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Abstract. The effect of temperature on impact damage in Carbon Fiber Reinforced Plastic (CFRP) tape 
laminates produced by low velocity impact was studied by numerical simulations made to model drop 
weight tower impact tests on carbon/epoxy laminate composites. The damage model was implemented into a 
user subroutine of the finite element code ABAQUS. The model takes into account the thermal stresses 
resulting form the different thermal expansion coefficients in each ply of the laminate. The tests and 
simulations show how temperature affects the propagation of each damage mode. Matrix cracking and 
delamination are greatly affected by low temperature, while matrix crushing and fibre failure appear only in 
a small region at all the impact energies and test temperatures. 

1. INTRODUCTION 

Fibre reinforced plastics such as carbonlepoxi laminates are widely used for structural 
applications, in particular in the aerospace and aeronautical industries. During their operational 
life in these applications, the CFRP are subjected to low temperatures that could modify the 
mechanical properties of the material: cryogenic tanks, high-flying aircraft (-60°C) and 
spacecraft orbiting the Earth (-150°C when not exposed to solar radiation). At the same time, 
they can be exposed to impact loading. Unfortunately, carbonlepoxi laminates are very sensitive 
to low velocity impact, such as that of a drooped tool, which can damage the laminate and may 
result in catastrophic failure [1]. 

The behaviour of carbon fibre/epoxy laminates subjected to impact loads at room 
temperatures has been studied [2-7], but that of CFRPs under impact loading at low temperature 
is still an open question. 

Considerable effort has gone into the numerical modelling of impact behaviour in 
composites [8-10]. Although different approaches to the analysis of impact events are available, 
finite element analysis based on accurate constitutive models provides the most detailed 
information on the spatial and temporal distribution of impact damage. The models differ in 
their formulation of the failure criteria used to signal the onset of damage in a ply, but most of 
the work published on this subject has neglected the interactions between the failure modes [11-
13]. To take into account matrix cracking and fibre failure as stress raisers at laminate interfaces, 
and the influence of fibre failure, matrix cracking and through-thickness compression in 
delamination, Rou et al. [12] coupled the Chang-Chang failure criteria [11] with the 
delamination criterion of Brewer and Lagace [14]. 

Rere we evaluate the applicability of the Rou et al. criteria to predicting the non­
penetrating impact response of CFRP laminates at room and low temperatures, and to determine 
the influence of low temperature on impact damage, taking into consideration the thermal 
stresses in the laminate. 
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2. SOME EXPERIMENTAL EVIDENCE 

We impacted CFRP laminates at 20, -60 and -150 QC using a drop weight tower with a climatic 
chamber. The specimens tested were [0/90hs and [+45/-45/0/90h plates of AS4/3501-6 tape 
(fibre volume fraction 0.6). The dimensions of the coupons were 80x80 mm2

, of 2.3 or 1.6 mm 
thickness of the cross-ply and quasi-isotropic laminate. The impactor was a 3.62 kg steel rod 
with a spherically ended nose 20 mm in diameter, and impact energies ranged from 1 to 5 1. C­
Scan inspection of the impacted specimens showed a clear influence of temperature on the 
damage extension: At -150 QC the damaged zone increased up to 50% compared to that at room 
temperature (Figure 1). 

Figure 1. C-Scan image showing damage extension in the cross-ply laminate impacted at 4 J. 20 QC (left) and 

-\50°C (right). 

3. NUMERICAL MODEL 

3.1. Model Mesh 

The above-mentioned tests were simulated with ABAQUS/Explicit finite element code to 
determine the effect of the thermal conditions on the generation and propagation of the different 
types of damage. The finite element model was based on the experimental device. The element 
type is an 8-node solid element with one integration point. The laminate was modelled with one 
element per ply, and a refined mesh was used in the vecinity of the impact zone. Boundary 
conditions were imposed on some surface nodes to simulate clamping. For simplicity, the 
impactor was modelled as a rigid body. Contact was applied between the plate and the impactor, 
whose initial velocity was 0.71 to 1.82 mls. The model is shown in Figure 2. 

Figure 2. FEM model of the drop weight tower test. 
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3.2. Model material 

The composite failure material model used is based on the Hou et al. quadratic criteria [12]. It 
considers four failure modes, each linked to a damage factor. When the value of a factor equals 
one, some stresses are set to zero (Table 1). Before failure, the material is considered as 
orthotropic linear elastic. The constitutive thermoelastic equation, as well as the failure model 
was implemented into the user material subroutine of the ABAQUS code. The elastic properties 
of the ply (Figure 3) and the strength values of the failure model (Table 2) at the three testing 
temperatures were obtained from the literature [15-19 and from Hexcel Composites]. 

Table 1. Hou et al failure model 

Failure type Damage factor equation Stresses set to zero 

fibre failure ,>( ;:J +( "\;';' J 0"" O"Z' 0"3' 1"12' 1"23' 1"[3 

matrix cracking (for 0"22:0) e! = ( 0"2 J + ( ~ J + ( ~ J 
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0"2' 1"12 
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delamination (for 0"32:0) 2 _ 1 ( 0"2 J Ye0"2 0"2 (1"12 J2 e -- - +----+-
,/ 4 S12 4S1

2
2 Ye SI2 

0"3' 1"23' 1"13 

Table 2 AS4/3501-6 ply strengths at the three testing temperatures for the Hou et al damage model 

Strengths (MP a) 
Temperature Xr Yr Ye Zr S12 SI3 Sf Srn23 S123 

20°C 2137 80 160 160 105 105 135 105 84 
-60°C 2137 86 158 158 121 121 151 151 100 

-150°C 2138 97 155 155 139 139 169 139 118 
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Figure 3.Variation with temperature of Po is son coefficient (left) and elastic modulii (right) of an AS4/350J-6 tape 

ply. 
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4. SIMULATION RESULTS 

The simulation of the impact problem permitted a detailed analysis of the generation and 
propagation of damage. Figures 5 to 8 show the evolution during impact of the four damage 
factors considered in the Hou et al. model (er. em. ed. et). The four corresponding contours are 
plotted on a quarter of the laminate mesh (Figure 4) at two different times of an 8 milisecond 
impact process. Matrix cracking and crushing start soon on the face impacted by the striker, due 
to the high local compression stresses. While crushing is confined to the upper face close to the 
contact surface, matrix cracking develops extensively in the lower plies under the tensile stress 
generated by the bending of the plate. These cracks propagate along the plies and through­
thickness. Delamination occurs in the intermediate plies (layers subjected to high shear stresses), 
close to the impact zone due to the transverse and through-thickness tensile stress induced by 
contact, and also in the lower plies with the propagation of matrix cracking. Fibre fracture 
appears close to the contact zone and in the lower plies as a consequence of high in-plane 
stresses. This damage distribution, predicted by the numerical model, agrees with experimental 
observations of the specimens inspected after impact. 

Figure 4. Left: mesh showed in Figures 5 to 10. Right: contour values for damage factors in Figures 5 to 10. 

Figure 5. Fibre failure contours for a 6 J impact on a [0/90],s laminate at 20°C. Left: 2 ms. Right: 6 ms. 

Figure 6. Matrix cracking contours for a 6 J impact on a [0/90],s laminate at 20 QC. Left: 2 ms. Right: 6 ms. 

Figure 7. Matrix crushing contours for a 6 J impact on a [0190],s laminate at 20°C. Left: 2 ms. Right: 6 ms. 
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Figure 8. Delamination contours for a 6 J impact on a [0/90h laminate at 20 QC. Left: 2 ms. Right: 6 ms. 

Once the material model showed its ability to predict damage generation and propagation 
in CFRP specimens subjected to low velocity impact, the effect of the low temperature was 
examined. The cooling process before impact was simulated with ABAQUS/Standard, and the 
subsequent impulsive load with ABAQUS/Explicit. Thermally induced stresses before impact 
affects damage factors, and although most are small, that corresponding to matrix cracking 
could be relatively high (60% of the critical value at -150° C). This means that matrix cracking 
develops easily when the specimen is impacted at low temperature (Figure 9). As matrix cracks 
precede delamination, the extension of this damage is also greater at low temperature, as is 
shown by the contours depicted in Figure 10. 

Figure 9. Final matrix cracking contours ofa [0190]3s laminate impacted at 20 QC (left) and -ISO QC (right). Impact 

energy: 3 1. 

Figure 10. Final delamination contours of a [0190]3s laminate impacted at 20 QC (left) and -150 QC (right). Impact 

energy: 3 J. 

5. CONCLUSIONS 

The Hou et al failure model for fiber-reinforced composite material was implemented into a 
commercial finite element code to predict the growth and extension of damage in CFRP 
laminates subjected to low velocity impact. The damage distribution predicted by the model 
agrees with the experimental results; failed fibres, matrix cracks and delaminated surfaces 
detected by inspection of the tested laminates were located in the same zones in the numerical 
model. 

Low temperature has a marked effect on the failure of CFRP: both matrix cracking, due to 
the high in-plane thermally induced stresses, and delamination develop earlier during impact at 
low temperature and the damage extends more widely. 
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