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Abstract

It is well known that a specimen for impact testing must be optimized in terms of its dimensions. The main reason is to reduce strain
gradients due to the effects of elastic plastic wave propagation. On the other hand, when a split Hopkinson bar in tension is applied, the
net displacement of the specimen ends is very limited, usually from 2.0 to 3.0 mm. Thus, to reach a maximum strain of 0.5 the specimen
length must be reduced in dimensions from 4.0 to 6.0 mm. Consequently, small diameters or lateral dimensions and lengths must be
applied to assure one dimensional deformation. Such small lengths substantially perturb the determination of real material behavior.
So the main motivation of this study was to perform a systematic analysis, numerical and analytical, to find differences in the behavior
of short and long specimens loaded in impact tension. The finite element code ABAQUS/Explicit has been used to simulate several spec
imen lengths from 10 to 40 mm submitted to impact velocities ranging from 10 to 100 m/s.
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1. Thermoviscoplastic modeling

To study the dynamic processes of plastic deformation
in sheet metals, a well defined constitutive relation has ear-
lier been proposed. Several processes of fast deformation
have been previously studied by applying that relation: per-
foration [1], double shear by direct impact [2], the Taylor
test and fast tension test [3]. With the constitutive relation,
Eq. (1), the effect of temperature and strain rate on the flow
stress can be studied and analyzed. It is clear that the adi-
abatic increase of temperature has a substantial effect on
the flow stress and it induces a decrease in the ultimate ten-
sile stress. In order to describe precisely the behavior of
materials at high strain rates and temperatures, the equiv-
alent stress r needs to be taken as the sum of two compo-
nents rl and r* which are, respectively, the internal and the
effective stress. The first component is directly related to

the strain hardening of the material and the second defines
the contribution due to the thermal activation (a combina-
tion of temperature and strain rate). The constitutive rela-
tion can be written in terms of equivalent scalar quantities:

rðep; _ep; T Þ ¼ EðT Þ
E0

½rlðep; _ep; T Þ þ r�ð_ep; T Þ�; ð1Þ

where ep is the equivalent plastic strain, T is the absolute
temperature, E0 is the YoungÕs modulus at T 0 K and
E(T) is the evolution of the modulus as a function of tem-
perature. Eq. (1) is based to some extent on physical con-
siderations [2]. The explicit expressions for both stress
components are given below:

rlðep; _ep; T Þ ¼ Bð_ep; T Þðe0 þ epÞnðe
p
;T Þ
; ð2Þ

where Bð_ep; T Þ and nð_ep; T Þ are the modulus of plasticity
and the strain hardening exponent, respectively. These
quantities, defined by Eqs. (3) and (5), respectively, take
into account the experimental observations that the strain
hardening itself depends on temperature and strain rate.
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nð_ep; T Þ ¼ n0 1ÿ D2

T

Tm

� �

log
_e
p

_emin

� �� �� �

with

_emin 6 _e
p
6 _emax; ð3Þ

where n0 and D2 are material constants, Tm is the melting
point, _emin is the minimum strain rate which defines the
quasi-static stress strain relation, _emax is the maximum lim-
it of strain rate. where Æ�æ are the MacCauley brackets:

h�i ¼ � if �P 0;

0 if � < 0

�

ð4Þ

such that negative values of the hardening exponent are not
allowed.

For the ES mild steel (C: 0.03%, S: 0.011%, Mn: 0.203%,
Al: 0.054%, Cr: 0.041%, Ni: 0.018%) [1,2] analyzed in this
paper, the strain-hardening exponent n substantially
changes with strain rate and temperature, particularly in
the adiabatic conditions [2]. This mild steel is used for deep
drawing applications due to its large ductility. Moreover,
the effective strain rate _e

p
, which corresponds to the com-

plete transition into adiabatic conditions of deformation
is estimated as _e

p � 10 sÿ1. For strain rates higher or equal
to 102 s 1, a significant temperature increase DT is ob-
served with plastic deformation and at the same time an
intensification of the thermal softening of the material oc-
curs. The process of plastic deformation is then coupled
with temperature as will be shown later. The formula for
Bð_ep; T Þ is a function of the homologous temperature mod-
ified by strain rate [3]:

Bð_ep; T Þ ¼ B0

T

Tm

� �

log
_emax

_e
p

� �� �m� �

with

_emin 6 _e
p
6 _emax; ð5Þ

where B0 is the material constant and m is the temperature
sensitivity (usually negative).

The explicit form of the effective stress r*, given by Eq.
(6), is similar to the Arrhenius relation which describes the
kinetics of thermally activated processes:

r�ð_ep; T Þ ¼ r�
0 1ÿ D1

T

Tm

� �

log
_emax

_e
p

� �1=m
* +

with

_emin 6 _e
p
6 _emax; ð6Þ

where r�
0 is the effective stress at T 0 K, D1 is the material

constant and m* 1/m is the coefficient characterizing the
temperature and strain rate sensitivity. In adiabatic condi-
tions the quantities that are functions of temperature are
coupled via Eq. (7), which gives the increment of tempera-
ture DTadiabatic due to the plastic work converted into heat
[30].

The adiabatic increase of temperature triggers the ther-
mal softening phenomenon and reduces the rate of strain
hardening

T adiabatic ¼ T 0 þ DT adiabatic;

T adiabatic ¼ T 0 þ
b

qC

Z ep

ee

rðn; _ep; T Þ dn; ð7Þ

where b is the Taylor Quinney coefficient of plastic work
converted into heat, q is the density of material and C is
the specific heat at constant pressure. In our case C is con-
stant but generally it is a function of temperature [28,29].

The material constants used to describe the thermovisco-
plastic behavior of ES steel are given in [1 4]. It is com-
monly observed that an increase of strain rate causes an
increase of the yield and flow stress. The logarithmic rate
sensitivity m is very important in modeling of the thermovi-
scoplastic behavior of materials. This parameter, defined by
the following relation, Eq. (8), is close to m � 0.02 for the
sheet of mild steel at low strain rate for room temperature

mðT Þ ¼ o log r

o log _e
p

�

�

�

�

ep;T

with mP 0. ð8Þ

The experimental results reported in [4] have permitted
the determination of the logarithmic strain rate sensitivity
for ES steel. For the range of low strain rates 10ÿ4

6

_e
p
6 10ÿ1 sÿ1, the strain rate sensitivity is m 0.023 and in-

creases to m 0.05 for the range of high strain rates
1 6 _e

p
6 103 sÿ1 for strain level ep ¼ 0:1. However, at lar-

ger plastic strain a decrease of the strain rate sensitivity is
induced by the thermal softening of the material; this effect
is more important when the strain rate increases. It can be
stated that the apparent strain rate sensitivity which is cou-
pled with temperature strongly depends on the plastic work
accumulated during plastic deformation and converted into
heat. In general the thermal softening of the stress causes
this phenomenon. The value of the apparent strain rate
sensitivity can change at high strain rates with the specimen
geometry as will be shown later after the numerical analy-
sis, more precisely for a short specimen. If the process of
thermal softening resulting from the coupling _e

p ÿ T is
not well defined, the process of plastic deformation cannot
be studied correctly. In our case, the strong coupling _e

p ÿ T

inducing a thermal softening of the material is partly
caused by variation of the strain hardening exponent
nð_ep; T Þ, Eq. (3). When temperature or strain rate increases
then nð_ep; T Þ ! 0 which is commonly observed in dynamic
tests.

Several constitutive equations have been proposed in the
past. Those proposed by Cowper and Symonds [5] and
Johnson and Cook [6] are empirical, and in that due to
Zhao [7], an extension of the Tanimura formulation [47],
temperature effects are not included. Zerilli and Armstrong
[9] proposed a constitutive relation coupled with tempera-
ture and with some background of materials science. Next,
a comparison between some of these constitutive relations
for sheet steel ES is performed, Fig. 1. Apparently, a rela-
tively good agreement with experiment for small strains
and constant temperature is found for the relation pro-
posed by Zhao. A simple reason for this agreement is the
additive form of the relation where an increase of strain
rate causes a translation of strain stress curve toward higher
stresses. The disadvantage of all phenomenological rela-
tions formulated at constant temperature is the very limited
range of applications of all numerical simulations at high
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strain rates where adiabatic heating and material softening
trigger a variety of instabilities and changes in strain fields.
Concerning the comparison of constitutive relations with
experimental results, Fig. 1 clearly shows their divergence
from experiments. Cowper Symonds relation overesti-
mates the strain rate sensitivity since it does not account
for adiabatic heating. This relation has a completely differ-
ent range of applications, mainly the analytical solutions of
impulsively loaded structures like beams and plates, where
the temperature coupling is negligible. On the other hand,
the Johnson Cook accounts for thermal effects but clearly
underestimates strain rate sensitivity. The semi-phenome-
nological constitutive equation herein discussed matches
the experimental results in Fig. 1.

In order to verify and demonstrate the efficiency of the
thermoviscoplastic model outlined in the first part of this
paper a series of numerical simulations have been per-
formed with ABAQUS explicit [10]. The aim was to simu-
late the impact tensile test of sheet metal specimens and to
analyze the phenomenon of elastic and plastic wave prop-
agation coupled with temperature (adiabatic heating).
The simulations were performed for different initial lengths
of specimens. Some of those specimen geometries are cur-
rently applied in experiments performed in LPMM-Metz.

2. Remarks on experimental set-ups for dynamic tension

tests, scale effect in dynamic tension

The main objective of this study is to show the effect of
initial length l0, or more precisely, the effect of specimen de-
sign applied in impact tension tests. In fact, the study is
performed to prove that ‘‘dynamic behavior’’ of a material
being tested is strongly obscured by geometric effects like
the initial length. Actually, many geometries are used in dy-
namic tension without normalization of such tests. For

example, Fig. 2 shows a comparison of some specimen de-
signs used currently by different authors.

Some authors introduced original geometries with mul-
tiple specimens loaded at the same time [8,13,27]. This ap-
proach creates some technological problems with the
specimen machining. On the other hand it allows the pro-
duction of a mean material behavior, for example, six ten-
sile segments deformed at the same time [8]. In all other
cases the authors used a single-specimen geometry, where
machining is much simpler, the initial length varying within
the limits with 5 6 l0 6 100 mm for most of them (with the
exception of that due to Huh which is 2 mm long). More-
over, those different geometries are used with different
equipment, like fast hydraulic machines and split Hopkin-
son set-ups [33]. In LPMM-Metz the true direct tension
arrangement based on the inverted split Hopkinson bar
has been introduced [15]. Such configuration of dynamic
tension test with large displacement DX � 30 mm was first
proposed by Klepaczko in 1995. Some experimental tech-
niques also allow direct impact tension to be performed
[14,25,26,31,32,38]. In conclusion, the result of using differ-
ent geometries for the same type of equipment will be that
some differences may appear due only to specimen dimen-
sions [25,37].

3. Numerical simulation of impact tension test

3.1. Specimen geometries and simulation model

During the numerical simulations six geometries have
been considered, Table 1, with the initial length varying
as discussed previously from 5 to 100 mm; the thickness
is assumed constant t 0.8 mm. Of course, the range of
length around l0 100 mm would never be used in dy-
namic loading but it is included just to cover a standard

Fig. 1. Strain rate effects on the flow stress at small strain as predicted by

different phenomenological formulations.

Fig. 2. Some specimen geometries used to study behavior of sheet steel in

tension impact and quasi static tests.
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length and accentuate some effects such as inertia at impact
loading.

A representative mesh of the model used in the numeri-
cal simulations is shown in Fig. 3. This optimized mesh has
been obtained by a convergence study, and no geometric
defects were introduced along the axis. A 3D calculation
has been performed using an 8-node reduced integration
hourglass control solid element (C3D8R in ABAQUS
notation) [10]. The boundary conditions, as shown in
Fig. 3, are: the displacement of the left specimen side is
blocked and the right side is loaded by an impact velocity
V0, inducing a dynamic loading which triggers a combina-
tion of elastic and plastic wave propagation. The imposed
velocity V0 remains constant during the process of plastic
deformation.

All simulations have been performed with the constitu-
tive relations outlined in the first part of this paper, the
material adopted is the mild steel ES [4]. During the numer-
ical simulations the constitutive relation has been coupled
with an original thermoviscoplastic algorithm allowing to
calculate the equivalent quantities. The details are reported
in [39,40]. To demonstrate the efficiency of our thermovi-
scoplastic approach, the stress strain curves obtained
through numerical simulation of tensile tests at two differ-
ent strain rates were compared to that given by Eqs. (1)
(7). As shown in Fig. 4, the compared curves are coincident

and the difference appears only when the necking takes
place since the constitutive relation defines only the homo-
geneous behavior. The consistency algorithm has also been
validated for the Taylor test by comparing the numerical
results obtained with ABAQUS (commercial version) and
ABAQUS coupled with this algorithm (VUMAT) for a
Johnson Cook hardening equation. The results yield a
good agreement [39].

Having demonstrated the efficiency of the constitutive
relation and consistent algorithm [39,40] a FE analysis of
the dynamic tension test is reported next to complete some
previous FE simulations such as dynamic ring expansion
[41], crash-box test, Taylor test [39] and shear test [2].

3.2. Analysis of the numerical results

The first task was to compare the strain rate effects for
all geometries studied for strain rates varying from 102 s 1

to 103 s 1 . In this range of strain rates adiabatic heat-
ing occurs. In fact, for this material the strain rate which
defines the transition between isothermal and adiabatic
behavior is approximately 10 s 1. This level of strain rate
causes a change of the strain hardening coefficient due to
thermal softening. For strain rates lower than 10 s 1 (iso-
thermal conditions) the curve rðep; _ep; T Þ shows the same
order of strain hardening (the translated shape). The out-
put stress has been defined by two different definitions. In
the first case, the force has been calculated on the opposite
side of impact (left) and in the second case the force has
been calculated on the impact side (right), Fig. 3. The
numerical results obtained in the impact tension test by
these two approaches allow us to define if a force equilib-
rium is reached between the two specimen sides, Table 2.
Only geometries currently used in industries were studied.
Thus, we can observe that for the long specimen the equi-
librium is quickly lost in comparison with the short one.

Table 1

Different geometries used during numerical simulations, dimensions in

mm

Name l0 (mm) w (mm) Ratio l0/w r (mm) h (mm)

S1 (LPMM) 10 8 1.25 6 25

S2 (LPMM) 20 8 2.5 6 25

S3 40 13 3.076 6 25

S4 100 13 7.692 6 25

A0 10 4 2.5 5 10

Ref. [12] 5 2 2.5 0.6 10.4

LPMM: Laboratory of Physics and Mechanics of Materials (University of

Metz).

Fig. 3. Initial and boundary conditions, specimen dimensions and

representative mesh used during the numerical simulations with ABA

QUS/Explicit.
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The comparison is shown in Fig. 5 for the long specimen
(geometry S4) and different strain rates. Thus, for imposed
strain rate _e

p ¼ 100 sÿ1 the two forces are equal but for
strain rates higher than 200 s 1 loss of the equilibrium is
observed between the input and output forces. This phe-
nomenon is amplified with strain rate or increase of impact
velocity. For _e

p ¼ 103 sÿ1, the difference is significant with a
fast and almost instantaneous decrease of the input force.
The same observation has been reported in [35],
Fig. 5(b). In fact, this velocity V0 100 m/s corresponds
to apparition of the critical impact velocity (CIV) inducing
a trapping of plastic deformation close to the impact side.
It is also observed that the CIV defined for ES steel is close
to the value found in [35], Figs. 5(a) and (b), corresponding
to mild steel. The phenomenon of the CIV will be discussed
in the next section. In the present section, only behavior of
the homogeneous field (stress strain) will be reported to
analyze the effect of strain rate in adiabatic conditions on
the macroscopic behavior of steel sheet as a function of
the initial geometry.

The first comparison in terms of strain rate is shown in
the following pictures for all geometries Si, see also Table 1.
For each case, a positive strain rate sensitivity is observed
inducing a stress increase with the strain rate at deforma-
tion larger than ep P 0:1. However, for geometries S3

and S4 inertia effects are observed beginning with strain
rate equal or higher than _e

p
P 500 sÿ1. This is found at

the initial stages of loading. In this case, during the first
period a ‘‘negative’’ strain rate sensitivity is observed, more

precisely for S4 geometry, Fig. 6(d). The main reason is the
inertia effect. After stabilization of the transmitted signal a
positive rate effect is found, but the strain level of instabil-
ity is sensitive to strain rate, Figs. 6(c) and (d), in compar-
ison with other geometries, Figs. 6(a) and (c). For S4

geometry this effect is also related to the CIV since
_e
p ¼ 103 sÿ1 corresponds to V0 100 m/s for l0 100 mm.
Next, the geometry effect was analyzed for an imposed

strain rate, Figs. 7(a) and (b), for all geometries Si and
two geometries in addition. The first one is the specimen
used by Tanimura and Mimura [12] and the second is the
geometry used in LPMM in experiments to validate the
numerical simulations which enabled a high strain rate
close to _e

p

max � 103 sÿ1 to be reached. Two comparisons
are shown in Figs. 7(a) and (b) for strain rates
_e
p ¼ 102 sÿ1 and _e

p ¼ 103 sÿ1. Those strain rates are cover-
ing the range in the crash test. For _e

p ¼ 102 sÿ1 the differ-
ence is not very important for all Si geometries and A0.
The disagreement appears only with the specimen used
by Tanimura where l0 5 mm for which we can observe
higher stress level (in homogeneous strain field) but also
a great difference in the ductility and instability strain lev-
els, Figs. 7(a) and (b).

Using a local analysis, an explanation has been found
concerning the difference observed for the Tanimura spec-
imen. In fact, due to its small initial length, the localization
of the plastic strain appears quickly which induces at the
same time an increase of the local strain rate in the specimen.
For example, for the macroscopic strain rates imposed

Fig. 5. (a) Comparison of input and output forces obtained by numerical simulation for mild steel ES. (b) Numerical results obtained by another

numerical simulation for steel and definition of CIV [39].

Table 2

Analysis of mechanical equilibrium in tension between input and output forces

Geometry 100 (1/s) 200 (1/s) 500 (1/s) 800 (1/s) 1000 (1/s)

Necking

place

Equilibrium

2 sides

Necking

place

Equilibrium

2 sides

Necking

place

Equilibrium

2 sides

Necking

place

Equilibrium

2 sides

Necking

place

Equilibrium

2 sides

S1 Middle Yes Middle Yes Middle Yes Middle Yes Middle Yes

S2 Middle Yes Middle Yes Middle Yes Middle Yes Middle Yes

S3 Middle Yes Left Yes Left Yes Right No Right No

S4 Middle Yes Left Yes Right No Right No Right No
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_e
p ¼ 102 sÿ1 and _e

p ¼ 103 sÿ1 the local strain rate calculated
by numerical simulation just before plastic localization is,
respectively, _e

p � 122 sÿ1 and _e
p ¼ 1273 sÿ1, Figs. 8(a) and

(b). This local effect induces an increase of the macroscopic

stress level. Thus, if we use the local strain rate intensity to
calculate the curve rÿ epjep

local
with the constitutive relation

defined by Eqs. (1) (7), a good agreement is found between
the numerical simulations and prediction by this constitutive
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relation, Fig. 8(c). In conclusion, the size of the specimen
cannot be reduced infinitely. Using the numerical results
the lower limit in terms of the initial length is close to
l0 10 mm. Indeed for all geometries Si, such an effect is
not observed.

For example, for S2 geometry, the local strain rate _e
p

local

is much lower at the beginning of loading in order to reach
progressively the value of the macroscopic imposed plastic
strain rate _e

p
, Fig. 9(a). Therefore, the macroscopic behav-

ior determined during experiment, which is an average
behavior of the specimen volume X, could be well defined
and close to the real response of the material, rÿ epjep ,
Fig. 9(b), when the mean values are used

rð~r; tÞ ¼ 1

X

Z Z Z

rlocalð~r; tÞ dX; ð9Þ

epð~r; tÞ ¼ 1

X

Z Z Z

e
p
localð~r; tÞ dX; ð10Þ

where~r are the spatial coordinates in the volume X.

The specimen with the initial length l0 20 mm (S2

geometry) seems to be the best compromise since it allows
the correct stress level to be reached and also such a spec-
imen assures sufficient ductility in comparison with long
specimens where 20 < l0 < 40 mm, Fig. 6(b) and Figs. 9(b)
and (c). The initial length of l0 20 mm seems to define
correctly the transition between quasi-static and dynamic
tension tests. Comparing the stress level Drmax ¼ rmax

l0
ÿ

rmax
l0 100 mm at _e

p ¼ 100 sÿ1, we found for l0 10 mm,
Drmax � 12 MPa and for l0 20 mm, Drmax � 1 MPa with
the same strain hardening rate.

In Fig. 10 a comparison is shown between experiment
and numerical results in terms of ductility. Thus, the more
the length increases, the more ductility is observed for the
same strain rate imposed. It can be also observed that the
ductility decreases linearly with the increase of strain rate,
as in the experiment. To conclude, the numerical predic-
tion for A0 geometry shows a good agreement with exper-
imental results for the same geometry. This point is very
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important in modeling the thermoviscoplastic behavior. It
is essential to have a large volume of plastic deformation
to define precisely the hardening and also to collect infor-
mation on the thermal softening which induces a decrease
of the flow stress. This effect is generally more important
for eP 0.1 due to plastic work converted into heat,
Eq. (7).

It is clear that a specimen with small dimensions, for
example specimen A0 reported in [12], leads to difficulties
in determining real material behavior at high strain rates
and low temperatures, as shown in Fig. 10. Indeed, for
low temperatures as generally observed the ductility de-
creases, Fig. 10. In that case only numerical prediction
has been performed at room temperature. However,
assuming the same slope oen=o_e

pjT obtained at room tem-
perature in order to predict behavior at low temperature,

we observe that at low temperature T 213 K the strain
rate which will be adequate is _e

p � 1 sÿ1. With the constitu-
tive relation used in this paper, an estimation has also been
performed concerning the adiabatic temperature increase
with strain rate. In the first case only the shape of the
rðep; T Þjep curve has been considered and good agreement
has been found with experiment, Fig. 11(a), this time in
comparison with another kind of steel (TRIP 800). The sec-
ond comparison is reported in Fig. 11(b). In this case the
prediction seems to be in agreement concerning the temper-
ature increase DT jep with strain rate. A good continuity of
temperature increase between the quasi-static test obtained
by experiment and numerical simulation performed at high
strain rate in adiabatic conditions is found.

The difference observed in Fig. 11(a) is due to the strain
hardening and also due to slightly different stress and strain
levels. One can observe in Fig. 11(b) that the slope of the
curve DT ÿ logð_epÞ is always similar without any influence
from the material tested [46]. The average slope is close to
78 K/log (1/s). The numerical simulations have also en-
abled us to find a similar value, Fig. 11(b). The numerical
and experimental results have been obtained with S2 geom-
etry. To further validate the recommendation concerning
the geometry with l0 20 mm, a comparison of experimen-
tal results is shown in Fig. 12. In this case the strain rate
effect obtained for l0 100 and 20 mm in the range of qua-
si-static loading is identical for both geometries. Thus,
using the specimen with l0 20 mm a good agreement with
larger specimens is obtained of the strain rate effect as well
as of the stress level up to a strain rate �102 s 1.

In conclusion the geometry with the gage length of
l0 20 mm and the width of w 8 mm (S2 geometry) al-
lows determination not only the dynamic behavior but also
the behavior at quasi-static range of strain rates. Moreover,
the rate of hardening observed for S2 and S4 geometry is
very close, which is not the case for l0 10 mm and
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w 8 mm. The difference increases with plastic strain. The
same conclusion was reached from experiments.

4. Estimation of the CIV for mild steel ES by an analytical

approach

Several experimental studies are reported in the litera-
ture how to determine the CIV in tension for different
materials [11,16,17]. The CIV is caused by trapping of plas-
tic deformation triggered by plastic waves. If the impact
velocity is high enough the plastic wave speed in adiabatic
conditions near the impact end is zero. Thus, this phenom-
enon is directly related to the thermoviscoplastic behavior
of material since the plastic wave speed Cp can be found
by Eq. (14). The CIV may be defined as an intrinsic
mechanical property without any effect of the specimen
geometry, as is shown in Fig. 13(a) [34]. In this figure the
maximum energy is always reached for the same impact
velocity whatever the initial length of the specimen l0. How-

ever, for lower impact velocities, the process of necking de-
pends on the initial length. For a long specimen, Fig. 13(b),
it is observed that the necking moves along the specimen
as a function of the impact velocity until reaching the
CIV.

The phenomenon of the CIV is relatively important
since the final stage of specimen deformation is, of course,
failure. A combination of CIV and failure may be classified
as an example of dynamic failure mechanics, a discipline in
the stage of early development. No initial cracks are as-
sumed and a solid is loaded in a short time interval, and
a more or less uniform plasticity field develops. But after
a short time, due to local strain concentrations, tempera-
ture gradients appear caused by adiabatic heating, and
localization of plastic field leads to failure. The problem
of one-dimensional elastic and rate-independent plastic
wave propagation is governed by the following equation
[16,42]:

o
2
U x

ot2
¼ C2

i ðeÞ
o
2
U x

ox2
; ð11Þ

where Ux is the material particle displacement and Ci is de-
fined as the wave speed.

The general solution of Eq. (10) is in the form of
Eq. (11) where the displacement Ux is defined by the fol-
lowing relation:

U xð/;wÞ ¼ f ð/Þ þ gðwÞ; ð12Þ
where f and g define the wave propagation in the positive
and negative directions. This solution of wave propagation
has the property that the displacement can be written as a
function of independent variables / and w which depend
on the wave speed Ci, space variable x and time t:

/ ¼ xÿ Cit and w ¼ xþ Cit. ð13Þ
The effect of adiabatic heating on the plastic wave speed
leads to its decrease. The expressions for the particular

Fig. 11. (a) Comparison between experimental and numerical results concerning �rð�epÞ curves; (b) prediction of temperature increase with strain rate and

comparison with experimental results obtained by thermography.
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wave speeds in a one-dimensional state of stress are (elastic
or plastic):

C0ðT Þ ¼
EðT Þ
q

� �1=2

elastic wave

Cpðep; T Þ ¼
1

q

drðep; T Þ
dep

�

�

�

�

e
p

� �1=2

plastic wave; ð14aÞ

With
EðT Þ
E0

¼ 1ÿ T

Tm

exp h� 1ÿ Tm

T

� �� �

; ð14bÞ

where E(T) is the temperature dependent YoungÕs modu-
lus. Moreover, it was shown by von Karman and Duwez
[16], that the speed of plastic waves reaches zero when
the tangent modulus is zero, i.e., for dr=dep ¼ 0. Then, if
the impact velocity is high enough, large values of ep lead
to a stagnation of the plastic wave and localization of plas-
tic deformation. Failure appears at the impacted side of the
specimen and the remainder of the bar is not deformed
plastically. In this way the CIV has been derived. Beyond
that velocity the localization and failure appear near the
impact side of a bar. In experiment the energy of impact
is absorbed in a very narrow zone of the bar near the im-
pact side. An analytical method to obtain the CIV is by
using the integral relation between pulling velocity V0

and the plastic deformation behind the plastic wave front
e
p
wf as proposed by von Karman and Duwez. Neglecting
the elastic deformation, we arrive at the equation:

V 0 ¼
Z e

p
wf

0

Cpðep; T Þ
�

�

e
pdep. ð15Þ

When the upper limit of the integral equals the deforma-
tion at instability, V0 equals the CIV. A more complete
expression of this integral equation accounting for strain
rate and temperature can be found in [16 20,23,24] as the
sum of two terms, respectively, due to the elastic and plas-
tic fields. The analytical approach presented above was

confirmed by the experimental observations of Duwez
and Clark [21], Wood [22] and Pond and Glass [36]. In
the early analyses of the CIV an analytic solution was de-
rived by application of quasi-static constitutive relation in
isothermal conditions [16]. This solution is incomplete
since the upper bound of the integral, Eq. (15), is never
reached in the isothermal conditions when a parabolic
strain hardening is assumed. In general, all materials are
sensitive to thermal and strain rate effects in dynamic load-
ing as shown in Fig. 1. Based on work in [16 20], a more
complete approach, including temperature effects to esti-
mate CIV in tension, has been obtained here by the numer-
ical solution of the equation, Eq. (14), using the more
precise constitutive equation, Eqs. (1) (7). In this case a
generalization of the method to obtain the CIV is reported
using a thermoviscoplastic approach in adiabatic condi-
tions. The integral relation between V0 and e

p
wf taking into

account hardening, strain rate sensitivity and temperature
sensitivity is as follows:

V 0ðep; _ep; T Þ ¼
1

q
p

Z e
p
wf

ee

(

1ÿ T

Tm

exp h� 1ÿ Tm

T

� �� �� �

� Bð_ep; T Þnð_ep; T Þðe0 þ epÞnðe
p
;TÞÿ1

h i

)1=2

dep;

DT ðep; _epÞ ¼ b

qCp

Z ep

ee

rðep; _ep; T Þdep. ð16Þ

Now, in order to find the CIV, the upper limit of the
integral is taken from the condition or=oep ¼ 0, which is
consistent with the phenomenon of plastic wave trapping
at the impacted end of the specimen Cp 0. This could
be done since adiabatic thermal softening is now accounted
for by the constitutive equation and the energy balance.
Fig. 14 shows different values of the integral, Eq. (16),
using this upper limit, for a range of plastic strain rates.

Fig. 13. (a) Definition of the CIV with knowledge of the energy absorbed for different initial length [34]. (b) Schematic representation of the impact

velocity effect on the process of dynamic necking [35].
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It could be observed that, at high strain rates, the integral
leads to an asymptotic value close to 126 m/s. Since large
plastic strain rates arise behind the plastic wave front when
V0 reaches the CIV, the asymptotic value could be taken as
the prediction of the CIV using this analytical approach. A
relatively good agreement is found as the first approxima-
tion of the CIV, but the analytical solution does not allow
for the CIV to be defined precisely since the superposition
of the elastic and plastic waves is not taken into account.
This is the same case for the local adiabatic heating. To
estimate more precisely the value of CIV a numerical anal-
ysis has been applied allowing us to take into account all
the processes of elastic and plastic wave propagation in adi-
abatic conditions. The coupling with temperature via the
balance of energy allows us to obtain the upper limit of
the integral epmðT Þjep . A comparison of the CIV results is
shown in the following picture, Fig. 14(b), between present
result and the results reported in [35]. The argument qn,
introduced in [35], is the ratio of the density to the constant
K ðr ¼ KðepÞnÞ, qn q /K.

To estimate more precisely the value of CIV a numerical
analysis using finite elements has been applied, allowing all
processes of elastic and plastic wave propagation in adia-
batic conditions to be taken into account. In conclusion,
in the analytical approach the CIV is found in the range
CIV|mild steel � 126 m/s.

5. Estimation of the CIV for mild steel ES by FE simulations

As reported by Wood [22] from experimental results, the
position of the necking changes along the specimen as a
function of the impact velocity. Starting from the central
point of the specimen for quasi-static conditions, the neck
moves firstly to the left (opposite to the impacted end) as
soon as the impact velocity increases and inertial effects be-
come determinant. Before the neck localizes at the im-

pacted end when the impact velocity reaches its critical
value, the phenomenon of double-necking appears as a
transition between both situations, Fig. 15(c). Similar
observations were found after numerical simulation of
the specimen S3 with l0 40 mm: for strain rates varying
from 450 to 800 s 1, double necking appears in the same
way it has been experimentally observed, Fig. 15(c).
Fig. 15 shows different instants of the process of double-
necking development for an impact velocity of 19 m/s. Be-
low or above this range, the instability point localizes on
the left, Figs. 15(a) and (b) or on the right (Figs. 15(d)
and (e)). The numerical simulations also allowed us to
establish that the neck develops at the left end only when
the stress (around twice the elastic wave stress due to the
higher impedance of the clamping) equals the yield limit.
If the elastic wave intensity is lower than half the yield
stress or above the yield stress, necking will occur always
at the impacted end in dynamic conditions. For materials
with higher values of the yield stress, necking in dynamic
conditions may start first at the impacted end, moving then
to the opposite end and finally to the impacted end again as
the pulling velocity increases; this leads to two double-
necking situations (Fig. 16).

Regarding the phenomenon of CIV, as expected, a trap-
ping of plastic waves occurs near the impact end for
V0P 100 m/s, Fig. 15. As discussed previously, this occurs
for all specimen lengths studied [34]. In conclusion the CIV
in tension is directly related to the behavior of material and
not to the specimen geometry used during experiment. For
the shorter specimen, l0 10 mm, the plastic front is able
to propagate along the specimen, due to its reduced length,
and can reach the opposite end. In this case a more homo-
geneous strain distribution is observed with another neck
appearing in the middle of the specimen. Such a situation
is possible when the numerical analysis is performed with-
out a failure criterion.
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Fig. 15. Position of necking at different impact velocity V0, initial length l0 = 40 mm: (a) _�e
p

100 s 1; (b) _�e
p

200 s 1; (c) _�e
p

450 s 1; (d) _�e
p

800 s 1;

(e) _�e
p

2500 s 1.

Fig. 16. Approach of CIV for different geometries applied during numerical simulations, for every case V0 = 100 m/s.
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A third approach for estimation of CIV is also pro-
posed in this paper. In this case, a local analysis is applied
using FE simulations. The general and complete approach
was defined in [4]. The main idea is to analyze the local
instability in the element where the necking takes place
and to study the evolution of the local equivalent plastic
strain e

p
local in time. The second step is to determine in

the same time the macroscopic level of plastic strain
epmacro corresponding to dF 0 or or=oepmacro ¼ r (Con-
sidère criterion [43]). Plotting e

p
local ÿ epmacro, it is possible

to find the e
p
local intensity at which the macroscopic homo-

geneity is lost. The normalized local plastic strain defined
by this approach is plotted in Fig. 17, as a function of im-
pact velocity V0. In this case, the dynamic tension in adi-
abatic conditions has been analyzed. The observed
transition is the same as reported in [34], Fig. 13(b), ob-
tained by experiments. With this approach, the CIV limits
can be estimated 80 6 CIV 6 100 m/s, Fig. 17.

It is necessary thus to take into account this new
mechanical property in designing experiments. Its effect is
important in the failure location but also for the problem
of plastic wave propagation inducing for example two
necking sites for long specimens.

6. Conclusions

The numerical simulations of the impact tension tests by
FE code ABAQUS have enabled the demonstration of spec-
imen behavior and the effect of initial specimen length dur-
ing such a process of deformation for sheet metals. It was
found that there is, as expected, a limiting value of the nom-
inal strain rate, or impact velocity, for each specimen geom-
etry below which the intrinsic material property can be
determined. This threshold of the nominal strain rate is very
important since above that value the material properties
determined by impact tension become ‘‘apparent’’. Above

that strain rate the shape of the ‘‘strain hardening curve’’
is affected by plastic wave propagation in adiabatic condi-
tions. On the other hand, when an excessively short speci-
men is used the mean stress level determined is much
higher in comparison to the true material behavior, due to
the more intensified influence of the specimen ends [44].

The second point is the behavior of longer specimens
during impact loading. In general, when the strain rate is
not so high the deformation field along the specimen is
more uniform than for short ones, but the maximum strain
rate below which the results are correct diminishes. A more
homogeneous distribution of plastic strain along a longer
specimen in comparison with a shorter one is counterbal-
anced by a much lower strain rate for which the true mate-
rial behavior can be correctly determined. The best
geometry found for testing of sheet metals in impact ten-
sion is the S2 one.

The numerical analyses of the adiabatic processes of
plastic deformation coupled with plastic wave propagation
in tension performed for several initial specimen lengths
have revealed many interesting features. One of the pur-
poses was to find an order of magnitude of the impact
velocities above which the effect plastic waves is more
important and leads to thermoviscoplastic instability and
localization. For example, simulations of the tensile tests
of sheet metals (ES steel and TA6V alloy [23,24]) have
shown that below the impact velocity, V0 < 50 m/s, the dis-
tribution of longitudinal plastic strain is very similar on
both sides of the short specimen (l0 10 mm) but the force
transmitted by such short specimens is much higher than
expected from the intrinsic material behavior in one-dimen-
sional stress. On the other hand, when the impact velocity
is increased above 50 m/s, one observes from the beginning
a loss of symmetry of the plastic field along the specimen
(especially for long specimen). When the impact velocity
reaches 100 m/s necking occurs near the impact end, and
the CIV in tension is reached. It is interesting to note that
at relatively high impact velocities the form of the ‘‘strain
hardening curve’’ and the stress level in reconstituted prop-
erties are affected by the initial length of specimen. It was
also shown that the constitutive relation proposed some
time ago [1,4,20,40] allows the approximation of correctly
thermoviscoplastic behavior of ES and TA6V sheet metals
up to 104 1/s.
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