclusion of this material is justi�ed not only because Brownian motion or Poisson processes are Lévy
processes, but also because an additive process will be de�ned later as a nonhomogeneous Lévy process.
Additionally, Lévy processes also provide one of the most important examples of Markov processes and
semimartingales.

This preliminary section is an attempt to gather some basic and typical results to describe several
main directions of this chapter. It is not intended to give a systematic presentation of the most important
results or to explain how to prove them; for these purposes one would need many more pages. A more
comprehensive picture of the present knowledge can be obtained from the two books Bertoin (1996) and
Sato (1999).

De�nition 1 An Rd-valued stochastic process X = fXt : t � 0g is a family of Rd-valued random
variables Xt (!) with parameter t 2 [0;1) de�ned on a probability space (
;F ;P).

De�nition 2 An Rd-valued stochastic process X = fXt : t � 0g is called a Lévy process in law on Rd
or d-dimensional Lévy process, if the following four properties are satis�ed:

(L1) X starts at the origin, X0 = 0 a.s. (almost surely)

(L2) X has independent increments, that is, for any n � 1 and 0 � t0 < t1 < ::: < tn; the random
variables Xt0 ; Xt1 �Xt0 ; Xt2 �Xt1 ; :::; Xtn �Xtn�1 are independent.

(L3) X is stochastically continuous, that is, for any " > 0; P [jXt+s �Xtj > "]! 0 as s! 0; for all
t � 0:

(L4) X is time homogeneous (or stationary), that is, the distribution of fXs+t �Xs : t � 0g does not
depend on s

10



Notice that if X is a stochastically continuous process with independent and stationary increments (a
Lévy process in law), there exists a càdlàg version of X with the same properties called Lévy process
(cf. He, Wang and Yan (1992), Theorem 2:68). Therefore a Lévy process can be de�ned as a d-
dimensional stochastic process starting in 0 with càdlàg paths and independent and stationary increments
under P (if there is no ambiguity about the measure involved) (cf. Bertoin (1996)).

Proposition 3 If X is a Lévy process, then X(t) is in�nitely divisible for each t � 0:

Proof. To see this, let ti = it=m with i = 0; 1; :::;m and some t � 0: Let � = PXt
and �m = P

(m)
Xti

�Xti�1
which is independent of i by temporal homogeneity. Then � = �m�(m), since

Xt =
�
X
(m)
t1 �X(m)

t0

�
+ :::+

�
X
(m)
tm �X(m)

tm�1

�
is a sum of m independent identically distributed random variables.

Recall that the characteristic function of a distribution � on Rd is de�ned by �̂ (z) =
R
Rd e

ihz;xi� (dx) ;

z 2 Rd: Also remember that here hz; xi =
Pd
j=1 zjxj ; the Euclidean inner product of z = (zj) and x = (xj)

in Rd: Thus jxj = hx; xi1=2 :

Proposition 4 If X is a Lévy process, then �̂Xt
(z) = exp ft �	(z)g for each z 2 Rd; t � 0 and where

	(z) is the Lévy exponent.

Proof. For the sake of clarity, de�ne �̂z (t) = �̂Xt
(z) : Then for all s � 0

�̂z (t+ s) = E
�
eihz;Xt+si

�
= E

�
eihz;Xt+s�Xsieihz;Xsi

�
= E

�
eihz;Xt+s�Xsi

�
E
�
eihz;Xsi

�
= �̂z (t) �̂z (s)

Notice that using (L1) in De�nition 2 (about Lévy processes) we have �̂z (0) = 1 and by (L3) the map
t! �̂z (t) is continuous.

However the unique solution for �̂z (t+ s) = �̂z (t) �̂z (s) and �̂z (0) = 1 is given by �̂z (t) = exp ft �	(z)g
where 	 : Rd ! C (see e.g. Bingham et al. (1987) pp.4-6). Notice that X (1) is in�nitely divisible and
	 is the Lévy exponent. The result follows.

The following three theorems are fundamental. For their proofs see the monographs Doob (1953),
Loève (1955), Breiman (1968), Gihman and Skorohod (1975), Kallenberg (1997) or Sato (1999).

Theorem 5 If � is an in�nitely divisible distribution on Rd; then there exists, uniquely in law, a Lévy
process in law fXtg such that L (X1) = �:

Theorem 6 If fXtg is a Lévy process in law on Rd; then there is a Lévy process fX 0
tg on Rd such

that fX 0
tg is a modi�cation of fXtg ; that is X 0

t = Xt a.s. for every t � 0:

Theorem 7 (Lévy-Khintchine representation) If � is in�nitely divisible, then

�̂ (z) = exp

�
i h
; zi � 1

2
hz;Azi+

Z
Rd

�
eihz;xi � 1� i hz; xi 1fjxj�1g (x)

�
� (dx)

�
(1.1)
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where A is a symmetric nonnegative-de�nite d � d matrix, 
 2 Rd; � is a measure on Rd satisfying
� (f0g) = 0 and

R
Rd

�
jxj2 ^ 1

�
� (dx) <1 .

The representation (1:1) by A; 
 and � is unique. Conversely, for any choice of A; 
 and � satisfying
the conditions above, there exists an in�nitely divisible distribution � having characteristic function (1:1).

It follows that the Lévy process fXtg corresponding to �; by Proposition 4 and Theorem 5; has
characteristic function

E
h
eihz;Xti

i
= exp

�
t �
�
i h
; zi � 1

2
hz;Azi+

Z
Rd

�
eihz;xi � 1� i hz; xi 1fjxj�1g (x)

�
� (dx)

��

Notice that we can de�ne �̂t (z) = exp ft �	(z)g for each t � 0; where	(z) is the Lévy exponent. We
call (
;A; �) the generating triplet, A theGaussian covariance matrix, and � the Lévy measure of �.
However, 
 does not have any intrinsic meaning, since its value depends on the choice of i hz; xi 1fjxj�1g (x)
of the integrand in (1:1) as a term to make it �-integrable.

If � = 0 then � is Gaussian. If A = 0 then we say that � is purely non-Gaussian. If d = 1 then
A is a nonnegative real number called Gaussian variance. If � satis�es

R
jxj�1 jxj � (dx) <1 then (1:1)

may be written as

�̂ (z) = exp

�
i h
0; zi �

1

2
hz;Azi+

Z
Rd

�
eihz;xi � 1

�
� (dx)

�
with some 
0 2 Rd: This 
0 is called the drift. If � satis�es

R
jxj>1 jxj � (dx) < 1 then (1:1) can be

written as

�̂ (z) = exp

�
i h
1; zi �

1

2
hz;Azi+

Z
Rd

�
eihz;xi � 1� i hz; xi 1fjxj�1g (x)

�
� (dx)

�
with some 
1 2 Rd; called the center.

Brownian motion is a Lévy process with A = identity matrix, � = 0 and 
 = 0; and a Poisson
process with intensity � > 0 is a Lévy process on R with A = 0; 
 = 0 and � = ��1; where we denote
by �a the distribution concentrated at a: A Lévy process on Rd with A = 0; 
 = 0 and �

�
Rd
�
< 1

is called compound Poisson process. The �-process with parameter q > 0 is a Lévy process on
R corresponding to the exponential distribution � with mean 1=q; that is A = 0; 
 = 0 and � (dx) =
1(0;1) (x)x

�1e�qxdx: This � is not a compound Poisson distribution, because � has total mass 1:

Any Lévy process fXtg is a Markov process and allows for a càdlàg version. Let us de�ne two
other processes: X� = (Xt�)t2R+ and �X = (Xt �Xt�)t2R+ .

Theorem 8 If X is a Lévy process, then for �xed t > 0; �Xt = 0 (a.s).

Proof. Let
�
t(m);m 2 N+

�
be a sequence in R+ with t(m) " t as m ! 1. Then since X has càdlàg

paths, limm!1X(t(m)) = X(t�): However by stochastic continuity the sequence
�
X(t(m));m 2 N+

�
converges in probability to X (t) and so has a subsequence that converges almost surely to X (t) : The
result follows by uniqueness of limits.

Notice that Theorem 8 is equivalent to the fact that any process with càdlàg paths and stationary and
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independent increments has no �xed times of discontinuity2 (cf. Jacod and Shiryaev (1987), II:4:3).

The probabilistic meaning of the Lévy-Khintchine representation is explained by the following
result.

Theorem 9 (Lévy-Itô decomposition of sample functions) Let fXtg be a Lévy process on Rd with
the characteristic triplet (
;A; �). For any G 2 B(0;1)�Rd let J (G) = J (G;!) be the number of jumps
at time s with height Xs (!) �Xs� (!) such that (s;Xs (!)�Xs� (!)) 2 G: Then J (G) has a Poisson
distribution with mean � (G) : If G1; :::; Gn are disjoint, then J (G1) ; :::; J (Gn) are independent. We can
de�ne a.s.,

X1
t (!) = lim

"#0

Z
(0;t]�f"<jxj�1g

fxJ (d (s; x) ; !)� x� (d (s; x))g

+

Z
(0;t]�fjxj>1g

xJ (d (s; x) ; !)

where the convergence on the right-hand side is uniform in t in any �nite time interval a.s. The process�
X1
t

	
is a Lévy process with the triplet (0; 0; �) : Let

X2
t (!) = Xt (!)�X1

t (!)

Then
�
X2
t

	
is a Lévy process continuous in t a.s. with the characteristic triplet (A; 
; 0) : The two

processes
�
X1
t

	
and

�
X2
t

	
are independent.

In general, we may call
�
X1
t

	
and

�
X2
t

	
the jump part and the continuous part of fXtg ; respec-

tively, but the sum of the jumps actually diverges a.s. if
R
jxj�1 jxj � (dx) =1 and we need the centering

term �x� (d (x)) ; the so-called compensator, in order to achieve the convergence. Notice also that an
important result from the Lévy-Itô decomposition is the relationship between Lévy processes and semi-
martingales. Using directly the Lévy-Itô decomposition we can conclude that every Lévy process is a
semimartingale (cf. Jacod and Shiryaev (1987), Corollary II.4.19.).

2Recall that t is called �xed time of discontinuity of a process X if P [4Xt 6= 0] > 0
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1.2 De�nition and Properties of LIBOR Additive Processes

1.2.1 The LIBOR additive process

In this section we de�ne a stochastic process, the LIBOR additive process, that will drive the risk-
neutral dynamics of instantaneous forward rates with independent but piecewise stationary increments
(this means that it is stationary inside of each time interval, usually 6 or 12 months, de�ned by the
tenor of the LIBOR rate). We will see that this generalization allows taking into account deterministic
time inhomogeneities: the parameters describing the local behavior will now be time-dependent but non-
random. Therefore, all de�nitions below will be applied to the time interval t 2 I = [0; T ?] � R+, where
T ? is a �xed time horizon with T ? > 0: Also, let T be the family of all �nite subsets of I � R+: For a
predetermined collection of dates J = fT0; T1; :::; Tng 2 T , such that 0 = T0 < T1 < ::: < Tn = T ? with
J � I; let �j = Tj+1 � Tj denote the length or "tenor" of the j-th interval.

De�nition 10 A stochastic process G = fGt : 0 � t � T ?g on Rd is a LIBOR additive process in
law if the following conditions are satis�ed:

(LAP1) G0 = 0 a.s.

(LAP2) G is a process with the independent increment property, i.e., for any choice of m 2 N+ and
0 � t1 � ::: � tm � T ?; the variables G (t1) ; G (t2)�G (t1) ; :::; G (tm)�G (tm�1) are independent.

(LAP3) G is stochastically continuous or continuous in probability (but it may have discontinuous
trajectories).

(LAP4) There exist 0 = T0 < T1::: < Tn = T ?; such that G is a process with piecewise stationary
increments, or temporally homogeneous in [Tj ; Tj+1) ; for any j = 0; 1; :::; n� 1:

De�nition 11 A stochastic process fGt : 0 � t � T ?g on Rd is a LIBOR additive process if it satis�es
(LAP1) to (LAP4) and if, additionally, there is 
0 2 F with P [
0] = 1 such that, for every ! 2

0; Gt (!) is right-continuous in t � 0 and has left-limits in t > 0 ("càdlàg" process).

Notice that, according to Section 1:3, a Lévy process is de�ned as a stochastic process with stationary
independent increments which is continuous in probability (but may have discontinuous trajectories).
While Lévy processes o¤er nice features in terms of analytical tractability, the constraints of stationarity
of their increments prove to be rather restrictive.

� The �rst advantage of our approach is that it allows for preserving the tractability of Lévy
processes while enabling us to model the whole range of cap/�oors or swaptions volatilities across
strikes and maturities.

� A second advantage is that the property of piecewise stationarity is the usual performance that
we suppose in the discretised version of the LIBOR market model where the tenor structure plays
a relevant role, and it will be a key issue in our calibration procedure and credit risk modelling.

1.2.2 Properties of LIBOR additive processes

In this section, our aim is to brie�y describe some relevant probabilistic properties3 of this stochastic
process, and speci�cally, some properties related with the in�nite divisibility of its distribution, self-

3Theoretical and empirical justi�cation of the �nancial relevance for these properties can be found in Carr, Geman,
Madan and Yor (2002).
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similarity, stability and self-decomposability.

In�nite divisibility of LIBOR additive processes

Recall that, for any n 2 N+; we denoted by �n� or �n the n-fold convolution of a probability measure
� with itself, that is

�n = �n� = � � ::: � �| {z }
n times

(1.2)

� on Rd is an in�nitely divisible probability measure if, for any positive integer n, there is a
probability measure �(n) on Rd such that � = �n�(n); or in other words, � can be expressed as the n-th
convolution power of �(n). Equivalently, in terms of random variables, we say that X is in�nitely

divisible if for all n 2 N+; there exist i.i.d. random variables X(n)
1 ; :::; X

(n)
n such that

X
d
= X

(n)
1 + :::+X(n)

n (1.3)

Proposition 12 The following statements are equivalent:

1. X is in�nitely divisible

2. �X has a convolution n-th root that is itself the law of a random variable for each n 2 N

3. �̂X (z) has an n-th root that is itself a characteristic function of a random variable for each n 2 N.

Proof. (1) =) (2) The common law of the X(n)
j is the required convolution n-th root

(2) =) (3) Let X(n) be a random variable with law (�X)
1/n then we have for each z 2 Rd :

�̂X (z) =

Z
:::

Z
ei(z;x1+:::+xn) (�X)

1/n
(dx1) ::: (�X)

1/n
(dxn)

=
�
�̂X (z)

( 1/n)
�n

where �̂X (z)
( 1/n)

=
R
Rd e

i(z;xj) (�X)
1/n

(dxj) and the required result follows.

(3) =) (1) Choose X(n)
1 ; :::; X

(n)
n to be independent copies of the given random variable, then we have

E
�
ei(z;X)

�
= E

�
e
i
�
z;X

(n)
1

��
� ::: � E

�
ei(z;X

(n)
n )
�
= E

�
e
i
�
z;X

(n)
1 +:::+X(n)

n

��

Now, let us extend the concept of in�nite divisibility to stochastic processes.

De�nition 13 A stochastic process X = fXt : t � 0g on Rd is in�nitely divisible if all �nite-
dimensional marginals of X are in�nitely divisible, that is, for any choice of distinct t1; :::; tm 2 [0; T ?]
with m 2 N+;

�
Xtj

�
1�j�m is in�nitely divisible. Here

�
Xtj

�
1�j�m is an Rmd-valued random variable.

Notice that it is not di¢ cult to check that a Lévy process is an in�nitely divisible process (see
Proposition 3 in Section 1:1:3) due to the homogeneity property.
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The LIBOR additive process does not preserve the homogeneity property anymore (see (LAP4)
in De�nition 10) as in the Lévy case. Actually, it is only a piecewise stationary process. However,
we can attempt to prove the in�nite divisibility property using independent increments (see (LAP2)
in De�nition 10) and stochastic-continuity property (LAP3), following a similar reasoning as in Sato
(1999). It is based on one of the fundamental limit theorems on sums of independent random variables,
conjectured by Kolmogorov and proved by Khintchine.

De�nition 14 A double sequence of random variables
n
Z
(n)
i : i = 1; 2; :::; rn;n = 1; 2; :::

o
in Rd is called

a null array if for each �xed n, Z(n)1 ; Z
(n)
2 ; :::; Z

(n)
rn are independent and if, for any " > 0;

lim
n!1

max
1�i�rn

P
h���Z(n)i

��� > "
i
= 0 (1.4)

The sums Sn =
Prn
i=1 Z

(n)
i ; n = 1; 2; :::; are called the row sums.

Theorem 15 ( Khintchine (1937) ) Let
n
Z
(n)
i

o
be a null array in Rd with row sums Sn: If, for

some bn 2 Rd, n = 1; 2; :::; the distributions of Sn � bn converge to a distribution �; then � is in�nitely
divisible (id).

Proof. cf. Khintchine (1937)

Lemma 16 The LIBOR additive process in law G = fGt : t � 0g is uniformly stochastically
continuous on any �nite interval [0; T ?] ; that is, for every " > 0 and � > 0;there is � > 0 such that, if
s and t are in [0; T ?] and satisfy js� tj < �; then P [jGs �Gtj > "] < �:

Proof. Fix " > 0 and � > 0. From property (LAP3) in De�nition 10; we have that for any t there is
�t > 0 such that

P [jGs �Gtj > "=2] < �=2 for js� tj < �t

Let It = (t� �t=2; t+ �t=2), then fIt : t 2 [0; T ?]g covers the interval [0; T ?].

Hence there is a �nite subcovering
�
Itj : j = 1; :::; n

	
of [0; T ?].

Let � be the minimum of �tj=2; j = 1; :::; n. If js� tj < � and s; t 2 [0; T ?] then t 2 Itj for some j:
Hence js� tj j < �tj ; and

P [jGs �Gtj > "] � P
���Gs �Gtj �� > "=2

�
+ P

���Gt �Gtj �� > "=2
�
< �

And �nally, we can state the result that we look for.

Theorem 17 If G = fGt : t > 0g is a LIBOR additive process in law on Rd; then for every t the
distribution of Gt is in�nitely divisible.

Proof. Fix a time interval [0; t] with t > 0: Let t(n)i = it=n for i = 0; 1; 2; :::; n and n = 1; 2; ::: Set

Z
(n)
i = G

�
t
(n)
i

�
�G

�
t
(n)
i�1

�
for i = 1; 2; :::; n
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Let us recall that Khintchine�s theorem shows that G (t) is in�nitely divisible if
nn

Z
(n)
i

on
i=1

o1
n=1

is null-array. To prove that Z(n)i is a null array (with rn = n) we use the uniform stochastic
continuity from Lemma 16 : when n!1

max
1�i�n

P
n���Z(n)i

��� > "
o
� sup

1�i�n
P
h���G�t(n)i

�
�G

�
t
(n)
i�1

���� > "
i
!

n!1
0

Therefore
nn

Z
(n)
i

on
i=1

o1
n=1

is a null-array. Hence we can apply Theorem 15 orKhintchine�s Theorem

with � = PGt and bn = 0:

Remark 18 Notice the strong relationship that exists between the concepts of independent increments
and stochastic continuity with in�nitely divisible distributions. These concepts will be helpful to work
not only with the concept of e¢ cient �nancial markets, but also with limit law distributions class
(see Theorem 25).

Stability and self-decomposability of LIBOR additive process

If fWt : t � 0g is the Brownian motion on Rd then for any a > 0 the process fWat : t � 0g is identical in
law with the process

�
a1=2Wt : t � 0

	
: This means that any change of the time scale for the Brownian

motion has the same e¤ect as some change of the spatial scale. This property is usually called self-
similarity. There are many self-similar Lévy processes other than the Brownian motion. They constitute
an important class called strictly stable processes.

Roughly speaking, stable processes are Lévy processes for which a change of time scale has the same
e¤ect as a change of spatial plus a linear drift. In other words, they are invariant in distribution under
an appropriate scaling of time and space. They are important in probability because of their connection
to limit theorems (see Lamperti (1962)) and they are of great interest in �nancial modelling.

In this subsection, we de�ne both concepts and some extensions, and we determine the conditions for
the self-similarity of LIBOR additive processes.

De�nition 19 Let � be an in�nitely divisible probability measure on Rd: It is called stable if, for any
a > 0; there are b > 0 and c 2 Rd such that

�̂ (z)
a
= �̂ (bz) eihc;zi (1.5)

It is strictly stable if, for any a > 0; there is b > 0 such that

�̂ (z)
a
= �̂ (bz) (1.6)

De�nition 20 Let fGt : t � 0g be a LIBOR additive process on Rd: It is called a stable or strictly
stable process if the distribution of Gt at t = 1 is stable or strictly stable, respectively.

De�nition 21 Let fXt : t � 0g be a stochastic process on Rd: It is called self-similar if, for any a > 0;
there is b > 0 such that

fXat : t � 0g
d
= fbXt : t � 0g (1.7)

It is called broad-sense self-similar if, for any a > 0 there is b > 0 and a function c(t) from [0;1) to
Rd such that

fXat : t � 0g
d
= fbXt + c (t) : t � 0g (1.8)
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Now let us consider the Generalized Central Limit problem. Let Z1; Z2; ::: be an independent,
identically distributed sequence of random variables. Let S(m) be de�ned as the sum of m of these
independent identically distributed random variables. We are interested in the case where there exists
the following relationship

lim
m!1

P
�
b(m)S(m) + c(m) � x

�
= P (X � x) for all x 2 Rd (1.9)

Theorem 22 A probability measure � on Rd is stable if and only if there is a random walk
�
S(m)

	
; b(m) >

0 and c(m) 2 Rd such that Pb(m)S(m)+c(m) ! � as m!1: And in particular, it is strictly stable if each
c(m) = 0:

Proof. cf. Sato (1999) Theorem 15:7.

It is immediate to see that it is only possible to talk about stability of the LIBOR additive process inside
of the interval [Tj ; Tj+1) with j = 0; :::;m; where the increments are identically distributed. But we can
generalize the de�nition of a stable process if we weaken the conditions on the process in the central limit
theorem by requiring these to be independent but no longer necessarily identically distributed. This is the
case of the LIBOR additive process, in which case the limiting process is called self-decomposable.

De�nition 23 Let � be a probability measure on Rd. It is called self-decomposable if for any c 2 (0; 1)
there is a probability measure �(c) on Rd such that

�̂ (z) = �̂ (cz) �̂(c) (z) (1.10)

It is called semi-selfdecomposable if there are some c 2 (0; 1) and some in�nitely divisible probability
measure �(c) satisfying (1:10).

De�nition 24 A stochastic process X = fXt : t � 0g on Rd is self-decomposable if all �nite-dimensional
marginals of X are self-decomposable that is, for any choice of distinct t1; :::; tm 2 [0; T ?] ;

�
Xtj

�
1�j�m

is self-decomposable. Here
�
Xtj

�
1�j�m is an Rmd-valued random variable.

The class of self-decomposable distributions is obtained as a class of limit distributions described below.

Theorem 25 (i) Let
n
X
(m)
i : i = 1; 2; :::;m

o
be independent random variables on Rd and S(m) =

Pm
i=1X

(m)
i .

Let � be a probability measure on Rd. Suppose that there are b(m) > 0 and c(m) 2 Rd for m = 1; 2; :::
such that

P
b(m)S(m)+c(m)

!
m"1

� (1.11)

and that4 n
b(m)X

(m)
i : i = 1; :::;m;m = 1; 2; :::

o
is a null array (1.12)

or equivalently

lim
m"1

max
1�i�m

P
n���b(m)X(m)

i

��� > "
o
= 0

Then � is self-decomposable.

(ii) For any self-decomposable distribution � on Rd we can �nd
n
X
(m)
i

o
independent, b(m) > 0 and

c(m) 2 Rd satisfying (1:11) and (1:12).

4See De�nition 14.
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Proof. cf. Sato (1999) Theorem 15:3

Remark 26 Limit laws are probably the best explanation for the wide-spread use of the Gaussian law
in the study of �nancial markets. The self-decomposable laws are limit laws and this is also their ap-
peal. Notice the relationship that appears between the concepts of independent increments and stochastic
continuity with self-decomposable distributions.

Theorem 27 If G = fGt : t > 0g is a LIBOR additive process in law on Rd then for every t, the
distribution of Gt is self-decomposable.

Proof. Fix a time interval [0; t] with t > 0: Let t(n)i = it=n for i = 1; 2; :::; n and n = 1; 2; ::: Let us
de�ne Z(n)i as

Z
(n)
i = G

�
t
(n)
i

�
�G

�
t
(n)
i�1

�
for i = 1; 2; :::; n

Let us recall that
nn

Z
(n)
i

on
i=1

o1
n=1

is a null-array, by De�nition 14 and uniform stochastic continuity

property given in Lemma 16. The assertion follows as in the proof of Theorem 17. Therefore, by
direct application of Theorem 25; we conclude that the LIBOR additive process in law has a self-
decomposable distribution.

Theorem 28 A stochastic process X = fXt : t � 0g on Rd is self-decomposable if and only if for
every c 2 (0; 1) ;

X
d
= cX 0 + U (c) (1.13)

where X 0 = fX 0
t : t � 0g is a version of X, and U (c) =

n
U
(c)
t : t � 0

o
is a stochastic process on Rd and

X 0 and U (c) are independent. The law of U (c) is uniquely determined by c and the law of X, and U (c) is
an in�nitely divisible process.

Proof. cf. Barndor¤-Nielsen, Maejima and Sato (2006).

Theorem 29 Let G be a self-decomposable LIBOR additive process on Rd; then for every c 2 (0; 1)
the process U (c) can be chosen to be a LIBOR additive process.

Proof. Notice that the LIBOR additive process G is a self-decomposable, according with Theorem
27: Let us denote �t = L (Gt) and �s;t = L (Gt �Gs) for 0 � s � t. According to Theorem 28; �x

c 2 (0; 1) and denote Ut = U
(c)
t , �t = L (Ut) ; and �s;t = L (Ut � Us) for 0 � s � t:

Then
�̂t (z) = �̂s (z) �̂s;t (z) (1.14)

where

�̂t (z) = �̂t (cz) �̂t (z)

�̂s;t (z) = �̂s;t (cz) �̂s;t (z)

Notice that �̂s;t ! 1 when s # t or t " s: It follows that U = U (c) is stochastically continuous
(property (LAP3) in De�nition 10). Obviously U0 = 0 a.s (LAP1).

In order to prove that U is a LIBOR additive process in law, according to De�nition 10, additionally
we need the independent increments (LAP2) and piecewise stationary property (LAP4).
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Let 0 = t0 < t1 < ::: < tn = T ? and z1; :::; zn 2 Rd and zn+1 = 0, then

E

24exp
0@i nX

j=1



zj ; Utj � Utj�1

�1A35 = E

24exp
0@i nX

j=1



zj � zj+1; Utj

�1A35
= E

24exp
0@i nX

j=1



zj � zj+1; Gtj

�1A35,E

24exp
0@i nX

j=1

D
zj � zj+1; cG0tj

E1A35
= E

24exp
0@i nX

j=1



zj ; Gtj �Gtj�1

�1A35,E

24exp
0@i nX

j=1

D
zj ; cG

0
tj � cG

0
tj�1

E1A35
=

nY
j=1

E
�
exp

�
i


zj ; Gtj �Gtj�1

���� nY
j=1

E
h
exp

�
i
D
zj ; cG

0
tj � cG

0
tj�1

E�i
=

nY
j=1

E
�
exp

�
i


zj ; Utj � Utj�1

���
This shows (LAP2) and (LAP4) ; therefore U is a LIBOR additive process in law.
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1.3 Existence of LIBOR additive processes

The aim of this section is to provide a simple proof of the existence of the LIBOR additive process
according to the de�nition given in section 1:2:1 (De�nition 10). A direct construction in the Skorohod
space is described in the current section; and it is based directly on the fact that the LIBOR additive
process, in terms of trajectories, can be observed as a piecewise stationary Lévy process. Therefore
the existence of the Lévy process guarantees the existence of LIBOR additive process in the Skorohod
space.

Recall that we are given a time interval [0; T ?] with T ? �xed: Also, notice that, given n 2 N+; we
have a predetermined collection of �xed dates 0 = T0 < T1 < ::: < Tn = T ?. Let us de�ne � as a
right-continuous function � : [0; Tn]! f0; 1; :::; ng by taking � (t) to be � (t) = sup f0 � i � n : Ti � tg :

Let G(j); with 0 � j � n; be a family of n + 1 independent Lévy processes such that G(j) has the
triplet

�

j ; Aj ; �j

�
: Set for 0 � t � T ?

G (t) =

�(t)X
j=0

�
G(j) (Tj+1 ^ t)�G(j) (Tj)

�
(1.15)

Then G(t) has characteristic function, due to the independence of the G(j)�s:

eT1 1(z)+(T2�T1) 2(z)+:::+(t�T�(t)) �(t)(z) = e
P

j��(t)((Tj+1^t)�Tj) j(z)

where  j (z) is the Lévy exponent of G
(j) (see Theorem 31 for further details): Since G(j) has sample

paths in the Skorohod space, it immediately follows from the above construction that the same is true
for G. Let us prove that G is a LIBOR additive process.

Theorem 30 Let fGt; t � 0g be a stochastic process on Rd; de�ned by (1:15): Then Gt is a LIBOR additive
process.

Proof. Notice that to prove that G is a LIBOR additive process, we just need to prove properties
(LAP1) to (LAP4) in De�nition 10 as properties of G. (LAP1) is obvious taking into account property
(L1) in De�nition 2 of Lévy process in law. To prove (LAP2) in De�nition 10; notice that using
the property (L2) in De�nition 2; we have that for any s; t 2 [0; T ?] belonging to the same sub-interval
Tj � s � t < Tj+1:

Gt �Gs = G
(j)
t �G(j)s

is identical with the increment of G(j) that has independent increments by (L2) in De�nition 2 of Lévy
process in law. If s < Tj � t < Tj+1 are in adjacent intervals, then

Gt �Gs = Gt �G(j)Tj +G
(j)
Tj
�Gs

= G
(j+1)
t �G(j+1)Tj

+
�
G
(j)
Tj
�G(j)Tj�1

�
�
�
G(j)s �G(j)Tj�1

�
=

�
G
(j+1)
t �G(j+1)Tj

�
+
�
G
(j)
Tj
�G(j)s

�

Hence this increment may be decomposed into two independent increments over adjacent intervals.
These two facts �nally lead to the independence property of the adjacent increments and hence to incre-
ments in general.

Since each G has no �xed discontinuities (Theorem 8), the stochastic continuity (LAP3) is guaranteed,
and �nally (LAP4) is obvious using (1:15).
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1.4 Characterization of LIBOR additive processes

The following results recall the representation of characteristic functions of in�nitely divisible distribu-
tions, brie�y shown in Section 1:1:3. The Lévy-Khintchine formula was obtained on R around 1930 by
De Finetti and Kolmogorov in special cases, and then mentioned by Lévy (1934) in the general case.
It was immediately extended to Rd. This theorem is essential to the whole theory, and a simpler proof
was given by Khintchine (1937) and Gnedenko and Kolmogorov (1954). Here we show a detailed
version, however, the proof is omitted.

Theorem 31 (Lévy-Khintchine) (i) If � is an in�nitely divisible distribution on Rd, then its char-
acteristic function �̂(z) has the form

�̂(z) = exp [ (z)] (1.16)

where the Lévy exponent  (z) with z 2 Rd equals

 (z) = i h
; zi � 1
2
hz;Azi+

Z
Rd

�
eihz;gi � 1� i hz; gi 1fjgj�1g

�
� (dg) (1.17)

and where A is a symmetric nonnegative-de�nite d � d matrix, 
 2 Rd; � is a Radon measure
on Rdn f0g and g 2 Rd satisfying

� (f0g) = 0 and
Z
Rd

�
jgj2 ^ 1

�
� (dg) <1 (1.18)

(ii) The representation of �̂(z) in (i) by A, �; and 
 is unique.

(iii) Conversely, if A is a symmetric nonnegative-de�nite d�d matrix, � is ameasure satisfying
(1:22) and 
 2 Rd, then there exists an in�nitely divisible distribution � whose characteristic function
is given by (1:20).

Proof. cf. Sato (1999) Theorem 8.1.

De�nition 32 We call (A; �; 
) in Theorem 31 the generating triplet of �: The A and the � are called,
respectively, the Gaussian covariance matrix and the Lévy measure of �: When A = 0, � is called
purely non-gaussian.

Corollary 33 If � has the generating triplet (A; �; 
) ; then �t has the generating triplet (tA; t�; t
) :

Now, letG = fGt; t � 0g be the LIBOR additive process with a given tenor structure 0 = T0 < T1 <
::: < Tn = T ? with T ? �xed. Let us recall that, given a set of n-Lévy processes, the LIBOR additive
process can be constructed as Gt =

P�(t)
j=0

�
G(j) (Tj+1 ^ t)�G(j) (Tj)

�
(in 1:15). Let us call �(j) as

the distribution (or law) associated to the Lévy process G(j), and additionally, let us de�ne �(j)Tj ;Tj+1
and �̂

(j)
Tj ;Tj+1

as the distribution and characteristic function respectively associated to the increment�
G(j) (Tj+1)�G(j) (Tj)

�
: The next theorem shows how the distribution function of Gt; is characterized

by the sequence of triplets
��
Aj ; �j ; 
j

�	
j��(t).

Theorem 34 A d-dimensional process G = fGt; t � 0g is a LIBOR additive process if and only if it
is a semimartingale admitting a sequence of triplets

��
Aj ; �j ; 
j

�	
j��(t) such that for all t 2 R

+ and
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z 2 Rd we have
�̂t (z) =

Y
j��(t)

�̂
(j)
Tj ;t^Tj+1 (z) (1.19)

where
�
Aj ; �j ; 
j

�
is the triplet associated with the characteristic function of �Tj ;Tj+1 ; for any j =

0; 1; :::; � (t) :

Proof. For any t 2 [0; T ?] and given a tenor structure 0 = T0 < T1::: < Tn = T ?; then with
Gt =

P
j��(t)

�
G(j) (Tj+1 ^ t)�G(j) (Tj)

�
and using the independent increments property we have

E
�
f
�
GT0 ; :::; GT�(t) ; Gt

��
=

Z
:::

Z
f
�
g0; g0 + g1; :::; g0 + :::+ g�(t)

�
�(0) (dg0)� �(1) (dg1)� :::� �(�(t))

�
dg�(t)

�
for any bounded measurable function f . Let z1; :::; zn 2 Rd and

f
�
g0; g1; :::; g�(t)

�
= exp

0@i �(t)X
j=0

hzj ; gj+1 � gji

1A

Therefore

�̂t (z) = E

24exp
0@i �(t)X

j=0

hzj ; gj+1 � gji

1A35
=

Z
:::

Z 24exp
0@i �(t)X

j=0

hzj ; gj+1 � gji

1A35�(0)0 (dg0)� �(1)T0;T1 (dg1)� :::� �
(�(t))
T�(t);t

�
dg�(t)

�
=

Y
j��(t)

Z
:::

Z
exp (i hzj ; gj+1 � gji)�(j)Tj ;Tj+1^t (dgj)

=
Y

j��(t)

E
�
exp

h
iz
�
G
(j)
t^Tj+1 �G

(j)
Tj

�i�
and using Lévy-Khintchine Theorem 31:i) we have

�̂t (z) = exp

24 X
j��(t)

(t ^ Tj+1 � Tj)	j (z)

35
=

Y
j��(t)

�̂
(j)
Tj ;t^Tj+1 (z) (1.20)

where

�̂
(j)
Tj ;Tj+1

(z) = E
h
exp

�
iz
�
G
(j)
Tj+1

�G(j)Tj
��i

= exp
�
(Tj+1 � Tj) j (z)

�
(1.21)

and

 j (z) = i



j ; z

�
� 1
2
hz;Ajzi+

Z
Rd

�
eihz;gi � 1� i hz; gi 1fjgj�1g

�
�j (dg)

The su¢ cient condition came as a direct consequence of (iii) in the Lévy-Khintchine theorem.
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Remark 35 Let G = fGt : t > 0g be a LIBOR additive process. Notice that, given a tenor structure
0 = T0 < T1 < ::: < Tn = T ? with T ? �xed, and a set of n in�nitely divisible measures f�0; �1; :::; �ng
associated to this tenor structure, then, for any s; t 2 [0; T ?] with s < t, �s;t; the distribution of Gt �Gs;
is uniquely determined in law by its sequence of triplets

��
Aj ; �j ; 
j

�	
�(s)�j��(t) (as a direct

consequence from Theorem 31, ii) and Theorem 34).
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1.5 In�nitesimal generators of LIBOR additive processes

Here we turn our attention to the in�nitesimal generator of the LIBOR additive process which will
play an essential role in Chapter 2. This section is an attempt to gather some basic and typical results in
order to introduce some of the results that appear in Chapter 2. It is not intended to give a systematic
presentation of the most important results or to explain how to prove them; for these purposes the reader
can �nd a more comprehensive picture in Ethier and Kurtz (1986) or Sato (1999).

This section has been divided in two subsections:

- In the �rst, we review a number of basic de�nitions and theorems related with the in�nitesimal
generator of its transition semigroup. Basically, the aim of this preliminary section is to give a brief
introduction to the theory of semigroups of linear operators.

- In the second subsection, we apply directly these de�nitions to the LIBOR additive process. Further
developments can be found in Chapter 2.

1.5.1 Strongly continuous contraction semigroup and in�nitesimal generator

Let B be a real (or complex) Banach space. That is, B is a vector space over the real (or complex)
scalar �eld equipped with a mapping kfk from B into R, called the norm, satisfying

(1) kafk = jaj kfk for f 2 B, a 2 R (or a 2 C)
(2) kf + gk � kfk+ kgk for f; g 2 B
(3) kfk = 0 if and only if f = 0

such that if a sequence ffng in B satis�es limn;m!1 kfn � fmk = 0; then there is f 2 B with limn!1 kfn � fk =
0:

A linear operator P in B is a mapping from a linear subspace D(P ) of B into B such that

P (af + bg) = aPf + bPg for f; g 2 D(P ) a; b 2 R (or a; b 2 C)

The set D(P ) is called the domain of P .

A linear operator P is called bounded if D(P ) = B and supkfk�1 kPfk called the norm of P and
denoted by kPk ; is �nite. A linear operator P with D(P ) = B is bounded if and only if P is continuous
in the sense that fn ! f implies Pfn ! Pf .

A linear operator P is said to be closed if fn 2 D(P ); fn ! f and Pfn ! g imply f 2 D(P )
and Pf = g, in other words, if the graph of P , f(f; Pf) : f 2 D(P )g is a closed set in B� B: The set
fPf : f 2 D(P )g called the range of P , is denoted by R(P ). The identity operator on B is denoted
by I. A subset D1 of B is said to be dense in B if, for any f 2 B; there is a sequence ffng in D1 such
that fn ! f .

De�nition 36 A family fPt : t � 0g of bounded linear operator on B is called a strongly continuous
semigroup if

(1) PtPs = Pt+s for t; s 2 [0;1)
(2) P0 = I
(3) limt#0 Ptf = f for any f 2 B
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It is called a strongly continuous contraction semigroup if, moreover,

kPtk � 1

De�nition 37 The in�nitesimal generator L of a strongly continuous contraction semigroup
fPtg is de�ned by

Lf = lim
t#0

1

t
(Ptf � f) (1.22)

with D(L) being the set of f such that the right-hand side of (1:26) exists.

One of the major theorem of the theory of semigroups of operators is as follows. It was independently
proved by Hille (1948) and Yosida (1948), and the proof can be found in Ethier and Kurtz (1986).

Theorem 38 (i) If L is the in�nitesimal generator of a strongly continuous semigroup fPtg ; then L is
closed, D(L) is dense and, for any q > 0; R(qI � L) = B, qI � L is one-to-one,




(qI � L)�1


 � 1/ q;

and
(qI � L)�1 f =

R1
0
e�qtPtfdt for f 2 B

(ii) The in�nitesimal generator determines the semigroup. That is, two strongly continuous contraction
semigroups coincide if their in�nitesimal generators coincide.

(iii) If a linear operator L in B has a dense domain D(L) and, for any q > 0; R(qI�L) = B, qI�L is
one-to-one,




(qI � L)�1


 � 1/ q; then L is the in�nitesimal generator of a strongly continuous semigroup

on B.

Proof. cf. Ethier and Kurtz (1986)

1.5.2 In�nitesimal generators of LIBOR additive processes

Let C0 = C0
�
Rd
�
be the real Banach space of continuous functions f from Rd into R satisfying

limjxj!1 f (x) = 0 with norm kfk = supx jf (x)j : Let Cn0 be the set of f 2 C0 such that f is n times
di¤erentiable and the partial derivatives of f with order � n belong to C0.

Suppose now that fGtg is a LIBOR additive process on Rd and the transition function P0;t (g0; B)
is de�ned by

P0;t (g0; B) := �t (B � g0)

for t � 0; g0 2 Rd and B 2 B
�
Rd
�

De�ne, for f 2 C0;

(Ptf) (g0) =

Z
Rd
f (g)Pt (g0; dg)

=

Z
Rd
f (g0 + g)�t (dg)

= E [f (g0 +Gt)]

Theorem 39 The family of operators fPt : t � 0g de�ned above from a LIBOR additive process fGtg
on Rd is a strongly continuous semigroup on C0

�
Rd
�
with norm kPtk = 1: Let L be its in�nitesimal

generator.
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Then

Lf (g) =
1

2

dX
n;m=1

�
a�(t) (n;m)

� @2f

@gn@gm
(g) +

dX
n=1

�

�(t) (n)

� @f

@gn
(g)

+

Z
Rd

 
f (g + x)� f (g)�

dX
n=1

xn
@f

@gn
(g) 1jxj�1 (x)

!
��(t) (dx) (1.23)

for f 2 C20 ; where
��


�(t); A�(t); ��(t)

�
t�0

�
is the generating triplet of fGtg with t � 0 and A�(t) =�

a�(t) (n;m)
�
n;m�d ; 
�(t) =

�

�(t) (n)

�
n�d

Proof. Notice that, according with De�nition 37; the in�nitesimal generator of the LIBOR additive
process is the Lévy in�nitesimal generator and the proof in. Sato (1999) Theorem 31.5 applies here (see
also in Barles, Buckdahn and Pardoux (1997) Theorem 3.4. or Nualart and Schoutens (2001) for
Lévy processes, or Pardoux, Pradeilles and Rao (1997) in the no-homogenous case).
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1.6 The Lévy-Itô decomposition of LIBOR additive processes

In the present subsection we exhibit the canonical representation for multidimensional semimartin-
gales, and for practical purposes, we introduce here the Lévy-Itô decomposition of sample functions.
This decomposition expresses sample functions of a LIBOR additive process as a sum of two independent
parts; a continuous part and a part expressible as a compensated sum of independent sums.
This decomposition was conceived by Paul Lévy (1934) using a direct analysis of the paths of Lévy
processes, and formulated and proved by Kiyosi Itô (1942) using many pages. However there are many
proofs available in the literature.

Let us recall that we assume a stochastic basis (
;G;P) equipped with the "usual" �ltration
G =(Gt)t2[0;T?] which satis�es the "usual conditions". Additionally, let us consider an auxiliary mea-
surable space (E; E) which we assume to be a Blackwell5 space. Further

E = [0;1)�
�
Rdn f0g

�
= [0;1)�D0;1 (1.24)

where D0;1 = Rdn f0g : Recall that we de�ned a time interval [0; T ?] with T ? �xed: Also, notice that
we have a predetermined collection of �xed dates 0 = T0 < T1 < ::: < Tn = T ?. Recall also that � is a
right-continuous function � : [0; Tn]! f0; 1; :::; ng by taking � (t) to be � (t) = sup fi � 0 : Ti � tg :

A marked point " in E (usually E = Rd) is denoted by " = (s; x) with s 2 (0;1) and x 2 D0;1: The
Borel �-algebra of E is denoted by E = B (E) : Let us de�ne a random measure on R+�E as a family
� = (� (!; dt; dg) : ! 2 
) of nonnegative measures on (R+ � E;R+ � E) satisfying � (!; f0g � E) = 0
identically. Hence, the integral of � (") with respect to a measure � on E is written asZ

E

� (") �(d") =

Z
(0;1)�D(0;1)

� (s; x) �(ds; dx) (1.25)

Now we formulate the Lévy-Itô decomposition for the LIBOR additive process as the main
theorem of this subsection6 .

Theorem 40 (Lévy-Itô 1) Let G = fGt : t � 0g be a LIBOR additive process on Rd de�ned on a

stochastic basis (
;G;P) with the system of generating triplets
��


�(t)(t); A�(t); ��(t)

�
t�0

�
and de�ne

the measure ��(t) on E by � ((0; t]�B) = ��(t) (B) for B 2 B
�
Rd
�
: Using 
0 from De�nition 11 of

LIBOR additive process, for B 2 B (E)

��(t) (B;!) =

�
] ft : (t; Gt (!)�Gt� (!)) 2 Bg for ! 2 
0
0 for ! =2 
0

(1.26)

Then the following holds:

(i)
n
��(t) (B) : B 2 B (E)

o
is an integer-valued random measure (Poisson) on E and ��(t) is a

predictable random measure namely the compensator of the random measure ��(t) (B) associated to
the jumps of G:

5 In all the sequel, E will actually be Rd+ or Rd, or at most a Polish spaces with its Borel ���elds
6For the sake of simplicity, let us de�ne Da;b = D (a; b] =

�
x 2 Rd : a < jxj � b

	
and Da;1 = D (a;1] =�

x 2 Rd : a < jxj <1
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(ii) There is 
̂ 2 F with P
h

̂
i
= 1 such that, for any ! 2 
̂

Ĝt (!) = lim
"#0

Z
s2(0;t];x2D(";1]

n
x ��(t) (d (s; x) ; !)� x ��(t) (d (s; x))

o
(1.27)

+

Z
s2(0;t];x2D(1;1)

x ��(t) (d (s; x) ; !)

is de�ned for all t 2 [0;1) and the convergence is uniform in t on any bounded interval. The process�
G1t
	
is a LIBOR additive process on Rd with

��
0; ��(t); 0

�	
as the system of generating triplets.

(iii) De�ne
~Gt (!) = Gt (!)� Ĝt (!) for ! 2 
1 (1.28)

There is ~
 2 F with P
h
~

i
= 1 such that, for any ! 2 ~
; ~G2t (!) is continuous in t. The process

n
~G2t

o
is a LIBOR additive process on Rd with

��

�(t)(t); A�(t); 0

�
t�0

�
as a system of generating triplets

(iv) The two processes
n
Ĝt

o
(jump part) and

n
~Gt

o
(continuous part) are independent.

Proof. cf. Sato (1999) Section 20

Theorem 41 (Lévy-Itô 2) Suppose that the LIBOR additive process G = fGt : t � 0g in the last
Theorem satis�es

R
jxj�1 jxj ��(t) (dx) <1 for all t > 0. Let 
0(t) be the drift of Gt: Then, there is 
̂ 2 F

with P
h

̂
i
= 1 such that, for any ! 2 
̂

Ĝt (!) =

Z
(0;t]�D(0;1)

x��(t) (d (s; x) ; !) (1.29)

is de�ned for all t � 0. The process
n
Ĝt

o
is a LIBOR additive process on Rd such that

E
h
eihz;Ĝti

i
= exp

�Z
Rd

�
eihz;xi � 1

�
��(t) (dx)

�
(1.30)

De�ne
~Gt (!) = Gt (!)� Ĝt (!) for ! 2 
3 (1.31)

Then, for any ! 2 ~
\ 
̂; ~Gt (!) is continuous in t and
n
~Gt

o
is an LIBOR additive process on Rd

such that

E
h
eihz; ~Gti

i
= exp

�
�1
2



z;A�(t)z

�
+ i
D

�(t)(t); z

E�
(1.32)

The two processes
n
Ĝt

o
(jump part) and

n
~Gt

o
(continuous part) are independent.

Proof. cf. Sato (1999) Section 20

Theorems 40 and 41 are called the Lévy-Itô decomposition for the LIBOR additive process.

As we have already mentioned, several proofs of the Lévy-Itô theorem exist and they are very well
known in the literature, even for additive processes (Sato (1999)). The simplest proof begins, �rst, with
the construction of the Poisson random measures. Second, given any LIBOR additive process fGtgt�0
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we use its system of generating triplets
��


�(t)(t); A�(t); ��(t)

�
t�0

�
in order to construct an additive

process fYtgt�0 such that fYtgt�0
d
= fGtgt�0 and fYtgt�0 has the Lévy-Itô decomposition. Third, using

the facts that fGtgt�0 and fYtgt�0 induce an identical probability measure on the Skorohod space
D = D

�
[0;1) ;Rd

�
of right continuous paths with left limits with the �-algebra FD generated by the

Borel cylinder sets and that all relevant quantities are FD� measurable, we can prove that fGtgt�0 also
has the Lévy-Itô decomposition.
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1.7 Applications to sample-function properties: continuity, jump-
ing times and increasingness

From the Lévy-Itô decomposition we can deduce many sample function properties of LIBOR
additive processes. Following Sato (1999), we devote this subsection to studying fundamental prop-
erties of sample functions of processes with independent increments and piecewise stationarity, such as
continuity, jumping times, and increasingness.

Theorem 42 (Continuity) Sample functions of fGtgt�0 are continuous a.s. if and only if ��(t) = 0
for every t 2 [0; T ?]

Proof. By Theorem 40 (Lévy-Itô 1) the number of jumping times satisfying
��Gt �Gt� �� 2 D";1 has

mean t
R
jgj>" ��(t) (dg). Hence the number of jumps is 0 a.s. if and only if ��(s) = 0 for every s 2 [0; t] :

Theorem 43 (Jumping times) If ��(t)
�
Rd
�
= 1 for every t 2 [0; T ?] ; then, almost surely, jumping

times are countable and dense in [0;1) : If 0 < ��(t)
�
Rd
�
<1 for every t 2 [0; T ?] then, almost surely,

jumping times are in�nitely many and countable in increasing order, and the �rst jumping time T (!) has
exponential distribution with mean 1/ ��(t)

�
Rd
�
:

Proof. Countability of jumps is a consequence of right-continuity with left-limits. For " > 0 and
! 2 
0 let T"(!) be the �rst time that Gt (!) jumps with size > ": Let T"(!) = 1 if Gt (!) does not
have any jump with size > ": Since T"(!) � t is equivalent to if

R
(0;t]�(";1)

��(t) (d (s; z) ; !) � 1;

P [T" � t] = 1� exp
"
�t
Z
D";1

��(t) (dg)

#

by Theorem 40 (Lévy-Itô 1). Hence, if
R
D";1

��(t) (dg) = c > 0; then T" has exponential distribution with
mean 1=c.

Suppose that ��(t)
�
Rd
�
=1 for every t 2 [0; T ?] ; then lim"#0 P [T" � t] = 1 for any t > 0; and hence

lim"#0 T" = 0 a.s. Hence there is E0 2 F with P [E0] = 1 such that for any ! 2 E0 the time 0 is a limiting
point of jumping times of Gt (!) ; and for any s > 0 there is Es 2 F with P [Es] = 1 such that for any
! 2 Es the set of jumping times s as a limiting point from the right. Consider E = \s2Q+Es: Jumping
times are dense in [0;1) for any ! 2 E:

Now, suppose that 0 < ��(t)
�
Rd
�
<1 for every t 2 [0; T ?]. By Theorem 40 (Lévy-Itô 1), ��(t) has a

Poisson distribution with mean t��(t)
�
Rd
�
and ��(t) <1 a.s. Hence the jumping times are enumerable in

increasing order. The �rst jumping time T has exponential distribution with mean 1/ ��(t)
�
Rd
�
because

P [T � t] = P [� (t) � 1] = 1� e�t��(t)(R
d). It follows that T (!) <1 a.s. Let T (s) be the �rst jumping

time after s, hence T (s) <1 a.s. Hence there are in�nitely many jumps, a.s.

Notice that in the case of 0 < ��(t)
�
Rd
�
<1 we can actually say more: if we denote the nth jumping

time by Un (!) and U0 (!) = 0; then fUn � Un�1 : n 2 Ng constitutes independent identically distributed
random variables, each distributed with mean 1/ ��(t)

�
Rd
�
and limn�!1 Un (!) = 1 a.s. To see this

note that
n
��(t)

o
is a Poisson process with parameter ��(t)

�
Rd
�
:

De�nition 44 A LIBOR additive process fZtgt�0 is said to be increasing if Zt (!) is increasing as
a function of t, a.s.
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Theorem 45 (Increasingness) Let d = 1. A LIBOR additive process fZtgt�0 on R is increasing
if and only if A�(t) = 0;

R
(�1;0)

��(t) (dz) = 0;
R
(0;1)

z � ��(t) (dz) < 1 and 
�(t) � 0; for every
t 2 [0; T ?] :

Proof. The �only if�part follows from the fact that
R
(�1;0)

��(t) (dz) = 0 implies ��(t) ((0; t]� (�1; 0)) =
0 and therefore fZtgt�0 does not have negative jumps. Hence, by the last theorem we have that

Zt = t � 
�(t) +
Z
(0;t]�(0;1)

z � ��(t) (d (s; z)) a.s. for every t 2 [0; T ?]

because the continuous part ~Zt = t � 
�(t) and this shows that fZtgt�0 is increasing.

And the �if� part follows from the fact that since fZtgt�0 has no negative jumps, we have that
��(t) ((�1; 0)) = 0 for every t 2 [0; T ?] : Since an increasing function remains increasing after a �nite
number of its jumps are deleted, we have Z (t)� Z" (t) � 0; hence

Z 0 (t) = lim
"#0

Z" (t)

=

Z
(0;t]�(0;1)

z � ��(t) (d (s; z))

exists and is bounded above by Z (t) :

Hence, we have that the generating function or Laplace transform of its distribution is

E
h
e�uZ"(t)

i
= exp

"
t

Z
(";1)

�
e�uz � 1

�
� ��(t) (dz)

#

= exp

"
t

Z
(";1)

�
e�uz � 1 + uz1(0;1] (z)

�
� ��(t) (dz)� tu

Z
(";1]

z � ��(t) (dz)
#

for u > 0:

As " # 0; E
�
e�uZ"(t)

�
tends to E

h
e�uZ

0(t)
i
which is positive, andZ

(";1)

�
e�uz � 1 + uz1(0;1] (z)

�
� ��(t) (dz)

tends to the integral over (0;1) which is �nite.

Hence, we have that
R
(0;1)

z � ��(t) (dz) <1, and directly by application of Theorem 41 (Lévy-Itô 2)

we have that Z (t) = Ẑ (t) + ~Z (t) ; where the jump part Ẑ (t) = Z 0 (t) and the continuous part ~Z (t) has

the generating system of triplets
�
A�(t); 0; 
�(t)

�
: But ~Z (t) = Z (t)� Z 0 (t) � 0 and therefore A�(t) = 0

and 
�(t) � 0 for every t 2 [0; T ?].

According to the last theorem, notice that a LIBOR additive process on R generated by
n�

�(t)(t); A�(t); ��(t)

�o
with A�(t) = 0; ��(t) ((�1; 0)) = 0 and

R
(0;1]

z � ��(t) (dz) =1 for every t 2 [0; T ?], has positive jumps
only, does not have Brownian-like part, but it is �uctuating, not increasing, no matter how large 
 is.
An explanation is that such a process can exist only with in�nitely strong drift in the negative direction,
which cancels the divergence of the sum of jumps; but it causes a random continuous motion in the
negative direction. It is clear that an increasing LIBOR additive process will not have negative
jumps, but also the drift has to be positive or zero, for every interval in I.
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1.8 Density Transformations of LIBOR additive processes

In this subsection we cite the most important results from Jacod and Shiryaev (1987) Chapter III,
Bjork, Kabanov and Runggaldier (1997) and Sato (1999) Chapter 6, concerning Girsanov�s the-
orem and the explicit computation of density processes of absolutely continuous probability measures.
This subsection mainly serves the purpose of preparation for the usual change of measure for �nancial
models driven by LIBOR additive processes.

Roughly speaking, the basic idea is the following. Let G be a semimartingale on some stochastic basis
(
;F ;P) : Then it is well known that the class of semimartingales is invariant with respect to equivalent
transformation of measure, or in other words, G remains a semimartingale on (
;F ;Q) (see Rogers
and Williams (1987) IV.38) where Q is locally absolutely continuous to P. This change of measure
can be described by two sequences �i and Yi (we will give an explicit expression later) called Girsanov
quantities, in the sense that the density process Z of Q with respect to P can be expressed via �i and
Yi.

As usual, we assume that two measures P and Q on a common measurable space (
;G) are called mutu-
ally absolutely continuous or equivalent measures, written P � Q if the collection fB 2 Gt : P (B) = 0g
is identical with fB 2 Gt : Q (B) = 0g : The Radon-Nikodym derivative of Q with respect to P is de-
noted by dQ

dP : If P � Q then
dQ
dP is positive and �nite P-almost everywhere.

Let us start with the following useful theorems about stochastic exponentials, and nice-versions
of triplets characteristics for the LIBOR additive process.

Theorem 46 Let G = fGt : t � 0g be a LIBOR additive process and consider the stochastic di¤er-
ential equation

dZ = Z�dG; Z0 = 1

This equation has a unique (up to indistinguishability) "càdlàg" adapted solution, called the stochastic
exponential of G, which is a semimartingale and is denoted by E (G) : Explicitly

E (G)t = exp
�
Gt �

1

2

D
~G
E
t

�Y
s�t

�
1 + Ĝs

�
e�Ĝs

where ~Gt is the continuous part in t; and Ĝt is the jump part of Gt: If we de�ne � := inf
n
t � 0 : Ĝt = �1

o
then E (G) 6= 0 on [0; �) ; and E (G) = 0 on [� ;1) :

Proof. cf. Jacod and Shiryaev (1987) Theorem I.4.61

Theorem 47 Let G = fGt : t � 0g be a LIBOR additive process on Rd: Then there exist a "nice-
version" of the triplet characteristics for G which is of the form8>><>>:

A�(t) =
�
A�(t); (i; j)

�
i;j�d

=
P
j��(t)

R Tj^t
Tj�1

â�(t) (i; j) � dH�(t) (!; t)

��(t) (!; dt; dg) = K!;t (dg) � dH�(t) (!)


�(t);(i) =
P
j��(t)

R Tj^t
Tj�1

b�(t); (i) � dH�(t) (!; t)

where H�(t) is a real-valued predictable, increasing and locally integrable process, 
̂�(t)(t) =
�
b�(t) (i)

�
1�i�d

is an Rd-valued predictable process, Â�(t) =
�
â�(t) (i; j)

�
1�i;j�d

is a predictable process with values in

the set of all symmetric nonnegative de�nite d � d matrices, and K!;t (dg) is a transition kernel from
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(
� R+;P) into
�
Rd;Bd

�
which satis�es for any t 2 [0; T ?]

K!;t (f0g) = 0 and
Z
Rd

�
jgj2 ^ 1

�
K!;t (dg) � 1

Proof. cf. Jacod and Shiryaev (1987) Proposition II:2:9:

Theorem 48 (Girsanov�s theorem for semimartingales) Assume that P and Q are (locally) equiv-
alent measures, and let G = fGt : t � 0g be a LIBOR additive process (piecewise homogeneous semi-
martingale) with P-characteristics

�
A�(t) ; ��(t) ; 
�(t)(t)

����
P
. Let â�(t) and H�(t) be the processes of the

"nice-version" from Theorem 47 for every �(t) = 0; 1; :::; n and t 2 [0; T ?] ; and let P � Q. Then there ex-
ists a sequence

�
Y�(t) ; ��(t)

�
where Y�(t)j is a P-measurable nonnegative function and ��(t) =

�
��(t) (i)

�
i�d

is a sequence of predictable processes, for any t 2 [0; T ?] satisfyingR �
Y�(t) � 1

�
c (g) d�P�(t) <1P

j��(t)
R Tj^t
Tj�1

���â�(t)��(t)��� dH�(t) <1P
j��(t)

R Tj^t
Tj�1

�
�0�(t) â�(t)��(t)

�
dH�(t) <1

Q-a.s. for any t 2 [0; T ?] and such that a version of the characteristics of G relative to Q are
�
AQ�(t) ; �

Q
�(t)

; 
Q�(t)(t)
�
;

such that 8><>:
AQ�(t) = AP�(t)
�Q�(t) = Y�(t) � �P�(t)

Q�(t)(t) = 
P�(t) +

P
j��(t)

R Tj^t
Tj�1

��âj�j�� dHj +
R
R

�
Y�(t) � 1

�
c (g) �P�(t)(dg)

Proof. cf. Jacod and Shiryaev (1987) Theorem III:3:24

De�nition 49 The quantities �j and Yj for any j = 0; :::; � (t) from Theorem 48 are called Girsanov
quantities of Q with respect to P relative to G; or simply Girsanov quantities of Q.

Remark 50 Notice that the Y�(t) describe how the jump distribution of G change when we pass from P
to Q, and ��(t) together with Y�(t) determines the changes in drift. On the other hand, notice that the
Girsanov quantities are not unique: from the uniqueness of �P�(t) and �

Q
�(t)

we only get uniqueness of

Y�(t) on supp �
P
�(t)

: And with the uniqueness of 
Q�(t)(t) and 

P
�(t)

we only get the uniqueness of â�(t)��(t)
for �xed â�(t) ; for any t 2 [0; T ?] :

Example 51 Let W be a standard Rd-valued P-Brownian motion and let A be a d � d matrix. Set
G := A�W and take P � Q with Girsanov quantities � and Y relative to G. Then ~G = G; so hGit = AA0t;
and the P-characteristic triplet of G are given by

APt = at

�Pt = 0


P(t) = 0
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where a := AA0 is the covariance matrix of G. By Theorem 48 we get the Q-characteristic triplet of G by

AQt = at

�Qt = 0


Q(t) =

Z t

0

(a�s) ds

Note that G remains a Lévy process under Q if and only if � is deterministic and independent of time.
In this case, G is a linear transformation of a standard Brownian motion with constant drift, i.e. Gt =
AWQ

t + a�t:

35



1.9 Examples of LIBOR additive processes

In the following sections we brie�y list a number of popular processes that can be studied as special cases
of the LIBOR additive processes or non-homogeneous Lévy processes. We pay special attention to
their density function, their characteristic function, their characteristic triplet together with some other
properties.

1.9.1 The non-homogeneous Poisson Process

Given a tenor structure 0 = T0 < T1::: < Tn = T ?; the non-homogeneous Poisson process is the
simplest LIBOR additive process we can think of. It is based on the Poisson (�j)j=1:::n distribution
which has

�̂j (z) = exp [�j (exp [iz]� 1)]

as a characteristic function for any j = 0; 1; :::; n.

Like an ordinary Poisson process it has independent increments and these increments are Poisson
distributed, but increments over di¤erent intervals of equal length can have di¤erent means. In particular,
the number of jumps in an interval (Tj ; Tj+1] has a Poisson distribution with mean � (Tj+1) � � (Tj)
where

� (t) =
X
j��(t)

Z t^Tj+1

Tj

�j (s) ds

Therefore, the Poisson distribution lives on the nonnegative integers f0; 1; 2; :::g ; such that

P (Gt = g) =
e��(t)� (t)

g

g!

Since the in-homogeneous Poisson
�
�j
�
j=1:::n

distribution is in�nitely divisible we can de�ne an in-
homogeneous Poisson process as the process that starts at zero, has independent increments property, is
stochastically continuous and has piecewise stationary increments. The in-homogeneous Poisson process
turns out to be an increasing pure jump process, with jump sizes always equal to 1. This means that the
additive process triplet is given by �

0; 0; ��(t)� (1)
�

where � (1) denotes the Dirac measure at point 1.

1.9.2 The non-homogeneous Compound Poisson Process

Let N = fNt; t � 0g be a non-homogeneous Poisson process with intensity parameters (�j)j=1:::n and
let Jk be independent and identically distributed (i.i.d.) random variables independent of N and fol-
lowing a law, �J say, with characteristic function �̂J (z). Then we say that G = fGt : t � 0g is a
non-homogeneous Compound Poisson process if

Gt =

NtX
k=1

Jk; t � 0

The value of the process at time t, Gt; is a sum of Nt random numbers with law �J . Notice that the
ordinary non-homogeneous Poisson process corresponds to the case where Jk; k = 1; 2; ::: i.e. have law
�J degenerate at the point 1.
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Let us write, for a Borel set A, the distribution function of the law �J as follows

P (Jk 2 A)t =
��(t) (A)

��(t)

where ��(t) (R) = ��(t) <1 with ��(t) (f0g) = 0: Then the characteristic function of Gt is given by

E [exp (izGt)] =
Y

j��(t)

E
�
exp

�
iz
�
Gt^Tj+1 �GTj

���
=

Y
j��(t)

exp

�
(t ^ Tj+1 � Tj)

Z
R

�
eizg � 1

�
�j (dg)

�
=

Y
j��(t)

exp ((t ^ Tj+1 � Tj)�j (�J (z)� 1))

From this we can easily obtain the characteristic triplet�Z +1

�1
g��(t) (dg) ; 0; ��(t) (dg)

�
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Figure (1): Sample-path of a jump-di¤usion process, with the Lévy-Itò decomposition

The non-homogeneous compound Poisson process is usually introduced in the simulation of jump-
di¤usion sample paths on a �xed grid is shown in Figure (1). On the left side, the �gure shows us two
independent sample paths, the usual continuous-part given by a Brownian motion, and the jump-part
simulated using a compound Poisson process. Both together, by application of Lévy-Itô Theorem 42,
form the jump-di¤usion sample-path that appear in the right part of Figure (1). E¢ cient algorithms to
simulate Poisson, exponential and Gaussian processes can be found in Press et al. (1992). Di¤erent
methods of approximation of the small jumps are discussed in Schoutens (2003).
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1.9.3 The non-homogeneous Gamma Process

Here the non-homogeneous Gamma process G = fGt : t � 0g with parameters aj ; bj > 0 for every
j = 0; 1; :::; n, is de�ned as the stochastic process which starts at zero and has independent increments,
is stochastically continuous and has independent Gamma distributed increments inside of each interval
for every j = 0; 1; :::; n.

The density function of the non-homogeneous Gamma distribution (aj ; bj) with aj > 0 and
bj > 0 for every j = 0; 1; :::; n is given by

�j (g; aj ; bj) =
b
aj
j

� (aj)
gaj�1 exp (�gbj) ; with g > 0

Notice that this function has a semi-heavy (right) tail.

The characteristic function is given by

�̂j (z; aj ; bj) =

�
1� iz

bj

��aj
and obviously, it is in�nitely divisible. The characteristic triplet of a non-homogeneous Gamma process
is given by �

aj (1� exp (bj))
bj

; 0; aj
exp (�bjg) 1fg>0gdg

g

�

The most common method of simulation for Gamma processes can be found inMarsaglia and Tsang
(2000).

1.9.4 The non-homogeneous Inverse Gaussian Process

Let T (a;b) be the �rst time a standard Brownian motion with drift b > 0 reaches the positive level a > 0:
It is well known that this random time follows the so-called Inverse Gaussian IG (a; b) law. The IG
distribution is in�nitely divisible. Hence we can de�ne the IG process G = fGt : t � 0g with parameters
aj ; bj > 0 for any j = 0; 1; :::; n as the process which starts at zero, is stochastically continuous and has
independent IG distributed increments, homogeneous only inside of each interval for every j = 0; 1; :::; n
such that for any t 2 [0; T ?]

E (exp [izGt]) =
Y

j��(t)

E
�
exp

�
iz
�
Gt^Tj+1 �GTj

���
=

Y
j��(t)

exp
h
�aj (t ^ Tj+1 � Tj)

�q
�2iz + b2j � bj

�i
The density function of the IG (aj ; bj) ; for any j = 0; 1; :::; n is explicitly known:

�j (g; aj ; bj) =
ajp
2�
exp (ajbj) g

�3=2 exp

 
�1
2

 
a2j
g
+ b2jg

!!

and the Lévy measure associated to the IG (aj ; bj) law is given by

�j (dg) =
ajp
2�
g�3=2 exp

�
�1
2
b2jg

�
1fg>0gdg
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The �rst component of the characteristic triplet equals


j =
aj
bj
(2� (bj)� 1)

where � (x) is the Normal distribution function.
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Figure (2): Non-homogeneous IG process with parameters (aj ; 0) :

Figure (2) represents a non-homogeneous inverse Gaussian process with parameters (aj ; 0) where aj
goes from a0 = 1 to a1000 = 2. Simulation algorithm can be found in Prause (1997).

1.9.5 The non-homogeneous Generalized Inverse Gaussian Process

The Inverse Gaussian IG (a; b) law can be generalized to what is called the Generalized Inverse
Gaussian distribution GIG (a; b) : This distribution on the positive half-line is given in terms of its
density function

� (g;�; a; b) =
(b=a)

�

2K� (ab)
g��1 exp

�
�1
2

�
a2

g
+ b2g

��
The parameters �; a and b are such that � 2 R while a and b are both nonnegative and not simultaneously
0.

The characteristic function is given by

�̂ (k;�; a; b) =
1

K� (ab)

�
1� 2ik=b2

��=2
K�

�
ab
p
1� 2ik=b�2

�
where K� (g) denotes the modi�ed Bessel function with the index �:
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Hence we can de�ne the non-homogeneous GIG process as a stochastic process that starts at zero, is
continuous in probability with independent increments, and is piecewise stationary or stationary inside
each interval [Tj ; Tj+1] for j = 0; 1; :::; n. According to Barndor¤-Nielsen and Shephard (2001), it
has an in�nitely divisible distribution with the following Lévy measure

�j (dg) =
exp

�
� 1
2bjg

�
g

�
a2j

Z 1

0

exp (�gz)hj(z)dz +max f0; �jg
�
dg

where

hj(z) =
�
�2ajz

�
J2j�j

�
aj
p
2z
�
+N2

j�j

�
aj
p
2z
����1

and where J and N are Bessel functions. Simulation algorithm can be found in Prause (1997).

1.9.6 The non-homogeneous �-Stable Process

Since Mandelbrot (1963) introduced the �-stable distribution to model the empirical distribution of
asset prices, the �-stable distribution became a popular alternative to the normal distribution which has
been rejected by numerous empirical studies that have found �nancial return series to be heavy-tailed
and possibly skewed.

More explicitly, we can de�ne the non-homogeneous �-stable process as a stochastic process that
starts at zero, is continuous in probability with independent increments, and is piecewise stationary or
stationary inside each interval [Tj ; Tj+1] for j = 0; 1; :::; n with a Lévy measure of the form

�j (dg) =
A

g�j+1
1fg>0gdg +

B

g�j+1
1fg<0gdg

for some positive constants A and B7 . The characteristic function of a real-valued non-homogeneous
stable random variable G has the form

�̂j (z) =

�
exp

�
���jj jzj�j

�
1� i�j sgn z tan

��j
2

�
+ i�z

	
; if � 6= 1

exp
�
��j jzj

�
1 + i�j

2
� sgn z log jzj

�
+ i�z

	
; if � = 1

where �j 2 (0; 2] ; �j � 0; �j 2 [�1; 1] and � 2 R,

7Note the link between between �-stable processes and TS processes. A tempered stable process (TS) is usually obtained
by taking a one-dimensional stable process and multiplying the Lévy measure with a decreasing exponential on each half
of the real axis.
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Figure(3): Non-homogeneous �-stable process, where � goes from 1 to 2 (Brownian case)

Chambers, Mallows and Stuck (1976) describe a simulation method for generating �-stable
processes with a set of admissible parameters, and also provide a list of Fortran programs to simu-
late this process. Figure (3) shows us a sample path of a non-homogeneous �-stable process where �
moves uniformly with the time from 1 to 2 (Brownian case).

1.9.7 The non-homogeneous Tempered Stable Process

The class of theTempered Stable (TS) distributions was proposed by Tweedie (1984) andKoponen
(1995), but this class of distributions may be generalized to the so called class of Modi�ed Stable
distributions due toBarndor¤-Nielsen and Shephard (2003) andRosinski (2006). The distribution
function is not available in closed form but the characteristic function of the Tempered Stable (TS)
distribution law TS(�; a; b) with a > 0; b � 0 and 0 > � > 1; is given by

�̂ (z;�; a; b) = exp

�
ab� a

�
b1=� � 2iz

���
We can de�ne the non-homogeneous Tempered Stable (TS) process G = fGt : t � 0g as the process
which starts at zero, has independent increments and is stochastically continuous with piecewise stationary
increments. It has an in�nitely divisible distribution and, from the characteristic function, we can derive
the Lévy measure of the non-homogeneous TS process

�j (dg) = aj2
� �

� (1� �)g
���1 exp

�
�1
2
b
1=�
j g

�
1fg>0gdg

The process is a subordinator and has in�nite activity. The �rst term of the characteristic triplet is
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given by


j = aj2
� �

� (1� �)

Z 1

0

g�� exp

�
�1
2
b
1=�
j g

�
dg

As we have mentioned in the case of the �-stable case, neither the density function nor speci�c random
number generators are available. In order to simulate other techniques are available in the literature.
The most common method is based on the so-called rejection-method by Rosinski (2002).

1.9.8 The non-homogeneous Variance Gamma Process

The class of Variance Gamma (V G) distributions was introduced byMadan and Seneta (1990) and
Madan and Milne (1991) as a model for stock returns, and it generates a �nite variation process with
in�nite but relatively low activity of small jumps. The V G process proposed inMadan et al. (1998) is
obtained by evaluating arithmetic Brownian motion with drift � and volatility � at a random time given
by a gamma process having a mean rate per unit time of 1 and a variance rate of �: Speci�cally, we have

GV Gt (�; v; �) = �Gvt + �WGv
t

where Gvt is the gamma process with mean rate 1 and variance rate v; independent of W .
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Figure (4): Simulation of a VG Process as a Time-Changed Brownian Motion

Figure (4) shows this composition of processes on the right side, and the resulting process Gt (�; v; �)
(on the left side) is a pure jump process with in�nite activity that has two additional parameters, providing
control over skewness and kurtosis, respectively.

The characteristic function of the V G (�; v; �) law is easily evaluated as

�̂ (z;�; v; �) =

�
1� iz�v + 1

2
�2vz2

��1=v
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Hence, we can de�ne the non-homogeneous Variance Gamma (V G) process fGt : t � 0g as the
process that starts at zero, has independent and piecewise stationary increments, with the following
characteristic function

E (exp [izGt]) =
Y

j��(t)

E
�
exp

�
iz
�
Gt^Tj+1 �GTj

���
=

Y
j��(t)

�
1� iz�jvj +

1

2
�2jvjz

2

��(t^Tj+1�Tj)=vj

The Lévy density for the variance gamma process may be derived directly from the Lévy-Khintchine
theorem. Alternatively, one may exploit the representation of the variance gamma process as the di¤erence
of two independent gamma processes. It is shown in Carr et al. (2002) that this characterization leads
to the following Lévy measure

�j (dg) =

�
Cj exp (Gjg) jgj�1 dg
Cj exp (Gjg) jgj�1 dg

g < 0
g > 0

for any j = 0; 1; :::; n where

Cj = 1=vj > 0

Gj =
�q

1
4�
2
jv
2
j +

1
2�

2
jvj � 1

2�jvj

��1
> 0

Mj =
�q

1
4�
2
jv
2
j +

1
2�

2
jvj +

1
2�jvj

��1
> 0

With this parametrization, we are implicitly assuming that the non-homogeneous VG process is ex-
pressed as the di¤erence of two independent non-homogeneous Gamma processes, where G(1) is a Gamma
processes with parameters aj = Cj and bj = Mj , whereas G(2) is an independent Gamma process with
a0j = C 0j and b

0
j = G0j . Figure (5) shows how these two mentioned gamma processes (right side) can

generated the sample-path for the variance gamma process (left side).
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Figure (5): Simulation of a VG Process as the Di¤erence of Two Gamma Processes

On the other hand, the Lévy measure has in�nite mass, and hence a VG process has in�nitely many
jumps in any �nite interval. Since Z 1

�1
jgj �j (dg) <1

a VG process has paths of �nite variation. A VG process has no Brownian motion component and its
characteristic triplet is given by

�

j ; 0; �j (dg)

�
where


j =
�Cj (Gj (exp (�Mj)� 1)�Mj (exp (�Gj)� 1))

MjGj
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Figure (6): Non-homogeneous Variance Gamma Process.

1.9.9 The non-homogeneous Normal Inverse Gaussian Process

Following Barndor¤-Nielsen (1995), the Normal Inverse Gaussian (NIG) distribution with para-
meters � > 0;�� < � < � and � > 0; NIG (�; �; �) has characteristic function

�̂ (z;�; �; �) = exp

�
��
�q

�2 � (� + iz)2 �
q
�2 � �2

��
and we can de�ne the non-homogeneous NIG process fGt : t � 0g as a process with Gf0g = 0 a.s. with
independent NIG distributed increments, continuous in probability and piecewise stationary.
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The Lévy measure for the NIG process is given by

�j (dg) =
�j�j
�

exp
�
�jg
�
K1 (�j jgj)
jgj dg

where K� (g) denotes the modi�ed Bessel function of the third kind with index �:

A NIG process has no Brownian component and its Lévy triplet is given by
�
0; 
j ; �j (dg)

�
where


j =
2�j�j
�

Z 1

0

sinh
�
�jg
�
K1 (�jg) dg
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Figure (7): Simulation of a NIG process as a Time-Changed Brownian Motion

As in the VG case, we can also simulate an NIG process as a time-changed Brownian motion. Figure
(7) shows a path of an NIG process (left side) obtained by sampling a standard Brownian motion and
an IG process (right graph).

1.9.10 The non-homogeneous CGMY Process

In order to obtain a more �exible process than the Variance Gamma process, that has �nite or in�nite
activity and in�nite variation, the additional parameter Y was introduced by Carr, Madan, Geman
and Yor (2002). Later, in Carr et al. (2003), this four-parameter distribution was generalized to a
six-parameter case, however we present here the �rst case, the CGMY (C;G;M; Y ) distribution, with
characteristic function

�̂ (z;C;G;M; Y ) = exp
�
C� (�Y )

�
(M � iz)Y �MY + (G+ iz)

Y �GY
��
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Figure (8): Simulation of a CGMY process

Based on this distribution, we can de�ne a non-homogeneous CGMY process fGt : t � 0g as the
process that starts at zero, has independent and piecewise stationary increments, with the following
characteristic function

E (exp [izGt]) =
Y

j��(t)

E
�
exp

�
iz
�
Gt^Tj+1 �GTj

���
=

Y
j��(t)

�̂ (k;Cj ; Gj ;Mj ; Yj)
(t^Tj+1�Tj)

=
Y

j��(t)

�̂ (k; (t ^ Tj+1 � Tj)Cj ; Gj ;Mj ; Yj)

=
Y

j��(t)

exp
�
Cj (t ^ Tj+1 � Tj) � (�Yj)

�
(Mj � iz)Yj �MYj

j + (Gj + iz)
Yj �GYjj

��

The CGMY process is a pure jump process with triplet
�

j ; 0; �j (dg)

�
, that is, it contains no Brownian

part. The path behavior is determined by the Yj parameter, which has a value restricted to Yj < 2 for
every j = 0; 1; :::; n. If Yj < 0 the paths have �nite jumps in any �nite interval; if not, the paths have
in�nitely many jumps in any �nite time interval, i.e. the process has in�nite activity. Moreover, if the
Yj 2 [1; 2) ; the process is of in�nite variation.

The Lévy measure for the nonhomogeneous CGMY process is given by

�j (dg) =

(
Cj exp (Gjg) j�gj�1�Y dg
Cj exp (�Gjg) jgj�1�Y dg

g < 0
g > 0

and the �rst parameter of the characteristic triplet equals


j = Cj

�Z 1

0

exp (�Mjg) g
�Yjdg �

Z 0

�1
exp (Gjg) g

�Yjdg

�
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1.9.11 The non-homogeneous Meixner Process

The Meixner process was introduced in Schoutens and Teugels (1998), Schoutens (2000) and Grige-
lionis (1999) later suggested that it may serve for �tting stock returns. This application to �nance was
worked out in Schoutens (2001, 2002). The density of theMeixner distribution (Meixner(�; �; �)) is
given by

� (g;�; �; �) =
(2 cos (�=2))

2�

2��� (2d)
exp

�
�g

�

� ������� + ig

�

�����2
where � > 0;�� < � < �; � > 0: The characteristic function of the Meixner (�; �; �) distribution is given
by

�̂(z;�; �; �) =

�
cos (�=2)

cosh ((�z � i�) =2)

�2�

Hence we can de�ne the Meixner process fGt : t � 0g as the process that starts at zero, has in-
dependent and piecewise stationary increments, with a distribution given by the Meixner distribution
function Meixner(�j ; �j ; �jt):

According to Grigelionis (1999), this non-homogeneous Meixner process has no Brownian part while
the pure jump part is governed by the Lévy measure

�j (dg) = �j
exp

�
�jg=�j

�
g sinh (�g=�j)

dg

The �rst parameter in the characteristic triplet equals


j = �j�j tan
�
�j=2

�
� 2�j

Z 1

1

sinh
�
�jg=�j

�
sinh (�g=�j)

dg

This process has in�nite variation due to
R +1
�1 jgj �j (dg) =1; for any j = 0; 1; :::; n:

1.9.12 The non-homogeneous Generalized Hyperbolic Process

The Generalized Hyperbolic (GH) distributions were introduced by Barndor¤-Nielsen (1977) as
a model for the grain-size distribution of wind-blown sand. In order to use this distribution in �nancial
modelling, two subclasses of the GH distribution appear in 1995. Eberlein and Keller (1995) used the
Hyperbolic distribution and in the same year Barndor¤-Nielsen (1995) proposed the NIG as a special
case of a GH distribution.

FollowingBarndor¤-Nielsen (1977) theGeneralized Hyperbolic (GH) distributionGH (�; �; �; v)
is de�ned through its characteristic function

�̂ (k;�; �; �; v) =

 
�2 � �2

�2 � (� + iz)2

!v=2 Kv

�
�

q
�2 � (� + iz)2

�
Kv

�
�
p
�2 � �2

�
where Kv is the modi�ed Bessel function, � and � determine the shape of the distribution and � is the
scale of the parameter.

The density of the GH (�; �; �; v) distribution is given by

� (g;�; �; �; v) = a (�; �; �; v)
�
�2 + g2

� v
2�

1
4 Kv� 1

2

�
�

q
�2 + g2

�
exp (�g)
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with

a (�; �; �; v) =

�
�2 � �2

�v=2
p
2��v�1=2�vKv

�
�
p
�2 � �2

�
where

� � 0; j�j < � if v > 0
� > 0; j�j < � if v = 0
� > 0; j�j � � if v < 0

and using this distribution and characteristic function, we can de�ne a non-homogeneous GH process
fGt : t � 0g as the process that starts at zero, has independent and piecewise stationary increments, and
where the distribution of Gt has characteristic function

E (exp [izGt]) =
Y

j��(t)

E
�
exp

�
iz
�
Gt^Tj+1 �GTj

���
=

Y
j��(t)

�̂j
�
g;�j ; �j ; �j ; vj

�(t^Tj+1�Tj+1)

It is an in�nite variation process without Gaussian part (in the general case). The Lévy measure
�j (dg) is known, but the expression is rather complicate as it involves integrals of special functions.
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Chapter 2

Reaction-Additive systems to
modelling Corporate Bonds:
no-arbitrage and weak convergence
conditions
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2.1 Preliminaries

2.1.1 Introduction

Notoriously, works in mathematical �nance should re�ect the market reality, and they have to be compre-
hensible for practitioners. Unfortunately, the ones which are realistic are not necessarily comprehensible
and those comprehensible are not necessarily realistic.

But both are needed. Usually the trade-o¤ between reality and simplicity in modelling is not easy
to break, and unfortunately, the mathematics of �nance are not e¤ortless, and much market practice
is based on soft or partial use of these tools, working and pricing with models that do not re�ect in a
complete manner what is actually going on.

Basically the main goal of this Second Chapter 1 is to develop a su¢ ciently wide model for corporate
bonds with credit risk, and develop a set of mathematical tools and results that would allow the prac-
titioner to simplify this framework and conditions in order to implement these models according to the
speci�c needs of the market (with or without continuity and with or without jumps, with or without
credit migration or under di¤erent types of default).

But additionally, we recognize that it is true that continuous-time models and pricing rules, presented
in this chapter, are often too complex to handle. Therefore it is convenient to both discretize time and
space and show that the discretization is good in the sense that the discretized models and pricing rules
converge to the continuous-time model as the discretization steps tend to zero. An additional goal of
this chapter is the treatment of this aspect of mathematical �nance. We study both the approximation
of a continuous-time model by a sequence of discrete-time models with credit risk, and the convergence
of price processes under a framework that provides the practitioner a multiple set of models and credit
conditions.

Therefore, in this Second Chapter, we present basically two results:

- First, a new framework to model interest rates with credit risk and a new approach to price corporate
bonds with credit migration, under risk-neutral probability. We derive the non-arbitrage conditions
under di¤erent conditions of recovery, and we obtain new expressions in order to estimate the
probabilities of default under risk-neutral measure.

- Second, we investigate the conditions of weak convergence in incomplete markets, and more specif-
ically, we study the weak convergence conditions of a composition of processes, between a semi-
martingale and an additional process that represent the untradeable risk factor (credit risk or credit
migration). Obviously, these results have direct applications to our model.

This chapter is organized as follows:

- In Section 1 we introduce the basics such as de�nitions and technical notation that will be used dur-
ing the whole chapter. Additionally, we expose here the di¤erent assumptions about the dynamics
of forward rate models under a semimartingale framework.

1This work has been developed under the direction of Javier Nogales and Winfried Stute. I am extremely grateful to
them. I also bene�ted greatly in my work from discussions with seminar participants at Statistical Lab. at University
of Cambridge (Oct.2006), participants at IV Bachelier Congress in Tokyo (2006), and very specially with Rama Cont,
David Nualart, C. Rogers, W. Runggaldier and T. Schmidt. Their advice, suggestions and assistance has been key in the
development of this work. Comments and suggestions are welcome, all errors are my own.
Contact email: jpcolino@gmail.com
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- Section 2 is devoted to develop the basic expressions for corporate bonds under di¤erent recovery
frameworks, basically extending the results of Heath, Jarrow and Morton (1992) to our framework.

- In Section 3 we obtain the no-arbitrage expressions for each model and we derive a risk-neutral
form for the probability of default.

- Section 4 is mainly devoted to show some relevant results related with the reaction-additive system.
Firstly, we expose very brie�y di¤erent methodologies that guarantee the existence of a solution
to our system. Second, assuming the existence of this solution, we show the Markov property and
uniqueness, and �nally we prove that this solution has sample-paths in the Skorohod space.

- Finally, Section 5 analyzes the conditions for weak convergence of this system in the Skorohod
space, but not only from the theoretical point of view but also we obtain the conditions in terms
of the sequence of triplets that characterize the distributions.

2.1.2 Basic Assumptions for the risk-free Interest Rates model.

We will consider processes on a complete stochastic basis (
;G;P) : Let G = fGt; t � 0g be the LIBOR
additive process with a given tenor structure 0 = T0 < T1 < ::: < Tn = T ? with T ? �xed, according to
the de�nitions given in the previous chapter.

Now, the LIBOR additive process G is introduced here as a source of uncertainty in our model.
Notice that the trajectories of this process belong to the Skorohod space D. We can associate with Gt
a random measure of its jumps, denoted by ��(t) for any t 2 [0; T ?] ; A 2 B

�
Rd
�
and t 2

�
T�(t); T�(t)+1

�
.

Actually, set
��(t) ([0; t] ; A) =

X
0<s�t

1A (4G (s))

and let us introduce the measure ��(t) as

��(t) (A) = E
�
��(t) ([0; t] ; A)

�
is called the Lévy measure of the process G.

The Lévy-Khintchine formula (Theorem 31) and Theorem 34 in the previous Chapter, have shown
that the characteristic function has the form:

�̂t (z) = E (exp [i hz;G(t)i])
=

Y
j��(t)

E
�
exp

�
i


z;
�
Gt^Tj+1 �GTj

����

= exp

24 X
j��(t)

(t ^ Tj+1 � Tj) j (z)

35
with z 2 Rd and

 j (z) = i



j ; z

�
� 1
2
hz;Ajzi+

Z
Rd

�
eihz;gi � 1� i hz; gi 1fjgj�1g

�
�j (dg) ; j = 0; 1; :::; n

and where Aj is a symmetric nonnegative-de�nite d�d matrix, 
j 2 Rd; �j is the mentioned Lévy
measure on Rdn f0g and g 2 Rd satisfying

�j (f0g) = 0 and
R
Rd

�
jgj2 ^ 1

�
�j (dg) <1

for any j = 1; :::; n:
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Under these two conditions, and using Jacod and Shiryaev (2003; II:2:29), G is a special semi-
martingale and G has a well known Lévy-Itô decomposition or canonical representation (assum-
ing jumps bounded by a truncation constant):

G (t) = G(0) +
X
j��(t)

Z t^Tj+1

Tj

�j (s) ds+
X
j��(t)

Z t^Tj+1

Tj

�j (s)W (ds)

+
X
j��(t)

Z t^Tj+1

Tj

Z
jxj�1

x
�
�j � �j

�
(ds; dx)

where ��(s) 2 Rd; W is a standard d-dimensional Wiener process with values in Rd and ��(t) is
a measurable version of the square-root of the diagonal elements of a symmetric nonnegative-de�nite
d-dimensional matrix A�(t) =

�
��(t) (i; j)

�
i;j�d :

Let r (t), t � 0 be the short rate process. If at moment 0 one puts into the bank account 1 unit,
then at moment t one has

Bt = exp

�Z t

0

r(s)ds

�
Let B(t; T ) be the market price at moment t of a bond paying 1 unit at maturity time T . The forward
rate f(t; T ) curve is a function de�ned for t � T < T ? and such that

B (t; Ti) = exp

"
�
Z Ti

t

f(t; s)ds

#

We postulate here the following dynamic for the forward rates

df (t; T ) = ��(t) (t; T ) dt+ ��(t) (t; T ) dWt +

Z
E

h (t; T; x)1fjxj�1g
�
�� ��(t)

�
(dt; dx)

Notice that the usual short rate is de�ned as r (t) = f (t; t) :

2.1.3 Basic Assumptions for the Credit Risk Model

In this section, we mainly focus on corporate (defaultable) bond featuring two di¤erent issues,

- �rst, the dynamic of defaultable instantaneous forward rates in incomplete markets, which
are speci�ed through the Heath, Jarrow and Morton (1992) model, driven by a LIBOR ad-
ditive processes,

- and second, we additionally assume that the credit migration is modelled by a SDE driven by a
multivariate marked point process.

In order to achieve this aim, we have to establish some assumptions that will be applied during the
whole work.

Assumptions related with the Credit Risk dynamic

1. Given a �xed horizon date T ? 2 R+, let us assume that our continuous-time �nancial economy �lives�
on a "su¢ ciently rich" stochastic basis (
;F;P) endowed with the �ltration F =(Ft)t2[0;T?] :
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Notice that in our case, a "su¢ ciently rich" stochastic basis is one such that the �ltration is
generated by two stochastic processes G and C

Ft = � fGs; Cs; 0 � s � tg (2.1)

which satis�es the "usual conditions". Notice that we can de�ne the embedded �ltration Gt � Ft
such that

Gt = �
�
Ws; � ([0; s]� E) ; 0 � s � t; E 2 B

�
Rd
�	

and additionally, we can de�ne as well a second embedded �ltration Ct � Ft such that

Ct = � fCs; 0 � s � tg

Henceforth, we can de�ne Ft as the original full �ltration such that

Ft = Gt _ Ct = � fGs; Cs; 0 � s � tg

with respect to which all processes are adapted. In following subsections, assumptions about the
nature of G and C are detailed.

Additionally to these three �ltrations, we also have three smaller �ltrations F0, G0 and C0 that will
be called observed �ltrations such that F 0t = G0t _ C0t and F 0t � Ft: They are originated directly
from the observed time series of market prices and notice that implicitly, we are assuming di¤erent
notions of equivalent martingale measures, according to which �ltration we are interested in.

2. We assume that the process G is a LIBOR additive process. According to the results obtained
in Chapter I, this process has an in�nitely divisible and self-decomposable distribution and
it admits the Lévy-Khintchine formula and the Lévy-Itô decomposition.

3. On the other hand, we are assuming also that the credit quality of corporate debt is represented
by the random variable C categorized into a �nite number of (mutually disjoint) credit rating
classes (credit classes, for short). Each credit class is represented by one of m+1 2 N+ elements
of a �nite state space, say K =

�
0; 1m ;

2
m ; :::;

m�1
m ; 1

	
(state space). By convention, the state 1 is

always assumed to correspond to the default event. In addition, the states are ordered so that
the state 0 represents the highest ranking, whereas the state m�1

m represents the lowest ranking.

Let us de�ne the credit migration process by Ct for any 0 � t � T ? as a random variable on
(
; C;P) adapted to the �ltration C=(Ct)t2[0;T?]. Let us assume that the dynamic of this process
can be de�ned by the following stochastic di¤erential equation with values in [0; T ?]�K

dCt =
X
a;b2K

(b� a) 1fCt�=agdNab (t) ; C0 2 Knf1g (2.2)

where both the m+ 1-vector point process Nt = (Na;0 (t) ; :::; Na;m�1
m
(t) ; Na;1 (t)) , such that

Nab (t) has (P; C) -intensity �ab (t) for a; b 2 K

where �ab : [0; T ?]� Rd ! [0;1] are bounded functions with bounded gradients.

4. The double sequence (�k; C�k)k�1 is called a C-adapted multivariate marked point process2 .
Notice that the �k�s form a sequence of stopping times that de�ne the moments of time that the
credit rate C changes. More explicitly, for any k 2 N+ the random variable (random stopping time)
�k will be de�ned as 8<: �0 := 0

�k := inf
�
t > �k�1/Ct 6= C�k�1

	
^ T ?

�?k := inf f t > �k�1/Ct = 1g ^ T ?
(2.3)

2See Liptser and Shiryaev (1989) 3.4 p.168 or Brémaud (1981) 2.1 p.19
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and it represents the time of the kth jump or transition for C: Therefore, �k : 
 ! R+ is a non-
negative random variable de�ned in the probability space (
;F ;P) : For convenience, we assume
for any k 2 N+ that P f�k = 0g = 0 and hence P f�k > 0g = 1:
Notice that the default time �?k is the �rst moment when the rating process hits the state 1 or
reaches the state of default. Default is, by de�nition, an absorbing state and sometimes, and for
the sake of simplicity, it will appear as �?.

5. The usual approach to continuous-time Markov chains is based on transition semigroups, and
the principal mathematical object is then the in�nitesimal generator. The transition semigroup
is the continuous-time analogue of the iterates of the transition matrix in discrete time.

Given an initial rating C0 of a defaultable bond, as in the discrete case, the future changes in its
ratings are described by a Kvalued stochastic process Ct referred to as the migration process
under the real-world probability P that follows a continuous-time homogeneous C-Markov chain,
with the transition semigroup P of the following form:

P (t) = [pab (t)]a;b2K ; with 0 < t � T ? (2.4)

where
pab (t) := P (Ct+s = b jCs = a ) for every s; t 2 [0; T ?] (2.5)

In a credit risk framework, we shall postulate that the default state C(t) = 1 is absorbing, i.e.
p1;1(t) = 1 or equivalently p1;b(t) = 0 for any b 2 Knf1g :
On the other hand, it is also very well-known that the right-hand side continuity at time t = 0 of
P (�) implies the right-hand side di¤erentiability at t = 0: More speci�cally, the following �nite limit
exists for every a; b 2 K and equals

�ab := lim
t#0

pab (t)� pab (0)
t

= lim
t#0

pab (t)� �ab
t

: (2.6)

Observe that for every a 6= b we have �ab � 0; and �aa = �
P1
a=0;a6=b �ab: The matrix � :=

[�ab]0�a;b�1 is called the in�nitesimal generator matrix for a Markov chain associated with
P (�): Since each entry of �ab of the matrix � can be shown to represent the intensity of transition
from the state a to the state b; the in�nitesimal generator matrix � is also commonly known as the
intensity matrix.

Assumptions related with the stochastic process

1. Let us de�ne the LIBOR additive process with the credit rating GCt as a Ft-adapted LIBOR
additive process that is also a function of the credit state such that

GCt = G (t; C (t))

Notice that (Gt)t�0 is a Gt-adapted LIBOR additive process3 on Rd; and (Ct)t�0 is a Ct-
adapted multivariate point process on K. We have in mind a map from Dd�D into Dd; where
Dd=D

�
Rd; I

�
; with I = [0; T ?] � R+; is a d-dimensional Skorohod space and D=D (K; I) is

also a Skorohod space, with K =
�
0; 1m ;

2
m ; :::;

m�1
m ; 1

	
as a �nite space in [0; 1] ; and t 2 [0; T ?].

For the sake of clarity, in the future the �nal d-dimensional Skorohod space will be denoted as
D[0;T?]

�
Rd;K

�
: Several proofs and developments in this context will be provided in sections (2:4)

and (2:5) in this chapter.

2. We will take for granted the structure of in�nitely divisible distributions on Rd; and in partic-
ular the Lévy-Khintchine formula. We have seen that (Gct)t�0 is a LIBOR additive process

3See Section 1.2. in Chapter 1 for the de�nitions and properties of LIBOR additive processes
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on Rd, and for every c 2 Knf1g given, and for every t, Gct has an in�nitely divisible distribution,
and the driving process Gct has a triplet characteristic

�

cj(t); A

c
j ; �

c
j

�
j�0, that is connected with

the mentioned canonical (Lévy-Itô) decomposition of Gc for any c 2 Kn f1g in the following
manner:

G (t; c) = Gct

= Gc0 +
X
j��(t)

Z t^Tj+1

Tj

�j(u; c)du+
X
j��(t)

Z t^Tj+1

Tj

�j(u; c)dWu

+
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
� (u; x)

�
�cj � �cj

�
(du; dx) (2.7)

where ��(t)(u; c)dWt is the continuous martingale part of Gct and, on the other hand, �
c
�(t) is

the random measure associated with the jumps of Gct , and �
c
�(t) (du; dx) = du F c�(t) (dx) is its

(non-random) compensator.

Notice that Wt is the usual standard d-dimensional Brownian motion and ��(t)(u; c) is a d-
dimensional vector that is the diagonal of the square-root of the symmetric nonnegative-de�nite
matrix Ac�(t);

Also we had assumed that the process Gc has jumps bounded by a constant h = 1, however this
truncation function can be any h 2 R+ by replacing Gc by Gc=h (which has jumps bounded by
1) and 
c�(t)(t) by h


c
�(t)(t); so the (Gt)

c and the rates are unchanged. It is clear that any martingale
solution will depend on the choice of the truncation function. In the sequel we �x one truncation
function and sometimes do not mention the dependence of the characteristics on this truncation
function.

Assumptions related with the forward rates with credit risk

1. Let us de�ne f (t; T; c) as the instantaneous defaultable forward rates at time t 2 [0; T ] for
any T < T ? and for every c 2 Kn f1g : It corresponds to the rate that one can contract for a time
t; on a loan with credit risk c that begins at date T and is returned an instant later. It is usually
de�ned by

f (t; T; c) = �@ logB(t; T; c)
@T

(2.8)

where B(t; T; c) is the value in t of a zero-coupon bond conditional to the credit rate c until
maturity T; or in other words

B(t; T; c) := B(t; T; Ct)jCt=c for every c 2 Knf1g

and therefore, the conditional zero-coupon bond with maturity T and the credit rate c follows

B(t; T; c) = exp

(
�
Z T

t

f (t; s; c) ds

)
(2.9)

2. We assume that the evolution of this forward rate is driven by a d-dimensional LIBOR additive
process for a given credit rate c 2 Kn f1g that admits the Lévy-Itô decomposition, such that
the dynamics of the instantaneous forward rate f (t; T; c) given the credit rating c 2 Knf1g in
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t � T 2 I; under the real-world probability P, which we assume as follows4 :

df (t; T; c) = ��(t) (t; T; c) dt+ ��(t) (t; T; c) dWt +

Z
E

� (t; T; x)
�
�c�(t) � �c�(t)

�
(dt; dx)

(2.10)

when t � T 2 I where � (t) = sup fj � 0 : Tj � tg with j = 0; 1; :::; n (for the sake of clarity, we will
denote this by the generic index j), Wt is a d-dimensional standardWiener process in Rd and it
is identical for any c 2 Kn f1g ; �c�(t) is a random measure for a given credit rating c 2 Kn f1g
such that � 2 N+ with the compensator �c�(t) (dt; dx).
Notice that a forward rate is not a �nancial asset issued by a company that has the probabilities
of default, therefore c := Ctj Ft 2 Knf1g for every t 2 [0; T ] ; T 2 I. This means that modelling
these forward rates, we are not considering the probabilities of credit migration that usually appear
in a speci�c corporate bond valuation.

On the other hand, we are implicitly assuming that (f (t; T; c))c2Knf1g is a sequence of semimartin-
gales, because Gc is a semimartingale, and also the risk-free forward rate f (t; T; 0) := f (t; T ) is
another semimartingale.

3. Let us make some assumptions on the coe¢ cients. Basically the functions �j : 
�[0; T ?]�[0; T ?]!
R and �j : 
� [0; T ?]� [0; T ?]! R+ for any j = 0; 1; :::; n and both are R+ �B ([0; T ?])-measurable.
The coe¢ cient � : 
�Rr � [0; T ?]� [0; T ?] is R+ � B ([Rr]) � B ([0; T ?]) measurable as well, and all
the coe¢ cients cited previously are �nite for all times t; and �xed T � t; or in other words

X
j��(t)

Z t^Tj+1

Tj

0@ X
�(u)�j��(T )

Z Tj+1^T

t_Tj
j�j (u; s; c)j ds

1A du <1 (2.11)

X
j��(t)

Z t^Tj+1

Tj

0@ X
�(u)�j��(T )

Z Tj+1^T

t_Tj
j�j (u; s; c)j2 ds

1A du <1 (2.12)

and X
j��(t)

Z t^Tj+1

Tj

Z
E

0@ X
�(u)�j��(T )

Z Tj+1^T

t_Tj
j� (u; s; x)j2 ds

1A �cj (du; dx) <1 (2.13)

Notice that all coe¢ cients are equal to zero for T < t; and we are assuming that E = Rd: Also to
abbreviate the formulae we will use ~�cj := �cj � �cj where c 2 Kn f1g, at this moment, is a �xed
credit rate.

4. Additionally, for every s; t; T 2 [0; T ?] and s; t � T; and c 2 Kn f1g such that there is a constant
~C <1 and

j�j (s; T; c)� �j (t; T; c)j � ~C js� tj
j�j (s; T; c)� �j (t; T; c)j � ~C js� tj
j� (u; s; x)� � (u; t; x)j � ~C js� tj

then the Equation (2:10) will admit a unique (strong) solution (see Fujiwara and Kunita (1989),
Tang and Li (1994) or Protter (2004) Theorem V.6).

5. By de�nition rct = f (t; t; c) is the instantaneous spot rate or simply the spot rate given a credit
rating (called in the literature also as short-rate). Also let us de�ne the concept of instantaneous
spread rate, as

s (t; Tj ; c) := f (t; Tj ; c)� f (t; Tj ; 0) (2.14)

4Notice that if c = 0 we are considering the risk-free or default-free case.
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Assumptions related with the Corporate Bond dynamic

1. We consider a continuous-time trade economy for every t inside the trading interval [0; T ?] with
a �xed T ? > 0: Assume the existence of a (frictionless) continuous-time bond market where a
set of assets B (t; T; Ct�) stand for the price at time t � T � T ? of a zero-coupon bond with
rating Ct� 2 Knf1g ; maturity at time T � T ? and recovery-rate q in case of default.

2. For the sake of simplicity, let us select a subset of n-corporate bonds with maturity Ti with i =
0; 1; :::; n and Ti � T ? for every i = 0; 1; :::; n. Notice that a (frictionless) market for Ti-corporate
bonds with rating Ct� 2 Kn f1g generate a family of bond prices for i = 0; 1; :::; n with the
same rating Ct�. It basically means a �nite family of strictly positive real-valued adapted processes
B (t; Ti; Ct�) ; with t 2 [0; Ti] ; and the terminal (par) value at maturity B (Ti; Ti; Ct�) = 1 for every
Ti 2 [0; T ?] given a Ct� 2 Knf1g : Let us assume that the price process of a defaultable bond
with credit migrations and fractional recovery should satisfy

B (t; Ti; Ct) = EQTi
�
B (t; Ti; 0) 1f�?>Tig + qB

?1f�?�Tig
��Gt� (2.15)

where QTi is the forward martingale measure for the date Ti; for every i = 0; 1; :::; n; with 0 � t � Ti;
and q can be de�ned as the recovery rate or the fractional part of B? that the investor will recover
in case of default, such that q 2 [0; 1]. Notice that this structure of bond maturities is the time
structure that mark the tenor structure in the LIBOR additive process.

3. Additionally, the value of the bond in case of default can be de�ned as

B? :=

8<: = B
�
�?; Ti; C�k�1

�
! market value

= B (�?; Ti; 0) ! treasury value
= 1 ! par value

(2.16)

4. On the other hand notice that if Ct� 2 Knf1g ; we shall interpret B(t; Ti; Ct�) as the pre-default
value of a Ti-maturity zero-coupon corporate bond, or more formally

B(t; Ti; Ct�) = B(t; Ti; 0) � exp
 
�
Z Tj

t

s(t; u; Ct�)du

!
(2.17)

= B(t; Ti) � S(t; Ti; Ct�)

where s(t; u; Ct�) is the instantaneous spread rate (see expression 2:14).
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2.2 The building-blocks for Interest-Rate modelling

Given the mentioned conditions in the previous section, here we characterize the functional forms of the
dynamic of corporate bonds, when the LIBOR additive process is driving the forward rates dynamic,
and more speci�cally, when we consider di¤erent frameworks in credit risk. Basically the term structure
model is based on an exogenous speci�cation of the dynamics of instantaneous, continuously compounded
forward rates f (t; T; c). Our aim in this section is to recover the functional form of corporate bonds from
(2:10) for di¤erent frameworks of credit risk.

This section is organized as follows:

- Subsection 1 is devoted to develop the simplest case, the risk-free case, following closely Bjork et
al. (1997) and Eberlein et al. (2006) for the Heath, Jarrow and Morton approach (1992),
but now, introducing the LIBOR additive process.

- Basically the next subsections are extensions of the �rst one, in the sense that we include di¤erent
credit risk frameworks for the corporate bond. Therefore, subsection 2 includes the credit risk
but without the possibility to have credit migration between di¤erent rates.

- And it is in subsection 3 where we introduce the credit migration and we obtain speci�c functional
forms for corporate bonds with these characteristics.

2.2.1 Risk-free Bond Market Structure

In this subsection, we introduce some well-known results due to Bjork, Di Masi, Kabanov and
Runggaldier (1997) for risk-free bonds, that will be extended later for di¤erent credit-risk frameworks.
Basically, here, we present the functional expression for the discounted default-free bond when the forward
rates are driven by a LIBOR additive process.

According to the assumptions shown in section 2:1:4, it is easy to conclude that we have to consider a
model of the dynamics of the default-free forward curve with the following SDE:

df (t; T; 0) = df (t; T )

= ��(t) (t; T ) dt+ ��(t) (t; T ) dWt +

Z
Rr
��(t) (t; x; T )

�
��(t) � ��(t)

�
(dt; dx)

Basically, this model is an extension of the discretized Heath, Jarrow and Morton (1992) model,
where the dynamic of forward rates include jumps, as appear in Bjork, Kabanov and Runggaldier
(1997) and Bjork, Di Masi, Kabanov and Runggaldier (1997).

Henceforth, we can de�ne the price of a discounted default-free zero-coupon bond as

Z (t; Ti) =
B (t; Ti)

Bt

= exp

(
�
Z t

0

r (s) ds�
Z Ti

t

f (t; s) ds

)
(2.18)

for any 0 � t � Ti; with Ti 2 [0; T ?] ; and i = 0; 1; :::; n:
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Proposition 52 The discounted bond price process Z (t; Ti) has the form

Z (t; Ti) = Z (0; Ti) exp

8<: X
j��(t)

Z t^Tj+1

Tj

~aj(u; Ti)du+
X
j��(t)

Z t^Tj+1

Tj

bj(u; Ti)dWu

+
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
h (u; x; Ti) ~�j (du; dx)

9=; (2.19)

and satis�es the linear stochastic di¤erential equation

dZ (t; Ti)

Z (t�; Ti)
= ~a�(t)(t; Ti)dt+ b�(t)(t; Ti)dWt +

Z
Rd
h (t; x; Ti) ~��(t) (dt; dx)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
��(t) (dt; dx) (2.20)

with
~a�(t)(t; Ti) = a�(t)(t; Ti) +

1

2

��b�(t)(t; Ti)��2
and

a�(t)(t; Ti) = �
X

�(t)�j�i�1

Z Tj+1

Tj_t
�j (t; s) ds (2.21)

b�(t)(t; Ti) = �
X

�(t)�j�i�1

Z Tj+1

Tj_t
�j (t; s) ds (2.22)

h (t; x; Ti) = �
Z Tj

t

� (t; x; s) ds (2.23)

Proof. This proof follows the same ideas as inHeath, Jarrow and Morton (1992), Brace, Gatarek
and Musiela (1997), Bjork et al. (1997), Glasserman and Kou (1997) orMusiela and Rutkowski
(2004).

Notice that according to the assumptions mentioned in section 2:1:3 we have

B(t; Ti) = exp

(
�
Z Ti

t

f (t; s) ds

)

= exp

(
�
Z Ti

t

f (0; s) ds

�
X

�(u)�j�i�1

Z Tj+1

Tj_t

0@ X
j��(t)

Z t^Tj+1

Tj

�j (u; s) du

1A ds

�
X

�(u)�j�i�1

Z Tj+1

Tj_t

0@ X
j��(t)

Z t^Tj+1

Tj

�j (u; s) dWu

1A ds

�
X

�(u)�j�i�1

Z Tj+1

Tj_t

0@ X
j��(t)

Z t^Tj+1

Tj

Z
Rd
�j (u; x; s) 1fjxj�1g~�j (du; dx)

1A ds

9=;
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whence using the stochastic version of Fubini�s theorem (see Protter (1995) Theorem IV:4:45) we have

lnB(t; Ti) = �
Z Ti

t

f (t; s) ds

= �
Z Ti

t

f (0; s) ds

�
X
j��(t)

Z t^Tj+1

Tj

0@ X
�(u)�j�i�1

Z Tj+1

Tj_t
�j (u; s) ds

1A du

�
X
j��(t)

Z t^Tj+1

Tj

0@ X
�(u)�j�i�1

Z Tj+1

Tj_t
�j (u; s) ds

1A dWu

�
X
j��(t)

Z t^Tj+1

Tj

Z
Rd

0@ X
�(u)�j�i�1

Z Tj+1

Tj_t
�j (u; x; s) 1fjxj�1gds

1A ~�j (du; dx)

Splitting the integrals, we obtain

=

Z t

0

f (0; s) ds�
Z Ti

0

f (0; s) ds

+
X
j��(t)

Z t^Tj+1

Tj

0@ X
�(u)�j��(t)

Z Tj+1^t

Tj_u
�j (u; s) ds�

X
�(u)�j�i�1

Z Tj+1

Tj_u
�j (u; s) ds

1A du

+
X
j��(t)

Z t^Tj+1

Tj

0@ X
�(u)�j��(t)

Z Tj+1^t

Tj_u
�j (u; s) ds�

X
�(u)�j�i�1

Z Tj+1

Tj_u
�j (u; s) ds

1A dWu

+
X
j��(t)

Z t^Tj+1

Tj

Z
Rd

0@ X
�(u)�j��(t)

Z Tj+1^t

Tj_u
�j (u; x; s) 1fjxj�1gds�

X
�(u)�j�i�1

Z Tj+1

Tj_u
�j (u; x; s) 1fjxj�1gds

1A ~�j (du; dx)

For the sake of simplicity, let us rename

aj(t; Ti) : = �
X

�(t)�j�i�1

Z Tj+1

Tj_t
�j (t; s) ds

bj(t; Ti) : = �
X

�(t)�j�i�1

Z Tj+1

Tj_t
�j (t; s) ds

h (t; x; Ti) : = �
Z Tj

t

� (t; x; s) ds

and notice that the sum of the four integrals in the left-hand side of the last equality coincides with the
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expression for the integrated short rate

R t
0
rsds =

Z t

0

f(0; s)ds

+
X
j��(t)

Z t^Tj+1

Tj

0@ X
�(u)�j�i�1

Z Tj+1

Tj_u
�j (u; s) du

1A ds

+
X
j��(t)

Z t^Tj+1

Tj

0@ X
�(u)�j�i�1

Z Tj+1

Tj_u
�j (u; s) dWu

1A ds

+
X
j��(t)

Z t^Tj+1

Tj

0@ X
�(u)�j�i�1

Z Tj+1

Tj_u

Z
X

� (u; x; s) 1fjxj�1g ~�j (du; dx)

1A ds

Hence we obtain

lnB(t; Ti) = lnB (0; Ti)

+
X
j��(t)

Z t^Tj+1

Tj

aj(u; Ti)du

+
X
j��(t)

Z t^Tj+1

Tj

bj(t; Ti)dWu

+
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
h (u; x; Ti) ~�j (du; dx)

+

Z t

0

rsds

and this proves (2:19). By the Itô formula for semimartingales5 , we have that

dZ(t; Ti) = Z(t�; Ti)
�
a
�(t)
(u; Ti)dt+

1

2

��b�(t)(t; Ti)��2 dt+ b�(t)(t; Ti)dWt

+

Z
Rd
h (u; x; Ti) 1fjxj�1g ~��(t) (dt; dx) +

Z
Rd

�
eh(u;x;Ti) � 1� h (u; x; Ti)

�
��(t) (dt; dx)

�
whence if we de�ne ~a�(t)(u; Ti) = a�(t)(u; Ti) +

1
2

��b�(t)(t; Ti)��2 ; (2:20) follows.
2.2.2 Conditional Corporate-Bond market structure

In this subsection we introduce the credit risk for corporate bonds. Let us go one step further, including
the credit rating c 2 Knf1g in the model of the dynamics of the instantaneous forward rate f (t; T; c)
in t � T 2 I; using the form (2:10) under P,

df (t; T; c) = ��(t) (t; T; c) dt+ ��(t) (t; T; c) dWt +

Z
Rr
� (t; T; x)

�
�c�(t) � �c�(t)

�
(dt; dx)

Additionally, assume that the price of a defaultable bond zero coupon bond with credit rate

5See Jacod and Shiryaev (1987) Ch.1 (4.57), or Cont and Tankov (2004) Ch. 8
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Ct� 2 Knf1g can be expressed as

B
�
t; Ti; Ct�

�
= exp

(
�
Z Ti

t

f
�
t; s; Ct�

�
ds

)

for any 0 � t � Ti; with Ti 2 [t; T ?] ; and i = 0; 1; :::; n: Notice that this value is the price of a corporate
bond conditional that between t and Ti there is no possibility of credit migration. This is theoretically
possible to de�ne but impossible to �nd in the real world. However, it is worthy to develop this de�nition
as a basic tool for the next section.

Theorem 53 For any Ct� 2 Kn f1g ; the discounted defaultable zero coupon bond price process
Z
�
t; Ti; Ct�

�
with 0 � t � Ti � T ?; has the form

Z
�
t; Ti; Ct�

�
= Z

�
0; Ti; Ct�

�
exp

8<: X
j��(t)

Z t^Tj+1

Tj

~aj
�
u; Ti; Ct�

�
du+

X
j��(t)

Z t^Tj+1

Tj

bj
�
u; Ti; Ct�

�
dWu

+
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
h (u; x; Ti) ~�

Ct�
j (du; dx)

9=; (2.24)

and satis�es the following linear stochastic di¤erential equation

d
�
Z(t; Ti; Ct�)

�
= Z(t�; Ti; Ct�)

�
~a�(t)

�
t; Ti; Ct�

�
dt+ b�(t)(t; Ti; Ct�)dWt

+

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

Ct�
�(t) (dt; dx) (2.25)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
�(t) (dt; dx)

�
with

~a�(t)(t; Ti; Ct�) := a�(t)(t; Ti; Ct�) +
1

2

��b�(t)(t; Ti; Ct�)��2 + s(t; Ti; Ct�)
and

a�(t)(t; Ti; Ct�) : = �
X

�(t)�j�i�1

Z Tj+1

Tj_t
�j
�
t; s; Ct�

�
ds

b�(t)(t; Ti; Ct�) : = �
X

�(t)�j�i�1

Z Tj+1

Tj_t
�j
�
t; s; Ct�

�
ds

h (t; x; Ti) : = �
Z Ti

u

� (t; x; s) ds
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Proof. Following the similar procedure as in the proof of Proposition 52 we obtain

lnB
�
t; Ti; Ct�

�
= �

Z Ti

0

f
�
0; s; Ct�

�
ds

+
X
j��(t)

Z t^Tj+1

Tj

aj(u; Ti; Ct�)du

+
X
j��(t)

Z t^Tj+1

Tj

bj(u; Ti; Ct�)dWu

+
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
h (u; x; Ti) ~�

Ct�
j (du; dx)

+
X
j��(t)

Z t^Tj+1

Tj

r
Ct�
s ds

Additionally if we decompose the defaultable short rate into the risk-free short-rate and short term credit
spread such that Z t

0

r
Ct�
t dt =

Z t

0

r0t dt+

Z t

0

s
�
t; t; Ct�

�
dt

then this proves (2:24). By the Itô formula for semimartingales6 , we get from that

dZ(t; Ti; Ct�) = Z(t; Ti; Ct�)

��
a�(t)

�
t; Ti; Ct�

�
+ s

�
t; t; Ct�

�
+
1

2

��b�(t)(t; Ti; Ct�)��2� dt
+b�(t)(t; Ti; Ct�)dWt

+

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

Ct�
�(t) (dt; dx)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
�(t) (dt; dx)

�
If we de�ne ~a�(t)

�
t; Ti; Ct�

�
:= a�(t)

�
t; Ti; Ct�

�
+s
�
t; t; Ct�

�
+ 1
2

��b�(t)(t; Ti; Ct�)��2 then (2:25) holds.

2.2.3 Corporate-Bond Market Structure with Credit Migration and Default

This subsection is devoted to expose the dynamics of the corporate-bond prices with credit migration,
and di¤erent structures of recovery in case of default (see assumptions for the credit risk model).
Basically here we consider that the price process of a defaultable bond with credit migrations
and fractional recovery should satisfy

B (t; Ti; Ct) = EQTi
�
B (t; Ti; 0) 1f�?>Tig + qB

?1f�?�Tig
��Gt� (2.26)

where QTj is the forward martingale measure for the date Ti for every i = 0; 1; :::; n; with 0 � t � Ti;
where q 2 [0; 1] represents the fractional part of B? that the investor will recover in case of default
(recovery rate). More speci�cally, here we will consider three possible cases

B? =

8<: = B
�
�?; Ti; C�k�1

�
! market value

= B (�?; Ti; 0) ! treasury value
= 1 ! par value

6See Jacod and Shiryaev (1987) Ch.1 (4.57), Goll and Kallsen (2000) Lemma A.5, or Cont and Tankov (2004)
Ch. 8
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In the �rst case, the investor only can recover a fraction of the market value of the bond just quoted
in the moment prior to default. In the second case, we consider the recovery in case of a default, of a
fractional part of a di¤erent bond, usual a risk-free or treasury bond, and �nally, a fractional recovery
of the par value of the bond.

Corporate-bond dynamics with fractional recovery of market value

Consider the price of a defaultable zero-coupon bond with a given recovery rate7 , i.e.,

B (t; Ti; Ct) = EQTi
�
B (t; Ti; 0) 1f�?>Tig + qB

�
�?; Ti; C�k�1

�
1f�?�Tig

��Gt� (2.27)

where QTi is the forward martingale measure for the date Ti for every i = 0; 1; :::; n; with 0 � t � Ti; k 2
N+, and Ct 2 Knf1g with

Ct = C0 +
X
a;b2K

Z t

0

(b� a) 1fCs�=agdNab (s)

where Ct� 2 Knf1g is the credit rate in the prior to the moment of jump in t (see assumptions in section
2.1.3).

We de�ne the price of a discounted defaultable zero coupon bond as

Z (t; Ti; Ct) =
B (t; Ti; Ct)

Bt
= EQTi

�
Z (t; Ti; 0) 1f�?>Tig + qZ

�
�?; Ti; C�k�1

�
1f�?�Tig

��Gt�
Proposition 54 For any Ct� 2 Knf1g ; the discounted defaultable zero coupon bond price process
Z (t; Ti; Ct) with fractional recovery q of market value on [0; Ti] satis�es the following linear sto-
chastic di¤erential equation

dZ(t; Ti; Ct) = dZ(t; Ti; Ct�)� l � Z(t; Ti; Ct�) � d
�
1fCt=1g

�
(2.28)

where l is the loss rate l = 1� q:

Proof. Under the fractional-recovery of market value hypothesis8 , since 1fCt=hg is a process of �nite
variation, for any h = 0; ::; 1� 1

m ; 1; with m 2 N+; therefore, an application of Itô�s rule yields

dZ(t; Ti; Ct) =

1� 1
mX

h=0

�
dZ(t; Ti; Ct�)1fCt�=hg + Z(t; Ti; Ct�)d

�
1fCt=hg

��
+ Z(t; Ti; Ct�) � q � d

�
1fCt=1g

�

Notice that Ct is a Ct-adapted process. Therefore

1� 1
mX

h=0

dZ(t; Ti; Ct�)1fCt�=hg = dZ(t; Ti; c)

7See details in Schönbucher (2003)

8See Du¢ e and Singleton (1999) for an extensive mathematical work of valuation under a "recovery of market value"
framework.
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and

1� 1
mX

h=0

Z(t; Ti; Ct�)d
�
1fCt=hg

�
= Z(t; Ti; c)

1� 1
mX

h=0

d
�
1fCt=hg

�
= �Z(t; Ti; c)d

�
1fCt=1g

�
using the fact that

P1� 1
m

i=0 1fCt=ig = 1� 1fCt=1g whence
P1� 1

m
i=0 d

�
1fCt=ig

�
= �d

�
1fCt=1g

�
:

As a direct result, we have the expression

dZ(t; Ti; Ct) = dZ(t; Ti; c) + (q � 1)Z(t; Ti; c)d
�
1fCt=1g

�
and taking into account that l = 1� q; we proved (2:28).

Theorem 55 For any Ct� 2 Kn f1g ; the discounted defaultable zero coupon bond price process
Z (t; Ti; c) on [0; Ti] follows

dZ(t; Ti; Ct)

Z (t�; Ti; Ct�)
=

�
aj (t; Ti; c) + s (t; t; c) +

1

2
jbj(t; Ti; c)j2

�
dt

+bj(t; Ti; c)dWt

+

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�cj (dt; dx)

�l � d
�
1fC�k=1g

�

Proof. Directly, using Theorem 53 and Proposition 54.

Corporate-bond dynamics with fractional recovery of treasury

In this second case, we are assuming that under this model, the issuer of the corporate bond, in the
default case, will pay a fractional part of a risk-free bond with identical maturity, such that

B (t; Ti; Ct) = EQTi
�
B (t; Ti; 0) 1f�?>Tig + qB (�

?; Ti; 0) 1f�?�Tig
��Gt� (2.29)

Proposition 56 For any Ct� 2 Knf1g ; the discounted defaultable zero coupon bond price process
Z (t; Ti; Ct) with fractional recovery q of treasury-bond value on [0; Ti] satis�es the following linear
stochastic di¤erential equation

dZ(t; Ti; Ct)

Z (t�; Ti; Ct�)
=

�
a�(t) (t; Ti; Ct�) + s (t; t; Ct�) +

1

2

��b�(t)(t; Ti; Ct�)��2� dt
+b�(t)(t; Ti; Ct�)dWt

+

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

Ct�
�(t) (dt; dx)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
�(t) (dt; dx)

�
�
1� q

S (t; Ti; Ct�)

�
� d
�
1fC�k=1g

�
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where S (t; Ti; Ct�) = exp
n
�
R Tj
t
s (t; s; Ct�) ds

o
:

Proof. In this case, under the fractional recovery of treasury hypothesis, we have

dZ(t; Ti; Ct) =

1� 1
mX

h=0

�
dZ(t; Ti; Ct�)1fCt�=hg + Z(t; Ti; Ct�)d

�
1fCt=hg

��
+B(t; Ti; 0) � q � d

�
1fCt=1g

�
where if we set j = � (t) and c = Ct� 2 Knf1g ; and using the following expressions (see Proposition 54)

1� 1
mX

h=0

dZ(t; Ti; Ct�)1fCt�=hg = dZ(t; Ti; c)

and

1� 1
mX

h=0

Z(t; Ti; Ct�)d
�
1fCt=hg

�
= Z(t; Ti; c)

1� 1
mX

h=0

d
�
1fCt=hg

�
= �Z(t; Ti; c)d

�
1fCt=1g

�
We obtain the assertion upon using the fact that

P1� 1
m

i=0 1fCt=ig = 1� 1fCt=1g:
P1� 1

m
i=0 d

�
1fCt=ig

�
=

�d
�
1fCt=1g

�
:

Therefore we obtain the following expression

dZ(t; Ti; Ct) = dZ(t; Ti; c)� Z(t; Ti; c)d
�
1fCt=1g

�
+
Z(t; Ti; c)

S(t; Ti; c)
� q � d

�
1fCt=1g

�
= Z(t; Ti; c)

��
aj (t; Ti; c) + s (t; t; c) +

1

2
jbj(t; Ti; c)j2

�
dt

+bj(t; Ti; c)dWt +

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�cj (dt; dx)

�
�Z(t; Ti; c)

�
1� q

S(t; Ti; c)

�
d
�
1fCt=1g

�

Corporate-bond dynamics with fractional recovery of par value

Finally, we assume that the issuer of the corporate bond, in the default case, will pay a fractional part
of the par value, such that

B (t; Tj ; Ct) = EQTj
�
B (t; Tj ; 0) 1f�?>Tjg + q1f�?�Tjg

��Gt� (2.30)

Proposition 57 For any Ct� 2 Knf1g ; the discounted defaultable zero coupon bond price process
Z (t; Ti; Ct) with fractional recovery q of par value on [0; Ti] satis�es the following linear stochastic
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di¤erential equation

dZ(t; Ti; Ct)

Z (t�; Ti; Ct�)
=

�
a�(t) (t; Ti; Ct�) + s (t; t; c) +

1

2

��b�(t)(t; Ti; Ct�)��2� dt
+b�(t)(t; Ti; Ct�)dWt +

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

Ct�
�(t) (dt; dx)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
�(t) (dt; dx)

�
�
1� q

Z (t; Ti; Ct�)

�
� d
�
1fC�k=1g

�

Proof. Similar to the previous Proposition 56.
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2.3 Absence of arbitrage and dynamics under a martingale mea-
sure

Let us recall that we are given a stochastic basis (
;F;P) where P can be interpreted as the real-world
probability measure and the original �ltration F =(Ft) with respect to which all processes are
adapted; it is the �ltration generated by G and C.

Let us de�ne QF as the set of all probability measures ~P with ~PFt v PFt for all �nite t such
that all the discounted zero-coupon bond prices process, Z (t; T; Ct) ; are local ~P�martingales for every
Ti 2 J and relative to (Gt) ; or in other words

QF : =
n
~P 2M1 (
;G) : ~PGt v PGt and (Z (t; T; Ct))0�t�T

for Ct 2 K =
�
0;
1

m
;
2

m
; :::;

m� 1
m

; 1

�
is a local ~P-martingale for any 0 � t � T 2 [0; T ?]

�
whereM1 (
;G) denotes the set of all probability measures on the measurable space (
;G) :

We say that a model admits the existence of an equivalent martingale measure property (EMM)
if the set QF is non empty, and the economy represented by this model is complete if this martingale
measure is unique. Then two questions naturally arise:

1. Can our model be an equilibrium or no-arbitrage model? Or equivalently: Can we �nd the martin-
gale measure using our model? The answer is "no" unless we have a very special structure for the
coe¢ cients of our model. The present section is devoted to show these conditions under di¤erent
credit risk frameworks.

2. Assuming that there exists an equivalent martingale measure, Is our model complete? or in other
words, Is this martingale measure unique? The answer is "no", even if the dimension of the LIBOR
market process is one (see Eberlein et al. (2006)) due to the introduction of the credit migration.

This section is basically focused to derive the necessary and su¢ cient conditions on the forward rate
process with credit risk, such that there exists an equivalent martingale measure according to the well-
known theorems of asset-pricing that appear in Harrison and Kreps (1979) and Harrison and Pliska
(1981). Basically we generalize the corresponding results of Heath, Jarrow and Morton (1992) and
Björk et al. (1997) and we obtain the no-arbitrage expressions for di¤erent frameworks of credit risk
and we derive a new risk-neutral form for the probability of default. An outline of this section is as
follows:

- In subsection 1 we mainly focus to obtain the no-arbitrage conditions when we assume corporate
bonds with credit migration and fractional recovery of market value. Under this framework we
obtain the necessary conditions to have a discounted corporate bond martingale, and we derive
some relevant results and expressions for the forward rate process and probability of default.

- In subsection 2 we derive similar results but when we assume corporate bonds with credit migration
and fractional recovery of treasury.

- And identically, in subsection 3 we study how to obtain the equivalent martingale measure in the
case of corporate bonds with credit migration and fractional recovery of par value.

In order to construct this set QF we will follow Jacod and Shiryaev (1989), Björk et al. (1997)
and Eberlein et al. (2006). Let us consider the sequence of pairs (�j ; Yj) such that
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� �j =
�
�i

0

j (t)
�
i0�d

is a predictable Rd-valued process such that

X
j��(t)

Z t^Tj+1

Tj

�
�
0

jAj�j

�
ds <1 : for any t 2 [0; T ?] a.s. (2.31)

� Yj = (Yj (!; t; x)) is a sequence of Rd-measurable (0;1)-valued function such that

X
j��(t)

Z t^Tj+1

Tj

Z
Rd
(Yj (s; x)� 1) d��(t) (dx; ds) <1 : for t 2 [0; T ?] a.s. (2.32)

Using these de�nitions, let us formulate a modi�ed �short� version of Girsanov�s Theorem for
semimartingales9 ,

Theorem 58 Let the sequence of pairs (�j ; Yj)j=0;1;:::;n be de�ned as above, and let us de�ne the density
process M by

dMt =Mt��(t)dWt +Mt�

Z
Rd

�
Y�(t) (t; x)� 1

� �
��(t) � ��(t)

�
(dt; dx)

with M0 = 1 and suppose that for all �nite t

EP [Mt] = 1

Then there exists a probability measure ~P on F locally equivalent to P with

d~Pt =MtdPt

such that:

(i) ~Wt :=Wt �
P
j��(t)

R t^Tj+1
Tj

�j (s) ds is a ~P-Wiener process, and

(ii) �~P�(t) (t; dx) = Y�(t) (t; x) � ��(t) (t; dx) is the ~P-compensator of ��(t):

Remark 59 Notice that the real-world probability measure P itself belongs to QF if we use directly as
Girsanov�s quantities

�
�j = 0; Yj = 1

�
for any j = 0; 1; :::; n; (see Example 51 in Chapter 1).

In the following three subsections, for sake of clarity, we assume directly that P 2 QF or equivalently,
using the Girsanov�s quantities

�
�j = 0; Yj = 1

�
for any j = 0; 1; :::; n:

2.3.1 Absence of arbitrage condition in a corporate-bond market with frac-
tional recovery of market value

Basically this subsection is devoted to show the main results concerning the existence of an equivalent
martingale measure when we assume credit migration with fractional recovery of market value. They
generalize the corresponding results of Heath, Jarrow and Morton (1992) and Björk et al. (1997).
Let us recall that a model has the equivalent martingale measure property (EMM) if the set QF
is not empty.

9The reader can �nd an extended and complete version of this Girsanov Theorem for Semimartingales in the Chapter 1
of this thesis (Theorem 48).
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Proposition 60 The initial probability measure P itself belongs to QF if and only if the following two
conditions hold, for every Ti 2 J :X

j��(t)

Z t^Tj+1

Tj

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
j (ds; dx) <1 (2.33)

and
~a�(t) (t; Ti; Ct�)� l � �ct�;1

+
R
Rd
�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
�(t) (dt; dx) = 0 (2.34)

for any t 2 [0; Ti] ; and any Ct� 2 Knf1g where 10

~a�(t) (t; Ti; Ct�) := a�(t) (t; Ti; Ct�) + s (t; t; Ct�) +
1

2

��b�(t)(t; Ti; Ct�)��2 (2.35)

Proof. [(] According to Theorem 55 and assuming, for the sake of simplicity, that j = � (t)

dZ(t; Ti; Ct)

Z (t�; Ti; Ct�)
=

�
aj (t; Ti; c) + s (t; t; c) +

1

2
jbj(t; Ti; c)j2

�
dt

+bj(t; Ti; c)dWt

+

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�cj (dt; dx)

�l � d
�
1fC�k=1g

�

Notice that using the Doob-Meyer expression

d
�
1fCt=1g

�
= dM1(t) + �Ct�;1dt

we get

dZ(t; Ti; Ct)

Z (t�; Ti; Ct�)
=

�
~aj (t; Ti; c)� l � �Ct�;1

�
dt

+bj(t; Ti; c)dWt

+

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�cj (dt; dx)

�l � dM1(t)

which has a local martingale solution if�
~aj (t; Ti; c)� l � �Ct�;1

�
dt+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�cj (dt; dx) = 0

and Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�cj (dt; dx) <1

[)] Let us de�ne the process M := [Z(t�; Ti; C�k)]
�1
Z(t; Ti; Ct) that is a local martingale. Let �M

be the jump measure of M , and �M be its compensator. According to Jacod and Shiryaev (1989)

10Notice that if C�k = 0 it means default-free asset and s
0
t (Ti) = 0: It is the risk-free bond.
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(II:2:29) we have that
R
Rd jxj ^ jxj

2
�Mi (dx) <1 for �nite t. Hence, for every j = 0; 1; :::; n;Z

Rd

����eh(t;x;Ti) � 1��� ^ ���eh(t;x;Ti) � 1���2� �Mj (dx) = Z
Rd

�
jxj ^ jxj2

�
�Mj (dx) <1

Since
R
Rd jh (t; x; Ti)j

2
�t (dx) <1 the �rst condition holds, by virtue of the following inequality

eh(t;x;Ti) � 1� h (t; x; Ti) � C

����eh(t;x;Ti) � 1��� ^ ���eh(t;x;Ti) � 1���2 + h (t; x; Ti)2�
where C is a constant. Using the dynamic of

�
Z(t�; Ti; Ct�)

��1
Z(t; Ti; Ct), we infer that M is a local

martingale only if the process given by the left hand side is equal to zero.

Remark 61 This is a generalization of the Heath, Jarrow and Morton (1992) drift condition when
the credit migration and default are possible. It reveals that in a simple remarkable way, this model can
be speci�ed under a (local) martingale measure.

Remark 62 Notice that under this framework, the risk-neutral condition has a direct relationship with
the intensity matrix or with the default probabilities in the following sense:

�ct�;1 =
1

(1� q)

�
~aj (t; Ti; Ct�) +

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
j (dt; dx)

�

Additionally, we can obtain, almost directly, the following results:

- The �rst one (Proposition 63) is related with the risk-neutral dynamics of instantaneous
forward rates, and this result will be invariant with respect to the recovery framework we use.

- The second proposition (Proposition 64) basically exposes the dynamics of corporate-bonds
with fractional recovery of market value when we impose the risk-neutrality using conditions
(2:34) and (2:35).

Proposition 63 Assume that we specify the forward rate dynamics under a martingale measure P
by

df (t; T; c) = ��(t) (t; T; c) dt+ ��(t) (t; T; c) dWt +

Z
Rr
��(t) (t; x; T )

�
�c�(t) � �c�(t)

�
(dt; dx) : (2.36)

Then the following relation holds

��(t) (t; T; c) = ���(t) (t; T; c)| b�(t)(t; T; c) + s (t; t; c)

+

Z
Rd

�
eh(t;x;T ) � 1� h (t; x; T )

�
�c�(t) (dt; dx) (2.37)

Proof. Since we are working under a martingale measure P we have by Proposition 60 that

~a�(t) (t; T; Ct�)� l � �ct�;1
+

Z
Rd

�
eh(t;x;T ) � 1� h (t; x; T )

�
�
Ct�
�(t) (dt; dx) = 0

and di¤erentiating this equation with respect T gives us the equation (2:37).
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Proposition 64 The corporate-bond price dynamics under a martingale measure P, and under
the fractional recovery of market value hypothesis, will follow the stochastic di¤erential equation

dB (t; Ti; Ct)

B
�
t�; Ti; Ct�

� = rtdt+ bj(t; Ti; Ct�)dWt +

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx)� l � dM1 (t) (2.38)

where ~�cj is the P-compensated Lévy measure, l = 1 � q 2 (0; 1) is the portion of the market value that
the investor will lose in the default case.

Proof. Similarly to (2:18) we have that

B (t; Ti; Ct) = BtZ (t; Ti; Ct) :

Then, under the risk-neutral measure,

dB (t; Tj ; Ct) = Z (t; Ti; Ct) dBt +BtdZ (t; Ti; Ct)

= B
�
t�; Ti; Ct�

� �
rtdt+ bj(t; Ti; Ct�)dWt

+

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx)� l � dM1(t)

�

2.3.2 Absence of arbitrage in a corporate-bond market with fractional recov-
ery of treasury

In this second subsection, we basically reproduce the results given in the last subsection, but under
fractional recovery of treasury framework.

Proposition 65 The initial probability measure P itself belongs to QF if and only if the following two
conditions hold, for every Ti 2 J :X

j��(t)

Z t^Tj+1

Tj

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
j (dt; dx) <1 (2.39)

and

~aj (t; Ti; Ct�)�
�
1� q

S(t;Ti;c)

�
� �ct�;1

+
R
Rd
�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
j (dt; dx) = 0 (2.40)

for any t 2 [0; Ti] ; and any Ct� 2 Knf1g where 11

~aj (t; Ti; Ct�) := aj (t; Ti; Ct�) + s (t; t; Ct�) +
1

2
jbj(t; Ti; Ct�)j2 (2.41)

and

S (t; Ti; c) = exp

(
�
Z Tj

t

s (t; s; c) ds

)

Proof. Basically the proof is the same as for Proposition 60:

11Notice that if C�k = 0 it means default-free asset and s
0
t (Ti) = 0: It is the risk-free bond.
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Remark 66 Notice how in this case we obtain the following expression for the default intensity, under
risk-neutral measure

�ct�;1
=

S (t; Ti; c)

S (t; Ti; c)� q

�
~aj (t; Ti; Ct�) +

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
j (dt; dx)

�

Proposition 67 The corporate-bond price dynamics under a martingale measure P, and under the
fractional recovery of treasury hypothesis, will follow

dB (t; Ti; Ct)

B
�
t�; Ti; Ct�

� = rtdt�
�
1� q

S(t; Ti; c)

�
� dM1 (t)

+bj(t; Ti; Ct�)dWt +

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx) (2.42)

where rt is the usual short-rate, M1 (t) is the martingale from the Doob-Meyer decomposition of the default
indicator and ~�cj is the P-compensated Lévy measure.

Proof. As in Proposition 64.

2.3.3 Absence of arbitrage in a corporate-bond market with fractional recov-
ery of par value

And �nally, in this third subsection, we give the results under the hypothesis that in the case of a default
the investor will recover a fractional part of par value .

Proposition 68 The initial probability measure P itself belongs to QF if and only if the following two
conditions hold, for every Ti 2 J :X

j��(t)

Z t^Tj+1

Tj

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
j (dt; dx) <1 (2.43)

and

~aj (t; Ti; Ct�)�
�
1� q

Z(t;Ti;Ct�)

�
� �ct�;1

+
R
Rd
�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
j (dt; dx) = 0 (2.44)

for any t 2 [0; Ti] ; and any Ct� 2 Knf1g where 12

~aj (t; Ti; Ct�) := aj (t; Ti; Ct�) + s (t; t; Ct�) +
1

2
jbj(t; Ti; Ct�)j2 (2.45)

Proof. Basically the proof is the same as for Proposition 60:

Remark 69 Notice how in this case we obtain the following expression for the default intensity, under
risk-neutral measure

�ct�;1
=

Z (t; Ti; c)

Z (t; Ti; c)� q

�
~aj (t; Ti; Ct�) +

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
j (dt; dx)

�

12Notice that Ct = 0 means default-free bond and consequently the spread s0t (Ti) = 0:
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Proposition 70 The corporate-bond price dynamics under a martingale measure P, and under the
fractional recovery of par value hypothesis, will follow

dB (t; Ti; Ct)

B
�
t�; Ti; Ct�

� = rtdt�
�
1� q

Z(t; Ti; c)

�
� dM1 (t)

+bj(t; Ti; Ct�)dWt +

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx) (2.46)

where rt is the usual short-rate, M1 (t) is the martingale from the Doob-Meyer decomposition of the default
indicator and ~�cj is the P-compensated Lévy measure.

Proof. As in Proposition 64.
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2.4 Corporate-Bond valuation in a Reaction-Additive system

In this section, we turn our attention to the Reaction-Additive system which can be de�ned as a
system of stochastic di¤erential equations (SDEs). The �rst of these SDEs is based on the bond price
process B as a tradeable risky asset which is modelled using a LIBOR additive process. On the
other hand, the second SDE models the non-tradeable factor of uncertainty (credit migration) which
is represented by a �nite-state process C driven by a multivariate point process.

The present section is mainly devoted to show how due to this system of stochastic equations we can
obtain a realistic sample-path for corporate bond prices, driven by the composition of these two processes.
In order to achieve this goal, we proceed in three di¤erent steps:

- First, we introduce some ideas and references where the reader can �nd the proof of existence and
uniqueness of solutions for such SDEs systems.

- In the second subsection, we face the question of markovianity and uniqueness of the sample
paths generated by the composition of these two processes.

- Finally, in the third subsection, we prove that these sample paths are �càdlàg�or equivalently, they
�live�in a Skorohod space.

In order to clarify the framework, let us brie�y summarize some assumptions and results that we have
developed in the previous sections. Recall that B (t; Ti; Ct) is the price of a zero-coupon corporate
bond, valued in t 2 [0; Ti] for any �xed maturity Ti � T ?; with credit rating Ct: Additionally we
assume that the corporate bond is modelled with a fractional recovery of market value in case of
default (see (2:26)). Notice that B (t; Ti; Ct) is a strictly positive and F-adapted process, de�ned on a
�su¢ ciently rich�13 stochastic basis (
;F;P) endowed with the �ltration F =(Ft)t2[0;T?] generated by
a d-dimensional LIBOR additive process G and the credit migration process C; or in other words
Ft = � fGs; Cs; 0 � s � tg :

Let us �x the following elements: �rst, �x m 2 N+ such that K =
�
0; 1m ; :::; 1�

1
m ; 1

	
, second �x the

time horizon Ti 2 [0; T ?] ; as the maturity of the corporate bond; and �nally, a domain, that in our case
will be Rd: Given any starting point (t; Bt; Ct) 2 [0; Ti]�Rd �K we have the following system of SDEs,
where (B;C) is a solution, under risk-neutral probability, with values in Rd �K :8>>>>><>>>>>:

dB(t;Ti;Ct)

B(t�;Ti;Ct�)
=
�
rt + l � �Ct�;1

�
dt+ b�(t)(t; Ti; Ct�)dWt +

R
Rd h (t; x; Ti) 1fjxj�1g ~�

Ct�
�(t)

(dt; dx)

dCt =
X
a;b2K

(b� a) 1fCt�=ag
�
Ct�

�
dNab (t)

(2.47)
where rt = f (t; t; 0) is the usual risk-free �short-rate�, l is the rate of losses in case of a default, such
that l 2 [0; 1] ; b�(t) is the coe¢ cient of di¤usion such that b�(t) : [0; Ti] � K !Rd is C1 with respect to
(t; B) 2 [0; Ti]� Rd for any t � Ti with t; Ti 2 [0; T ?] :

Notice that we have three sources of randomness,

- �rst, W =
�
W i
�
i=1:::d

is the usual Rd-valued (P;G)-Brownian motion;

- second, ~�Ct��(t)
is the compensated random measure, for a given credit rate Ct�; that satisfy the

usual integrability conditions for any t � Ti with t; Ti 2 [0; T ?]

13See de�nitions in section 1.1.2 and assumptions in section 2.1.3
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- and �nally, N = (Nab)a;b2K is a F-adapted multivariate point process such that (Nab (t)) has
(P;G)-intensity �ab (t; B) for a; b 2 K =

�
0; 1m ; :::; 1�

1
m ; 1

	
:

This model is a non-standard SDE system because of its dependence structure. The coe¢ cients in
the SDE (2:47) for corporate bond dynamic contain the credit risk rating and, on the other hand, the
intensities in the multivariate point process N that drive the credit migration process, depend in turn on
the credit rate of the corporate bond.

2.4.1 Classical and Viscosity solutions for reaction-additive systems under
local regularity

In this section we mention di¤erent methodologies to derive existence and uniqueness results for classical
and viscosity solutions of interacting systems of partial integro-di¤erential equations (PIDEs). Such
systems will be called reaction-additive equations and play a key role in subsequent sections. These
methodologies and results have been studied previously by di¤erent authors, such that Bensoussan and
Lions (1982), Crandall and Lions (1983), Barles, Buckdahn and Pardoux (1997), or Pardoux,
Pradeilles and Rao (1997). We mention here , very brie�y, some of the main results, in order to show
the existence of solutions to the reaction-additive system.

We consider the system of integral-partial di¤erential equations (PIDEs) of parabolic type for
c 2 Knf1g ; j = 0; 1; :::; n and boundary conditions at terminal time T: Denote by USC (respectively LSC)
the class of upper semicontinuous (respectively, lower semicontinuous) functions u : (0; T ]�K�Rd ! R
and, on the other hand, let us de�ne by C+p

�
(0; T ]�K � Rd;R

�
the set of measurable functions on

[0; T ]�K�Rd with polynomial growth of the degree p at +1; Lipschitz and bounded on [0; T ]�K�R�
such that

' 2 C+p ((0; T ]�K � R)() 9K; p > 0; j' (t; x)j � K
�
1 + jxjp 1fx>0g

�
Consider the following system of backward integral-partial di¤erential equation of parabolic

type (initial-boundary value problem) on (0; T ]�K � R for all j = 0; 1; :::; n8<: � @
@tuj (t; x; c)� Luj (t; x; c)� fj

�
t; x; c; uj ;

�
rujbcj

�
(t; x; c) ;Buj (t; x; c)

�
= 0

uj (T; x; c) = gj(x; c)
(2.48)

where the second-order integral-di¤erential operator L for any c 2 Kn f1g on su¢ ciently smooth
functions has the form

L = A+ J

with

Au�(t) (t; x; c) =
dX
i=1

a�(t) (t; T; c)
@u�(t)

@xi
(t; x; c) +

1

2

dX
i;j=1

b�(t) (t; T; c)
@2uc�(t)

@xi@xj
(t; x; c)

+
X
c2K

�b;c (t)
�
u�(t) (x; t; c)� u�(t) (x; t; b)

�
J u�(t) (t; x; c) =

Z
Rd

�
u�(t) (x+ y; t; c)� u�(t) (x; t; c)� y1fjyj<1g

�
�c�(t) (dy)

and B is an integral operator de�ned as

Bu�(t) (x; c) =
Z
Rd

�
u�(t) (x+ y; t; c)� u�(t) (x; t; c)

�
�c�(t) (dy)
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Existence and uniqueness of classical solutions for the PIDEs considered above in Sobolev-Hölder
spaces have been studied in Bensoussan and Lions (1982) and Garroni and Menaldi (2002) in the
case where the di¤usion component is not degenerated (basically with ��(t) (t; T; c) > 0 for every t 2 [0; T ]
and c 2 Knf1g).

However, as we have already mentioned in Chapter 1, many of the examples of the LIBOR additive
process can be pure-jump processes (with ��(t) (t; T; c) > 0 for every t 2 [0; T ] and c 2 Kn f1g) for
which such results are not available. A notion of solution that yields existence and uniqueness for such
equations without requiring nondegeneracy of coe¢ cients or a prior knowledge of smoothness of solutions
is the notion of viscosity solution introduced by Crandall and Lions (1983) for PDEs, and extended
for integro-di¤erential equations of the type considered here in Alvarez and Tourin (1996), Barles,
Buckdahn and Pardoux (1997), or Pardoux, Pradeilles and Rao (1997).

For such a system, we introduce the notion of a viscosity solution

De�nition 71 We say that u 2 C1;2;+p

�
(0; T ]�K � Rd;R

�
is

(i) a viscosity subsolution of (2:48) if

uj (T; x; c) � gj (x; c) with x 2 Rd

and if for all c 2 K, all j = 0; :::; n, and 'j 2 C1;2;+p

�
(0; T ]�K � Rd;R

�
; such that (t; x) 2 [0; T ] � Rd

is a global minimum point of uj � 'j ; we have

� @

@t
'j (t; x; c)�A'j (t; x; c)�J

�
uj ; 'j

�
(t; x; c)� fj

�
t; x; uj (t; x; c) ;

�
r'jbcj

�
(t; x; c) ;Bc'j (t; x; c)

�
� 0

(ii) a viscosity supersolution of (2:48) if

uj (T; x; c) � gj (x; c) with x 2 Rd

and if for all c 2 K, all j = 0; :::; n, and 'j 2 C1;2;+p

�
(0; T ]�K � Rd;R

�
; such that (t; x) 2 [0; T ] � Rd

is a global maximum point of uj � 'j ;

� @

@t
'j (t; x; c)�A'j (t; x; c)�J

�
uj ; 'j

�
(t; x; c)� fj

�
t; x; uj (t; x; c) ;

�
r'jbcj

�
(t; x; c) ;Bc'j (t; x; c)

�
� 0

(iii) a viscosity solution of (2:48) if it is both a sub and a supersolution of (2:48)

Note that existence and uniqueness of viscosity solutions for such parabolic integro-di¤erential equa-
tions in Rd are discussed in Alvarez and Tourin (1996) in the case where � is a �nite measure, and in
Barles, Buckdahn and Pardoux (1997) or Pham (1998).

Theorem 72 Under the conditions that u belongs to the set of measurable functions on [0; T ]�K � Rd
with polynomial growth of the degree p at +1; Lipschitz and bounded on [0; T ]�K�R�; then the function
u is a viscosity solution of the system of backward PIDEs (2:48).

Proof. cf. Barles, Buckdahn and Pardoux (1997) Theorem 3.4. or Pardoux, Pradeilles and
Rao (1997) Theorem 4.1.
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2.4.2 Markov property and uniqueness

A standard way to show the Markov property is to prove uniqueness of a corresponding (time-
inhomogeneous) martingale problem. We expose here a direct argument in the mentioned way.

Consider the mentioned reaction-additive system of SDE under risk neutral probability8>>>>><>>>>>:
dB(t;Ti;Ct)

B(t�;Ti;Ct�)
=
�
rt + l � �Ct�;1

�
dt+ b�(t)(t; Ti; Ct�)dWt +

R
Rd h (t; x; Ti) 1fjxj�1g ~�

Ct�
�(t)

(dt; dx)

dCt =
X
a;b2K

(b� a) 1fCt�=ag
�
Ct�

�
dNab (t)

Let h (Bt; Ct) be a Borel-measurable function, where Bt means B (t; Ti; Ct). De�ne the function
u(t; B;C) 2 Cb (R;R�K) ; for any t 2 [0; Ti] ; that satis�es the following PIDE system

0 =
@u�(t)
@t

(t; Bt; Ct)

+
�
rt + l � �Ct�;1

�
Bt�

@u�(t)
@B

(t; Bt; Ct)

+
b�(t)(t; T; Ct�)

2

2
Bt�

@2u�(t)
@B2

(t; Bt; Ct)

+

Z
Rd

h
u�(t)

�
t; Bt�e

x; Ct�
�
� u�(t)

�
t; Bt� ; Ct�

�
�Bt� (ex � 1)

i
�
Ct�
�(t) (dx)

+
@u�(t)
@C

(t; Bt; Ct)
X
a;b2K

h
u�(t)(t; Bt; a)� u�(t)(t; Bt; b)

i
1fCt�=bg

�
Ct�

�
�abt (2.49)

for a; b 2 K, x 2 Rd and terminal condition

u�(T )(T;B;C) = h(BT ; CT )

Proposition 73 For u�(t) given as above, the process u�(t)(t; Bt; Ct) with t 2 [0; Ti] is a martingale.

Proof. Applying Itô formula to u�(t)(t; Bt; Ct) yields

du�(t)(t; Bt; Ct) =
@u�(t)
@Bt

(t; Bt; Ct)dBt

+

�
@u�(t)
@t

(t; Bt; Ct) +
1

2
bj (t; T; c)

2 @
2u

@B2t
(t; Bt; Ct)

�
dt

+

Z
Rd

h
u�(t)

�
t; Bt�e

x; Ct�
�
� u�(t)

�
t; Bt� ; Ct�

�
�Bt� (ex � 1)

i
�
Ct�
�(t) (dx)

+
X
a;b2K

h
u�(t)(t; Bt� ; a)� u�(t)(t; Bt� ; b)

i
1fCt�=bg

�
Ct�

�
dNab

t

where substituting the Doob-Meyer decomposition, dNab
t = dMab

t + �abt dt and using PIDE (2:48)
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yields that the drift term vanishes on [0; T ] : From this we obtain

du�(t)(t; Bt; Ct) = Bt�
@u�(t)
@Bt

(t; Bt; Ct)b�(t)(t; Ti; Ct�)dWt

+Bt�
@u�(t)
@Bt

(t; Bt; Ct)

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx)

+
X
a;b2K

h
u�(t)(t; Bt� ; a)� u�(t)(t; Bt� ; b)

i
1fCt�=bg

�
Ct�

�
dMab

t

Therefore the process uj(t; Bt; Ct); t 2 [0; Tj ] is a martingale.

Notice that the last theorem is equivalent to the following fact: for any continuous function f
�
t; GCt

�
on [0; T ]�

�
Rd �K

�
with compact support that is of class C2 in g, the process

f
�
t; GCt

�
� f

�
0; GC0

�
�
Z t

0

Lsf
�
s;GCs

�
ds

is a martingale, with the operator Ls being given by

Lsf
�
s;GCs

�
=

dX
i=1

�i�(s) (t; C)
@f

@Gi;C
(t; GCt ) +

1

2

dX
i;j=1

�i;j�(s) (t; C)
@2f

@Gi;C@Gj;C
(t; GCt )

+
X
b;c2K

�b;c (t)
�
f (t; Gct)� f

�
t; Gbt

��
+

Z
Rd

�
f (t; Gct + g)� f (t; Gct)� g1fjgj<1g

�
��(s) (dg)

Proposition 74 GCt with t 2 [0; Tj ] is a (time-inhomogeneous) Markov process with respect to P and
F . Its distribution is uniquely determined by the SDE system.

Proof. For any h 2 Cb
�
Rd �K;R

�
there is a unique viscosity solution u to the PIDE (2:48). By

Barles, Buckdahn and Pardoux (1997) Theorem 3:4 or Pardoux, Pradeilles and Rao (1997)
Theorem 4:1 we have

E [h(GT ; CT )j Ft] = E [u(T;GT ; CT )j Ft] = u(t; Gt; Ct)

for 0 � t � T � T ?; and this establishes the Markov property of (G;C) (by Theorem 38:ii).

To show uniqueness of the �nite-dimensional distributions by induction, let h1; :::; hm�1; hm be arbi-
trary continuous bounded functions. For any times t0 � ::: � tm�1 � tm conditioning on Fm�1

E

24 mY
j=0

hj(Gtj ; Ctj )

������Fm�1
35 = E

240@m�1Y
j=0

hj(Gtj ; Ctj )

������Fm�1
1Au�(tm�1)

(Gtm�1 ; Ctm�1)

35
where u�(tj) denotes the solution to the PIDE (2:48) in tj : Since the right-hand side of the last equation
is determined by the n-dimensional distributions, the claims follow.

2.4.3 Sample-paths in the Skorohod space D[0;T ?]

�
Rd;K

�
Let us recall that the main "engine" that moves our system of stochastic di¤erential equation is a LIBOR
additive process with credit transitions GC such that GC : (!; t)! (Gt; Ct) �

�
GCt
�
C2K for every

t 2 [0; T ?] and C 2 K(m) =
�
0; 1m ; :::; 1�

1
m ; 1

	
with a �xed m 2 N+. The main goal of this subsection
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is to specify the necessary and su¢ cient conditions for GC 2 D[0;T?]

�
Rd;K

�
, or in other words, GC has

sample paths in the Skorohod space or the space of real functions GC (t) on [0; T ?]� Rd � K(m) that
are �càdlàg�(right-continuous with left-limits).

Notice that if we consider C �xed with value c 2 K with K 2 [0; 1] \ Q, then Gc 2 D[0;T?]

�
Rd;K

�
by direct application of Theorem 11.1 in Sato (1999), or roughly speaking, if Gc is a stochastically
continuous and Markov process then it has a version in the Skorohod space D[0;T?]

�
Rd;K

�
: Properties of

such processes and spaces are very well-known and perfectly re�ected in Lipster and Shiryaev (1989)
or Jacod and Shiryaev (1999). Our aim in this subsection is to extend these results when GC is a
semimartingale that depends directly on the process C.

There exist di¤erent ways to prove thatGC has sample-functions in the Skorohod spaceD[0;T?]

�
Rd;K

�
:

In our case, we will follow the most generic manner, closely related to Billingsley (1999), Carmona,
Kesten andWalsh (1986), Jacod and Shiryaev (1987), Liptser and Shiryaev (1989), andVostrikova
(1988).

Let us begin with the following de�nitions:

� Let �(n)� be the partition f0 = t0 < t1 < ::: < tn � T ? � 1g of the time interval [0; T ?], where n 2
N+; satisfying the condition min0�j�n�1 (tj � tj�1) > � on the "normalized" interval [0; 1]

� And let K(m) be the set of credit-ratings f0 = C0 < C1 < ::: < Cm = 1g where m 2 N+.

Let us de�ne the following moduli of continuity in D[0;T?]

�
Rd;K

�
L(m)� (G) = inf

�n�
tj+1�tj>�

max
0�j�n

sup
s;t2[tj ;tj+1)

sup
c2K(m)

jGcs �Gct j (2.50)

LL(m)� (G) = sup
0�t�1

sup
C0;C2K(m)

jC0�Cj��

���GC0

t �GCt
��� (2.51)

with n;m 2 N+; T ? 2 R+ and � 2 R+:

Additionally, let us de�ne an additional modulus of continuity in D[0;T?]

�
Rd;K

�
LC� (G) = inf

�n�
tj+1�tj>�

max
0�j�n

sup
s;t2[tj ;tj+1)

��GCs �GCt �� (2.52)

Theorem 75 GC belongs to D[0;T?]

�
Rd;K

�
if and only, if for every n;m 2 N+; T ? 2 R+ the following

conditions hold:
lim
�!0

LC� (G) = 0 (2.53)

and
lim
�!0

LL(m)� (G) = 0 (2.54)

In order to prove this theorem, we need three additional results: The �rst result (Lemma 76) came
directly from Billingsley (1999), and jointly with the second one (Lemma 77), both give us the basic
condition or criteria to establish when GC belongs to D[0;T?]

�
Rd;K

�
: The third result (Lemma 78)

develops a basic tool to be used in the proof of Theorem 75.

Lemma 76 For each GC in D[0;T?]

�
Rd;K

�
with m 2 N+ and " > 0; there exists n 2 N+ such that

0 = t0 < t1 < ::: < tn � T ? � 1
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and
max
0�j�n

sup
s;t2[tj ;tj+1)

sup
C2K(m)

�

��GCs �GCt �� < "

Proof. cf. Billingsley (1999) Lemma 1 p.122.

Lemma 76 is equivalent to the following assertion.

Lemma 77 GC belongs to D[0;T?]

�
Rd;K

�
if and only if for every n;m 2 N+; T ? 2 R+ and � 2 R+; the

following conditions hold:
lim
�!0

L(m)� (G) = 0

Proof. Fixed a T ? � 1; we de�ned D[0;T?]

�
Rd;K

�
as the Skorohod space of functions in [0; T ?]

with values in K(m) which are right-continuous at any point in [0; T ?] and left-limits at any point in
[0; T ?] for every m 2 N+: It is clear that GC belongs to D[0;T?]

�
Rd;K

�
if it belongs toD[0;1]

�
Rd
�
for any

T ? 2 [0; 1] and for any m 2 N+; and it is not di¢ cult to see that Billingsley�s proof of Lemma 26 for
D[0;1]

�
Rd
�
can be extended for D[0;T?]

�
Rd;K

�
changing the absolute value j j of R with the expression

supC2K(m) j j for any m 2 N+.

Before we came to the next lemma, let us introduce the following notation: �x any m 2 N+ and �� > 0;
then K(m) can be covered by a �nite union of open-balls with radius ��: Therefore there are C1; :::; Cr(��)
in K(m) such that B

�
Ck; ��

�
with k = 1; :::; r(��)

K(m) � B
�
C1; ��

�
[ ::: [B

�
Cr(��);

��
�

Lemma 78 For any n;m 2 N+, � > 0 and �� > 0; the following conditions hold:

(1)

sup
C2K(m)

LC� (G) � L
(m)
� (G)

(2) There is a �0; 0 � �0 � � such that

L(m)�0
(G) � 2 max

1�k�r(��)
LCk� (G) + 2LL(m)��

(G)

Proof. The inequality (1) follows from taking into account that��GCs �GCt �� � sup
C2K(m)

��GCs �GCt �� :
Therefore

inf
�
(n)
�

tj+1�tj>�

max
0�j�n

sup
s;t2[tj ;tj+1)

��GCs �GCt �� � inf
�
(n)
�

tj+1�tj>�

max
0�j�n

sup
s;t2[tj ;tj+1)

sup
C2K(m)

��GCs �GCt ��
and this proves inequality (1).

In order to prove the inequality (2), notice that for any k = 1; :::; r(��); we can write��GCs �GCt �� � ��GCs �GCks ��+ ���GCks �GCkt
���+ ���GCkt �GCt

��� :
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Therefore
sup

C2B(Ck;��)\K(m)

��GCs �GCt �� � 2LL(m)��
(G) +

���GCks �GCkt
���

Notice that we can easily establish

sup
C2K(m)

��GCs �GCt �� = max
1�k�r(��)

sup
C2B(Ck;��)\K(m)

��GCs �GCt �� � 2LL(m)��
(G) + max

1�k�r(��)

���GCks �GCkt
���

and for any �0 > 0 we have

L(m)�0 (G) � 2LL(m)��
(G) + inf

�
(n)
�

(tj+1�tj)>�

max
0�j�n

sup
s;t2[tj ;tj+1)

max
1�k�r(��)

���GCks �GCkt
���

� 2LL(m)��
(G) + inf

�
(n)
�

(tj+1�tj)>�

max
1�k�r(��)

max
0�j�n

sup
s;t2[tj ;tj+1)

���GCks �GCkt
���

To achieve the inequality (2) in our Lemma 78; we just need to prove the existence of a �0; 0 � �0 � �
such that

inf
�
(n)
�0

(tj+1�tj)>�0

max
1�k�r(��)

max
0�j�n

sup
s;t2[tj ;tj+1)

���GCks �GCkt
��� � 2 max

1�k�r(��)
inf
�
(n)
�

(tj+1�tj)>�

max
0�j�n

sup
s;t2[tj ;tj+1)

���GCks �GCkt
���

= 2 max
1�k�r(��)

LCk� (G)

Notice that by de�nition of in�mum, for every k = 1; :::; r(��) there exists a subpartition on [0; T ?]
ftk;jg0�j�nk+1 such that tk;j+1 � tk;j � � for any j = 0; :::; nk � 1 and

max
0�j�nk

sup
s;t2[tk;j ;tk;j+1)

���GCks �GCkt
��� � 2LCk� (G)

De�ne ftpg0�p�l+1 as the subpartition of the interval [0; T ?] built with the set of di¤erent tk;j with
j = 0; :::; nk + 1; k = 1; :::; r(��). Finally let us de�ne as �0 the minimum distance between two points of
the given partition. Therefore we have 0 < �0 � � and

max
0�k�r(��)

max
0�p�l

sup
s;t2[tp;tp+1)

���GCks �GCkt
��� � 2 max

1�k�r(��)
LCk� (G)

so that we �nally obtain

inf
�
(n)
�0

tj+1�tj>�0

max
1�k�r(��)

max
0�j�n

sup
s;t2[tj ;tj+1)

���GCks �GCkt
��� � 2 max

1�k�r(��)
LCk� (G)

Finally, we can prove the Theorem 75, using the last three results:

Proof. (Theorem 75) Here we attempt to show if the condition that appear in Lemma 77 is equivalent
to conditions (1) and (2) in Theorem 75.

First, let us assume the conditions in Theorem 75 in the following sense: given a " > 0 there exists a
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�1 > 0 with � � �1 such that
LL(m)� (G) � "

4

and related with condition (1) in Theorem 75, there exist a �2 > 0 with � � �2 such that, for every
k = 1; :::; r (�1)

LCk� (G) � "

4

Notice that the condition (2) in Lemma 78 guarantees the existence of �0 such that 0 � �0 � �2 and

L(m)�0
(G) � 2 max

1�k�r(��)
LCk� (G) + 2LL(m)��

(G) :

It is easy to see that L(m)� (G) is an increasing function of �; therefore we have that for every � � �0

L(m)� (G) � ":

This proves the condition of Lemma 77.

Second, notice that if we assume the condition that appears in Lemma 77 and using the �rst assertion
in Lemma 78, then the �rst condition in Theorem 75 is proved for every C 2 K(m): On the other hand,
to establish the condition (2) in Theorem 75; let us consider a " > 0; and assuming the condition that
appears in Lemma 78, then there exists �0 > 0 and a partition 0 = t0 < t1 < ::: < tn = 1 on [0; 1] such
that tj � tj�1 > �0 for any j = 1; :::; n and

max
0�j�n

sup
s;t2[tj ;tj+1)

sup
C2K(m)

��GCs �GCt �� � "

3
:

Notice that for any j = 1; :::; n the mapping Gtj : Ctj ! GCtj from [0; 1] to Rd is a continuous function
over the compact K(m): Hence it is uniformly continuous. Additionally for any j = 1; :::; n there is a
�j > 0 such that for any � 2 [0; �j ]

sup
C0;C2K(m)

jC0�Cj��

���GC0

tj �G
C
tj

��� � "

3

Let us de�ne �� = min (�0; �0; :::; �n). Then for any t 2 [0; T ?] ; and choosing tj under the condition
that t 2 [tj�1; tj) ; we have for any � > 0

sup
C0;C2K(m)

jC0�Cj��

���GC0

t �GCt
��� � sup

C2K(m)

���GCtj �GCt ���+ sup
C02K(m)

���GC0

tj �G
C0

t

���
+ sup
C0;C2K(m)

jC0�Cj��

���GCtj �GC0

tj

��� :

Using the inequalities shown before, for any 0 < � � ��; we conclude the condition (2) of Theorem 75
from

sup
0�t�T?

sup
C0;C2K(m)

jC0�Cj��

���GC0

t �GCt
��� � "
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2.5 Uniform Weak Convergence in the Reaction-Additive sys-
tem

In order to implement certain models and pricing rules, continuous-time models are often too complex
to handle. Therefore it is convenient to both discretize time and space and show that the discretization
is good in the sense that the discretized models and pricing rules converge to the continuous-time model
as the discretization steps tend to zero. The fourth subject of this chapter is presented in Section 2:5
and treats this aspect of mathematical �nance. We study both the approximation of a continuous-time
model by a sequence of discrete-time models and the convergence of price processes for corporate bonds
with credit migration.

Some authors have presented di¤erent discrete-time solutions to model defaultable or corporate bonds
(Jarrow and Turnbull (1995), Jarrow, Turnbull and Lando (1997) or Schönbucher (2002) among
others) as a mixture of trees, one for the risk-free interest rates, and a second one for the credit risk
factor (untradeable). However, though di¤erent authors propose a useful methodology to price credit
derivatives, they do not talk about the conditions of weak convergence when both factors are mixed
using discrete frameworks. In fact, there is no guarantee that these compositions between random factors
converge in a measure in continuous time, and all the usual tools from stochastic analysis in continuous
time can be applied.

On the other hand, at least in the case of the interest-rates derivatives market, the market quotes
caps/�oors and swaptions (plain vanilla interest-rates derivatives) using the well-known Black-76 model.
It basically implies that any alternative model written or developed to price exotic options has to guaran-
tee that, at least, it will recover the prices of the plain-vanilla options priced by Black-76. In other words,
our model has to converge in distribution to the implied distribution given by the market through the
quoted volatilities. Therefore, any new interest rate model has to prove that when it goes to continuous
time, it is able to recover the implied distribution in the Black-76 model, which is driven by the usual
Brownian motion (continuous process). Therefore we have to prove that our LIBOR additive process
(semimartingale) is able to converge weakly to the implied probability given by the market. However,
our problem is more complex if we add the reactive or credit risk part to our usual stochastic di¤erential
equation.

Basically, this section is concerned with the approximation of a �nancial corporate bond model in
incomplete markets, where the corporate bond dynamics is driven by a LIBOR additive process
(tradeable) conditioned to a multivariate point process (non-tradeable).

According to the previous section, we have seen that our reaction-additive system has sample-paths in
the Skorohod space. Therefore, in order to study the weak convergence of this system in such spaces, we
have structured this section in the following parts:

- The �rst subsection is basically devoted to give a quick review of the basics related with weak
convergence in the Skorohod space.

- The second one is devoted to show the conditions of relative compactness of a subset in the Skorohod
space. Basically, in this subsection, we expose an equivalent result to the well-knownArzelà-Ascoli
Theorem for the Skorohod space.

- In the third subsection our e¤orts are mainly focused to �nd the basic conditions in order to obtain
the mentioned convergence in law, in the space D[0;T?]

�
Rd;K

�
:

- However these conditions would be too theoretical to have any practical application in �nance, and
in the fourth subsection, we translate these conditions in terms of the characteristic triplets, which
are the basic parameters for any derivative pricing.
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2.5.1 Introduction to Weak Convergence

Let us �rst introduce a preliminary section in order to give a brief introduction to weak convergence of
stochastic processes and semimartingales. Inclusion of this material is justi�ed not only because of the
complexity of the subject but also because it is necessary to establish some basic framework, notation
and theorems that will be used later.

Therefore, this preliminary section is an attempt to gather some basic and typical results to describe
several main concepts and theorems that will give us the main directions of this chapter. Again, here
it is not intended to give a systematic presentation of the most important results or to explain how to
prove them; for this purposes one would need more pages. A more comprehensive picture of the present
state of the art can be obtained from Billingsley (1968), Lipster and Shiryaev (1989) or Jacod and
Shiryaev (1999).

Weak Convergence, Continuous Mapping and Skorohod Embedding

In this preliminary subsection we recall some results concerning tightness and convergence of sequences
of semimartingales. As we are concerned with the weak convergence (in distribution), we suppose that
for a sequence (Gn)n2N of processes, G

n is de�ned on a stochastic basis (
n;Gn;Pn). Additionally,
a process G is de�ned on some (
;G;P) ; and we denote weak convergence of Gn to G i.e. �n =
L (GnjPn)! � = L (GjP) ; by Gn !L G if there is no ambiguity about Pn and P:

Following Jacod and Shiryaev (1999), let us consider a Polish space (E; d) (that is a complete and
separable metric space) with its Borel �-�eld E = BE , and consider the space P (E) of all probability
measures on (E; E) : The set P (E) is endowed with the weak topology which is the coarsest topology
for which the mapping � ! � (f) =

R
E
fd� is continuous, for all bounded continuous functions f on E.

P (E) is itself a Polish space for this topology.

De�nition 79 The sequence (�n)n2N converges weakly to � if, for every bounded continuous function
f on E, (�n (f))n2N converges to � (f) :

The weak convergence of random variables is de�ned through the weak convergence of probabilities
measures: let G be an E-valued random variable on some probability space (
;G;P) The image of P
under G is denoted by � = PG: It is called the law or distribution of G.

De�nition 80 (Gn)n2N converges in law (or in distribution) if (�n)n2N converges weakly to � in
P (E).

This is equivalent to saying that EPn [f (Gn)] ! EP [f (G)] when n ! 1; for all bounded continuous
functions f on E.

Notice that we can not use other standard modes of convergence on E such as convergence almost surely
or convergence in probability because the random variables Gn may be de�ned on di¤erent probability
spaces.

Now, let us recall two well-known results concerning weak convergence, namely the continuous map-
ping theorem and the Skorohod embedding theorem.

Theorem 81 (Continuous Mapping Theorem) Let (E; d) and (E0; d0) be two metric spaces, endowed
with the Borel-�-algebras BE and BE0 respectively, and let �; (�n)n2N be probability measures on (E;BE) :
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Let furthermore 'n; ' : E ! E0 be a sequence of measurable functions and denote by D the set of all
g 2 E such that there exist a sequence (gn)n2N with g

n ! g but 'n (gn)9 ' (g) : If E0 is separable, then
D 2 BE0 and in this case the assumptions �n ! � and � (D) = 0 imply �n ('n)�1 ! � (')

�1
:

Proof. cf. Billingsley (1968) Theorem 5.5.

Remark 82 Notice that if 'n = ' for all n 2 N+; Theorem 81 reduces to the usual continuous mapping
theorem, in the sense that if ' is �-a.e. continuous, then �n ! � implies �n (')�1 ! � (')

�1
:

Theorem 83 (Skorohod Representation Theorem) Let (E; d) be a separable metric space endowed
with the Borel-�-algebra BE, and let �; (�n)n2N be probability measures on (E;BE) with �n ! �: Then
there exist a probability space (
;G;P) and E-valued random variables G and Gn; all de�ned on (
;G;P)
with distributions � and �n respectively, and such that Gn ! G P-a.s.

Proof. cf. Ethier and Kurtz (1986), Theorem 2.1.8.

Tightness of Sequence of càdlàg Processes

Let us consider the Polish space (E; E) with its Borel �-�eld E . Consider the space P (E) of all
probability measures on (E; E) with the weak topology.

De�nition 84 A subset A of P (E) is called uniformly tight in E if for every " there exists a compact
subset K in E such that � (E �K) � " for all � 2 A:

Then, the Prohorov Theorem reads as follows

Theorem 85 (Prohorov) A subset A of P (E) is relatively compact (for the weak topology) if and
only if it is uniformly tight.

Proof. cf. Billingsley (1968) Theorem 5.1.

In this subsection we consider only Rd-valued càdlàg processes. Let G be such a process, de�ned on
a triple (
;G;P). Then it may be considered as a random variable taking its values in the Polish space
D
�
Rd
�
. Consequently its law � = L(G) is an element of P

�
D
�
Rd
��
:

De�nition 86 A sequence (Gn)n2N is said to be uniformly tight if for every " > 0 there exists a compact
set K in E such that P [Gn =2 K] � " for all n 2 N

Remark 87 Notice that using Prohorov�s theorem, we can conclude that the sequence fL(Gn)g is
relatively compact in P

�
D
�
Rd
��
if and only if the sequence (Gn)n2N is uniformly tight.

The next result is concerned with tightness of sequences of càdlàg processes. Recall that in the
Skorohod space we have the following modulus of continuity. Let us �x T ? > 0 such that I =
[0; T ?] � R+: Let us assume a time partition 0 = t0 � t1 � ::: � tn = T ?; � > 0 and G 2 D

�
Rd
�
we de�ne

L�;tn (G) = inf
�
max
i�n

L (G; [ti�1; ti)) : n 2 N+; 0 = t0 < ::: < tn = T ?; inf
i<n

(ti � ti�1) � �

�
where L (G; I) = sups;t2I jG (s)�G (t)j for an interval I = [0; T ?] � R+:
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Theorem 88 Let (Gn)n2N be a sequence of càdlàg processes. Then (L (GnjPn))n2N is tight if and only
if the following two conditions hold:

(i) for all T ? 2 R+; " > 0 there exist n0 2 N+;K > 0 such that for all n � n0

Pn
�
sup
t�tn

jGnj > K

�
� "

(ii) for all T ? 2 R+; " > 0; � > 0 there exist n0 2 N+; � > 0 such that for all n � n0

Pn [Ltn (Gn; �) � �] � "

Proof. cf. Jacod and Shiryaev (1987) Theorem VI.3.21.

Convergence Results for Sequences of Semimartingale

Concerning limit theorems for stochastic processes, it is necessary to introduce characteristics of semi-
martingales, a concept heavily used later in the following theorems. The idea is to associate to a semi-
martingale a triplet of predictable processes which describe drift, volatility and jumps, in analogy to
the concept of characteristic triplet of in�nitely divisible distributions, which in turn describes drift,
volatility and jumps of the associated Lévy process. The reader should notice that any theorem related
with weak convergence of stochastic processes will be necessarily related with semimartingales theory. In
fact, in the following sections, we show that if the characteristics triplet of a sequence of the LIBOR ad-
ditive processes (semimartingales) are known, one can show convergence in distribution via convergence
of the characteristics.

First of all, let us assume a time partition t0 � t1 � ::: � tn of [0; T ?] and let us denote with Gn a d-
dimensional semimartingale with independent increments (PII). On the other hand, G is a d-dimensional
PII without �xed time of discontinuity. Then the distribution of the process G is characterized by a
triplet of characteristics (
;A; �) relative to some �xed truncation function h, or in other words, let G be
a semimartingale and h a truncation function and de�ne the process G(h) by

G(h)t = Gt �
X
s�t

(�Gs � h (�Gs))

Note that
P
s�t (�Gs � h (�Gs)) =

R t
0
(g � h (g))�G(ds) where �G is the random measure associated

with the jumps of G, and since �Gs � h (�Gs) 6= 0 only for �nitely many s, this sum converges.
Furthermore�Gs�h (�Gs) is bounded so G (h) is a special semimartingale with canonical decomposition

G(h) = G0 +M (h) + 
 (h)

where M (h) is a local P-martingale and 
 (h) is a predictable process with �nite variation. Therefore,
the triplet (
;A; �) with


 = 
 (h) from the canonical decomposition

A =
�D
~Gi; ~Gj

E�
1�i;j�d

where ~G is the continuous part of G

� = �P is the P-compensator of �G

is called the triplet of P-characteristics of G relative to the truncation function h or simply characteristics
if there is no ambiguity about the measure and the truncation function involved. Sometimes 
 is called
the �rst, A the second, and � the third characteristic of X.
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Obviously only the �rst and the modi�ed second characteristic depend on the choice of the truncation
function. In the sequel we �x one truncation function and sometimes do not mention the dependence of
the characteristics on this truncation function.

Concerning limit theorems for stochastic processes, it is necessary to de�ne the modi�ed second char-
acteristic of G; ~An which is càdlàg and increasing in the set of all d� d symmetric nonnegative matrices
for their natural order, by

~Anij =
D
M (h)

i
;M (h)

j
E

where M(h) is the martingale part in the usual decomposition of a semimartingale14 .

Recall that we have mentioned that G has no �xed time of discontinuity, it means that �
�
ftg � Rd

�
= 0

and ~A; 
n(t) and ' � � are continuous functions, then we can state the following theorem15

Theorem 89 Let Gn; G be Rd-valued processes with independent increments and characteristics (
n(t); An; �n)
and (A; �; 
(t)) respectively. Let ~An and ~A be the modi�ed second characteristics of Gn and G respec-

tively, and let D be a dense subset of R+: Then Gn
L! G if and only if the following three conditions

hold:

(i) sups�t j
n(s)� 
(s)j ! 0 for all t � 0

(ii)
��� ~Ant � ~At

���! 0 for all t 2 D

(iii)
R
Rd ' � �

n
t dg !

R
Rd ' � �tdg for all t 2 D;' 2 C

�
Rd
�

where

C
�
Rd
�
:=

�
f 2 Cb

�
Rd
�
;9" > 0 8g 2 U" (0) f (g) = 0 and lim

jgj!1
f (g) exists

�
and Cb

�
Rd
�
is the class of all continuous and bounded functions f : Rd ! R.

Proof. cf. Jacod and Shiryaev (1987) Theorem VII.3.4.

Convergence of Stochastic Integrals and Stochastic Di¤erential Equations

In many cases the semimartingales under consideration are stochastic integrals or solutions of stochastic
di¤erential equations driven by a converging sequence of semimartingales. Then one is faced with the
question whether the convergence carries over to these new processes. The discussion of this issue dates
back to Wong and Zakai (1965) and has received growing interest for obvious reasons. Slominski
(1989), Jakubowski, Mémin and Pagès (1989) and Kurtz and Protter (1991) established su¢ cient
conditions for the convergence of stochastic integrals and solutions of stochastic di¤erential equations in
terms of uniform tightness of the converging processes, which have the drawback that they are not easy
to formulate and sometimes hard to verify. Du¢ e and Protter (1992) introduce the notion of goodness
of a sequence of semimartingales and state simple (but not very general) su¢ cient conditions. See Kurtz
and Protter (1996) for more general results.

14See Jacod and Shiryaev (1987) Proposition II.2.17
15This Theorem can be relaxed to a wider class of functions, however it will be su¢ cient for our purposes.
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For a sequence (
n;Fn;Pn) ; let (Gn)n2N and (Hn)n2N be sequences of càdlàg processes where each
Gn is an Rd-valued (Fn;Pn)-semimartingale and Hn is Fn-adapted and takes values in Rd0�d: Recall that
the total variation process of a process A of �nite variation is denoted by V ar(A) =

R
jdAj :

De�nition 90 A sequence (Gn)n2N of semimartingales is called good (with respect to (Pn)n2N and P)
if for any sequence (Hn)n2N the convergence of L (Gn;HnjPn)

w! L (G;HjP) implies convergence of
L
�
Gn;Hn;

R
Hn
�dG

n
��
Pn
� w! L

�
G;H;

R
H�dG

��
P

�
:

Proposition 91 Let (Gn)n2N be good and suppose L (Gn; HnjPn)
w! L (G; HjP) : Then

�R
Hn
�dG

n
�
is

also good.

Proof. cf. Du¢ e and Protter (1992) Theorem 4.1.

We next provide a su¢ cient condition for the convergence of solutions of stochastic di¤erential equa-
tions.

Theorem 92 Let (Gn)n2N be good, let G be a semimartingale, and let f : R+ � Rd
0 ! Rd0�d satisfy

(i) y 7! f (t; y) is Lipschitz, uniformly in t

(ii) t 7! f (t; y) is left-continuous with right-limits, for all y

Furthermore let Y n and Y be the (unique) solutions of

dY nt = f
�
t; Y nt�

�
dGnt ; Y nt 2 Rd

0

dYt = f (t; Yt�) dGt; Yt 2 Rd
0

If Gn L! G; then (Y n; Gn) L! (Y;G) :

Proof. cf. Du¢ e and Protter (1992) Theorem 4.4.

2.5.2 Relative compactness in the space D[0;T ?]

�
Rd;K

�
This section is devoted to study the conditions for relative compactness of a subset in D[0;T?]

�
Rd;K

�
:

Basically, we look for a result equivalent to Theorem 88 or the Arzelà-Ascoli Theorem for the Skoro-
hod space D[0;T?]

�
Rd;K

�
. In the sequel, we consider for any n � 1; a semimartingale Gn;C that depends

on a process C,and de�ned on the stochastic bases (
n;Fn;Pn) : The main aim of this subsection is to
�nd conditions such that

�
Gn;C

�
n2N are relatively compact in D[0;T?]

�
Rd;K

�
:

Let us begin recalling some de�nitions:

� Let �(n)� be the partition of time f0 = t0 < t1 < ::: < tn � T ? � 1g where n 2 N+; satisfying the
condition min0�j�n�1 (tj � tj�1) > � on the "normalized" interval [0; 1]

� And let K(m) be the set of credit-ratings f0 = C0 < C1 < ::: < Cm = 1g where m 2 N+.
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Let us de�ne the following moduli of continuity in D[0;T?]

�
Rd;K

�
L(m)� (G) = inf

�
(n)
�

tj+1�tj>�

max
0�j�n

sup
s;t2[tj ;tj+1)

sup
c2K(m)

jGcs �Gct j

LL(m)� (G) = sup
0�t�1

sup
C0;C2K(m)

jC0�Cj��

���GC0

t �GCt
���

with n;m 2 N+; T ? 2 R+ and � 2 R+:

Additionally, let us de�ne another modulus of continuity in D[0;T?]

�
Rd;K

�
LC� (G) = inf

�
(n)
�

tj+1�tj>�

max
0�j�n

sup
s;t2[tj ;tj+1)

��GCs �GCt ��

Basically, for the most part, we are concerned with the relative compactness of sequences fPng; this
means that every subsequence fPnig contains a further subsequence

�
Pni(m)

	
such that Pni(m)

!m Q for
some probability measure.

Theorem 93 Let us assume C 2 K(m); n;m 2 N+; and a; " > 0: Additionally, assume that the following
conditions hold

1)

lim
a!+1

lim
n!1

Pn

 
sup

0�t�T?
sup

C2K(m)

���Gn;Ct ��� � a

!
= 0

2)
lim
�!0

lim
n!1

Pn
�
LC�
�
Gn;C

�
> "
�
= 0

3)

lim
�!0

sup
n�1

Pn(LL
(m)
� (Gn) > ") = 0

Then the processes Gn;C with n � 1 have sample-paths in the Skorohod space D[0;T?]

�
Rd;K

�
; and

conditions 1), 2) and 3) hold if and only if the set of processes
�
Gn;C

�
n�1 are relatively compact in

D[0;T?]

�
Rd;K

�
:

In order to prove the Theorem 93, it will be useful to prove the following result.

Proposition 94 Assuming condition 3) in Theorem 93, then the condition 2) in Theorem 93 is satis�ed
if and only if the following expression

lim
�!0

lim
n!+1

Pn

 
sup

C2K(m)

LC�
�
Gn;C

�
> "

!
= 0 (2.55)

is true for every m 2 N+:

Proof. It is obvious that (2:55) implies the condition 2) in Theorem 93. Conversely, assuming that
conditions 2) and 3) in Theorem 93 are true, let us prove that both implies (2:55).
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Fix a � > 0: Using directly condition 3) in Theorem 93, there is a �0 > 0 such that

sup
n�1

Pn(LL
(m)
�0 (Gn) >

"

4
) � �

2
(2.56)

Following the same notation that in Lemma 78; �x any m 2 N+; then K(m) can be covered by a �nite
union of open-balls with radius �0: Therefore there are C1; :::; Cr(�0) in K(m) such that B

�
Ck; �

0� with
k = 1; :::; r(�0)

K(m) � B
�
C1; �

0� [ ::: [B �Cr(�0); �0�
On the other hand, assuming that the condition 2) in Theorem 93 is satis�ed, there is a �00 > 0 such

that for every k = 1; :::; r(�0)

lim
n!1

Pn
�
LCk�00 (G

n) >
"

4

�
� �

2r
�
�0
� (2.57)

Using directly Lemma 78, there exists a �0 such that 0 < �0 � �00 and

sup
C2K(m)

LC�0 (G
n) � 2 max

1�k�r(�0)
LCk�00 (G

n) + 2LL(m)�0 (Gn)

notice that LC�
�
Gn;C

�
is an increasing function of �; therefore we have for every � � �0

Pn

 
sup

C2K(m)

LC� (Gn) > "

!
�
r(�0)X
k=1

Pn
�
LCk�00 (G

n) >
"

4

�
+ Pn

�
LL(m)�0 (Gn) >

"

4

�
(2.58)

Finally taking into account the expressions (2:56), (2:57) and (2:58) we obtain for every � < �0

lim
n!+1

Pn

 
sup

C2K(m)

LC�
�
Gn;C

�
> "

!
� �

which implies (2:55) and the proof is complete.

Proof. (Theorem 93) Let us �rst prove that if conditions 1), 2) and 3) hold then Gn;C have sample-
paths in the Skorohod space D[0;T?]

�
Rd;K

�
:

We know that the process Gn;C ; de�ned in (
n;Fn;Pn) ; has sample-paths in D[0;T?]

�
Rd;K

�
if and

only if
Pn
��
! 2 
n; Gn (!) 2 D[0;T?]

�
Rd;K

�	�
= 1

or, equivalently
Pn
��
! 2 
n; Gn (!) =2 D[0;T?]

�
Rd;K

�	�
= 0

and, using directly Theorem 75; we have that�
! 2 
n; Gn (!) =2 D[0;T?]

�
Rd;K

�	
=

�
! 2 
n;9C 2 K; lim

�!0
LC� (Gn) > 0

�
[
�
! 2 
n;9m 2 N; lim

�!0
LL(m)� (Gn) > 0

�
�

(
! 2 
n;9m 2 N; lim

�!0
sup

C2K(m)

LC� (Gn) > 0

)
[
�
! 2 
n;9m 2 N; lim

�!0
LL(m)� (Gn) > 0

�

91



Therefore, our goal is to prove that

Pn

 (
! 2 
n; lim

�!0
sup

C2K(m)

LC� (Gn) > 0

)!
= 0 (2.59)

and

Pn
��

! 2 
n; lim
�!0

LL(m)� (Gn) > 0

��
= 0 (2.60)

Let us begin with (2:59). Notice that (2:59) can be proved using the following equivalence

Pn

 (
! 2 
n; lim

�!0
sup

C2K(m)

LC� (Gn) > 0

)!
= lim
k!+1

Pn

 (
! 2 
n; lim

�!0
sup

C2K(m)

LC� (Gn) >
1

k

)!

and noting that LC� (Gn) is an increasing function of � therefore we have

lim
k!+1

Pn

 (
! 2 
n; lim

�!0
sup

C2K(m)

LC� (Gn) >
1

k

)!
� lim
k!+1

lim
�!0

Pn

 (
! 2 
n; sup

C2K(m)

LC� (Gn) >
1

k

)!
:

Notice that for every n � 1 and for every C 2 K(m), the process Gn;C is a semimartingale and it has
sample-paths in the Skorohod space D[0;T?]

�
Rd;K

�
. Therefore we have, for every k 2 N+ (cf. Liptser

and Shiryayev (1986) Theorem 6:1:6).

Pn
��

! 2 
n;LC� (Gn) >
1

k

��
= 0 (2.61)

Notice that following the same reasoning than in Proposition 94 we can show that the equality (2:61)
and the condition 3) in Theorem 93 implies for every k 2 N+

Pn

 (
! 2 
n; sup

C2K(m)

LC� (Gn) >
1

k

)!
= 0

and notice that when k ! +1 we obtain (2:59):

Similarly, we can prove (2:60) following a similar reasoning, noting also that LL(m)� (Gn) is an increasing
function of �;

Pn
��

! 2 
n; lim
�!0

LL(m)� (Gn) > 0

��
� lim
k!+1

lim
�!0

Pn
��

! 2 
n;LL(m)� (Gn) >
1

k

��
where

lim
�!0

Pn
��

! 2 
n;LL(m)� (Gn) >
1

k

��
= 0

and �nally, we conclude that the process Gn has sample-paths in the space D[0;T?]

�
Rd;K

�
:

In the second part, we have to show that these three conditions in Theorem 93 are necessary and
su¢ cient conditions to have relative compactness of

�
Gn;C

�
n�1 in D[0;T?]

�
Rd;K

�
:

According to Theorem V I:1:14 in Jacod and Shiryaev (1989), a subset A of D[0;T?]

�
Rd;K

�
is

92



relatively compact for the Skorohod topology for every m 2 N+ and for a �xed T ? if and only if

1) sup
G2A

sup
0�t�T?

sup
C2K(m)

��GCt �� < +1
2) lim

�!0
sup
G2A

L(m)� (G) = 0

Notice that using a similar reasoning as in Theorem 75, condition 2) can be split into these two equivalent
conditions

1) lim
�!0

sup
G2A

sup
C2K(m)

LC� (G) = 0

2) lim
�!0

sup
G2A

LL(m)� (G) = 0

Therefore we can show that a subset A of D[0;T?]

�
Rd;K

�
is relatively compact for the Skorohod

topology for every m 2 N+ and for a �xed T ? if and only if

1) sup
G2A

sup
0�t�T?

sup
C2K(m)

��GCt �� < +1
2) lim

�!0
sup
G2A

sup
C2K(m)

LC� (G) = 0

3) lim
�!0

sup
G2A

LL(m)� (G) = 0

(2.62)

Now we prove that conditions 1), 2) and 3) in Theorem 93 are necessary and su¢ cient to guarantee
than (Gn)n�1 is relatively compact in D[0;T?]

�
Rd;K

�
:

Notice that using Prohorov Theorem (Theorem 85), if the subset A is relatively compact, then
it is tight. Let us assume that the set (Gn)n�1 is relatively compact and let us give a " > 0: Therefore,
according to Prohorov Theorem, there exist a compact A" in D[0;T?]

�
Rd;K

�
such that if �A" is the

complement of A" then we have for any n � 1

Pn
�
�A"
�
� "

where Pn is the law of Gn in the space D[0;T?]

�
Rd;K

�
: Then, using the set of conditions (2:62); and

replacing A by A" we have that for any C 2 K(m) with m 2 N+; with a �xed T ?; and any � > 0 there
exist am;T? ; �m;T?;� 2 R such that

1) A" �
(
GC 2 D[0;T?]

�
Rd;K

�
; sup
0�t�T?

sup
C2K(m)

��GCt �� � am;T?

)

2) A" �
(
GC 2 D[0;T?]

�
Rd;K

�
; sup
C2K(m)

LC�m;T?;�
(G) � �

)

3) A" �
n
GC 2 D[0;T?]

�
Rd;K

�
;LL(m)�m;T?;�

(G) � �
o

and for any C 2 K(m); with a �xed T ? and any � > 0; we �nally obtain conditions 1), 2) and 3) in
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Theorem 93

1) sup
n�1

Pn

 
sup

0�t�T?
sup

C2K(m)

���Gn;Ct ��� � am;T?

!
� "

2) sup
n�1

Pn

 
sup

C2K(m)

LC�m;T?;�
(Gn) � �

!
� "

3) sup
n�1

Pn
�
LL(m)�m;T?;�

(Gn) � �
�
� "

Conversely, in order to prove the �only if �part of this theorem, let us assume the conditions 1), 2) and
3) holds, for any C 2 K(m);with a �xed T ? and any � > 0, and for any n � 1: Let Pn be the law of Gn
in D[0;T?]

�
Rd;K

�
: Notice that using condition 1) we can obtain some results about tightness, or more

speci�cally, there is an am;T? large enough such that

A =

(
GC 2 D[0;T?]

�
Rd;K

�
; sup
0�t�T?

sup
C2K(m)

��GCt �� � am;T?

)

therefore, we have
lim

n!+1
Pn (A) � 1�

"

3

And similarly, using conditions 2) and 3) we can assume that exists a �m;T?;k small enough such that

Am;T?;k =

�
GC 2 D[0;T?]

�
Rd;K

�
; sup
C2K

L�m;T?;k
(G) � 1

k

�
and

Bm;T?;k =

�
GC 2 D[0;T?]

�
Rd;K

�
;LL(m)�m;T?;k

(G) � 1

k

�
such that

lim
n!+1

Pn (Am;T?;k) � 1�
"

3

and
lim

n!+1
Pn (Bm;T?;k) � 1�

"

3

Let us de�ne now the set K in D[0;T?]

�
Rd;K

�
as the set K = A\Am;T?;k \Bm;T?;k; therefore K is a

compact set in the space D[0;T?]

�
Rd;K

�
; and verify that

lim
n!+1

Pn (K) � 1�
"

3
� "

3
� "

3
� 1� "

and it shows directly that (Gn)n�1 is tight in D[0;T?]

�
Rd;K

�
, and relatively compact, according to

the Prohorov theorem.

2.5.3 Weak Convergence in D[0;T ?]

�
Rd;K

�
As in the last subsection, let us consider, for any n � 1; the semimartingale Gn;C with C 2 K, de�ned
on �su¢ ciently rich� stochastic bases (
n;Gn;Pn) endowed with the �ltration Gn = (Gnt )t2[0;T?] ; and
additionally let us de�ne the stochastic process GC with C 2 K, also in a �su¢ ciently rich� stochastic
basis (
;G;P) endowed with the �ltration G = (Gt)t2[0;T?] : This subsection is mainly devoted to �nd the
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basic conditions in order to obtain a Gn;C with sample-paths in D[0;T?]

�
Rd;K

�
; and convergence in law

to GC , in the space D[0;T?]

�
Rd;K

�
:

Theorem 95 We assume that the �nite-dimensional distributions of Gn;C converge weakly to the �nite-
dimensional distributions of GC : Let us assume C 2 K(m); n;m 2 N+; and "; a > 0: Additionally, assume
that the following conditions hold

1)

lim
a!+1

lim
n!1

Pn

0@ sup
0�t�T?

sup
C2K(m)

�

���Gn;Ct ��� � a

1A = 0

2)
lim
�!0

lim
n!1

Pn
�
LC� (Gn) > "

�
= 0

3)
lim
�!0

sup
n�1

Pn(LL
(m)
� (Gn) > ") = 0

Then the processes Gn;C with n � 1 have sample-paths in the Skorohod space D[0;T?]

�
Rd;K

�
; and

the weak convergence of Gn;C
w(Pn)! GC in the Skorohod space D[0;T?]

�
Rd;K

�
takes place.

Proof. First, we have to prove that the process Gn;C has sample paths in the Skorohod space
D[0;T?]

�
Rd;K

�
; and that

�
Gn;C

�
n�1 is relatively compact. In order to show that, it is enough to see that

the conditions in Theorem 95 are the same as the conditions in Theorem 75 and Theorem 93:

Second, we have to prove the weak convergence of the sequence
�
Gn;C

�
n�1 : Let us de�ne Q

n as the

law of Gn in D[0;T?]

�
Rd;K

�
: Also let us consider two subsequences (Qn0) and (Qn00) ; from the sequence

(Qn)n�1 ; that converge to the probabilities Q0 and Q00 in the measurable spaceD[0;T?]

�
Rd;K

�
: According

to Theorem 2:8 in Billingsley (1968) in order to prove weak convergence, it is enough to prove that Q0
and Q00 are the same.

For 0 � t1 < ::: < tk � 1 with k 2 N+; let us de�ne the natural projection from D (R1) to Rk by
�t1;:::;tk (G) = (Gt1 ; :::; Gtk) ; such that for A 2 Rn we can denote

��1t1;:::;tk (A) = f(Gt1 ; :::; Gtk) 2 Ag

and notice that �t1;:::;tk is continuous for all i = 1; :::; k, ti 2 � (G) = ft > 0;�Gt = 0g [ f0g :

Now, let us de�ne

�Q0 =
�
t > 0 : Q0

�
G 2 D[0;T?]

�
Rd;K

�
;�Gt = 0

�
= 1
	
[ f0g

�Q00 =
�
t > 0 : Q00

�
G 2 D[0;T?]

�
Rd;K

�
;�Gt = 0

�
= 1
	
[ f0g

Then we can say that, for any t1; :::; tk 2 �Q0\�Q00 ; the sequences
�
Qn0 ���1t1;:::;tk

�
and

�
Qn00 ���1t1;:::;tk

�
converge weakly to

�
Q0 ���1t1;:::;tk

�
and

�
Q00 ���1t1;:::;tk

�
respectively.

Now, let us �x t1; :::; tk 2 �Q0 \ �Q00 and 0 � C1 < ::: < Cm � 1 with C1; :::; Cm 2 R+ and m 2 N+:
Additionally let us de�ne the continuous mapping

�C1;:::;Cm (Gt1 ; :::; Gtk) =
�
GC1t1 ; :::; G

Cm
t1 ; :::; GC1tk ; :::; G

Cm
tk

�
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from Rk to Rk�m. Notice that according to the continuous mapping theorem (Theorem 81), the se-

quences
�
Qn0 ���1t1;:::;tk ��

�1
C1;:::;Cm

�
and

�
Qn00 ���1t1;:::;tk ��

�1
C1;:::;Cm

�
converge weakly to

�
Q0 ���1t1;:::;tk ��

�1
C1;:::;Cm

�
and

�
Q00 ���1t1;:::;tk ��

�1
C1;:::;Cm

�
respectively.

Notice that, if we assume that the �nite-dimensional distributions of Gn;C converge weakly to the
�nite-dimensional distributions of GC ; then we have that

Q0 ���1t1;:::;tk ��
�1
C1;:::;Cm

= Q00 ���1t1;:::;tk ��
�1
C1;:::;Cm

(2.63)

Let us prove that, for any C1; :::; Cm 2 R+ with m 2 N+, we have

Q0 ���1t1;:::;tk = Q
00 ���1t1;:::;tk (2.64)

or in other words, if we denote Ck as the �-�eld from (K)k ; and �Ck as the �-�eld from (K)k generated by
��1C1;:::;Cm (A) ; with C1; :::; Cm 2 R+; m 2 N+ and A 2 B

�
Rk�m

�
; then we have to prove that Ck = �Ck:

Notice �rst that, for any C1; :::; Cm 2 R+; the application �C1;:::;Cm such that

�C1;:::;Cm : G = (G1; :::; Gk)!
�
GC11 ; :::; GCm1 ; :::; GC1k ; :::; GCmk

�
is continuous. Therefore �Ck � Ck:

On the other hand, in order to show the inclusion in the opposite direction, it is enough to show
that any ball in (K)k is �Ck-measurable, because K is a complete and separable space. Let us choose C
from C1; :::; Cr(�) in the compact Ki such that Ki � B (C1; �)[ :::[B

�
Cr(�); �

�
and such that r (�) is the

minimum number of balls with radius � that cover Ki. Therefore let us de�ne, the following �C1-measurable
application with

G! d (G; Y ) =

+1X
i=0

2�i
supC2Ki

��GC � Y C��
1 + supC2Ki

jGC � Y C j

Using basic properties of measurable mappings we have that

G! sup
C2Ki

��GC � Y C��
for any Y 2 Rd; is also a �C1-measurable mappings, for any i 2 N+. Therefore for any " 2 R+�

G 2 Rd; sup
C2Ki

��GC � Y C�� � "

�
=
\
C2Ki

�
G 2 Rd;

��GC � Y C�� � "
	

which are �C1-measurable. Henceforth, (2:63) implies (2:64) :

Now notice that, according to Liptser and Shiryaev (1989) we know that �Q0 and �Q00 are dense in
R+: Therefore �Q0 \�Q00 is also dense in R+; and we conclude that Q0 = Q00 because a probability in the
Borelian �-�eld of D[0;T?]

�
Rd;K

�
is entirely determined by its �nite-dimensional distributions. Therefore

the sequence
�
Gn;C

�
n�1 weakly converges in D[0;T?]

�
Rd;K

�
towards a certain process ~GC with sample

paths in D[0;T?]

�
Rd;K

�
:

In order to complete the proof, we have to show the link between ~GC and GC . According toBillingsley
(1999), and using the continuity property of the following mappings

�C1;:::;Cm : G!
�
GC1 ; :::; GCm

�
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from D
�
Rd
�
to D

�
Rd;K

�
; and

�t1;:::;tk :
�
GC1 ; :::; GCm

�
!
�
GC1t1 ; :::; G

Cm
t1 ; :::; GC1tk ; :::; G

Cm
tk

�
from D

�
Rd;K

�
to Rd�n�m; for every t1; :::; tn 2 ��Q0 where

��Q0 =
n
t > 0;Q0 ���1C1;:::;Cm

�
G 2 D[0;T?]

�
Rd;K

�
;�Gt = 0

�
= 1
o
[ f0g

and we obtain the weak convergence in Rd�k�m from Qn0 � ��1C1;:::;Cm � �
�1
t1;:::;tk

towards Q0 � ��1C1;:::;Cm �
��1t1;:::;tk :We know thatQ

n0���1C1;:::;Cm��
�1
t1;:::;tk

is the law in Rd�k�m of a vector
�
GC1t1 ; :::; G

Cm
t1 ; :::; GC1tk ; :::; G

Cm
tk

�
:

Using the weak convergence of the �nite-dimensional distribution we know that, for every t1; :::; tk 2 ��Q0�
Gn;C1t1 ; :::; Gn;Cmt1 ; :::; Gn;C1tk

; :::; Gn;Cmtk

�
!
�
GC1t1 ; :::; G

Cm
t1 ; :::; GC1tk ; :::; G

Cm
tk

�
or

Q0 ���1C1;:::;Cm ��
�1
t1;:::;tk

= QC1;:::;Cm ���1t1;:::;tk
where QC1;:::;Cm is the law in D

�
Rd;K

�
of the processes

�
GC1 ; :::; GCm

�
: Because a probability in

D
�
Rd;K

�
; is entirely determined by its �nite-dimensional distributions then

Q0 ���1C1;:::;Cm = QC1;:::;Cm

Hence we have the link between ~GC and GC : for every m 2 N+ and C1; :::; Cm 2 R+ the law in

D
�
Rd;K

�
of the processes

�
~GC1 ; :::; ~GCm

�
and

�
GC1 ; :::; GCm

�
coincide.

2.5.4 Previsibility conditions for weak convergence of GC in the spaceD[0;T ?]

�
Rd;K

�
This section is devoted to develop the conditions in Theorem 95 in terms of the characteristics or triplet.
Roughly speaking, the idea that we have in mind is related with the following question: Under which
conditions, in terms of the triplet, our model will converge in distribution to the continuous time model
that the market imposes?

Let us �rst de�ne the setting assuming that we are given a "su¢ ciently rich" stochastic bases (
n;Fn;Pn)
and (
;F;P) endowed with the �ltrations Fn = (Fnt )t2[0;T?] and F = (Ft)t2[0;T?] : LetGn;C =

�
Gn;C (t)

�
C2K;t�0

and GC =
�
GC (t)

�
C2K;t�0 be semimartingales depending on the process C = (Ct)t2[0;T?] with C 2 K

(m);

de�ned on the spaces (
n;Fn;Pn) and (
;F;P) respectively.

Additionally, we assume that the semimartingale Gn;C is a special16 and locally square-integrable
martingale, or in other words, a martingale that admits the canonical decomposition

Gn;Ct = Gn;C0 +Mn;C
t +Bn;Ct

where Mn;C
t is a local P-martingale and Bn;Ct is a predictable process with �nite variation over each

�nite interval. Let us assume that GC is a continuous semimartingale17 , that admits also the canonical

16See Liptser and Shiryayev (1986) de�nition 2.2
17 It is well-known that interest rates derivatives quotes use the Black-76 model. This model is a continuous-time model,

and it generates continuous sample-paths. However, taking into account the tenor structure, we can strip the quoted
volatilities into a set of forward volatilities with skews/smile for each tenor. It basically implies that if n = number of
tenors, Gn;C has to be a LIBOR additive process with jumps and GC is a LIBOR additive process without discontinuities.
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decomposition
GCt = GC0 +M

C
t +B

C
t

This means that the characteristics of Gn;C and GC are
�

n;C ; An;C ; �n;C

�
and

�

C ; AC ; �C

�
; respec-

tively, with �C = 0 in the second case.

The aim of this section is to give conditions expressed in terms of the predictable characteristics�

n;C ; An;C ; �n;C

�
and

�

C ; AC ; �C

�
of the semimartingales Gn;C and GC ; providing the existence of

the modi�cations processes Gn;C =
�
GC;n (t)

�
C2K;t�0 and G

C =
�
GC (t)

�
C2K;t�0 with trajectories in

D[0;T?]

�
Rd;K

�
for which a weak convergence inD[0;T?]

�
Rd;K

�
takes place. During the present subsection,

basically we follow Liptser and Shiryaev (1989) section 8:3.

In addition to the previous de�nitions of Gn;C and GC ; and for the sake of simplicity, let us introduce
~Gn;C and ~GC as the continuous martingale components of Gn;C and GC ; respectively, or in other
words,

~Gn;Ct = ~Gn;C0 +
X
j��(t)

Z t^Tj+1

Tj

�nj (u;C)dW
n
u

and

~GCt = ~GC0 +
X
j��(t)

Z t^Tj+1

Tj

�j(u;C)dWu

with the usual conditions on the coe¢ cients (see Chapter 1; or section 1 in this chapter).

Therefore, using the assumption that Gn;Ct is a special semimartingale, we have

Gn;Ct = Gn;C0 + ~Bn;Ct + ~Gn;Ct +
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
� (u; x)

�
�n;Cj � �n;Cj

�
(du; dx)

where ~Bn;Ct is a process, with locally integrable variation, such that

~Bn;Ct =
X
j��(t)

Z t^Tj+1

Tj

�nj (u;C)du <1

Let us assume that for any C;C 0 2 K(m)n f1g the previsible quadratic variation of WC
t and WC0

t is,
for every t � 0; D

WC ;WC0
E
t
=
X
j��(t)

Z t^Tj+1

Tj

covj

�
u;WC ;WC0

�
du

Additionally, and for the sake of simplicity in the sequel, we denote with Mn;C =
�
Mn;C
t

�
C2K;t�0

the

martingale part of the semimartingale Gn;C ; for every t � 0; such that

Mn;C
t =

X
j��(t)

Z t^Tj+1

Tj

�nj (u;C)dW
n
u +

X
j��(t)

Z t^Tj+1

Tj

Z
Rd
� (u; x)

�
�n;Cj � �n;Cj

�
(du; dx)

and the quadratic variation


Mn;C

�
t
is given by (according to Liptser and Shiryaev (1989) Theorem

98



3:5:1)



Mn;C

�
t
=

D
~Gn;C

E
t
+
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
�2 (u; x) �n;Cj (du; dx)�

X
j��(t)

Z t^Tj+1

Tj

Z
Rd
� (u; x)

�
�n;Cj (fug ; dx)

�2

Let us recall that our goal is to translate the conditions of Theorem 95 in terms of the previsible charac-
teristics of the semimartingales. Notice that assuming that Gn;C is a special and locally square-integrable
martingale, and the semimartingale GC is continuous with deterministic initial value, is equivalent to con-
dition 1 in Theorem 95. Therefore, in order to obtain the weak convergence, we have to establish the
following group of conditions:

Condition Group (1): in order to establish Condition (2) in Theorem 95 for every C 2 K we need8>>>>>><>>>>>>:

(1:1)
���GC;n0 �GC0

��� Pn!
n!1

0

(1:2)
P
j�n

R Tj+1
Tj

R
Rnf0g �

2 (u; x) 1(jxj>a)d�
n;C
j (du; dx)

Pn!
n!1

0

(1:3) sup0�t�T?
��� ~Bn;Ct �

P
j��(t)

R t^Tj+1
Tj

�j(t; C;G
n;C)ds

��� Pn!
n!1

0

(1:4) sup0�t�T?
���
Mn;C;h

�
t
�
P
j��(t)

R t^Tj+1
Tj

�j(t; C;G
n;C)ds

��� Pn!
n!1

0

Condition Group (2): Additionally, to obtain weak convergence in the ��dis�, jointly with condition
group 1, for every C;C 0 2 K(m)n f1g we need

(2:1) sup
0<t�1

���D ~Gn;C ; ~Gn;C0
E
t
�
P
j��(t)

R t^Tj+1
Tj

covj

�
u;WC ;WC0

�
du
��� Pn!

n!1
0

Condition Group (3): Finally, to obtain the Condition (3) in Theorem 95, assume p � 2 and � > m
such that for a bounded stopping times � and C;C 0 2 K(m)n f1g, C 6= C 0 we have8>>>>><>>>>>:

(3:1) sup
n

�
En
���
C;n� � 
C0;n

�

���p. jC � C 0j�� � c (p)

(3:2) sup
n

�
En
���D �GC;n� � �GC

0;n
�

E���p=2� jC � C 0j�
�

� c (p)

(3:3) sup
n

�
En
R �
0

R
E
(g1 � g2)p d�n;C;C

0
.
jC � C 0j�

�
� c (p)

where � = inf

(
0 < t � 1 : sup

jC�C0j��

���GC;nt �GC
0;n

t

��� � �

)
and c (p) is a positive constant.

Theorem 96 We suppose that the condition groups (1) to (3) are satis�ed. Then, the processes GC;n =�
GC;n (t)

�
C2K;t�0 and G

C =
�
GC (t)

�
C2K;t�0 have paths in D[0;T?]

�
Rd;K

�
such that weak convergence

GC;n
w(Pn)! GC in D[0;T?]

�
Rd;K

�
takes place.

Basically, the proof of Theorem 96 requires the veri�cation of the conditions of Theorem 95 according
to the following plan:

� First, we suppose that GC;n =
�
GC;n (t)

�
C2K;t�0 and GC =

�
GC (t)

�
C2K;t�0 are the paths in

D[0;T?]

�
Rd;K

�
: Using the conditions of group 1 we establish a weak convergence of the process

GC;n to GC with C 2 K(m); given m 2 N+; in D[0;T?]

�
Rd;K

�
: In turn, this convergence implies

the condition 2) in Theorem 95.
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� Second, using the conditions of group 1 and 2 we establish the convergence of the �nite-dimensional
distributions �

Gn;C1 ; Gn;C2 ; :::; Gn;Cm
� Pn!
n!1

�
GC1 ; GC2 ; :::; GCm

�
in the Skorohod space D[0;T?]

�
Rd;K

�
for every m � 2:

� Third, using the conditions of group 3, the result from Valkelia and Dzaparidze (1990), we prove
that for every C;C 0 2 K(m)n f1g and a bounded stopping time � :

sup
n
En
����GC;n� �GC

0;n
�

���p. jC � C 0j�� � �Ci

and using specially chosen stopping times, this inequality and the lemma about the estimation of
the modulus of continuity allow us to verify the condition 2) of Theorem 95.

In order to prove the Theorem 96, we need the following results.

Proposition 97 Let GC be a stochastic process de�ned on the stochastic basis (
,F ,P) with sample-paths
in the Skorohod space D[0;T?]

�
Rd;K

�
: Then for any " > 0 the function � de�ned in 
 by

� (!) = inf

0BBB@t > 0; sup
C0;C2K(m)

�

jC0�Cj��

���GC0

t (!)�GCt (!)
��� � "

1CCCA ^ T ?

is a F-stopping time.

Proof. According to Lipster and Shiryaev (1989) let us de�ne the process Z as

Zt (!) = sup
C0;C2K(m)

�

jC0�Cj��

���GC0

t (!)�GCt (!)
���

and notice that it is enough to prove that Z is a process with sample-paths in D[0;T?]

�
Rd;K

�
; Ft-adapted.

Let ! 2 
: Then we have for every s; t � 0

jZs (!)� Zt (!)j = sup
C0;C2K(m)

�

jC0�Cj��

���GC0

s (!)�GCs (!)
���� sup

C0;C2K(m)
�

jC0�Cj��

���GC0

t (!)�GCt (!)
���

� sup
C0;C2K(m)

�

jC0�Cj��

���GC0

s (!)�GCs (!)�GC
0

t (!) +GCt (!)
���

� 2 sup
C0;C2K(m)

�

��GCs (!)�GCt (!)��

Notice that GC has sample-paths in D[0;T?]

�
Rd;K

�
: Therefore we have that

lim
�!0

inf
�
(n)
�

tj+1�tj>�

max
0�j�n

sup
s;t2[tj ;tj+1)

jZs (!)� Zt (!)j = 0

This, according to Lemma 77, proves that Z is a process with sample-paths in D[0;T?]

�
Rd;K

�
:

In order to prove that Z is a Ft-adapted process, notice that for any ! 2 
; and any t 2 R+; the

100



mapping C ! GCt (!) from K to Rd is continuous. Therefore we have that, for every t 2 R+ and any
C 2 K(m); Z is a Ft-adapted process.

Proposition 98 The condition 3) in Theorem 95 is equivalent to

lim
�!0

sup
n�1

Pn

0BBB@ sup
C0;C2K(m)

�

jC0�Cj��

���Gn;C0

� (!)�Gn;C� (!)
��� � "

1CCCA = 0

where � is the F-stopping time de�ned in Proposition 97.

Proof. Let us recall that according to Proposition 97, the stopping time � (!) was de�ned as

� (!) = inf

0BBB@t > 0; sup
C0;C2K(m)

�

jC0�Cj��

���Gn;C0

t (!)�Gn;Ct (!)
��� � "

1CCCA ^ T ?

Hence

Pn(LL
(m)
� (Gn) > ") = Pn( sup

0�t�T?
sup

C0;C2K(m)
�

jC0�Cj��

���Gn;C0

t �Gn;Ct
��� > ") � Pn( sup

C0;C2K(m)
�

jC0�Cj��

���Gn;C0

� �Gn;C�
��� � ")

Conversely, it is easy to see

Pn( sup
C0;C2K(m)

�

jC0�Cj��

���Gn;C0

� �Gn;C�
��� � ") � Pn(LL(m)� (Gn) � ")

Another relevant result that we need to prove Theorem 96, is the next one, given by Dzhaparidze
and Valkeila (1990)

Lemma 99 Let M be a locally square integrable martingale with M0 = 0: Let T be a stopping time. If �
is the compensator of the jump measure of M , then there exist for every p � 2 constants kp and Kp such
that

kpE

 
hMip/2T +

Z T

0

Z
Rnf0g

jgjp d�
!

� E
�
sup
0�t�T

jMtjp
�

� KpE

 
hMip/2T +

Z T

0

Z
Rnf0g

jgjp d�
!

Proof. cf. Dzhaparidze and Valkeila (1990) Lemma 2.1 p.108, based on the Burkholder-Gundy
inequality for martingales.

And the last useful result in our proof is the following,

Proposition 100 Let � be a �nite stopping time and C1; :::; Cm 2 K and m 2 N+: Additionally let de�ne

101



�n the integer-valued random measure for jumps of a process
�
Gn;C1 ; :::; Gn;Cm

�
and �n the compensator,

let f be a real function on R such that the following integrals has sense for any i = 1; :::;m

1)
R t
0

R
Rnf0g f (gi)�

n (dt; dg1; :::; dgi; :::; dgm) =
R �
0

R
Rnf0g f (g) d�

n;Ci

2)
R t
0

R
Rnf0g f (gi) (�

n � �n) (dt; dg1; :::; dgi; :::; dgm) =
R �
0

R
Rnf0g f (g) d

�
�n;Ci � �n;Ci

�
Proof. Both results can be proved using similar ways. Let us de�ne two local martingalesM = (Mt)t�0

and M 0 = (M 0
t)t�0 for any t 2 R+;

Mt =

Z t

0

Z
Rnf0g

f (gi)
�
�n;Ci � �n;Ci

�
(dt; dg1; :::; dgi; :::; dgm)

and

M 0
t =

Z t

0

Z
Rnf0g

f (g) d
�
�n;Ci � �n;Ci

�
Notice thatM andM 0 are purely discontinuous processes and to prove that they are indistinguishable,

it is enough to show for any t 2 R+
�Mt = �M

0
t

or

�Mt =

Z
Rnf0g

f (gi) (�
n (ftg ; dg1; :::; dgi; :::; dgm)� �n (ftg ; dg1; :::; dgi; :::; dgm))

and

�M 0
t =

Z
Rnf0g

f (g) d
�
�n;Ci (ftg ; dg)� �n;Ci (ftg ; dg)

�
Notice that the processes�R

Rnf0g f (gi) (�
n (ftg ; dg1; :::; dgi; :::; dgm))

�
t�0

and
�R

Rnf0g f (g)
�
�n;Ci (ftg ; dg)

��
t�0

are respectively the compensators of�R
Rnf0g f (gi) (�

n (ftg ; dg1; :::; dgi; :::; dgm))
�
t�0

and
�R

Rnf0g f (g)
�
�n;Ci (ftg ; dg)

��
t�0

and it is enough to establish the following equality for any t 2 R+ :R
Rnf0g f (gi) (�

n (ftg ; dg1; :::; dgi; :::; dgm)) =
R
Rnf0g f (g)

�
�n;Ci (ftg ; dg)

�
and in order to complete the proof we only need to see thatZ

Rnf0g
f (gi) (�

n (ftg ; dg1; :::; dgi; :::; dgm)) = f
�
�Gn;Cit

�
and Z

Rnf0g
f (g)

�
�n;Ci (ftg ; dg)

�
= f

�
�Gn;Cit

�

Finally, we can proceed with the proof of Theorem 96:

Proof. (Theorem 96) Let us proceed with the �rst part. To prove weak convergence condition
according with Theorem 95 or equivalently, to prove the weak convergence from GC;n to GC with C 2
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K(m); given m � N+; in D[0;T?]

�
Rd;K

�
; means, according to Lipster and Shiryaev (1989) Theorem

8:3:1 (p.625), the following conditions, for every C 2 K(m); given m � N+; for every a 2 (0; 1] and
0 < t � T ? � 1:

10)
���GC;n0 �GC0

��� Pn! 0

20)
P
j�n

R Tj+1
Tj

R
Rnf0g 1(jxj>a)d�

n;C
j

Pn! 0

30) sup0�t�T?
���Bn;Ct �

P
j��(t)

R t^Tj+1
Tj

��(s)(t; C;G
n;C)ds

��� Pn! 0

40) sup0�t�T?
���
Mn;C;h

�
t
�
P
j��(t)

R t^Tj+1
Tj

��(s)(t; C;G
n;C)ds

��� Pn! 0

Now, we have to prove that conditions 1:1, 1:2, 1:3 and 1:4 (in the condition group 1) imply 10, 20, 30

and 40. It is clear that 1:1 implies 10. The condition 20 can be proved using 1:2 and the inequality, for
any " > 0;

Pn
0@X
j�n

Z Tj+1

Tj

Z
Rnf0g

1(jxj>h)d�
n;C
j � "

1A � Pn
0@X
j�n

Z Tj+1

Tj

Z 2

Rnf0g
�21(jxj>h)d�

n;C
j � "a2

1A

Related with the condition 30; we use the canonical decomposition for semimartingales and special semi-
martingales (using directly de�nitions in Liptser and Shiryaev (1989) 4:1:1 and Jacod and Shiryaev
(1999) II:2:38)

Bn;Ct = Gn;Ct �Gn;C0 � ~Gn;Ct �
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
� (u; x) 1fjxj�1g

�
�n;Cj � �n;Cj

�
(du; dx)

�
X
j��(t)

Z t(n)^Tj+1

Tj

Z
Rd
� (u; x) 1fjxj>1g�

n;C
j (du; dx)

and

~Bn;Ct = Gn;Ct �Gn;C0 � ~Gn;Ct �
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
� (u; x)

�
�n;Cj � �n;Cj

�
(du; dx)

Therefore

Bn;Ct � ~Bn;Ct = �
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
� (u; x) 1fjxj>1g�

n;C
j (du; dx)

and we obtain

Pn
�
sup

0�t�T?

���Bn;Ct � ~Bn;Ct

��� � "

�
� Pn

0@X
j�n

Z Tj+1

Tj

Z
Rd
j� (u; x)j 1fjxj>1g�n;Cj (du; dx) � "

1A
� Pn

0@X
j�n

Z Tj+1

Tj

Z
Rd
(� (u; x))

2
1fjxj>1g�

n;C
j (du; dx) � "

1A

This shows that conditions 1:3 and 30 are equivalent, using condition 1:2.
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Related with condition 40, let us recall



Mn;C;h

�
t
=

D
~Gn;C

E
t
+
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
�2 (u; x) 1fjxj�hg�

n;C
j (du; dx)

�
X
j��(t)

X
Tj�u�t^Tj+1

Z
Rd
� (u; x) 1fjxj�hg

�
�n;Cj (fug ; dx)

�2
and



Mn;C

�
t
=

D
~Gn;C

E
t
+
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
�2 (u; x) �n;Cj (du; dx)

�
X
j��(t)

X
Tj�u�t^Tj+1

Z
Rd
� (u; x)

�
�n;Cj (fug ; dx)

�2

Let us simplify the notation rede�ning � (u; x) = �: Therefore

��
Mn;C;h
�
t
�


Mn;C

�
t

�� �
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
�21fjxj>hg�

n;C
j (du; dx)

+
X
j��(t)

X
Tj�u�t^Tj+1

����Z
Rd
�1fjxj�hg

�
�n;Cj (fug ; dx)

�2
�
Z
Rd
�
�
�n;Cj (fug ; dx)

�2����
�

X
j��(t)

Z t^Tj+1

Tj

Z
Rd
�21fjxj>hg�

n;C
j (du; dx) +

X
j��(t)

X
Tj�u�t^Tj+1

Z
Rd
j�j 1fjxj>hg�n;Cj (fug ; dx)

�
�Z

Rd
j�j 1fjxj�hg�n;Cj (fug ; dx) +

Z
Rd
j�j �n;Cj (fug ; dx)

�

=
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
�21fjxj>hg�

n;C
j (du; dx) +

X
j��(t)

X
Tj�u�t^Tj+1

Z
Rd
j�j 1fjxj>hg�n;Cj (fug ; dx)

�
�
2

Z
Rd
j�j 1fjxj�hg�n;Cj (fug ; dx) +

Z
Rd
j�j 1fjxj>hg�n;Cj (fug ; dx)

�
taking into account that, using Liptser and Shiryaev (1989), for any t � 0 and any ! 2 


�n;Cj (!; ftg � R) � 1
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we have ��
Mn;C;h
�
t
�


Mn;C

�
t

�� �
X
j��(t)

Z t^Tj+1

Tj

Z
Rdnf0g

�21fjxj>hg�
n;C
j (du; dx)

+
X
j��(t)

X
Tj�u�t^Tj+1

2a

Z
Rd
j�j 1fjxj>hg�n;Cj (fug ; dx)

+
X
j��(t)

X
Tj�u�t^Tj+1

�Z
Rd
j�j 1fjxj>hg�n;Cj (fug ; dx)

�2

�
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
�21fjxj>hg�

n;C
j (du; dx)

+2a
X
j��(t)

Z Tj+1

Tj

Z
Rd
j�j 1fjxj>hgd�n;Cj

+
X
j��(t)

X
Tj�u�t^Tj+1

Z
Rd
�21fjxj>hg�

n;C
j (fug ; dx)

and �nally, we obtain the inequality

sup
0�t�T?

��
Mn;C;h
�
t
�


Mn;C

�
t

�� � 4 X
j��(t)

Z Tj+1

Tj

Z
Rd
�21fjxj>hgd�

n;C
j

This means that conditions 1:4 and 40 are equivalent.

Therefore, all the conditions of Theorem 8:2:1 in Liptser and Shiryaev (1989) pp.608 � 609 are
satis�ed and we have

GC;n
Pn! GC

for every C 2 K(m); given m � N+; in the Skorohod space D[0;T?]

�
Rd;K

�
:

Second, we have to prove the convergence of the �nite-dimensional distributions�
Gn;C1 ; Gn;C2 ; :::; Gn;Cm

� Pn!
n!1

�
GC1 ; GC2 ; :::; GCm

�
in the Skorohod space D[0;T?]

�
Rd;K

�
for every m � 2:

Let us de�ne Y n =
�
Gn;C1 ; Gn;C2 ; :::; Gn;Cm

�
and Y =

�
GC1 ; GC2 ; :::; GCm

�
. Then, it is enough to

prove the weak convergence of Y n to Y in D[0;T?]

�
Rd;K

�
: Additionally, let us de�ne

�B�(t) (Y ) =
�
��(t)(t; C1; G

C1); :::; ��(t)(t; Cm; G
Cm)

�
and

�C�(t) (Y ) =

0BBBB@
��(t)(t; C1; G

C1) 0 � � � 0

0
. . .

. . .
...

...
. . .

. . . 0
0 � � � 0 ��(t)(t; Cm; G

Cm)

1CCCCA
such that

Yt = Y0 +
X
j��(t)

Z t^Tj+1

Tj

�B�(s) (Y ) ds+
X
j��(t)

Z t^Tj+1

Tj

�C�(t) (Y ) d
�
WC1 ; :::;WCm

�
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According to Liptser and Shiryaev (1989) section 8:3:5 there exists a Brownian motion in Rm
�
~W 1; :::; ~Wm

�
such that the process Y satis�es the following stochastic di¤erential equation

Yt = Y0 +
X
j��(t)

Z t^Tj+1

Tj

�B�(s) (Y ) ds+
X
j��(t)

Z t^Tj+1

Tj

�D�(t) (Y )
1/2

d
�
~W 1; :::; ~Wm

�

where �D�(t) (Y )
1/2 is the square root of the semide�nite-positive matrix �D�(t) (Y ) =

�
�D�(t) (Y ) (i; j)

�
1�i;j�m

given by
�D�(t) (Y ) (i; j) = ��(t)

�
t; Ci; G

Ci
�
��(t)

�
t; Cj ; G

Cj
�
cov

�
GCi1 ; G
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On the other hand, let us de�ne �n as the jump-measure of Y n and let �n be the compensator. Then

�n and �n are random measures on R+ � (Rm nf0g ) and we can choose a version of �n such that for
every t 2 R+

�n (ftg � (Rm nf0g )) � 1

Additionally let us denote as Bnt =
�
Bn;C1t ; :::; Bn;Cmt

�
; and Cnt as the m �m matrix of predictable

quadratic variation at t 2 R+: This basically represents the continuous martingale part of Y n such that
for any h > 0
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X
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�
X
j��(t)

X
Tj�u�t^Tj+1

Z
Rmnf0g

�1fkxk�hg�
n;C
j (fug ; dx)�

Z
Rmnf0g

�1fkxk�hg�
n;C
j (fug ; dx)

where k k is the Euclidean norm in Rm: Therefore, for any i = 1; :::;m and any j = 1; :::;m we denote
Mn;h

t (i; j) as the (i; j)-th value in the matrixMn;h
t :

Let us recall the conditions established in Theorem 8:3:3 in Liptser and Shiryaev (1989) in order to
prove the weak convergence of (Y n)n�1 to Y; for any h 2 (0; 1], any t � T 2 R+ and any i; j = 1; :::;m :

100) jY n0 � Y0j
Pn! 0
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P
j�n

R Tj+1
Tj

R
Rnf0g 1(kxk>h)d�

n
j
Pn! 0

300) sup0�t�T?



Bnt �Pj��(t)

R t^Tj+1
Tj

�B�(s) (Y ) ds



 Pn! 0

400) sup0�t�T?
���Mn;h

t (i; j)�
P
j��(t)

R t^Tj+1
Tj

�D�(s) (Y ) (i; j) ds
��� Pn! 0

In turn, according to the Cramer-Wold theorem (in Billingsley (1986) p.397), 100) it is equivalent
to prove for any (�1; :::; �m) 2 Rm thatX

i�m
�iG

n;Ci
0

Pn!
X
i�m

�iG
Ci
0

which is equivalent to the condition 1 of group 1 (condition 1:1).
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As to 200); noting that for any h > 0
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Therefore, according to Proposition 100
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This proves that 200) is given by the hypotheses 2 in the group of conditions 1 (condition 1:2).

To check the condition 300) let us recall the inequality (a+ b) 1/2 � a 1/2 + b 1/2 for every a; b > 0 and
taking into account this result, it is easy to see
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Finally notice that the condition 3 in group 1 (condition 1:3) implies the equivalent condition 30) and

consequently 300):

Before proving condition 400) we have to check the following result: for any h > 0

X
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Z
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Notice that we haveX
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We have proved that condition 1:2 implies condition 200) and therefore

a2m
X
j�n
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Z
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On the other hand, using condition also 1:2 we have that for every q = 1; :::;m
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This shows that (2:66) is true.

The next step is to prove condition 400) using (2:66). According to expression (2:65); for any p; q 2
f1; :::;mg we have
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Taking into account the condition group (2), it is enough to prove
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Notice that we have assumed that �n (ftg � (Rm nf0g )) � 1: Therefore
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Using the inequality ab � 1
2
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a2 + b2

�
valid for every a; b > 0; we have
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and using the expression (2:66) we achieve the condition 4
00
):

Finally, in order to complete the proof of Theorem 96 we just need to show that the conditions of
group 3) imply then condition 2) in Theorem 95. Notice that Gn;C

0
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Let us recall the following inequality, for every a > 0, b > 0 and p � 1 we have

(a+ b)
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Therefore,
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Notice that if Gn;C
0
and Gn;C are special semimartingales (locally square integrable), then the local

martingales Mn;C0
and Mn;C are square integrable. Additionally, let us de�ne ~�n;C;C

0
as the jump

measure ofMn;C�Mn;C0
and ~�n;C;C

0
its compensator. Therefore we can use directly Lemma 99 to prove
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the following inequality for any p � 2
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and using Proposition 100 we have
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and again, using the fact that �n (ftg � (Rm nf0g )) � 1 we haveD
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Recall the inequality (a+ b)p � (p+ 1) (ap + bp), for every a > 0, b > 0 and p � 1; and similarly as
before
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On the other hand, we have
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so that
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Finally, insert the results (2:70), (2:69) and (2:68) in (2:67). We obtain for every p � 2 the existence
of a constant cp; such that
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Now, the proof is complete, because it is easy to see that condition 2) of Theorem 95 follows immediately
from the group of conditions 3 in Theorem 96 and Lemma 99.
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Chapter 3

LIBOR Market Model driven by
LIBOR additive processes: Pricing
and Calibration
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3.1 Preliminaries

3.1.1 Introduction

As was mentioned in the previous chapters, the acronym LIBOR stands for the London Interbank O¤ered
Rate. It is the rate of interest o¤ered by banks on deposits from other banks in Eurocurrency markets.
But also it is the �oating rate commonly used in interest rate swap agreements in international �nan-
cial markets. LIBOR is determined by trading between banks and changes continuously as economic
conditions change.

In this Third Chapter 1 we consider the most popular family of interest rate model: the LIBOR
Market Model extended with jumps and credit risk. But why are such models so popular among
practitioners? The main reason lies in the agreement between such models and well-established market
formulas for caps/�oors and swaptions, the basic interest rates derivatives.

Indeed, the lognormal forward-LIBOR model (LFM) prices caps with Black�s cap formula, which is
the standard formula employed in the cap market. Moreover, the lognormal forward-swap model (LSM)
prices swaptions with Black�s swaption formula, which again is the standard formula employed in the
swaption market. Since the caps and swaptions markets are the two main markets in the interest rate
options world, it is important for a model to be compatible with such market formulas. Before market-
models were introduced, there was no interest-rate dynamics compatible with either Black�s formula
for caps/�oors or swaptions. The introduction of market models provided a new derivation of Black�s
formulas based on rigorous interest-rate dynamics.

Recall that the Heath, Jarrow and Morton approach (also known as HJM) of term structure
modelling (extended in Chapter II ) is based on the arbitrage-free dynamics of instantaneous continu-
ously compounded forward rates. However the assumption that instantaneous rates exist is not always
convenient, since it requires a certain degree of smoothness with respect to the tenor (i.e. maturity) of
bond prices and their volatilities. An alternative construction of an arbitrage-free family of bond prices,
making no reference to the instantaneous, continuously compounded rates, is in some circumstances more
suitable.

The basic log-normal Forward LIBOR (also known as LIBOR Market model, or BGM) model has
proved to be an essential tool for pricing and risk-managing interest rate derivatives. It was the �rst model
that was easy to calibrate to the grid of at-the-money swaptions volatilities across all swaption expiries
and underlying swaps�maturities. This calibration ability is recognized as perhaps the most important
requirement for a model to be successfully applied to such complicated interest rate derivatives as �exi-
caps, chooser caps, Bermuda swaptions, and various callable LIBOR exotics.

While the log-normal forward LIBOR model has established a standard for incorporating all available
at-the-money volatility information, it was less successful in recovering other essential characteristics of
interest rate markets, particularly the volatility smile. In a lognormal forward LIBOR model, swaptions
of the same expiry/maturity but of di¤erent strikes have the same implied Black volatilities, a feature
of the model that is inconsistent with the market. Various extensions of the log-normal forward LIBOR
model have been proposed. These extensions have been designed to incorporate the volatility smile e¤ect
in one form or another. Local volatility, jump-di¤usion, and stochastic volatility extensions of a forward
LIBOR model have all been introduced.

1This work has been developed under the direction of Javier Nogales and Winfried Stute. I am extremely grateful to
them. I also bene�ted greatly in my work from discussions with seminar participants at Statistical Lab. at University of
Cambridge (Oct.2006), participants at IV Bachelier Congress in Tokyo (2006), and very specially with Rama Cont, David
Nualart, C. Rogers, J.H. León, W. Runggaldier and T. Schmidt. Their advice, suggestions and assistance has been key in
the development of this work. Special thanks to the Fixed Income Derivatives desk of Caja Madrid, for the set of historical
market volatilities provided. Comments and suggestions are welcome, all errors are my own.
Contact email: jpcolino@gmail.com
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The importance of recovering all volatility smiles for all swaptions cannot be underestimated. Struc-
tured interest rate derivatives, derivatives that are a natural application for forward LIBOR market
models because of their complicated volatility dependence, are rarely, if ever, depend on at-the-money
volatilities. They are typically structured with strikes that are far away from money, and typically depend
on swaption volatilities with di¤erent expiries and maturities. To accurately value such an instrument,
a model should be able to match all market volatilities for all strikes for many, if not all, swaption
expiry/maturity combinations. As market sophistication grows and bid/ask spreads on structured deriv-
atives tighten, such requirements become more and more imperative.

A model that can calibrate to market-implied skews for the whole swaption grid is needed. This third
Chapter introduces such a model, a model that aims to reproduce the skew structure modeling what a
log-normal forward LIBOR model did for the volatility structure modeling. We build a model that takes
a swaption grid of volatility skews as an external input. By allowing the Lévy parameters responsible
for inducing skews on swaptions to be time-dependent and LIBOR rate speci�c, we are able to create a
model that can recover all available market volatility smile information.

Therefore, in this third chapter, two results are presented:

- First, a new framework to model forward LIBOR interest rates with credit risk, and the no-arbitrage
conditions under risk-neutral or forward-neutral probability.

- Second, we investigate new methodologies of calibration for LIBOR market model with jumps,
that adjust not only the usual at-the-money swaption prices but also include the information from
in/out-of-the-money swaptions. It is based in convex programming that guarantee global solutions
and stability in the calibration against market changes.

This third chapter is structured as follows:

- Section 1 is basically devoted to introduce the preliminaries and basics such that de�nitions, nota-
tion and previous models that will be basic to understand the subsequent sections. We introduce
and summarize the main ideas about the log-normal LIBOR market model, the Lévy Market model
and the Lévy forward price model. Additionally, we develop the LIBOR market model driven by a
LIBOR additive process and we obtain the non-arbitrage conditions under the risk-neutral measure.

- Probably, Section 2 is the most practical and numerical section where we propose a calibration
methodology to �t this sort of models to the swaption market prices, not only at-the-money swap-
tions but also in/out-of-the-money swaptions.

3.1.2 Basic assumption for the LIBOR additive model with credit transitions

In this section, we mainly focus on forward LIBOR rates assuming, �rst, that the dynamics of default-
able instantaneous forward rates are speci�ed through the Heath, Jarrow and Morton (1992)
model, driven by LIBOR additive processes (piecewise homogeneous Lévy process) as in Chapter 2.
And second, we additionally assume that the LIBOR rates can be derived from the bond prices of
forward prices. In order to achieve this aim, we have to establish some assumptions that will be applied
during the whole work.

Assumptions related with the forward LIBOR rates

1. Assume that for a predetermined collection of dates 0 < T0 < T1 < ::: < Tn with a �xed accrual
period or tenor �, for any credit rate c 2 Knf1g and any t � Ti 2 [0; T ?] ; we denote by L (t; Ti; c)
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the forward rate for the interval from Ti to Ti+1 as

1 + �L (t; Ti; c) : = FB (t; Ti; Ti+1; c) (3.1)

: =
B (t; Ti; c)

B (t; Ti+1; c)

= exp

(Z Ti+1

Ti

f (t; s; c) ds

)
= B(Ti;Ti+1; c)

�1 (3.2)

where B (t; Ti; c) represents the pre-default value of a corporate bond with zero recovery

and credit rate c 2 Knf1g, so that B (t; Ti; c) = 1f�?>tgB (t; Ti; c) :2

2. Hence these simple forward rates should be contrasted with the instantaneous, continuously com-
pounded defaultable forward rates (and short rates) in the framework of Heath, Jarrow and
Morton (1992) which satisfy

L (t; Ti; c) =
1

�

 
exp

(Z Ti+1

Ti

f (t; s; c) ds

)
� 1
!

(3.3)

Now we can de�ne for any 0 � t � Ti and any c 2 Knf1g the forward LIBOR spread

Sc (t; Ti) := L (t; Ti; c)� L (t; Ti) (3.4)

Assumptions related with the Swap rates and Swaptions

1. As usually, let us de�ne a predetermined collection of dates 0 < T1 < ::: < Tn = T ? with a �xed
accrual period or tenor �j , and any t < T1 2 [0; T ?] with T ? �xed. We �rst consider a �xed-
for-�oating forward start swap settled in arrears with notional principal N , usually equals to 1,
without loss of generality. We shall frequently refer to such a contract as the forward start payer
swap. A long position in a forward start payer swap corresponds to the situation when an
investor , between T� and T� with 0 < � < � � n; will make periodic payments determined by
�xed interest rates K�;� , and will receive in exchange payments speci�ed by some �oating rate,
usually L (t; Tj�1). A short position in a forward start payer swap de�nes a closely related contract
known as the forward start receiver swap.

2. Let us place ourselves within a framework of some arbitrage-free, or equivalently risk-neutral
term structure model (under P?). Then, the value at time t of the forward start payer swap
denoted by FSt or FSt(K�;�) equals

FSt (K�;�) = EP?

8<:
�X
j=�

B(t; Tj) (L (t; Tj�1)�K�;�) �j

9=;
=

�X
j=�

EP?
�
B (t; Tj)

�
B(Tj�1;Tj)

�1 � (1 +K�;��j)
���Ft	 (3.5)

2Let us recall that the double sequence (�k; C�k )k�1 is called a C-adapted multivariate marked point process.
Notice that the �k�s form a sequence of stopping times that de�ne the moments of time that the credit rate C changes.
And more explicitly, the random variable (random stopping time) �? will be de�ned as the moment of default so that
�? := inf f t > �k�1/Ct = 1g ^ T ?. Further explanations can be �nd in Chapter 2 Section 2.1.2.
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where writing cj = 1 + k�j and rearranging we obtain the following important result:

FSt (K�;�) =

�X
j=�

(B (t; Tj�1)� cjB(t; Tj))

= B(t; T��1)�
�X
j=�

cjB(t; Tj) (3.6)

3. Alternatively, notice that the process L (t; Tj�1) is a martingale under the forward measure PTj .
Then

FSt (K�;�) =

�X
j=�

B(t; Tj)EPTj f(L (t; Tj�1)�K�;�) �jg

=

�X
j=�

B(t; Tj)�j (L (t; Tj�1)�K�;�)

=

�X
j=�

(B(t; Tj�1)�B(t; Tj)�K�;��jB(t; Tj))

= B(t; T��1)�
�X
j=�

cjB(t; Tj) (3.7)

where again cj = 1 +K�j and we used the fact that

L (t; Tj�1) =
B(t; Tj�1)�B(t; Tj)

�jB(t; Tj)

Therefore, as we can observe in (3:6) and (3:7) a forward swap is essentially a contract to deliver
a speci�c coupon-bearing bond and to receive at the same time a zero-coupon bond, and this
relationship provides a simple method for the replication of a swap contract.

4. The forward swap rate K�;� at time t for the date T� is that value of the �xed rate K that
makes the value of the n-period forward swap zero, i.e. that value of K for which FSt(K) = 0

5. Let us de�ne the payer (respectively, receiver) swaption with strike rate K�;� as the �nancial
derivative that gives to the owner the right to enter at time T� the underlying forward payer
(respectively, receiver) swap settled in arrears with maturity T� ; with 0 < � < � � n. Because
FST� (K�;�) is the value at time t of the forward payer swap with the �xed interest rate K�;� , it
is clear that the price of the payer swaption at time t equals

PS
�
t; T�; T� ; �

?
�;� ;K�;�

�
= EP?

n
B(t; T�) (FST� (K�;�))

+
���Fto (3.8)

where t is the moment of valuation, T� is the moment where the forward start swap begins and
T� is the swap maturity, �?�;� is the implied volatility quoted in the swaption market for the strike
K�;� . Therefore it is apparent that the option, in the payer swaption, is exercised at time T� if and
only if the value of the underlying forward swap with maturity T� ; is positive.

And for the receiver swaption we have

RS
�
t; T�; T� ; �

?
�;� ;K�;�

�
= EP?

n
B(t; T�) (�FST� (K�;�))

+
���Fto (3.9)
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3.1.3 The LIBOR market model: a quick review

Short rate models as well as term structure (Heath, Jarrow and Morton (1992) or HJM) models, like
the Lévy term structure model discussed in the previous chapter, specify the dynamics of continuously
compounded interest rates. From a mathematical point of view, these rates that apply for an in�nitesimal
time interval are very convenient for modelling purposes. However, interest rates quoted in real markets
are usually e¤ective (simply compounded). Sandmann, Sondermann, and Miltersen (1995), Mil-
tersen, Sandmann, and Sondermann (1997), andBrace, Gatarek, and Musiela (1997) (orBGM)
managed to incorporate a model for e¤ective rates into an HJM-framework. An extended introduction
to LIBOR models can be found in several textbooks and articles, e.g. in Musiela and Rutkowski
(2004), Brigo and Mercurio (2001), or Rutkowski (2001).

The forward-LIBOR Model, which is often referred to as the LIBOR Market Model or BGM
model, became a very popular approach among practitioners since it is consistent with the market prac-
tice of pricing caps and �oors. Jamshidian (1999) generalized this model by considering semimartingales
as driving processes, but pricing of caps and �oors was not discussed in this setup. A model that lies
in between Jamshidians�s approach and the LIBOR market model as far as generality is concerned has
recently been developed by Eberlein and Özkan (2005). Their Lévy LIBOR Market Model is more
�exible than the usual LIBOR Market Model since it uses general Lévy processes as drivers instead of
the special case of a Brownian motion. Moreover, explicit pricing formulae for caps and �oors can be
obtained.

The Brace, Gatarek, and Musiela (1997) or BGM model

The aim of this preliminary section is to give a brief introduction to the LIBOR Market Model or
BGM model. A more comprehensive picture of the present knowledge can be obtained from Musiela
and Rutkowski (2004)

To introduce formally the notion of a forward LIBOR, we assumed that we are given a family B(t; T ) for
bond prices, and thus also the collection FB(t; T; U) of forward price processes. For a given horizon date
T ? and a real positive number � < T ? representing the length of the accrual period, be �xed throughout.

By de�nition (see assumptions in section 3:1:2), the forward �-LIBOR rate L(t; T ) for the future
date T � T ? � � prevailing at time t is given by the conventional market formula

1 + �L (t; T ) : = FB (t; T; T + �) (3.10)

: =
B (t; T )

B (t; T + �)

= exp

(Z T+�

T

f (t; s) ds

)

so that the forward LIBOR L(t; T ) represents in fact the add-on rate prevailing at time t over the
future time period [T; T + �].

Following Brace, Gatarek and Musiela (1997), assume that we are given a family FB (t; Ti; Ti+1)
of forward processes satisfying

dFB (t; T; T
?) = FB (t; T; T

?) 
 (t; T; T ?) dWT?

on (
;Ft;PT?) ; where WT? is a standard Brownian motion under PT? :
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Then, we can derive the dynamics of the associated family of forward LIBOR rates. For instance, one
�nds that under the forward measure PT+� we have

dL(t; T ) = ��1FB (t; T; T + �) 
 (t; T; T + �) dW
T+�

where WT+� and PT+� are de�ned by

WT+�
t =WT? �

Z t

0


 (u; T; T + �) du

The process WT+� is a standard Brownian motion with respect the probability measure PT+� t PT?
de�ned on (
;Ft) by means of the Radon-Nikodym density

dPT+�
dPT?

= ET+�
�Z �

0


 (u; T; T + �) dWT?

u

�

This means that L(t; T ) solves the equation

dL (t; T ) = ��1 (1 + �L(t; T )) 
 (u; T; T + �) dWT+�
t

Additionally let us assume that the forward LIBORs L(t; T ) are strictly positive. Then the last
expression can be rewritten as follows

dL (t; T ) = L(t; T )� (t; T ) dWT+�
t

where for every t 2 [0; T ] we have

� (t; T ) =
1 + �L(t; T )

�L(t; T )

 (t; T; T + �)

under the following assumptions:

- �rst, � (t; T ) is a Rd-valued bounded and Ft-adapted process that represents the volatility of the
forward LIBOR process L(t; T )

- and second, let us assume a strictly positive initial term structure B (0; T ) with T 2 [0; T ?] and
thus an initial term structure L(0; T ) of forward LIBORs

L(0; T ) =
B(0; T )�B(0; T + �)

�B(0; T + �)
; for every T 2 [0; T ?]

Recall that the arbitrage-free dynamics of the instantaneous forward rate f(t; T ); according to the
HJM model, are

df(t; T ) = � (t; T )�? (t; T ) dt+ � (t; T ) dWt

and additionally we have

1 + �L(t; T ) = exp

 Z T+�

T

f(t; u)du

!

Applying Itô formula to both sides, and comparing the di¤usion terms we �nd that

�? (t; T + �)� �? (t; T ) =
Z T+�

T

�(t; u)du =
�L(t; T )

1 + �L(t; T )
� (t; T )
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Therefore we can conclude that the process L(t; T ) satis�es, under the spot martingale measure P

dL(t; T ) = L(t; T )�? (t; T )� (t; T ) dt+ L(t; T )� (t; T ) dWt

or equivalently, under the forward measure PT+�

dL(t; T ) = L(t; T )� (t; T ) dWT+�
t

The LIBOR market model with jumps or Lévy market model

Eberlein and Özkan (2005) take two di¤erent approaches to model forward LIBOR rates in a discrete
tenor setting. Both approaches have in common that they do not specify zero coupon bond prices directly
(it is only assumed that the processes describing the evolution of bond prices are special semimartingales
whose values as well as all left hand limits are strictly positive; moreover, the terminal value of each bond
equals one). Instead, ratios of bond prices are speci�ed. Eberlein and Özkan (2005) consider a �xed
time horizon T as well as a discrete tenor structure 0 = T0 < T1 < ::: < Tn = T and build up the model
in one of the two following ways:

- The �rst approach, the Lévy LIBORmodel, uses the (ordinary) exponential of a non-homogeneous
Lévy process to model forward LIBOR rates directly, which are de�ned by

L (t; Tk) =
1

�k

�
B (t; Tk)

B (t; Tk+1)
� 1
�
for any k 2 f1; :::; n� 1g

where �k = Tk+1 � Tk.

- In the second approach, the Lévy forward price model, the mentioned authors de�ne forward
price process

FB (t; Tk; Tk + �k) :=
B (t; Tk)

B (t; Tk+1)
for any k 2 f1; :::; n� 1g

are speci�ed as starting value times the exponential of a non-homogeneous Lévy process. Notice that
this immediately provides a model for forward LIBOR rates since L (t; Tk) = 1

�k
(FB (t; Tk; Tk+1)� 1).

It is usually called the Lévy forward price model.

The Lévy LIBOR model The main aim of this subsection is to give a short overview over the Lévy
LIBOR model. We are not going to present a construction of the model since this is done in Eberlein
and Özkan (2005) in detail. Instead, we list some of the model properties that will be needed for option
pricing in the subsequent sections as well as for the Lévy LIBOR model with credit risk which will be
discussed in a later section.

The model is constructed by backward induction and driven by a Lévy process LT
?

on a complete
stochastic basis (
;Ft;PT?). As in the Lévy forward price model, PT? should be regarded as the forward
measure associated with the settlement day T ?. Notice that LT

?

is required to be a martingale and can
be written in its canonical decomposition as in Theorems 42-43 in section 1:6, such that

LT
?

t =

Z t

0

�sdW
T?

s +

Z t

0

Z
Rd
x
�
�� �T

?
�
(ds; dx)

Here, WT?

s denotes a standard Brownian motion with respect to PT? , � is the random measure associated
with the jumps of GT

?

t and �T
?

(dt; dx) = FT
?

s (dx)dt is the compensator of � with respect to PT? . The
characteristics of LT

?

s are given by (0; �; FT
?

). Note that without loss of generality we assume LT
?

t to be
driftless.
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Additionally, let us assume the following:

1. For any deterministic Ti there is a deterministic function � (�; Ti) : [0; Ti] ! Rd which represents
the volatility of the forward rate process L (t; Ti) : In addition

n�1X
i=1

j� (s; Ti)j �M for all s 2 [0; T ?]

where M is the constant and � (s; Ti) = 0 for s < Ti:

2. The initial term structure B(0; Ti) for any i 2 f1; :::; ng is strictly positive and strictly decreasing.

Therefore the dynamics of the forward LIBOR rates are speci�ed as

L (t; Tk) = L (0; Tk) exp

�Z t

0

b(s; Tk; Tk+1)ds+

Z t

0

� (t; Tk) dL
Tk+1
s

�
with initial condition

L (0; Tk) =
1

�k

�
B (0; Tk)

B (0; Tk+1)
� 1
�

LTk+1 equals LT
?

t plus some � in general non-deterministic �drift term which is chosen in such a way
that LTk+1 is driftless under the forward measure associated with the settlement day Tk+1, henceforth
denoted by PTk+1 . More precisely,

L
Tk+1
t =

Z t

0

�sdW
Tk+1
s +

Z t

0

Z
Rd
x
�
�� �Tk+1

�
(ds; dx)

where WTk+1
s is a standard Brownian motion with respect to PTk+1 and �Tk+1 is the PTk+1-compensator

of �. The drift term b(s; Tk; Tk+1) is speci�ed in such a way that L(�; Tk) becomes a PTk+1-martingale, i.
e.

b(s; Tk; Tk+1) = �1
2
h� (s; Tk) ; �s� (s; Tk)i

�
Z
Rd

�
eh�(s;Tk);xi � 1� h� (s; Tk) ; xi

�
FTk+1s (dx)

Notice that the connection between di¤erent forward measures is given by

dPTk+1
dPT?

=
n�1Y
l=k+1

1 + �lL (Tk+1; Tl)

1 + �lL (0; Tl)
=

B (0; T ?)

B (0; Tk+1)

n�1Y
l=k+1

(1 + �lL (Tk+1; Tl))

and notice that once restricted to the �-�eld Ft this becomes

dPTk+1
dPT?

����
Ft
=

B (0; T ?)

B (0; Tk+1)

n�1Y
l=k+1

(1 + �lL (t; Tl)) for every t 2 [0; Tk+1]

The Brownian motions and compensators with respect to the di¤erent measures are connected via
Girsanov theorem for semimartingales (see Theorem 48 in Chapter 1), such that

W
Tk+1
t =WT?

t �
Z t

0

�s

 
n�1X
l=k+1

� (s; Tl; Tl+1)

!
ds
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with

� (s; Tl; Tl+1) :=
�lL (Tk+1; Tl)

1 + �lL (s�; Tl)
� (s; Tl)

and

�Tk+1 (dt; dx) =

 
n�1Y
l=k+1

� (s; x; Tl; Tl+1)

!
�T

?

(dt; dx) =: FTk+1s (dx) ds

where

� (s; x; Tl; Tl+1) :=
�lL (Tk+1; Tl)

1 + �lL (s�; Tl)

�
eh�(s;Tk);xi � 1

�
+ 1

Notice that LTk+1 is not a Lévy process under any of the measures PTi (except for k = n� 1 since LT?

is by de�nition a Lévy process under PT?): However, the construction by backward induction guarantees
that B(�;Tj)

B(�;Tk) is a PTk martingale for all j; k 2 f1; :::; ng :

The Lévy forward price model The Lévy forward price model is constructed by backward induction.
It is driven by a Lévy process LT

?

(see section 1:1:3) on a complete stochastic basis (
;Ft;PT?).
The measure PT? plays the role of the forward measure associated with the settlement day T ?. Two
of the characteristics (bT

?

; �; FT
?

) of LT
?

can be chosen freely, namely � and FT
?

, whereas the drift
characteristic bT

?

will be derived later. Since we proceed by backward induction, let us denote T ? := Tn
and � := Tn�i+1 � Tn�i for any i 2 f0; :::; ng. As in the previous model we have to add the following
assumptions:

1. For any deterministic Ti there is a deterministic function � (�; Ti) : [0; Ti] ! Rd which represents
the volatility of the forward rate process L (t; Ti) : In addition

n�1X
i=1

j� (s; Ti)j �M for all s 2 [0; T ?]

where M is the constant and � (s; Ti) = 0 for s < Ti:

2. The initial term structure B(0; Ti) for any i 2 f1; :::; ng is strictly positive and strictly decreasing.

We begin by constructing the forward price with the longest maturity and postulate that

F (t; Tn�1; T
?) = F (0; Tn�1; T

?) exp

�Z t

0

� (s; Tn�1) dL
T?

s

�
subject to the initial condition

F (0; Tn�1; T
?) =

B (0; Tn�1)

B (0; T ?)

Notice that an equivalent way to write it is in terms of the forward LIBOR rate

1 + �L (t; Ti) := 1 + �L (0; Ti) exp

�Z t

0

� (s; Tn�1) dL
T?

s

�

Our goal is to specify the drift characteristic bT
?

in such a way that the forward price process
F (�; Tn�1; T ?) (or equivalently the forward LIBOR rate L (�; Tn�1)) is a martingale with respect to PT?
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. For this purpose, we choose bT
?

such thatZ t

0

D
� (s; Tn�1) ; b

T?

s

E
ds = �1

2

Z t

0

h� (s; Tn�1) ; �s� (s; Tn�1)i ds

�
Z t

0

Z
Rd

�
eh�(s;Tn�1);xi � 1� h� (s; Tn�1) ; xi

�
�T

?

(ds; dx)

where �T
?

(ds; dx) := FT
?

s (dx)ds is the compensator of the random measure � that is associated with the
jumps of LT

?

. Lemma 2:6 in Kallsen and Shiryaev (2002) yields that the forward price F (�; Tn�1; T ?)
can then be expressed as the stochastic exponential of a local martingale, namely

F (t; Tn�1; T
?) = F (0; Tn�1; T

?) Et (H (�; Tn�1))

with

H (t; Tn�1) =

Z t

0

�s� (s; Tn�1) dW
T?

s

+

Z t

0

Z
Rd

�
eh�(s;Tn�1);xi � 1

��
� � �T

?
�
(ds; dx) (3.11)

Note that H (t; Tn�1) is also a Lévy process. The stochastic exponential of a process that is a local
martingale as well as a Lévy process is not only a local martingale, but in fact a martingale (see e.g.
Eberlein, Jacod, and Raible (2005) for a proof). Hence, F (t; Tn�1; T ?) and thus also L (t; Tn�1) are
martingales.

We de�ne the forward martingale measure associated with the date Tn�1 by setting

dPTn�1
dPT?

:=
F (Tn�1; Tn�1; T

?)

F (0; Tn�1; T ?)
= ETn�1 (H (�; Tn�1))

From equation (3:11) we can immediately identify the two predictable processes � and Y in the
Girsanov�s theorem for semimartingales (see Theorem 48 in Chapter 1) that describe the change
of measure, namely

� (s) = � (s; Tn�1) and Y (s; x) = exp h� (s; Tn�1) ; xi

Notice that WTn�1
t :=WT?

t �
R t
0
�s�(s; Tn�1)ds is a standard Brownian motion with respect to PTn�1

and �Tn�1 (ds; dx) := exp h� (s; Tn�1) ; xi �T
?

(ds; dx) is the PTn�1- compensator of �. Therefore, we have
the following PTn�1 -canonical representation of LT

?

t :

LT
?

t =

Z t

0

bsds+

Z t

0

�sdW
Tn�1
s +

Z t

0

Z
Rd

x
�
�� �Tn�1

�
(ds; dx)

with a deterministic drift coe¢ cient b which can be calculated using the Girsanov�s Theorem.

Now we are ready to construct the forward price F (�; Tn�2; Tn�1) by postulating that

F (t; Tn�2; Tn�1) = F (0; Tn�2; Tn�1) exp

�Z t

0

� (s; Tn�2) dL
Tn�1
s

�
where

L
Tn�1
t =

Z t

0

bTn�1s ds+

Z t

0

�sdW
Tn�1
s +

Z t

0

Z
Rd
x
�
�� �Tn�1

�
(ds; dx)
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In order to ensure that F (t; Tn�2; Tn�1) is a PTn�1-martingale, we choose the drift characteristic b
Tn�1
s

appropriately, namely such thatZ t

0



� (s; Tn�2) ; b

Tn�1
s

�
ds = �1

2

Z t

0

h� (s; Tn�2) ; �s� (s; Tn�2)i ds

�
Z t

0

Z
Rd

�
eh�(s;Tn�2);xi � 1� h� (s; Tn�2) ; xi

�
�Tn�1 (ds; dx)

Note that LTn�1t di¤ers from LT
?

t only by a deterministic drift term. In particular, both processes are
Lévy processes under PT? and PTn�1 . Again, we can express the forward price process F (t; Tn�2; Tn�1)
as the stochastic exponential of a Lévy process and local martingale H (t; Tn�2) and use the martingale�
F (t;Tn�2;Tn�1)
F (0;Tn�2;Tn�1)

�
0�t�Tn�2

to de�ne the forward martingale measure associated with the date Tn�2 by

setting
dPTn�1
dPT?

:=
F (Tn�2; Tn�2; Tn�1)

F (0; Tn�1; Tn�1)

And proceeding as before, forward prices F (�; Ti; Ti+1) for i = n � 1; :::; 3 and forward measures PTi
for i = n � 2; :::; 2 are de�ned inductively. We obtain a model where the forward price F (�; Ti; Ti+1) is
given by

F (t; Ti; Ti+1) = F (0; Ti; Ti+1) exp

�Z t

0

� (s; Ti) dL
Ti�1
s

�
with

L
Ti�1
t =

Z t

0

bTi�1s ds+

Z t

0

�sdW
Ti�1
s +

Z t

0

Z
Rd
x
�
�� �Ti�1

�
(ds; dx)

where WTi�1
t is a PTi�1-standard Brownian motion and �Ti�1 is the PTi�1-compensator of �, given by

�Ti�1 (ds; dx) = exp

0@i�1X
j=1



�
�
s; T ?j

�
; x
�1AFT

?

t (dx) ds

and the characteristic bTi�1 satis�esZ t

0



� (s; Ti�2) ; b

Ti�1
s

�
ds = �1

2

Z t

0

h� (s; Ti�2) ; �s� (s; Ti�2)i ds

�
Z t

0

Z
Rd

�
eh�(s;Ti�2);xi � 1� h� (s; Ti�2) ; xi

�
�Ti�1 (ds; dx)

Notice that the driving processes LTit di¤er only by deterministic drift terms. Hence, all of them are
Lévy processes with respect to each forward measure.
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3.2 The LIBOR Market Model driven by a LIBOR additive
process

Under the conditions and assumptions given in sections 3:1:2 and 3:1:3, in the present section, we char-
acterize the functional forms of the LIBOR Market Model (LMM) driven by a LIBOR additive
process, and more speci�cally, when we consider the existence of credit risk. Basically our aim in this
section is to recover the functional form of LMM under di¤erent martingale measures with credit risk.

LMMs have been developed in Brace, Gatarek, and Musiela (1997), Miltersen, Sandmann,
and Sondermann (1997), and Jamshidian (1997) to construct an arbitrage-free term structure model
which is consistent with the market practice of pricing caps and �oors by Black�s formula. Black�s
formula for caps is motivated by the option formula of Black and Scholes (1973) and implies that the
LIBOR rates follow a geometric Brownian motion. We propose a more general model where the driving
process of the LIBOR rates is a general Lévy process instead of a Brownian motion. An introduction to
LIBOR models can be found in several textbooks and articles, e.g. inMusiela and Rutkowski (1998),
Brigo and Mercurio (2001), or Rutkowski (2001).

This chapter is linked to the recent developments given byGlasserman and Kou (2001), Jamshidian
(1999) and to Eberlein and Özkan (2005). In Glasserman and Kou (2001) the term structure of
LIBOR rates is driven by a jump di¤usion process. In this case the purely discontinuous part is of bounded
variation. In Jamshidian (1999) the LIBOR rate process is driven by a general semimartingale, but
the pricing is not considered. Basically, it is in Eberlein and Özkan (2005) where the LIBOR market
model is driven by Lévy processes, and using Björk, Di Masi, Kabanov, and Runggaldier (1997),
they derive the functional forms for the LMM under di¤erent martingale measures. This chapter can be
seen in parts as a special case of the Eberlein and Özkan approach, but we specify the driving process
as a LIBOR additive process.

This section is organized as follows:

- Subsection 1 is devoted to introduce the concept of change of measure in the LIBOR market
model driven by a LIBOR additive process. Following closely Björk, Di Masi, Kabanov, and
Runggaldier (1997) we introduce the basic tools to change the measure in this new framework.

- Basically the next subsections are examples of the �rst, in the sense that we obtain the functional
form of LMM driven by LIBOR additive process, under risk neutral measure.

- And it is in subsection 3 where we introduce the concept of forward neutral measure and we
obtain speci�c functional forms for LMM driven by LIBOR additive process, under forward neutral
measure.

3.2.1 General framework: an introduction to the extended LMM

This �rst section introduces the basic tools to proceed with the change of measure under the framework
of forward LMMs. Basically it is a direct application of the Girsanov�s theorem already mentioned
and described in Chapter 1 (Theorem 48)

Assume that we are given a family of B (t; Ti; c) defaultable bond prices and thus also the collection
FB (t; Ti; U; c) of forward price processes. According to Section 3:1:2, we have seen that the forward price
FB (t; Ti; T

?; c) for the future date Ti � T ? prevailing at time t and for any credit rate c 2 Kn f1g ; is
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given by the well-known expression

FB (t; Ti; T
?; c) =

B (t; Ti; c)

B (t; T ?; c)

= exp

8<: X
i�j�n

Z Ti+1

Ti

f (t; s; c) ds

9=;
Assume that, under P?; we are given a family FB (t; Ti; T ?; c) of forward processes satisfying

dFB (t; Ti; T
?; c) = FB (t�; Ti; T ?; c) � dGc;T

?

t

with initial condition

FB (0; Ti; T
?; c) =

B (0; Ti; c)

B (0; T ?; c)

Notice that assuming that Pi t P?, and by Jacod and Shiryaev (2003) (Theorems III:3:24, III:5:19,
III:5:35), we can rede�ne FB (t; Ti; T ?; c) under any equivalent forward measure Pi as

FB (t; Ti; T
?; c) = FB (0; Ti; T

?; c) � E
�
Gc;Ti;T

?

t

�
where E

�
Gc;Ti;T

?

t

�
is the theDoléans-Dade exponential. More speci�cally, there exists a deterministic

sequence of processes
�
�j(t)

�
and a measurable deterministic sequence (Yj (t))�

� =
�
�j(t)

�
; a sequence of predictable processes

Y = (Yj(t)) ; a sequence of P-measurable nonnegative functions

called Girsanov�s quantities such that

FB (�; Ti; T ?; c) = FB (0; Ti; T
?; c) exp

0@ X
j��(t)

Z Tj^t

Tj�1

�j (s; Ti; T
?; c) dWT?

s

�1
2

X
j��(t)

Z Tj^t

Tj�1

�2j (s; Ti; T
?; c) ds

+
X
j��(t)

Z Tj^t

Tj�1

Z
Rd
(Yj (s; Ti; T

?; c)� 1)
�
�cj � �

c;T?

j

�
(dt; dx)

+
X
j��(t)

Z Tj^t

Tj�1

Z
Rd
(Yj (s; Ti; T

?; c)� 1� lnYj (s; Ti; T ?; c))�c;T
?

j (dt; dx)

1A

Furthermore, recall that the notion of forward �-LIBOR rate L (t; Ti; c) for the future date Ti � Ti� �
prevailing at time time t and for any credit rate c 2 Knf1g ; is given by the well-known formula

1 + �L (t; Ti; c) := FB (t; Ti; Ti+1; c)

and notice that the forward process can be written as

FB (t; Ti; Ti+1; c) =
FB (t; Ti; T

?; c)

FB (t; Ti+1; T ?; c)
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hence

FB (t; Ti; Ti+1; c) = FB (0; Ti; Ti+1; c) exp

0@ X
j��(t)

Z Tj^t

Tj�1

�j (s; Ti; Ti+1; c) dW
T?

s

�1
2

X
j��(t)

Z Tj^t

Tj�1

�
�2j (s; Ti; T

?; c)� �2j (s; Ti+1; T ?; c)
�
ds

+
X
j��(t)

Z Tj^t

Tj�1

Z
Rd
(Yj (s; Ti; Ti+1; c)� 1)

�
�cj � �

c;T?

j

�
(dt; dx)

+
X
j��(t)

Z Tj^t

Tj�1

Z
Rd

�
ln
�
Y 0j (s; Ti; Ti+1; c)

�
� Yj (s; Ti; Ti+1; c) + 1

�
�c;T

?

j (dt; dx)

1A
where we have to substitute

�j (s; Ti; Ti+1; c) = �j (s; Ti; T
?; c)� �j (s; Ti+1; T ?; c)

Yj (s; Ti; Ti+1; c) = Yj (s; Ti; T
?; c)� Yj (s; Ti+1; T ?; c)

Y 0j (s; Ti; Ti+1; c) =
1 + Yj (s; Ti; T

?; c)

1 + Yj (s; Ti+1; T ?; c)

The PT? dynamics of FB (�; Ti; Ti+1; c) can again be derived by Itô formula

dFB (t; Ti; Ti+1; c) = FB (t�; Ti; Ti+1; c)
�
�j (s; Ti; Ti+1; c)

�
dWT?

s � �j (s; Ti; T ?; c) dt
��

+

Z
Rd
(Yj (s; Ti; Ti+1; c)� 1)

�
�cj � �

c;T?

j

�
(dt; dx)

+

Z
Rd

�
Y 0j (s; Ti; Ti+1; c)� Yj (s; Ti; Ti+1; c)� 1

�
�c;T

?

j (dt; dx)

�

Notice that usingGirsanov�s theorem (see Chapter 1, Theorem 48), we can de�ne a measure Pi t P?
with the property

WTi
t :=WT?

t �
X
j��(t)

Z Tj^t

Tj�1

�j (s; Ti; Ti+1; c) ds

and
�c;Tij (dt; dx) := (Yj (s; Ti+1; T

?; c)� 1) �c;T
?

j (dt; dx)

hence under Pi

dFB (t; Ti; Ti+1; c) = FB (t�; Ti; Ti+1; c)
�
�j (s; Ti; Ti+1; c) dW

Ti
s

+

Z
Rd

�
Y 0j (s; Ti; Ti+1; c)� 1

� �
�cj � �

c;Ti
j

�
(dt; dx)

�
is a martingale.
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Let us study now the dynamics of the forward LIBOR rates under Pi

dL (t; Ti; c) =
1

�
dFB (t; Ti; Ti+1; c)

=
1

�
FB (t�; Ti; Ti+1; c)

�
�j (s; Ti; Ti+1; c) dW

Ti
s

+

Z
Rd

�
Y 0j (s; Ti; Ti+1; c)� 1

� �
�cj � �

c;Ti
j

�
(dt; dx)

�
=

1

�
(1 + �L (t�; Ti; c))

�
�j (s; Ti; Ti+1; c) dW

Ti
s

+

Z
Rd

�
Y 0j (s; Ti; Ti+1; c)� 1

� �
�cj � �

c;Ti
j

�
(dt; dx)

�
hence under Pi

dL (t; Ti; c) = L (t�; Ti; c)
�
�1j (s; Ti; c) dW

Ti
s +

Z
Rd
�2j (s; Ti; c)

�
�cj � �

c;Ti
j

�
(dt; dx)

�
where

�1j (s; Ti; c) =
1 + �L (t�; Ti; c)
�L (t�; Ti; c)

�j (s; Ti; Ti+1; c)

�2j (s; Ti; c) =
1 + �L (t�; Ti; c)
�L (t�; Ti; c)

�
Y 0j (s; Ti; Ti+1; c)� 1

�

3.2.2 No-arbitrage conditions under the risk-neutral measure

Our purpose, in the present section, is to give the appropriate drift-restrictions in order to �nd the LIBOR
rate dynamic under the martingale (or equivalently, a risk-neutral) measure, for a given credit level of
rating c 2 Knf1g.

Recall that the tenor � > 0; with � � T ? � Ti for any i = 0; 1; :::; n then the �-forward LIBOR rates
de�ned (see section 3:1) by

L (t; Ti; c) =
1

�
(FB (t; Ti; Ti+1; c)� 1)

=
1

�

�
B (t; Ti; c)

B (t; Ti+1; c)
� 1
�

The �� forward LIBOR rate coincides with the forward swap rate of a single period swap settled
in arrears. The next theorem is an adaptation of Glasserman and Kou (2003), and Eberlein and
Özkan (2005) and it states the dynamics of L (t; Ti; c) under the risk-neutral measure.

Theorem 101 If f (t; T; c) satis�es the dynamics that appear in (2:36) then the dynamics of L (t; Ti; c)
under Q (risk-neutral probability) is given by

�

1 + �L (t; Ti; c)
dL (t; Ti; c) = ��i

X
�(t)�j�i

��jdt+ �
�
i dWu

+

Z
Rr

�
e�

�
i � 1 + e

P
�(t)�j�i �

�
j

�
e�

�
i+1 � 1

��
�ci (dt; dx)

+

Z
Rr

�
e�

�
i � 1

�
(�ci � �ci ) (dt; dx)
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with

��i =

Z Ti+�

Ti

�i (t; s; c) ds

��i =

Z Ti+�

Ti

�i (t; x; s) ds

Proof. Following similar ideas as Eberlein and Özkan (2005), we get

FB (t; Ti; Ti + �; c) = 1 + �L (t; Ti; c)

=
B (t; Ti; c)

B (t; Ti+1; c)

=
B (0; Ti; c)

B (0; Ti + �; c)
exp

24 X
j��(t)

Z t^Tj+1

Tj

(aj (u; Ti; c)� aj (u; Ti+1; c)) du

+
X
j��(t)

Z t^Tj+1

Tj

(bj (u; Ti; c)� bj (u; Ti+1; c)) dWu

+
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
(h (u; x; Ti)� h (u; x; Ti+1)) 1fjxj�1g�cj (du; dx)

35

We know that the dynamic of the LIBOR rate is related to the dynamics of the forward process in the
following way

�dL (t; Ti; c)

1 + �L (t; Ti; c)
=

dFB (t; Ti; Ti+1; c)

FB (t�; Ti; Ti+1; c)

Since FB (t; Ti; Ti+1; c) is a positive semimartingale, it can be expressed as the stochastic exponential
of the stochastic logarithm

log (FB (t; Ti; Ti+1; c)) =

Z
dFB (t; Ti; Ti+1; c) /FB (t�; Ti; Ti+1; c)

and this process can be represented as follows (based on Kallsen and Shiryaev (2002) Lemma 2:4 and
Jacod and Shiryaev, Theorem II:8:3):

log (FB (t; Ti; Ti+1; c)) = log

�
FB (t; Ti; Ti+1; c)

FB (0; Ti; Ti+1; c)

�
+
X
j��(t)

Z t^Tj+1

Tj

1

2F 2B (s�; Ti; Ti+1; c)
d hF cB (�; Ti; Ti+1; c) ; F cB (�; Ti; Ti+1; c)i

�
X
j��(t)

Z t^Tj+1

Tj

Z
Rr

�
log

�����1 + x

FB (s�; Ti; Ti+1; c)

�����

� x

FB (s�; Ti; Ti+1; c)

�
�FB ;cj (ds; dx)

Following Eberlein and Özkan (2005) and introducing the martingale assumption (EMM) we have
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that

dFB (t; Ti; Ti+1)

FB (t�; Ti; Ti+1)
= (bj (t; Ti; c)� bj (t; Ti+1; c)) bj (t; Ti+1; c) dt

+(bj (t; Ti; c)� bj (t; Ti+1; c)) dWt

+

Z
Rr

�
eh(t;x;Ti)�h(t;x;Ti+�) � 1 + eh(t;x;Ti+�) � eh(t;x;Ti)

�
�ci (dt; dx)

+

Z
Rr

�
eh(t;x;Ti)�h(t;x;Ti+�) � 1

�
(�ci � �ci ) (dt; dx)

Also notice that if we de�ne

��i : = bj (t; Ti; c)� bj (t; Ti+1; c) =
Z Ti+1

Ti

�i (t; s; c) ds

��i : = h (t; Ti; x)� h (t; Ti+1; x) =
Z Ti+1

Ti

�i (t; s; x) ds

we �nally obtain the expression

�

1 + �L (t; Ti; c)
dL (t; Ti; c) = ��i

X
�(t)�j�i

��jdt+ �
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i dWt
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P
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�ci (dt; dx)

+
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�
(�ci � �ci ) (dt; dx)

The next theorem shows the drift constraints in order to obtain the risk-neutral measure. It is an
adaptation of Proposition 3:15 in Bjork et al. (1997), Theorem 3:1: of Glasserman and Kou (2003)
or Eberlein and Özkan (2005).

Theorem 102 For any i = 0; 1; :::; n let �i(:) be a bounded Rd valued function and �i (t; x; s) : R+�Rr !
(�1;1) be deterministic. Then our default-free LIBOR model

dL (t; Ti; c)

L (t�; Ti; c)
= �i (t; Ti; c) dt+ �i (t; Ti; c) dWt +

Z
Rr
� (t; x; Ti) (�

c
i � �ci ) (dt; dx)

is arbitrage-free if the drift takes the following expression

�i (t; Ti; c) =
iX

j=�(t)

��j (t; Tj ; c)�i (t; Ti; c)L (t�; Tj ; c)
1 + �L (t�; Tj ; c)

+

Z
Rr
�i (t; x; Ti)

0@1� iY
j=�(t)

1 + �L (t�; Tj ; c)
1 + �L (t�; Tj ; c) (1 + �j (t; x; Ti))

1A �ci (t; dx)

Proof. For the sake of clarity, let us skip the notation related with the conditional credit rating.
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Therefore, we know that

�

1 + �L (t; Ti)
dL (t; Ti) = ��i

X
�(t)�j�i

��jdt+ �
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i dWu

+
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Let us de�ne

��i =

Z Ti+�

Ti

�i (t; s) ds :=
��i (t)L (t; Ti)

1 + �L (t; Ti)

��i =

Z Ti+�

Ti
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�
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�
so that X
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e
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=
iY
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:

Hence, we have that the �rst part of the stochastic di¤erential equation can be written as:

1 + �L (t�; Ti)
�

��i
X

�(t)�j�i

��jdt =
1 + �L (t�; Ti)

�

��i (t)L (t�; Ti)
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X
�(t)�j�i
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dt

= L (t�; Ti)
X

�(t)�j�i

��j (t)�i (t)L (t�; Ti)
1 + �L (t�; Ti)

dt

and working in the second part, we obtain

1 + �L (t�; Ti)
�

��i dWt =
1 + �L (t�; Ti)

�

��i (t)L (t�; Ti)
1 + �L (t�; Ti)

dWt

= �i (t)L (t�; Ti) dWt
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the fourth part will be

1 + �L (t�; Ti)
�
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and using the last result, the third part can be re-written as
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1 + �L (t�; Ti) (1 + �j (t; x))

1A1A �i (dt; dx)

= L (t�; Ti)
Z
Rr
�i (t; x)

0@1� iY
j=�(t)

1 + �L (t�; Ti)
1 + �L (t�; Ti) (1 + �j (t; x))

1A �i (dt; dx)

Finally, combining the last four results, we conclude that

dL (t; Ti)

L (t�; Ti)
=

0@ X
�(t)�j�i

��j (t)�i (t)L (t�; Ti)
1 + �L (t�; Ti)

+

Z
Rr
�i (t; x)

0@1� iY
j=�(t)

1 + �L (t�; Ti)
1 + �L (t�; Ti) (1 + �j (t; x))

1A �i (t; dx)

1A dt

+�i (t) dWt

+

Z
Rr
�i (t; x) (�i � �i) (dt; dx)
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3.3 LIBOR additive model calibration to swaptions markets

To have a robust and e¢ cient algorithm is a central topic in the successful implementation of a model.
The amount of reality that the model can collect is not only related with the sort of process that drives
the model but also with the calibration methodology that you use to substract the information from
the market prices. Therefore the calibration of the �nancial models has become an important topic in
�nancial engineering because of the need to price increasingly complex options in a consistent way with
prices of standard instruments liquidly traded in the market. The selection of the calibration methodology
is a crucial step in the correct implementation of the model.

Let us recall that the sort of non-homogeneous processes studied in Chapter 1 can be divided into
two categories: in the �rst category, called jump-di¤usion models, the �normal�evolution of prices or
interest rates is given by di¤usion processes, punctuated by jumps at random intervals. Here the jumps
represent rare events (crashes and large breakdowns). Such an evolution can be represented by modelling
the interest rates as a non-homogeneous Lévy process with a nonzero Gaussian component and a jump
part, which is a compound Poisson process with �nitely many jumps in every time interval. In these
models, the dynamic structure of the process is easy to understand and describe, since the distribution
of jumps sizes is known. Examples of such models are the Merton (1976) jump-di¤usion model with
Gaussian jumps and Kou (2002) model with double exponential jumps. They are easy to simulate and
e¢ cient Monte Carlo methods for pricing path-dependent options can be used. Models of this type
perform quite well for the purposes of implied volatility smile interpolation. However they rarely lead to
closed-form densities: statistical estimation and computation of moments or quantiles may be di¢ cult.

The second category consists of models with an in�nite number of jumps in every interval, which we
will call in�nity activity models. In these models one does not need to introduce a Brownian motion as
a component in the model since the dynamics of the jumps is already rich enough to generate nontrivial
small time behavior (see Carr, Geman, Madan and Yor (2002)) and it has been argued in Madan
(2001) or Geman (2002) that such models give a more realistic description of the price process at various
time scales. In addition, many models from this class can be constructed via Brownian subordination
which gives them additional analytical tractability compared to jump-di¤usion models.

But independently of the category of the process that drives our model, the practitioner has to guar-
antee two properties in the calibration process:

- �rst, the calibration solution has to be unique and global and this sort of results are only possible
if the calibration problem is a convex problem,

- and second, the calibration process has to provide an indication of the sensitiveness of our cali-
bration to market movements (robustness). It is usually given as the dual solution of the convex
problem.

Basically, the main goal in this section is to propose a convex problem that provides a unique
and global solution for the primal and a solution in the dual problem that will be an indicator of
robustness. Our proposal is related with how to calibrate and work with the �rst category of models
using convex programming methods. Notice that as a direct implication of the Lévy-Itô decomposition
is that every Lévy process is a combination of a Brownian motion with drift and a possibly in�nite sum
of independent compound Poisson process (see Theorem 9 in section 1:1:3). This also means that every
LIBOR additive process can be approximated with arbitrary precision by a sequence of jump-di¤usion
processes (Theorems 40 and 41 in section 1:6), that is by a sum of a sequence of Brownian motions with
drifts and a sequence of compound Poisson process, a point which is useful not only in theory but also
from the practitioner point of view.

Therefore this section contains three di¤erent parts:
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- The �rst part (section 3:3:1) gives basically a brief introduction about what we called two-steps
calibration

- The second part (section 3:3:2) is devoted to the �rst-step calibration or calibration to the continuous
part of the model. Using the at-the-money swaption volatilities, we propose a convex methodology
to obtain the term structure of instantaneous volatilities and covariances from the market data.

- In the third part (section 3:3:3), our aim is to propose the second-step calibration as an inverse
problem to calibrate the sequence of Lévy measures according to the information given by the
smile/skew in the swaption market.

3.3.1 An Introduction to the two-steps calibration for the LIBOR additive
process

From the beginning of the present thesis, the reader would wonder to know the advantages of this new
stochastic process, the LIBOR additive process, in the interest rates modelling. This subsection will
show brie�y the main reason: the double-calibration of this process against a non-homogeneous swaption
market with volatility smiles. Basically the idea is simple: according to the Lévy-Itô decomposition of
the LIBOR additive process (Theorems 40 and 41 in section 1:6), we can de�ne the calibration problem
as an inverse problem of a sequence of triplets that completely characterize the entire process.

Let us consider the following discretization in [0; T ?] ; 0 < T1 < ::: < Tn = T ?: Let us de�ne the price
of a payer swaption at time t as PS(t; Ti; Tj ; �?i;j ;K

h
i;j) as a call-option to get into a swap that begins

in Ti and �nish in Tj with the swap rate S (t; Ti; Tj) (underlying of the option) with strike Ki;j and
0 < i � j � n; and where �?i;j is the Black (1976) cumulative variance of swaption on S (t; Ti; Tj) for the
mentioned strike Ki;j quoted in the swaption market.

Proposition 103 The general calibration problem at the moment t can be written as an inverse prob-
lem de�ned as

(
i; Ai; �i)i2f1;:::;ng = arg inf
mX

h=�m

nX
i=1

nX
j=i+1

�
!hij


PS�(t; Ti; Tj ; Ai; �i;Kh

i;j)� PSM (t; Ti; Tj ; �?i;j ;Kh
i;j)


�

(3.12)
where, on the right part of the equality, we have denoted as PS�(t; Ti; Tj ; Ai; �i;Kh

i;j) the theoretical
payer swaption price in t, given by our model, and de�ned as the value of an option with maturity Ti
that gives to the holder the right to get into a forward payer swap between Ti and Tj settled in arrears,
with 0 < i � j � n, and PSM (t; Ti; Tj ; �?i;j ;K

h
i;j) as the market value of a payer swaption in t;

priced using Black-76 model, with strike Kh
i;j ; where h 2 N such that if h = 0 then FSt

�
K0
i;j

�
= 0

(at-the-money case), and market volatility �?i;j such that(
PS�(t; Ti; Tj ; Ai; �i;K

h
i;j) = EP?

n
B(t; Ti)

�
FSTi

�
Kh
i;j

��+���Fto
PSM (t; Ti; Tj ; �

?
i;j ;K

h
i;j) = Black(t; Ti; Tj ; �

?
i;j ;K

h
i;j)
P
i�j B (t; Ti) �i

and (
i; Ai; �i)i=1;:::;n is the sequence of triplets consisting of8><>:

i 2 Rd
Ai = (�ij) ; a d� d symmetric non-negative matrix, with d = n� i+ 1
�i a positive measure on Rdn f0g with

R
Rd

�
jgj2 ^ 1

�
� (dg) <1

Proof. Notice that the basic underlying that is moved by the LIBOR additive process is the
forward LIBOR rates, according to the model speci�ed in this chapter. Let us consider the usual
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payer swaption de�nition that we have to price it using our model is

PS�(t; Ti; Tj ; Ai; �i;K
h
i;j) = EP?

n
B(t; Ti)

�
FSTi

�
Kh
i;j

��+���Fto
= EP?

8<:B(t; Ti)
0@EP?

0@ jX
�=i+1

B (Ti; T�)
�
L (t; T��1)�Kh

i;j

�
�j

������FTi
1A1A+������Ft

9=;
that after simple manipulations and using assumptions in 3:1:3 related with swaps and swaptions, then
this yields, as expected

PS�(t; Ti; Tj ; �
?
i;j ;K

h
i;j) = EP?

8<:B (t; Ti)
0@1� jX

�=i+1

c�B(Ti; T�)

1A+������Ft
9=;

or in other words, the payer swaption may also be seen as a put option on a coupon-bearing bond, where
c� = Kh

i;��� when � = i; :::; j � 1 and cj = 1 +Kh
i;j�j when � = j:

Additionally, notice that using the same approximation that has already been employed by Brace,
Gatarek and Musiela (1997) we can write the payer swaption value as a function of the LIBOR rates
as

PS�(t; Ti; Tj ; �
?
i;j ;K

h
i;j) = B (t; Ti)EP?

8<:
0@1� jX

�=i+1

c�B(Ti; T�)

1A+������Ft
9=;

= B (t; Ti)EP?

8<:
0@1� jX

�=i+1

c�

��1Y
l=i+1

(1 + ��L (Ti; Tl))
�1

1A+������Ft
9=;

= B (t; T ?)EP?

8<:
n�1Y
l=�+1

(1 + �jL (Ti; Tl))

0@1� jX
�=i+1

c�

��1Y
l=i+1

(1 + ��L (Ti; Tl))
�1

1A+������Ft
9=;

= B (t; T ?)EP?

8<:
0@� jX

�=i

0@c� n�1Y
l=j

(1 + ��L (Ti; Tl))

1A1A+������Ft
9=;

where the dynamics of the forward LIBOR rates driven by a LIBOR additive process, is speci�ed as

L (t; Tk) = L (0; Tk) exp

�Z t

0

�j (s; Tk) dG
T?

s

�

We have proved in Chapter 1 (Section 1:3) that this process is uniquely determined in law by its
sequence of triplets (
i; Ai; �i)i2f1;:::;ng consisting of8><>:


i 2 Rd
Ai = (�ij) ; a d� d symmetric non-negative matrix, with d = n� i+ 1
�i a positive measure on Rdn f0g with

R
Rd

�
jgj2 ^ 1

�
� (dg) <1

Notice that using directly the independence property between the continuous and the jump part,
implicit in the Lévy-Itô theorem (theorems 40 and 41 in section 1:6:), we can prove directly the following
proposition,

Proposition 104 The inverse problem (3:12) can be split in two di¤erent and independent inverse prob-
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lems

(1) Ai = arg inf
Pn
j=i+1

�
!0ij


PS�(t; Ti; Tj ; Ai; �i;K0

i;j)� PSM (t; Ti; Tj ; �?i;j ;Kh
i;j)


�

(2) �i = arg inf
Pm
h=�m

Pn
j=i+1

�
!hij


PS�(t; Ti; Tj ; Ai; �i;Kh

i;j)� PSM (t; Ti; Tj ; �?i;j ;Kh
i;j)


�

Therefore we can calibrate this sequence of triplets against the market separately: on one hand, the
continuous part calibration will be achieved using at-the-money swaption volatilities, and on the other
hand, the sequence of Lévy measures will be estimated using in/out -of -the-money swaption smiles for
di¤erent maturities.

The main goal of this two-step calibration is to collect as much information as we can from the market
prices, in order to simulate the most realistic possible scenarios, but also provide robust and global
solutions to the calibration problem. The methodology behind this calibration procedure is not new,
several authors have introduced these ideas in the continuous process framework or in stock market.
However, our approach has two improvements.

- In the �rst-step, we introduce some relevant changes in the SDP problem that guarantee not only the
convexity but also the stability of the solution, something essential to achieve the correct simulation
in the full-rank LIBOR additive model.

- And with the second-step of the calibration, we introduce the information given by the smile in
the swaption market directly in the sequence of the Lévy measures, creating a direct link between
jumps and smile.

3.3.2 First-step: semide�nite programming to calibrate the continuous Mar-
ket model

Obviously, a robust and e¢ cient calibration algorithm is a central element in the successful implementa-
tion of a derivatives pricing model, independently if the model is driven by semimartingales or directly by
a Brownian motion. Recent developments in interest rates modelling have led to a form of technological
asymmetry on this topic. The theoretical performance of the usual continuous models such as the al-
ready mentioned (Heath, Jarrow and Morton (HJM) (1992) or the LIBOR Market Model of Interest
Rates by Brace, Gaterek and Musiela(BGM)(1997)) allows a very �exible modelling and pricing of
the basic interest rate options (caps and swaptions) at-the-money. However, due to the ine¢ ciency and
instability of the calibration procedure, only a small part of the market covariance information (that
could theoretically be accounted for in the model) is actually exploited.

To be precise, the most common techniques to calibrate the continuous part of the model (see for
example Longsta¤, Santa-Clara and Schwartz (2000), Rebonato (2000) or Brigo and Mercurio
(2002)) are methods clearly limited. Usually it is necessary to substitute a statistical estimate to the
market information on the forward LIBOR correlation matrix because the numerical complexity and
instability of the calibration process makes it impossible to calibrate a full market covariance matrix. As
a direct consequence, these calibration algorithms fail in one of their primary mission: they are very poor
market risk visualization tools.

The forward rates covariance matrix plays an increasingly important role in exotic interest rate deriv-
atives modelling and there is a need for a calibration algorithm that allows the retrieval of a maximum
amount of covariance information from the market. As far as we know, Brace and Womersley (2000)
and d�Aspremont (2003) are the only that propose a methodology to calibrate a multivariate LIBOR
market model without assuming any �a priory�structure to the covariance matrix, based on semide�nite
programming, allowing at the same time robust and global solutions. They showed how semide�nite pro-
gramming based calibration methods provide integrated calibration and risk-management results with
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guaranteed numerical performance, the dual program having a very natural interpretation in terms of
hedging instruments and sensitivity.

Our main goal in this subsection, is to provide an extension of Brace and Womersley (2000)
or d�Aspremont (2003) methodologies that has the goal of solving the calibration problem for the
continuous part of our model, improving the stability and robustness of the Brace and Womersley
(2000) or d�Aspremont (2003) solutions. Basically, our proposal is based on a relevant change in the
objective function that allows us to skip the dependence of the solutions with respect to how to formulate
the objective function.

Introduction to the swaption calibration problem

Let us study the swaption market under the Brace, Gaterek and Musiela model. Let us de�ne the
swap rate as the �xed rate that zeroes the present value of a set of periodical exchanges of �xed against
�oating coupons on a LIBOR rate of given maturity at futures dates. Denoting by S(t; T1; Tn) a forward
swap rate at time t for an interest rate swap with �rst reset at T1 and exchanging payments at T1; :::; Tn.
It is clear that it is stochastic and under the appropriate measure swap measure Q1;n we can assume a
lognormal dynamics for the continuous part of the swap dynamics

d ~S(t; T1; Tn) = S(t; T1; Tn)�1;n (t) dW
Q1;n
t

However, analytical approximations are available for swaptions in the LIBORMarket model framework.
Indeed, Brace, Dun and Barton (1999) suggest to adopt the LIBOR forward market as the central
model for the two markets, mainly for its mathematical tractability. We will stick to their suggestion, also
because of the fact that forward rates are somehow more natural and more representative coordinates of
the yield-curve than swap rates.

To introduce the formula we will use in the following, note that a crucial role in the swap market model
is played by the Black swap volatility �?1;n(T1) entering Black�s formula for swaptions, expressed by

�?1;n(T1) : =
1

T1

Z T1

0

(�1;n (t))
2
dt

=
1

T1

Z T1

0

�
d ln ~S(t; T1; Tn)

��
d ln ~S(t; T1; Tn)

�

Notice that if we choose the LIBOR Market Model as a central model, we must resort to di¤erent
pricing techniques. It is possible to price swaptions with a Monte Carlo simulation, by simulating the
forward rates involved in the payo¤ through a discretization of the dynamics presented above, so as to
obtain the relevant zero coupon bonds and the forward swap rate. In fact, recall that we can write the
forward-swap as a basket of forwards (see Rebonato (1998))

S(t; T1; Tn) =
nX
i=1

!i (t)F (t; Ti) (3.13)

where !i are the weights (with an explicit expression) such that 0 � !i � 1 (in fact, they are always
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positive, monotone and sum to one) such that

!i (t) =
� iB(t; T1; Ti)Pn
i=2 � iB(t; T1; Ti)

=

� i

iY
j=2

1
1+�jF (t;Tj)

Pn
i=2 � i

iY
j=2

1
1+�jF (t;Tj)

One can compute, under a number of approximations, based on �partially freezing the drift� and on
�collapsing all measures�in the original dynamics, an analogous quantity �?1;n(T1) in the LMM.

We present here one of the simplest ways to deduce this formula based on a similar setting, appeared
earlier for example inRebonato (1998), and tested against Monte Carlo simulations for instance inBrigo
and Mercurio (2001). Such approximated formulae, are easily obtained, �rst, freezing the weight�s at
time 0, so as to obtain

S(t; T1; Tn) =
nX
i=1

!i (0)F (t; Ti) :

Notice that this approximation is justi�ed by the fact that the variability of the !�s is much smaller
than the variability of the forward rates. This can be tested both historically and through simulations of
the forward rates via Monte Carlo methods (see Brigo and Mercurio (2001)).

Then, let us di¤erentiate both sides and we obtain

d ~S(t; T1; Tn) �
nX
i=1

!i (0) dF (t; Ti)

= (:::) dt+
nX
i=1

!i (0)�i (t)F (t; Ti) dWi (t)

under any of the forward-adjusted measures, and compute the quadratic variation

d ~S(t; T1; Tn)d ~S(t; T1; Tn) �
nX

i;j=1

!i (0)!j (0)F (t; Ti)F (t; Tj) �i;j�i (t)�j (t) dt

and the percentage quadratic variation is 
d ~S(t; T1; Tn)

S(t; T1; Tn)

! 
d ~S(t; T1; Tn)

S(t; T1; Tn)

!
=

�
d ln ~S(t; T1; Tn)

��
d ln ~S(t; T1; Tn)

�
� 1

T1

Pn
i;j=1 !i (0)!j (0)F (t; Ti)F (t; Tj) �i;j�i (t)�j (t)

S(t; T1; Tn)2
dt

Now we can assume that freezing all forward rates in the above formula to their time-zero value�
d ln ~S(t; T1; Tn)

��
d ln ~S(t; T1; Tn)

�
� 1

T1

nX
i;j=1

!i (0)!j (0)FB (0; Ti)FB (0; Tj)

S(t; T1; Tn)2
�i;j�i (t)�j (t) dt
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and �nally we can obtain the expression for
�
�?1;n(T1)

�2
such thatZ T1

0

�
d ln ~S(t; T1; Tn)

��
d ln ~S(t; T1; Tn)

�
� 1

T1

nX
i;j=1

!i (0)!j (0)F (0; Ti)F (0; Tj)

S(t; T1; Tn)2
�i;j

Z T1

0

�i (t)�j (t) dt :=
�
�?1;n(T1)

�2
and this result proves the following proposition, given by Rebonato (1998)

Proposition 105 The LIBOR market model (squared) swaption volatility can be approximated by

�
�?1;n(T1)

�2
T1 =

nX
i;j=1

!i (0)!j (0)F (0; Ti)F (0; Tj)

S(t; T1; Tn)2
�i;j

Z T1

0

�i (t)�j (t) dt (3.14)

The quantity �?1;n(T1) can be used as a proxy for the Black volatility of the swap rate S(t; T1; Tn):
Putting this quantity in Black�s formula for swaption allows one to compute approximated swaptions
prices with the LIBOR market model (continuous part). Notice this result is obtained under a number
of assumptions, and at �rst one would imagine its quality to be rather poor. However, it turns out that
the approximation is very accurate as also pointed out by Brace, Dun and Barton (1998) and Brigo
and Mercurio (2001).

The calibration problem

In this subsection we introduce the practical implementation of the calibration program using the swaption
pricing approximation detailed above. Now, for the sake of reality, let us introduce a change of the
notation.

We suppose that the calibration data set is made of m swaptions with option maturity T� written on
swaps of maturity T� � T� for � < �; where �; � 2 N+; and T�; T� 2 fT1; :::; Tng with n 2 N+, with
market volatility given by �?�;�(T�). Notice that in our non-homogeneous case where �i (t) is of the form
� (t; Ti; Ti+1) for any i = 1; :::; n; with t < Ti and piecewise constant on intervals of size � = Ti+1 � Ti:

Therefore, the expression of the market cumulative variance, according to Rebonato�s formula (3:14),
can be expressed as

�
�?�;�(T�)

�2
T� =

Z T�

0

�X
i;j=�

!i (0)F (0; Ti)

S(0; T�; T�)

!j (0)F (0; Tj)

S(0; T�; T�)
�i;j�i (s)�j (s) ds

=

Z T�

0

�X
i;j=�

!̂i (0) !̂j (0) � �i;j (s) � ds

=

Z T�

0

Tr (
�;�As) ds

= Tr

 

�;�

Z T�

0

Asds

!
(3.15)

where As = (�i;j (s))i;j2[�;�] =
�
�i;j�i (s)�j (s)

�
i;j2[�;�] and 
�;� = !̂ (0) !̂ (0)

0
= (!̂i (0) !̂j (0))i;j2[�;�] :

These conditions show that the cumulative market variance of a particular swaption can be written
as the linear function of the forward covariance matrix, or equivalently we can say that here swaptions
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are priced as basket options with constant coe¢ cients. As detailed in Brace and Womersley (2000) or
d�Aspremont (2003), this simple approximation creates a relative error on swaption prices of 1 � 2%,
which is well within bid-ask spreads.

On the other hand, if we want to formulate the calibration problem, this conditions has to be extended
for every � = 1; :::; n in order to capture all the swaptions volatilities that the market quotes. Therefore
the calibration problem becomes, using the approximate swaption variance formula in (3:16):

Find A

subject to Tr (
i;nA) =
�
�?i;n(Ti)

�2
Ti with i = 1; :::; n

A � 0

which is a semide�nite feasible problem in the covariance matrixA 2 SN and 
i;n 2 SN ; and
�
�?i;n(Ti)

�2
Ti 2

R+ is given by the swaption market as the Black (1976) cumulative variance of swaption on S (0; Ti; Tn) :
Notice that A and 
 are block diagonal matrices that represent how the di¤erent factors disappear with
the time (see Brigo and Mercurio (2001) section 7.1) such that N = n(n� 1)=2 and Ai 2 Sn�(i�1) in
the following sense

A =

26664
A1 0 � � � 0
0 A2 � � � 0
...

...
. . .

...
0 0 � � � An

37775
where (Ai)i=1;:::;n represents the sequence of semide�nite covariance matrices that characterize the con-
tinuous part of the LIBOR additive process.

The general form of the problem proposed by Brace and Womersley (2000) or d�Aspremont (2003)
is the following:

minimize Tr (CA)

subject to Tr (
iA) =
�
�?i;n(Ti)

�2
Ti with i = 1; :::; n

A � 0
however the calibration problem gives an entire set of solutions, extremely sensible to the matrix in the
objective function C 2 SN : That is clearly the biggest drawback in this framework. The general form of
the problem that we propose to solve is the following:

Proposition 106 The general calibration problem can be written as an in�nite-dimensional linear matrix
inequality with the following objective function:

�nd k;A

subject to Tr (
iA) =
�
�?i;n(Ti)

�2
Ti with i = 1; :::; n

kA�AhistkFr � kIN
A � 0

(3.16)

or equivalently,
minimize kA�AhistkFr
subject to Tr (
iA) =

�
�?i;n(Ti)

�2
Ti with i = 1; :::; n

A � 0
(3.17)

which is a semide�nite feasibility problem in the covariance matrix A 2 SN where Ahist 2 SN is the
historical covariance matrix, k 2 R+;
i;n 2 SN ; and

�
�?i;n(Ti)

�2
Ti 2 R+ is given by the swaption market

as the Black (1976) cumulative variance of swaption on S (0; Ti; Tn) where Ti is the maturity of the
option over a swap rate at time 0 for an interest rate swap with �rst reset at Ti and exchanging payments
at Ti; :::; Tn:
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Primal-Dual SDP problem and Algorithm Implementation

According to the last proposition the general form of the problem to be solved is given by:

minimize kA�AhistkFr
subject to Tr (
iA) =

�
�?i;n(Ti)

�2
Ti with i = 1; :::; n

A � 0

Because their feasible set is the intersection of an a¢ ne subspace with the convex cone of nonnegative
vectors, the objective being linear, these programs are convex. Or in other words, their solution set is
convex as the intersection of an a¢ ne subspace with the (convex) cone of positive semide�nite matrices
and a particular solution can be found by choosing Ahist and solving the corresponding semide�nite
program. If the program is feasible, convexity guarantees the existence of a unique (up to degeneracy or
unboundedness) optimal solution.

The �rst method used to solve these programs in practice was the simplex method. This algorithm
works well in most cases but is known to have an exponential worst case complexity. In practice, this
means that convergence of the simplex method cannot be guaranteed. Since the work of Nemirovskii
and Yudin (1979) and Karmarkar (1984) however, we know that these programs can be solved in
polynomial time by interior point methods and most modern solver implement both techniques. More
importantly for our purposes here, the interior point methods used to prove polynomial time solvability
of linear programs have been generalized to a larger class of convex problems. One of these extensions is
called semide�nite programming. Nesterov and Nemirovskii (1994) showed that these programs can
be solved in polynomial time. A number of e¢ cient solvers are available to solve them, the one used in
this work is called SEDUMI by Sturm (1999). In practice, a program with n = 50 will be solved in
less than a second.

Now, let us show how the dual solution to the calibration program provides a complete description of
the sensitivity to changes in market condition. In fact, because the mentioned algorithms used to solve
the calibration problem jointly solve the problem and its dual, the sensitivity of the calibrated covariance
matrix is readily available from the dual solution to the calibration program. Notice that according to
the standard form of the primal semide�nite program, we can write the following Lagrangian

L(A; �) = �kA�AhistkFr +
nX
i=1

�i

��
�?i;n(Ti)

�2
Ti � Tr (
iA)

�
and because the semide�nite cone is self-dual, we �nd that L(A; �) is bounded below in A � 0; hence the
dual semide�nite problem becomes:

maximize �
Pn
i=1 �i

�
�?i;n(Ti)

�2
Ti

s.t. �kA�AhistkFr �
Pn
i=1 �iTr (
iA) � 0

For a general overview of semi-de�nite programming algorithms seeVandenberghe and Boyd (1996),
Nesterov and Nemirovskii (1994) or Alizadeh, Haeberly and Overton (1998). We followed the
implementation structure given in Toh, Todd and Tütüncü (1996), having adapted in C the Mathe-
matica algorithm by Brixius, Potra and Sheng (1996). Some more recent libraries including a more
e¢ cient formulation of the SOCP (quadratic, smoothness, euclidean distance ...) and L.P. constraints
are available. These include the SEDUMI 1.1 library package by Sturm (1999) for symmetric cone
programming, which we have extensively used here. One of the most e¢ cient ways to use this library
of function in Matlab is using CVX programming. CVX is a Matlab-based modeling system for convex
optimization developed by Grant, Boyd and Ye (2005).

All modern solvers as SEDUMI 1.1 in Sturm (1999) or SDPT3 in Toh, Todd and Tütüncü (1998)

141



can produce both primal and dual solutions to this problem. It is clear that this dual solution can be
used for risk-management purposes, and it is shown here as a indicator of sensibility of our calibration
problem.

Numerical Results

As a �rst attempt of calibration, let us use the well-known data from Brigo and Morini (2005). It
will allow the reader to compare the results. Therefore, we have introduced the following inputs to the
problem:

1. Initial curve of annual forward rates, as a vector with the following components (February 1st, 2002
from Brigo and Morini (2005))

F (0; 0; 1) 0:036712
F (0; 1; 2) 0:04632
F (0; 2; 3) 0:050171
F (0; 3; 4) 0:05222
F (0; 4; 5) 0:054595
F (0; 5; 6) 0:056231
F (0; 6; 7) 0:057006
F (0; 7; 8) 0:057699
F (0; 8; 9) 0:05691
F (0; 9; 10) 0:057746

2. Swaption Black volatilities (February 1st, 2002 from Brigo and Morini (2005)), where we sub-
stract just the following annual data, from 1 to 10 years,

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
1y 0:179 0:165 0:153 0:144 0:137 0:132 0:128 0:125 0:123 0:12
2y 0:154 0:142 0:136 0:13 0:126 0:122 0:12 0:117 0:115 0:113
3y 0:143 0:133 0:127 0:122 0:119 0:117 0:115 0:113 0:111 0:109
4y 0:136 0:127 0:121 0:117 0:114 0:113 0:111 0:109 0:108 0:107
5y 0:129 0:121 0:117 0:113 0:111 0:109 0:108 0:106 0:105 0:104
6y 0:125 0:118 0:114 0:1095 0:1075 0:106 0:105 0:104 0:1035 0:1025
7y 0:121 0:115 0:111 0:106 0:104 0:103 0:102 0:102 0:102 0:101
8y 0:118 0:112 0:1083 0:104 0:1023 0:1017 0:101 0:101 0:1007 0:1
9y 0:115 0:109 0:1057 0:102 0:1007 0:1003 0:1 0:1 0:0993 0:099
10y 0:112 0:106 0:103 0:1 0:099 0:099 0:099 0:099 0:098 0:098

3. Historical forward rate correlations (February 1, 2002 from Brigo and Morini (2005)),

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
1y 1 0:82 0:69 0:65 0:58 0:47 0:29 0:23 0:43 0:47
2y 0:82 1 0:8 0:73 0:68 0:55 0:45 0:4 0:53 0:57
3y 0:69 0:8 1 0:76 0:72 0:63 0:47 0:56 0:67 0:61
4y 0:65 0:73 0:76 1 0:78 0:67 0:58 0:56 0:68 0:7
5y 0:58 0:68 0:72 0:78 1 0:84 0:66 0:67 0:71 0:73
6y 0:47 0:55 0:63 0:67 0:84 1 0:77 0:68 0:73 0:69
7y 0:29 0:45 0:47 0:58 0:66 0:77 1 0:72 0:71 0:65
8y 0:23 0:4 0:56 0:56 0:67 0:68 0:72 1 0:73 0:66
9y 0:43 0:53 0:67 0:68 0:71 0:73 0:71 0:73 1 0:75
10y 0:47 0:57 0:61 0:7 0:73 0:69 0:65 0:66 0:75 1
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The following �gures compare some of the most relevant results, in terms of variance-covariance and
correlation matrices:
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Figure (1) Covariance Matrix: Historical estimation vs. risk-neutral calibration

The solution of the primal SDP problem proposed here, is the following calibrated instantaneous
forward volatility structure:

0:2264 0:2369 0:2346 0:2351 0:2398 0:2445 0:2495 0:2625 0:2788 0:3099
0:2350 0:2394 0:2487 0:2565 0:2655 0:2734 0:2831 0:3011 0:3206 0
0:2208 0:233 0:2469 0:2563 0:2662 0:2766 0:2878 0:3055 0 0
0:2091 0:2251 0:2398 0:2492 0:2611 0:2724 0:2826 0 0 0
0:2011 0:218 0:2327 0:2441 0:2570 0:2672 0 0 0 0
0:1927 0:2091 0:2256 0:2379 0:2492 0 0 0 0 0
0:1834 0:2014 0:2183 0:2288 0 0 0 0 0 0
0:1770 0:1954 0:2100 0 0 0 0 0 0 0
0:1717 0:1871 0 0 0 0 0 0 0 0
0:1663 0 0 0 0 0 0 0 0 0
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Figure (2) Correlation Matrices: Historical estimation vs. Risk-neutral calibration
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Figure (3) Implied Term Structure in the Correlation Matrix (�rst row:1y-2y-3y and second row:
4y-6y-8y)

Figures (1) and (2) show two interesting properties: First, how the shape of the implied covari-
ance matrix and historical covariance matrix look quite similar. That is an expected consequence of the
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objective function. Second, the implied covariance matrix has higher value in absolute terms than the
historical covariance matrix. This characteristic is usual in many di¤erent derivatives markets. Addi-
tionally, Figure (3) shows us the future dynamics of the variance-covariance matrix where the number
of factors decrease with time. It is easy to see the e¤ect of interpolations in the long term part of the
volatility structure, basically because of the low liquidity of the 6, 8 and 9 years swaptions.

The reader can compare that the numerical results from the original Brigo and Morini (2005) (after
rank reduction to enforce positive forward volatilities). Let us brie�y summarize here some di¤erences:

- It is clear that a �rst relevant improvement is that the procedure here exposed guarantee a semidef-
inite positive covariance matrix, something essential to achieve a correct simulation in the full-rank
LIBOR additive model.

- The second relevant property is that our procedure always guarantees a unique global solution. In
some of the other cited methodologies, usually one has multiplicity of possible solutions, some of
them with negative volatilities.

- And �nally, this procedure does not require any rank reduction, and allows us the retrieval of a
maximum amount of covariance information from the market.

Computing sensitivity and risk-model management

In this subsection, following d�Aspremont (2005), we investigate how the dual optimal solution can be
exploited to manage the sensibility of the primal solution to movements in the market. Let us suppose
that we have solved both the primal and the dual calibration problems above with market constraints
�?i;n(Ti) and let us denote with X and Y the optimal primal and dual solutions, respectively. Suppose
also that the market price constraints in the original calibration problem are modi�ed by a small amount
� 2 Rn. The new calibration problem becomes the following semide�nite program:

minimize kA�AhistkFr
subject to Tr (
iA) =

�
�?i;n(Ti)

�2
Ti +�i with i = 1; :::; n

A � 0
(3.18)

where A 2 SN is the covariance matrix that we look for, and Ahist 2 SN is the historical covariance
matrix, k 2 R+;
i;n 2 SN ; and

�
�?i;n(Ti)

�2
Ti 2 R+ is given by the swaption market as the Black (1976)

cumulative variance of swaption on S (0; Ti; Tn) : If we note A(�) the primal optimal solution to the
revised problem, we get the sensitivity of the solution to a change in market condition as:

@A(�)

@�i
= ��i (3.19)

where � is the optimal solution to the dual problem (see Boyd and Vandenberghe (2004) for details).
More speci�cally, the dual solution for the calibration problem proposed in 3.1.4 is (x 1.0e-007)

0:15590 0:01058 0:06334 0:03071 0:17700 0:11090 0:55298 0:01178 0:07040 0
0:23461 0:01677 0:09225 0:06832 0:16764 0:12237 0:55440 0:04306 0:05752 0
0:26118 0:02001 0:16164 0:07118 0:21080 0:11018 0:24672 0:02131 0 0
0:25988 0:03141 0:16433 0:04552 0:24894 0:14307 0:37939 0 0 0
0:43288 0:03126 0:12174 0:04007 0:32598 0:11148 0 0 0 0
0:44196 0:02360 0:10298 0:05126 0:26754 0 0 0 0 0
0:35816 0:02253 0:14567 0:04492 0 0 0 0 0 0
0:32410 0:02378 0:11929 0 0 0 0 0 0 0
0:36771 0:02268 0 0 0 0 0 0 0 0
0:30537 0 0 0 0 0 0 0 0 0
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This result, represented in Figure (4), shows the degree of stability of our primal solution, providing
a direct indicator of robustness, but also it illustrates how a semide�nite programming based calibration
allows to test various realistic scenarios at a minimum numerical cost and improves on the classical non-
convex methods that either had to �bump the market data and recalibrate�the model for every scenario
with the risk of jumping from one local optimum to the next, or simulate unrealistic market movements
by directly adjusting the covariance matrix.
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Figure (4) Sensibility of the primal solution (optimal dual solution)

Robust dynamic calibration

The previous sections were focused on how to compute the impact of a change in market conditions.
Here we propose two di¤erent dynamic calibration solutions to dynamically provide a robust matrix
for a certain period of market sessions (10 days). Let us assume that the initial problem (3:17) for
t = 0, therefore, in order to improve dynamically the robustness of our calibration, we solve the following
sequence of problems

minimize


A(t) �A(t�1)



Fr

subject to Tr
�

iA

(t)
�
=
�
�
?(t)
i;n (Ti)

�2
Ti with i = 1; :::; n

A(t) � 0
(3.20)

or, alternatively

minimize


A(t) �A(t�1)



Fr
+ '



A(t) �Ahist

Fr
subject to Tr

�

iA

(t)
�
=
�
�
?(t)
i;n (Ti)

�2
Ti with i = 1; :::; n

A(t) � 0
(3.21)

for every t = 1; :::; n; where A(t) 2 SN is the covariance matrix that we look for, and A(t�1) 2 SN
is the previous optimal covariance matrix solved in t � 1; i; n 2 R+ and 1 � i � n; 
i;n 2 SN ; and�
�
?(t)
i;n (Ti)

�2
Ti 2 R+ is given by the swaption market as theBlack (1976) cumulative variance of swaption

with underlying S (t; Ti; Tn) ; and '; in problem (3:21), in a regularization constant:

Here, we have three examples of calibration of LIBOR market model proposed. In all cases, we have
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used the same forward term structure and swaptions volatilities, that the market quoted from March
12th to April, 2007 23th3 . In the �rst example (Case 1 ), we solve the calibration related with the SDP
problem (3:17), and the second example (Case 2 ) is related with the proposed robust dynamic calibration
as the SDP problem (3:20) for the 10 consecutive mentioned market sessions. Additionally, we solve the
third calibration problem, regularized for a ' = 0:1; proposed as SDP problem in (3:21) as (Case 3 ).
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Figure(5) (Case 1 ) Dynamic solution from (3:17): Forward volatility structure calibrated using
correlation (from initial period (10 factors) to fourth period (7 factors))

3Data courtesy of Caja Madrid, Fixed Income Derivatives desk.
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Figure(6) (Case 2 ) Dynamic solution from (3:20): Forward volatility structure calibrated using robust
dynamic calibration (from initial period (10 factors) to fourth period (7 factors))
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Figure (7) (Case 3 with ' = 0:1) Dynamic solution from (3:21): Forward volatility structure calibrated
using robust dynamic calibration (from initial period (10 factors) to fourth period (7 factors))

It is not surprising to see in Figure (5) and Figure (6) how the second case produces more stable
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or robust results than the �rst case. Because of that, the usual daily variation in the market prices
will not a¤ect the derivatives valuation and it will minimize the variability in the hedging and greeks
computation. Figure (7) shows us an intermediate situation basically because we have introduced a
regularization term in the objective function. This third case is useful if the trader wants to introduce
any personal or historical view related with the covariance matrix but without loosing robustness.

3.3.3 Second-step: the jump-part calibration

In the previous section, we proposed a new method to obtain the calibration of the di¤usion or continuous
part, against the at-the-money swaption prices. However, during the whole thesis, we have introduced
the jump framework in order to �t the implied forward volatility structure for in-the-money and out-of-
the-money swaptions implied volatility. In order to obtain a practical solution to the calibration problem
and �t the smile, many authors have resorted to minimizing the in-sample quadratic pricing error (see, for
example, Andersen and Andreasen (2000), Bates(1996)) or Cont and Tankov (2004) but always
in the equity framework. Here, we extend some of these ideas to the Lévy-calibration problem in the
swaptions market.

Basically the idea that we expose here is related with the calibration of a sequence of Lévy-measures
under the jump-di¤usion framework. As we have shown previously, the calibration of the di¤usion part
can be made just for the at-the-money swaption prices. It guarantees the compatibility with Black at-
the-money prices. However, if the trader or practitioner wants to introduce the e¤ect of the smile in the
pricing of exotic derivatives, then we need to introduce a sequence of jump measures that adjust every
of the maturities of the option, and for the di¤erent strikes.

For a predetermined collection of dates 0 < T0 < T1 < ::: < Tn with a �xed accrual period or tenor �,
and for any t � Ti 2 [0; T ?] ; let us denote by L (t; Ti) the forward rate for the interval from Ti to Ti+1,
and PS�(t; T�; T� ; (xi;j) ; �i;K�;�) and PSM (t; Ti; Tj ; �

?
i;j ;K

h
i;j) are respectively the payer-swaption

price given by our model and payer-swaption price given by the swaption market (according to Black
(1976) model).

Following the similar idea in Andersen and Andreasen (2000) or Bates(1996) for equity markets,
notice that we can formulate the following sequence of calibration problems, for every i = 1; :::; n, we
calibrate the Lévy measures minimizing the in-sample quadratic pricing error as

(�i) = arg inf
mX

h=�m

�X
j=i+1

h
!hij
��PS�(t; Ti; Tj ; Ai; �i;Kh

i;j)� PSM (t; Ti; Tj ; �?i;j ;Kh
i;j)
��2i (3.22)

where i; j 2 f1; :::; ng ; with i � j and Kh
i;j 2

�
K�m
i;j ; :::;K

m
i;j

	
are the di¤erent strikes that the swaption

market quotes, with h 2 N such that if h = 0 then FSt
�
K0
i;j

�
= 0 (at-the-money case), or in other words

if K0
i;j = FSi;j then we have introduced at-the-money swaption, and no relevant information is added to

the calibration problem because PS�(t; Ti; Tj ; Ai; �i; FSi;j) = PSM (t; Ti; Tj ; �
?
i;j ; FSi;j):

Let us recall that an European payer swaption is an option giving the right (and no obligation) to
enter in a IRS at a given future time, the swaption maturity Ti. Usually the swaption maturity coincides
with the �rst reset date of the underlying interest rates swap (IRS). The underlying IRS length (Tj �Ti)
is called the tenor of the swaption. As we have previously mentioned, it is the market practice to value
swaptions with a Black (1976) formula.

Precisely let us de�ne the price of a payer swaption at time t as PSM (t; Ti; Tj ; �?i;j ;K
h
i;j) given by the

swaption market, as a call-option to get into a swap that begins in Ti and �nish in Tj with the swap rate
S (t; Ti; Tj) (underlying of the option) with strike Ki;j ; and where �?i;j is the Black (1976) cumulative
variance of swaption on S (t; Ti; Tj) for the mentioned strike Ki;j quoted in the swaption market, such
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that

PSM (t; Ti; Tj ; �
?
i;j ;Ki;j) = Black(t; Ti; Tj ; �

?
i;j ;Ki;j)

jX
�=i+1

B (t; T�) ��

On the other hand, the usual swaption de�nition that we have to price it using our model is

PS�(t; Ti; Tj ; Ai; �i;K
h
i;j) = EP?

8<:B (t; Ti) �FSt �Kh
i;j

��+ jX
�=i+1

B (t; T�) ��

9=;
= EP?

8<:
jX

�=i+1

B (t; T�) ��
��
S (t; Ti; Tj)�Kh

i;j

��+9=;
= EP?

n
((S (t; Ti; Tj)�Ki;j))

+
o jX
�=i+1

B (t; T�) ��

= EP?

8<:
  

j�1X
�=i

!� (t)L (t; T�)�Ki;j

!!+9=;
jX

�=i+1

B (t; T�) ��

where

L (t; Ti) =

�(t)X
j=1

(L (t ^ Tj ; Ti)� L (Tj�1; Ti))

= L (0; Ti)

�(t)X
j=1

exp

��
�j (Tj ; Ti)�

1

2
�j (Tj ; Ti)

2

�
(t ^ Tj � Tj�1)

+�j (Tj ; Ti)
�
Wt^Tj �WTj�1

�	 Nj(t^Tj)Y
l=Nj�1(Tj�1)

eYl

An example of calibration under the double exponential jump-di¤usion model

Let us assume that our LIBOR additive process follows a jump-di¤usion scheme or more speci�cally,
a double exponential jump-di¤usion or Kou (2003) model, which has two components, a continu-
ous part modeled as Brownian motion, and a jump-part with jumps having a double exponential
distribution and jump times driven by a Poisson process, assuming that

GT
?

t :=
X
j��(t)

Z t^Tj+1

Tj

�j (s; Tl) ds+
X
j��(t)

Z t^Tj+1

Tj

�j (s; Tl) dWs +
X
j��(t)

Nj(t)X
l=1

Yl

where �j under risk neutral measure has an speci�c form, Wt is the standard Brownian motion, Nj is
a Poisson process with rate �j and Yi is a sequence of independent and identically distributed of jumps
with double exponential distribution i.e. the common density of Y is given by

fY (dy) = p � �1e��1y1fy�0g + q � �2e�2y1fy<0g

where p; q � 0; p+ q = 1; �j � 0 for every j = 0; 1; :::; n; and �1 > 1; �2 > 0: Note that the means of the
two exponential distribution are 1=�1 and 1=�2 respectively.

It is clear that the Fourier transform (or characteristic function) of GT
?

t admits the (unique) repre-
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sentation given by the Lévy-Khintchine Theorem (Theorem 31 in Chapter 1), in this case

�̂t(z) = E
h
ehiz;Gti

i
=

Y
j��(t)

E
�
exp

�
iz
�
Gt^Tj+1 �GTj

���

= exp

24 X
j��(t)

(t ^ Tj+1 � Tj) �	j (z)

35
where the characteristic exponent 	j (z) equals

	j (z) = i h�j ; zi � 1
2 hz;Ajzi+

R
Rd
�
eihz;yi � 1� i hz; yi 1fjyj�1g

�
�j (dy) with z 2 Rd

where Aj is a symmetric nonnegative-de�nite (n� j + 1)� (n� j + 1) matrix given as a solution by the
�rst calibration problem, with j = 0; 1; :::; n, and �j under risk-neutral measure follows (seeGlasserman
and Kou (2003) and Kou and Wang (2004))

�j (t; Ti) =
iX

k=�(t)

��j (t; Tk)�j (t; Ti)L (t�; Tk)
1 + �L (t�; Tk)

+

Z
Rr
y

0@1� iY
k=�(t)

1 + �L (t�; Tk)
1 + �L (t�; Tk) (1 + y)

1A�j
�
p � �1e��1y1fy�0g + q � �2e�2y1fy<0g

�
dy

and the Lévy measure can be de�ned as

�j (dy) = �j
�
p � �1e��1y1fy�0g + q � �2e�2y1fy<0g

�
dy

where p; q � 0; p + q = 1; �2 > 0 and additionally the condition that �1 > 1 is imposed to ensured that
L (t�; Ti) has �nite expectations.

Therefore, the forward LIBOR rate can be described with the following SDE

dL (t; Ti)

L (t�; Ti)
= �j (t; Ti) dt+ �j (t; Ti) dWt + d

0@Nj(t)X
l=1

eYl � 1

1A
Let us recall that we interpret the swap rate as a linear combination of forward rates, and in our case
forward LIBOR rates, such that the payer swaption PS�(t; Ti; Tj ; Ai; �i;Kh

i;j) may also be seen as

PS�(t; Ti; Tj ; Ai; �i;K
h
i;j) = EP?

8<:
jX

�=i+1

B (t; T�) ��
�
S (t; Ti; Tj)�Kh

i;j

�+9=;
= EP?

8<:
0@ jX
�=i+1

!� (t)L (t; T�)�Kh
i;j

1A+9=;
jX

�=i+1

B (t; T�) ��

Let us de�ne the following two auxiliary variables

�j := ln!j (0)L (0; Tj)
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and

Xt := ln

�(t)X
j=1

exp

��
�j (s; Ti) +

1

2
�j (s; Ti)

2

�
(t ^ Tj � Tj) + �j (s; Ti)

�
Wt^Tj �WTj

�� Nj(t^Tj)Y
l=Nj(Tj�1)

eYl

then we have

S (t; Ti; Tj) =

j�1X
�=i

e��+X�

will allows us to rede�ne the value of a payer swaption in t as

PS�(t; T�; T� ; �i;K�;�) = EP?

8<:
0@��1X
j=�

e�j+Xj �K�;�

1A+9=;
�X

j=�+1

B (t; Tj) �j

We consider the modi�ed payo¤� (x;K�;�) =
�P��1

j=� e
xj �K�;�

�+
and, for the sake of clarity, setting

� =
�
�j
�
��j�� ; X = (Xj)��j�� andK�;� for T�; T� given inside the tenor structure fT1; :::; Tng 2 [0; T ?],

PS�(�;K�;�) = EP? f� (� +X;K�;�)g
�X

j=�+1

B (t; Tj) �j

=

�X
j=�+1

B (t; Tj) �j �
Z
R
� (� +X;K�;�)� (x) dx

where � is the �unknown� density of X (however, we know the Fourier transform or Lévy-Khitchine
characteristic function �̂X (z) =

Y
�+1�j��

�̂Xj
(z)).

The expectation under P�;� can be computed inverting the Fourier transform, according with Raible
(2000), in the following way

PS�(�;K�;�) =
1

2�i

Z R+i1

R�i1
e�z�̂X (z) dz

=
1

2�

Z +1

�1
e�i(R+iu)�̂X (R+ iu) du

=
e�iR

2�
lim

N;M!1

Z N

�M
e�iiu�̂X (R+ iu) du

=
e�iR

2�
lim

N;M!1

Z N

�M
e�iiu

Y
�+1�j��

�̂Xj
(R+ iu) du

that can be solved numerically, after some additional transformations, using FFT4 .

Fourier transforms have been widely used in valuing �nancial derivatives. For example, Carr and
Madan (1998) propose Fourier transforms with respect to the log-strikes prices; Geman and Yor
(1993), Fu, Madan and Wang (1999) use Fourier transform to price Asian options in the Black
Scholes setting; Fourier transforms for the double-barrier and lookback options under the CEV model
are given in Davydov and Linetsky (2001); Petrella and Kou (2004) use a recursion and Fourier
transforms to price discretely monitored barrier and lookback options. Raible (2000) proposed a method
for the evaluation of European stock options in a Lévy setting by using bilateral (or, two-sided) Fourier

4See Carr and Madan (1998)
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transforms. This approach is based on the observation that the pricing formula for European options
can be represented as a convolution. Then one can use the fact that the bilateral Laplace transform of
a convolution is the product of the bilateral Laplace transforms of the factors (the latter transforms are
usually known explicitly).

Therefore, the second step calibration problem can be formulated in the following way

(�i; �1; �2; p) = arg inf
Pm
h=�m

Pn
j=i+1

h
!hij




PS�(t; T�; T� ; Ai; �i;Kh
�;�)� PSM (t; T�; T� ; �?i;n;Kh

�;�)



i

s:t: p+ q = 1
p; q � 0

�1 > 1; �2 > 0

where the weights !hij are positive and sum to one and they re�ect the pricing error tolerance for the
swaption with maturity T� and swap ends at T� with strike Kh

�;� ; PS
M (t; T�; T� ; �

?
i;n;K

h
�;�) is directly

given by the market price of a payer swaption, Kh
�;� 2

n
K�m
�;� ; :::;K

m
�;�

o
are the di¤erent strikes that the

swaption market quotes, with h 2 N such that if h = 0 then FSt
�
K0
�;�

�
= 0 (at-the-money case).

3.3.4 Numerical Performance

The reliability of the two steps swaptions calibration depends mainly on the accuracy of the underlying
approximation (3:14) and (3:15) in the �rst calibration step. This formula has already been tested,
for instance by Brigo and Mercurio (2001) and Jackel and Rebonato (2000). Here we extend
similar tests, based on Monte Carlo simulation of the LMM dynamics calibrated using semide�nite
programming, and we compare, for payer and receivers european swaptions at-the-money, the estimated
prices using the Monte Carlo versus the theoretical Black-76 swaption value.

As we have mentioned before, let us de�ne a predetermined collection of dates 0 < T0 < T1 < ::: < Tn
with a �xed accrual period or tenor �, and for any t � Ti 2 [0; T ?] ; and by L (t; Ti) we de�ne the forward
rate for the interval from Ti to Ti+1, and PS�(t; T�; T� ; (xi;j) ; �i;K�;�) and PSM (t; T�; T� ; �?i;n;K�;�)
are respectively the payer-swaption price given by our model and payer-swaption price given by the
swaption market (according to Black (1976) model). Let us, �rst of all, discretize the continuous dy-
namics seen in Section 3.1.3. Taking logs in order to get the stronger convergence of Milstein scheme,
one obtains for every � � j � � � n with

logL (t+�t; Tj) = logL (t; Tj) + �j (t)

jX
i=�+1

�i;j�i (t) �iL (t; Ti)

1 + �iL (t; Ti)
�t

��j (t)
2

2
�t+ �j (t) (W (t+�t)�W (t)) (3.23)

where the instantaneous volatility �i (t) and correlations �i;j (t) between the n-factors has been estimated
solving the SDP problem (see Proposition 106) and they are piecewise stationary. The base scenario we
use for most of our results sets � = 1 year, n = 10 years corresponding to a ten-years term structure of
annual rates, and generating 10 points of data per year. Therefore � will take values between 1 and 5,
and � between 1 and 10 (with � < � � 10) where T� indicates the expiry date of the option and T� is the
maturity of the swaption. We generate 10.000 simulations under the terminal measure in order to reach a
two-side 98% window, according to the standard error of Monte Carlo method5 . All the swaptions priced
here using this methodology, are at-the-money swaptions, and the data set used in this simulation are
real market data (quoted March 12th; 2007)6 .

5See Glasserman and Zhao (2000) for a complete description and implementation methodology.
6Market volatilities kindly provided by Caja Madrid Capital Markets (Fixed Income Derivatives Desk) using reliable
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Figure (8) compares the prices between both methodologies and estimated relative errors (in percent-
age) between the prices generated using Monte Carlo with a LMM and Black-76. In the x-axis, the swap
maturity in years is represented as the market used to quoted swaptions, without the option term (��a);
and in the z-axis, the option expiry (payer in the left and receiver in the right side) in years.

Figure (8): Relative error (in percentage) in the payer-swaption (left) and receiver-swaption
(right) price using LMM-valuation (Monte Carlo) calibrated using SDP versus Black-76.

Not surprisingly, considering the structure of the SDP problem, Figure (8) shows that all swaptions
seem to �t reasonably well, except for the longest underlying, in line with the d�Aspremont (2003) or
Longsta¤et al. (2000). With the exception of the payer-swaption with longest option expiry, in the rest
of the cases, the price approximation appears good enough, and it con�rms the accuracy of a full-rank
calibration using SDP for at-the-money swaptions market (with 10 factors). It helps us to con�rms the
advantages of this methodology to price and hedge more sophisticated exotic swaptions, that usually have
a great price dependence of the covariance structure.

market sources. All errors are my own.
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