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This thesis analyzes the effect of Intellectual Property Rights (IPRs), in the
form of both patents and copyrights, on innovation.

Patents are intended to enhance private investment in R&D through the
monopoly power they grant to the innovator over the commercial exploitation
of her invention. This vision is essentially static, with patents increasing the
expected revenues of a one-stand innovator.

Sometimes innovations are sequentially linked, so that for instance the in-
vention of the radio would have been impossible without the previous discovery
of electromagnetic waves. In this case protecting the first innovator provides
her with a claim over a part of second innovator’s revenues. At this point the
policy maker must be careful, because patents in this context play a double role:
on one hand they increase the expected revenues of the innovator, but on the
other hand they produce an additional cost for the innovator, as she has to pay
a license fee to the previous innovator. If protection to the first innovation is
too strong, it might be the case that the second innovation is not profitable.
On the other hand if protection is too scant, expected revenues from the first
innovation might bee inadequate to provide incentives to invest in its discovery.
This problem has been well understood and studied in depth by the literature
on sequential innovation, pioneered by Scotchmer (1991).

The three chapters of this thesis analyze a more general version of this prob-
lem, where the number of previous innovators with a claim on the second gen-
eration inventions are more than one, something very common in high-tech
industries. Going back to the case of radio, it was not only electromagnetic
waves that radio was based upon, but also high-frequency alternator, high-
frequency transmission arc, magnetic amplifier, the crystal detector, diode and
triode valves, directional aerial, etc. In the words of Edwin Armstrong (in-
ventor of FM radio) ”it was absolutely impossible to manufacture any kind of
workable apparatus without using practically all of the inventions which were
then known”. Patents on these previous inventions produced as many claims
over the commercialization of radio. Shapiro (2001) refers to such a situation
as a patent thicket. There are many cases like this one in hi-tech industries like
software, hardware, biotechnology and electronics. For example, in the 1980s
IBM accused Sun Microsystems of infringing some of its 10,000 software patents
1; development of golden rice required access to 40 patented products and pro-
cesses (Graff, Cullen, Bradford, Zilberman, and Bennett 2003); and there are
39 patent families “potentially relevant in developing a malaria vaccine from
MSP-1” (Commision on Intellectual Property Rights 2002).

When a patent thicket arises the innovator must pay license fees on many
patented previous discoveries. Someone claims that this is reducing innovation
in high-tech sectors. Heller and Eisenberg (1998) were the first to suggest that
reduction in innovation activity would have stemmed from what Heller (1998)
defines the tragedy of the anticommons. This phenomenon, specular to the
tragedy of the common, arises when too many agents have rights of exclusion
over a common, scarce resource, and as a consequence the common resource
is under-utilized. The tragedy of the anticommons in hi-tech sectors can be
interpreted as follows: too many patentees have exclusive claims on separate
components of the state-of-the-art technology, placing an obstacle to future
research. In this thesis I analyze the effect of patents in sequential and complex

1http://www.forbes.com/asap/2002/0624/044.html
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innovation, and study whether the formation of anticommons is a theoretical
possibility.

In chapter 1, joint with Gastón Llanes, we set up a partial equilibrium
game theoretical model where an innovator uses N patented inputs to produce
a new good. We allow the elasticity of substitution between the N inputs to
vary between zero (perfect complements) to infinity (perfect substitutes). We
ask what happens as the number of previously patented inputs, for which the
innovator has to pay a license fee, increases. We find that the answer depends
on the degree of substitutability of the inputs: when inputs are complements the
total cost for the innovator increases in N , eventually reducing the probability of
innovation to zero. On the other hand, when inputs are substitutes, increasing
N exacerbates competitive pressure, reducing the total cost of the license fees.
In the basic model, the research inputs have been already invented, and are
protected by strong patents. The government could reduce the patent thicket by
granting less patents, or by reducing patent breadth. However, weaker patents
imply a reduced incentive to discover research inputs in the first place. Therefore
we extend the model to include a fixed cost of inventing the inputs and study
the optimal patent policy. Patent policy affects the division of profits between
the input innovators and the final innovator. We obtain the patent policy that
maximizes the joint probability of inventing all the inputs and the final good.
We find that this optimal policy is decreasing in complexity: when the number
of inputs required in the R&D process increases, the optimal response is to
reduce patent strength.

Chapter 2, also joint with Gastón Llanes, is a dynamic version of chapter 1.
In this chapter we analyze a sequence of innovations n = 1, 2, . . .. Innovation
n cannot be introduced until innovation n − 1 has been introduced. Each in-
novation has a commercial value (the profit it generates as a final good), which
is random and private information of the innovator, and a deterministic cost of
R&D to be developed.

Our model provides a good description of the innovation process in several
industries. For example, in the software industry the first programs were written
from scratch, and therefore built on little prior knowledge. As more and more
programs were developed, they progressively became more dependent on tech-
nologies introduced by the first programs. According to Garfinkel, Stallman,
and Kapor (1991), nowadays software programs contain thousands of mathe-
matical algorithms and techniques, which may be patented by the innovators
who developed them. Similar examples can be found in other hi-tech industries.

Formally, our model is a multi-stage game in discrete time with uncertain
end. Interestingly, the probability of reaching the next period is determined en-
dogenously. Our theoretical contribution is to present a simple dynamic model
that can obtain closed form solutions for the sequence of probabilities of inno-
vation. The equilibrium concept we use is Subgame Perfect Equilibrium with
Markovian Strategies (Markov Perfect Equilibrium).

We are interested in determining equilibrium dynamics under three scenar-
ios: patents, no patents and patent pools. The novel aspect of our model is that
patents generate cumulative claims on the sequence of innovations. We find
that with patents, innovation becomes harder and harder with more complex
innovations. The probability of innovation goes to 0 as n → ∞. The probabil-
ity of innovation is higher than in the static case, but not enough to stop the
tragedy of the anticommons from happening.
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In the no patents case, on the other hand, the probability of innovation is
constant and depends on the degree of appropriability of the commercial value
of the innovation in the final goods sector. The no patents case will provide
higher innovation than the patents case unless the innovator can appropriate a
very small fraction of the value of the innovation.

When ideas are protected by patents, the formation of a patent pool increases
the probability of innovation for all innovations. Interestingly, the probability
of innovation with a pool is constant and higher than what it would be in the
static case. This result strengthens the findings of Shapiro (2001), Lerner and
Tirole (2004), and Llanes and Trento (2009) for static models. The comparison
between the pool and the no patents case depends once again on the degree of
appropriability of the value of the innovation in the latter case.

We also find that pools are dynamically unstable: the temptation to remain
outside the pool increases as the sequence of innovations advances. This means
that early innovators have more incentives to enter the pool than later innova-
tors. In this model patents are perfect complements and a deviation from the
pool, while privately profitable is socially undesirable. We find that the patent
pool outcome can be replicated by a scheme in which each innovator buys all
patent rights from the preceding innovator, instead of paying only for the per-
mission to use the idea (innovator 1 sells all the rights over innovation 1 to
innovator 2, who sells all the rights over innovations 1 and 2 to innovator 3 and
so on). This means that the complete sale of patent rights will generate higher
innovation than licensing. This scheme may be difficult to implement when the
nature of innovations is difficult to describe ex-ante, in which case patent pools
would be easier to enforce. An alternative scheme, leading to the same innova-
tion outcome, is to allow subsequent competition between the licensee and the
original licensor. This removes the monopoly power of all but the last patent,
eliminating the anticommons effect.

We find the optimal innovation policy that maximizes the expected welfare
of the sequence of innovations. We find that innovation is suboptimal in the
three policy regimes. In the no patents regime, there is a dynamic externality:
innovators do not take into account the impact of their decision on the techno-
logical possibilities of future innovators. In the two other policy regimes, the
inefficiency stems from asymmetric information and market power: patent hold-
ers do not know the exact value of the innovation, but they know its probability
distribution. This generates a downward sloping expected demand for the use
of their ideas, and market power implies a price for old ideas above marginal
cost.

Finally chapter 3 is a dynamic general equilibrium model of endogenous
growth, where growth is the result of quality improvement of the final good.
In order to obtain this quality improvement, firms must invest in R&D. The
R&D success rate follows a stochastic poisson process, meaning that the time
of innovation is uncertain. In this context patent length plays a central role: by
the time R&D takes place, patents on some of the research inputs might have
expired. Thus, depending on patent length, a fraction of the research inputs
might be sold at a competitive price. The larger this fraction, the lower - ceteris
paribus - the cost of R&D. But reducing patent length also reduces expected
revenues from the innovation. This trade off is the central theme of the paper.

I find that the infinite patent length always provides a less than optimal
research effort in the steady-state equilibrium. Then I perform numerical sim-
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ulations of the model under a regime of finite patent length. These simulations
display an hump-shaped level of R&D effort on patent length, suggesting the
existence of a finite optimal patent length. This optimal patent length increases
the equilibrium level of innovation relative to a system of infinitely lived patents.
Also in this case, though, the steady state level of innovation is always below
the one a benevolent planner would choose. In other words, a varying patent
length is not a good policy instrument to achieve the socially optimal rate of
innovation. I use numerical simulations to study the characteristics of the opti-
mal patent length. These simulations suggest that optimal length is decreasing
in the size of the economy. This could be the result of the scale effect: the
larger the economy the lower the opportunity cost of investing in R&D, and
therefore the higher the growth rate of the economy. Or it could be the result
of the fact that the larger the economy, the larger the profits of the innovator
at each moment in time, and therefore the lower the need for long patents. Or
a combination of the two. In the paper I argue that the second one is the only
sensible explanation. This is in line with the results of the static analysis of
Boldrin and Levine (2005a) and it might be relevant in the context of the recent
discussions about introducing an IPRs system in developing countries. It would
suggest that, if the current patent length in advanced countries is optimal, en-
forcing IPRs in developing countries should be accompanied by a reduction of
patent length in developed countries.

Numerical simulations also suggest that the optimal patent length is increas-
ing in the degree of substitutability between the research inputs used in R&D,
reinforcing the results from the static model of chapter 1, and calling for a
weaker patent protection in sectors characterized by a higher complementarity
in R&D.
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Anticommons and Optimal
Patent Policy in a Model of
Sequential Innovation
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8 CHAPTER 1. ANTICOMMONS IN SEQUENTIAL INNOVATION

1.1 Introduction.

Knowledge builds upon previous knowledge. This is true for most innovations
nowadays, especially in hi-tech industries like molecular biology, plant biotech-
nology, semiconductors and software. In some cases, the innovation consists of
an improvement of an older version of the same good. In other cases, the re-
search leading to the discovery of the new good depends on the access to research
tools, techniques and inputs which are previous innovations themselves.

In any case, innovation activity will in general depend on the access to
previous innovations. Depending on the structure of the patent system, some of
these inventions will be protected by patents. This means that patents affect not
only the revenues of the innovator, but also the cost of performing an innovation.

Recent concern has arisen on the possibility that patents (or other kinds
of Intellectual Property) can restrict access to research inputs, hindering inno-
vation as a consequence. The innovator and the owners of patents on previ-
ous inventions share the revenues of the innovation. As the number of inputs
needed in research increases, the innovator faces a patent thicket and is threat-
ened by the possibility of hold-up, namely the risk that a useful innovation is
not developed because of lack of agreement with the patent holders. This prob-
lem has been dubbed the tragedy of the anticommons (Heller 1998, Heller and
Eisenberg 1998). When too many agents have exclusion rights over the use of a
common resource, this resource tends to be underutilized, in clear duality with
the tragedy of the commons in which too many agents hold rights of use and
the resource tends to be overused.

This problem may be particularly acute in biomedical research, where there
is a deep controversy over the patenting of gene fragments and research tools.
Take for example the case of the MSP1 antigen (Plasmodium Falciparum Mero-
zoite Specific Protein 1), widely recognized as the most promising candidate
for an anti-malarial vaccine. A study of the Commission on Intellectual Prop-
erty Rights (2002) found more than 39 patent families covering DNA fragments,
methods for processing fragments, production systems, vaccine delivery systems,
etc. As a consequence, a potential innovator willing to commercialize a vaccine
based on MSP1 must get prior permission from the owners of these property
rights.

Anticommons can arise in biotechnology as well. A good example is Golden
Rice, which required payment of up to 40 licenses, depending on the country of
commercialization (Graff, Cullen, Bradford, Zilberman, and Bennett 2003).

As a final example, consider the case of software patents, which cover mathe-
matical algorithms and techniques. Software programs have become so complex
that any single program may use thousands of algorithms (Garfinkel, Stallman,
and Kapor 1991), possibly infringing a large number of patents. This explains
the expected increase in patent litigation in this sector in the next years (think
of Microsoft vs. the programmers and users of Linux), and the formation of a
Patent Commons by firms involved in the Open Source community (IBM, HP,
Novel, Sun, etc.).

We address these issues by constructing a model of sequential innovation in
which an innovator uses n patented inputs to develop a new invention. Substi-
tutability between the inputs goes from zero (perfect complements) to infinity
(perfect substitutes) and the input sellers compete in prices but do not know
the exact value of the innovation for the innovator.
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We study how the probability of performing the innovation changes as tech-
nologies become more complex (n increases) and find that it decreases when
the inputs are market complements and increases when they are market sub-
stitutes. Therefore, we prove that the anticommons hypothesis may hold when
inputs are essential and not easy to substitute. Then, we analyze the limiting
economy when n → ∞, and show that the probability of innovation is always
less than socially optimal unless the inputs are perfect substitutes. Moreover,
the probability of innovation goes to zero when the elasticity of substitution is
below a threshold level which is higher than 1.

In the basic model, the research inputs have been already invented, and are
protected by strong patents. The government could reduce the patent thicket by
granting less patents, or by reducing patent breadth. However, weaker patents
imply a reduced incentive to discover research inputs in the first place. In Section
1.4, we turn to the analysis of optimal patent policy. Patent policy affects the
division of profits between the input innovators and the final innovator. We
obtain the patent policy that maximizes the joint probability of inventing all
the inputs and the final good. We find that this optimal policy is decreasing in
complexity: when the number of inputs required in the R&D process increases,
the optimal response is to reduce patent strength.

There is an extended literature on Sequential Innovation, which is mainly
concerned with the optimal division of profits between sequential innovators.
The main contribution of this paper is to extend the analysis of patent policy
and optimal division of profit when innovation activity requires access to several
prior inventions. As such, the two key insights of the model are: (i) patents will
be more harmful when research inputs are complementary, and (ii) optimal
patent policy should decrease when innovations become more complex.

As we discuss in the following section, our paper is also related to the lit-
eratures of complementary monopoly and patent pools. A patent pool is a
cooperative agreement among patent holders, through which they agree on the
licensing terms of a subset of their patents. In Section 1.5, we analyze the effects
of the formation of patent pools on innovation activity within our model, and
study similarities and differences of our findings with previous papers in this
literature.

1.1.1 Related literature.

There is an extended literature on Sequential Innovation (Scotchmer 1991, Green
and Scotchmer 1995, Chang 1995, Scotchmer 1996, Hopenhayn, Llobet, and
Mitchell 2006), which is mainly concerned with the optimal division of profits
between sequential innovators. Generally, in these models, there are two innova-
tions that have to be introduced sequentially (the second innovation cannot be
introduced until the first one has been introduced), and the objective is to find
the patent policy that maximizes the incentives to invest in both innovations. In
this paper we generalize these models by assuming that any innovation is based
on n previous innovations. We find that the effect of increasing complexity on
innovation activity depends on the degree of substitutability/complementarity
between these previous innovations.

Our contribution is to extend the analysis of optimal patent policy and
optimal division of profits to the case in which the innovator requires access
to several prior inventions. In doing so, we link the literature of sequential
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innovation to the literatures of complementary monopoly and patent pools.
Cournot (1838) was the first to analyze the complementary monopoly prob-

lem. He modeled a competitive producer of brass who must buy zinc and copper
from two separate monopolists (zinc and copper are perfect complements), and
showed that (i) the price of the inputs is higher than the price that a single
provider would set, (ii) the total cost of the inputs is increasing in the number
of inputs, (iii) in the limit, as n → ∞ the cost of the inputs is such that the
demand for the final good is zero.

This analysis has been later extended in various directions. Sonnenschein
(1968) showed that the Cournot’s theory of complementary monopoly is the dual
of its theory of duopoly with quantity competition and homogeneous goods,
when the marginal cost of production is zero. Bergstrom (1978) built upon
this intuition to extend the duality result to imperfect substitutes. Recently,
Boldrin and Levine (2005b) applied the structure of complementary monopoly to
a model of sequential innovation: they set up a model of one innovation building
upon a number of (perfect complementary) previous innovations, and show that
as this number increases the cost of innovating also increases, eventually hitting
the upper bound for which the innovation is no longer profitable. We extend
the analysis to a framework of oligopoly with any degree of substitutability.
This generalization is relevant because it allows us to study the joint effect of
the number of oligopolists and the degree of substitutability on the probability
of innovation. In particular we find that, when the research inputs are market
complements (i.e. not only when they are perfect complements), the probability
of innovation decreases in the complexity of innovation.

Cournot’s theory has also been used by the literature on patent pools.
Shapiro (2001) was the first to suggest that patent pools may be anticompetitive
when they are formed by substitute patents, and pro-competitive when formed
by complementary patents. Lerner and Tirole (2004) built a model to general-
ize Shapiro’s results for imperfect substitutability. Given the similarity between
our model and Lerner and Tirole’s, in Section 1.5 we present an analysis of the
effect of patent pools on innovation. We find that Lerner and Tirole’s results
generalize to our case also. However, given that in our model input decisions
are continuous, we can be more precise in our definition of complementarity,
which complements previous analysis.

However, it is important to remark that, even though our model is related
with Lerner and Tirole’s, our focus is completely different. We are interested in
analyzing the effect of increases in n on the optimal patent policy, while they
are interested in the effects of price collusion on innovation and welfare for n
fixed.

1.2 The model.

There are n research inputs (x1, ..., xn) and a potential innovator who may use
the n inputs in R&D in order to invent a new good. The n inputs have already
been invented and are ready to be produced. We make this assumption in order
to concentrate on the effects of the pricing of old ideas on innovation activity.
In Section 1.4 we will extend the model to see what happens when the n inputs
have to be invented as well.

The structure of Intellectual Property Rights is such that each input is pro-
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tected by a patent, granting its owner a monopoly over it. Each patent is owned
by a different patentee and thus each of the n inputs is supplied by a different
producer. Given that the inputs are imperfect substitutes of each other, the
factor market is a differentiated goods oligopoly. The input sellers compete in
prices and the value of the innovation is private information of the innovator.

1.2.1 Technology.

The innovator can perform R&D to invent a new final good according to the
following CES technology:

y = A

(
n∑
i=1

xi
ρ

) 1
ρ

, (1.1)

where y is a measure of the R&D effort, A is a scale parameter, xi is the amount
of input i used, n is the number of inputs and ρ ∈ (−∞, 1] is a technological
parameter related to the substitutability between the inputs.

We will find easier to work with the elasticity of substitution σ = 1/(1− ρ).
As is well known, σ = 0 represents perfect complements, 0 < σ <∞ represents
imperfect substitutes, and σ →∞ represents perfect substitutes.

The innovator faces an indivisibility problem, meaning that a minimum
amount of R&D effort is required to invent a new good. When the R&D effort is
below that threshold level there is no innovation. Without loss of generality we
can set the threshold level at 1, so that the indicator function for the innovation
is:

I =
{

1 if y ≥ 1,
0 otherwise.

We set the scale parameter A in (1.1) equal to n(ρ−1)/ρ in order to eliminate
any returns from specialization or division of labor. Usually CES production
functions exhibit a property called increasing returns to specialization (or love
for variety in the case of utility functions). Following an argument similar to
Romer (1987), suppose that the production function is y = (

∑n
i=1 xi

ρ)1/ρ, and
let X be the total quantity of inputs used in production. Because of symmetry,
all inputs will be used in the same quantity in the equilibrium, so xi = X/n for
all i, and output will be equal to y = n(1−ρ)/ρX. There are positive returns
to specialization because an increase in n holding X constant causes output to
increase. We eliminate this effect by introducing A = n(ρ−1)/ρ in the production
function.

The complexity of the innovation is measured by n. More complex technolo-
gies use a larger number of components or require more research tools in order
to be developed. Each input is produced with a constant marginal cost of ε > 0.
We assume that the resources used to produce inputs are sold in a competitive
market, so that the private and the social cost of producing inputs coincide.
The assumption of no returns to specialization guarantees that the social cost
of performing the innovation does not change as technologies become more com-
plex. In other words, there is no technological advantage or disadvantage from
increases in n.

In section 1.2.4 we will provide the intuition behind our innovation technol-
ogy. Before we do it, let us continue with the description of the model.
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1.2.2 Value of the innovation and structure of the infor-
mation.

The social value of the innovation, v, is the total surplus generated by the new
product. To focus on the factor market, we will assume that the innovator is
a perfect price discriminator in the final goods market. This means that the
revenue of the innovator coincides with the social value of the innovation.

The value of the innovation is private information of the innovator. This
may be because the innovator has better information about the characteristics
of the new product or about the valuation of the consumers. The sellers of
inputs only know that v has a cumulative distribution F (v). Therefore F (v) is
the probability that the innovation has a return less or equal to v. In Section 1.6
we show that the assumptions of perfect price discrimination and asymmetric
information can be relaxed without altering the results.

The hazard function is defined as h(v) = f(v)/(1 − F (v)), where f(v) is
the density function corresponding to F (v). In order to guarantee the quasi-
concavity of the maximization problem of the input producers, the following
assumption will hold throughout the paper:

Assumption 1 (Nondecreasing hazard function) h(v) > 0 and h′(v) ≥ 0
on a support [v, v̄], and h(v) = 0 outside of this support.

This assumption on the hazard function is very general, and holds for most
continuous distribution functions. Notice that we are not restricting v nor v̄ to
be of finite value.

An important assumption is that the distribution of values of the innovation
does not change with n. This assumption, together with the absence of returns
to specialization in the R&D technology imply the following lemma:

Lemma 1 The probability that an invention is socially optimal does not depend
on its complexity.

The probability that an innovation is socially optimal is the probability
that its social value is larger or equal than its social cost. The social cost of
an innovation coincides with the resources used to produce it. Therefore, the
probability that an innovation is socially optimal is Prob (v −

∑n
i=1 ε xi ≥ 0).

Because of the symmetry in the innovation technology, xi = 1/n, so this prob-
ability becomes 1− F (ε), which depends on the distribution of social values of
the innovation and the marginal cost of the inputs but not on the number of
inputs used in R&D.

In this paper, we are interested in studying the effects of increasing tech-
nological complexity on the probability of innovation. Lemma 1 assures that
a change in n affects this probability only through a change in the number of
inputs used in research, but not through a change in the social value or cost of
the innovation. In other words, we want to compare innovations with different
n but the same net social value. In Section 1.6 we relax these assumptions by
letting the value of the innovation be a function of n and allowing returns to
specialization in the R&D technology. We find that the main results of the
paper are not significantly affected by a change in these assumptions.



1.2. THE MODEL. 13

1.2.3 Market interaction.

The players of the game are the n input sellers and the innovator. A strategy
for input seller i is a choice of price for her input. A strategy for the innovator is
a function g : Rn+ × v → Rn+, namely a demand xi for each input, as a function
of the price of all the inputs and the realization of the value of the innovation.

The timing of the game is as follows: (i) the input producers simultaneously
set the price of their inputs, (ii) Nature extracts a value v from the distribu-
tion F (v), and (iii) given prices, the innovator calculates the input mix that
minimizes the cost of innovation and decides whether to innovate or not.

The equilibrium concept we use is Symmetric Subgame Perfect Equilibrium
(SSPE). A set of strategies {pi}ni=1, g is a SSPE if it is a Nash equilibrium of
every subgame of the original game, and pi = p for all i.

The payoff for input producer i is xi (pi−ε) and the payoff of the innovator
is I v −

∑n
i=1 pi xi.

Innovator’s Problem.

Given input prices {pi}ni=1, the innovator solves the following Cost Minimization
Problem (CMP):

c = min
n∑
i=1

pixi

s.t. n−
1−ρ
ρ

(
n∑
i=1

xi
ρ

) 1
ρ

≥ 1.

The solution to this problem is the set of conditional factor demands xi and
the minimum cost of innovation c. Given c, the innovator will perform the
innovation (I = 1) if v ≥ c.

Input Seller’s Problem.

When setting the price the sellers of inputs do not know the realization of v.
They only know that given {pi}ni=1 the probability that v ≥ c (the probability
of innovation) is 1−F (c). Therefore, the expected demand of input firm i is
E(xi) = (1−F (c))xi, and its Profit Maximization Problem (PMP) is:

max
pi

Πi = (1− F (c))xi(pi − ε),

where both c and xi come from the CMP of the innovator.

1.2.4 Interpretation of the innovation technology

The CES specification of the R&D technology is a simple and general way to
introduce substitutability and complementarity between the inputs used in re-
search. In our model, ideas have economic value because they are embodied in
physical objects (Romer (1990), Boldrin and Levine (2002, 2005c)). The innova-
tor uses these physical objects to innovate, not the abstract ideas. Accordingly,
the input decision is not discrete (to use the idea or not), but rather continuous
(the research inputs can be used in variable amounts).
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Our description of the R&D process is a good description of many innovation
technologies. First, we can think that the inputs are used in R&D in variable
amounts, and once the innovation is performed they are no longer needed. This
interpretation fits well for sectors that use a large number of research tools,
like biomedical research, where the use of clones and cloning tools, laboratory
equipment and machines, reagents, computer software and many other research
instruments is required in R&D, and can be used in variable amounts.

The second interpretation is that inputs are actually components of the final
innovation, and are used to produce each copy of it. This interpretation resem-
bles more the case of already patented code lines used in new software, hardware
components for computers, and a variety of cases in electronics, semiconductors
and other similar industries. In the early radio industry, for example, accord-
ing to Edwin Armstrong (inventor of FM radio) “it was absolutely impossible
to manufacture any kind of workable apparatus without using practically all
of the inventions which were then known”, like the high-frequency alternator,
high-frequency transmission arc, magnetic amplifier, the crystal detector, diode
and triode valves, directional aerial, etc.

Under this second interpretation there is a continuum of perfectly compet-
itive innovators. The production function of output is y =

(∑n
i=1 n

ρ−1 xi
ρ
)1/ρ

and perfect competition assures that the price of the final output is equal to its
marginal cost c =

∑n
i=1 pi xi. Then, the demand of the final good is y = 1−F (c),

where y and c are the quantity and price of the final good.
The two interpretations lead to exactly the same results, except that in the

second one there is a welfare loss from the anti-competitive pricing in the inputs
market (the welfare loss would be approximately equal to (c−ε)(F (c)−F (ε))/2).
For expositional purposes, we will stick to the first interpretation.

Obviously, our research technology is not a good description of all possible
innovation processes. In particular, it does not fit the case in which the innovator
pays only for the permission to use an idea. An elegant alternative formulation
is to consider discrete input choices (1 if the input is used and 0 otherwise).
This is the approach followed by Lerner and Tirole (2004). In this case, the
innovator uses either embodied or abstract ideas, and pays input innovators to
have access to these ideas.

In Section 1.5 we show that our model can be interpreted as a “smooth” ver-
sion of Lerner and Tirole’s. Plainly, the advantage of our approach is tractabil-
ity. Continuity allows us to use differential calculus, which greatly simplifies our
subsequent analysis of the effect of an increase in the number of inputs. The
best argument to show that our results would still hold if we were to assume dis-
crete input choices is to notice the similarity of the conclusions of both models
on the effect of patent pools when n is fixed.

1.3 Equilibrium.

In this section we solve recursively for the SSPE. Therefore, we begin by solving
the Innovator’s Problem (second stage of the game). The demands are those of
a typical CES production function. The conditional demand of input i and the
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cost of innovation are:

xi = I n−
1

1−σ p−σi

(
n∑
i=1

pi
1−σ

) σ
1−σ

,

c = n−
1

1−σ

(
n∑
i=1

pi
1−σ

) 1
1−σ

,

where σ = 1/(1 − ρ) is the elasticity of substitution between the inputs. The
innovator will introduce the new good (I=1) if v ≥ c.

The restrictions on ρ imply that the elasticity of substitution σ goes from 0
(perfect complements) to ∞ (perfect substitutes).

Given xi and c, the symmetric equilibrium price p solves

p = argmaxpi≥ε (1− F (c)) xi (pi − ε) ,

where c = n−
1

1−σ
(
p1−σ
i + (n− 1)p1−σ) 1

1−σ and xi = n−1 p−σi cσ. It is useful to
notice that in the symmetric equilibrium (pi = p for all i), c = p and xi = 1/n
for all i. Also, p ≥ ε in equilibrium because otherwise firms would be making
negative profits and would find it profitable to deviate by setting a higher price.

Because of the nature of Nash equilibria, for any value of n, ε, and σ < ∞
there exists equilibria where p is so high that the probability of innovation is
zero (i.e. profits are zero for all input sellers) but any deviation by a single input
seller is not enough to make it positive. However, these are trivial equilibria
coming from the definition of Nash equilibria without any intrinsic economic
value. We are interested in the existence of equilibria with a positive probability
of innovation (p < v̄).

The following proposition characterizes the solution of the first stage of the
game (the Input Seller’s Problem).

Proposition 1 A SSPE with positive probability of innovation (p < v̄) exists
and is unique. The equilibrium price solves

(p− ε)h(p) = n− σ (n− 1) (p− ε)/p.

The conditional input demand is x = 1/n, the cost of innovation is c = p and
the probability of innovation is 1− F (p).

The firm wants to maximize (1−F (c))xi (pi−ε). The derivative with respect
to price is:

D(pi) = −f(c)
∂c

∂pi
xi (pi − ε) + (1− F (c))

(
∂xi
∂pi

(pi − ε) + xi

)
.

By Shepard’s Lemma ∂c/∂pi = xi, and by symmetry c = p, xi = 1/n and
∂xi/∂pi = −(n− 1)σ/(n2 p). Therefore, the first order condition becomes:

D(p) = −f(p)
p− ε
n2

+ (1− F (p))
(
−σ (n− 1) (p− ε)

n2 p
+

1
n

)
.

Now we prove that the solution cannot be ε nor v̄ for n <∞. p = ε cannot
be the equilibrium because D(ε) = (1−F (ε))/n > 0. Also, p = v̄ cannot be the
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equilibrium both if v̄ is finite or infinite. If v̄ <∞, then D(v̄) = −f(v̄)
(
v̄−ε
n

)
<

0. On the other hand, limp→∞D(p) = −∞ < 0. Therefore, the solution must
satisfy D(p) = 0. Multiplying D(p) by −n2/(1− F (p)) we get:

h(p) (p− ε) + σ (n− 1)
p− ε
p
− n = 0. (1.2)

We can be sure that equation (1.2) has exactly one solution because it is contin-
uously increasing in p by Assumption 1, is negative when p = ε and is positive
when p→ v̄ (Assumption 1 implies that limp→v̄ h(p) p =∞ for finite or infinite
v̄). Therefore, the solution exists and is unique. Rearranging terms in equation
(1.2) we get the desired result.

Example. We will find it useful to illustrate the results with the help on
an example based on the uniform distribution. This example has the advantage
of providing an explicit solution for the equilibrium price. Specifically, assume
that the value of the innovation, v, is uniformly distributed between 0 and 1.
This means that F (v) = v and h(v) = 1/(1− v). The equilibrium price is:

p =
a+

√
a2 + 4σ ε (n−1) b

2 b
, (1.3)

where a = n+ε−σ(n−1)(1+ε) and b = 1+n(1−σ)+σ. The cost of innovation
is equal to the price and the probability of innovation is simply 1− p.

1.3.1 Elasticity of substitution.

The price of the inputs and the cost of innovation in equilibrium depend on
the elasticity of substitution, the complexity of the innovation and the marginal
cost of the inputs. In the following subsections we will analyze the comparative
statics of the above equilibrium.

Proposition 2 The cost of innovation is decreasing in σ.

Equation (1.2) provides an implicit function of p in terms of σ. We can
calculate ∂c/∂σ using the implicit function theorem (remember that p=c in the
symmetric equilibrium):

∂c

∂σ
= − (n− 1)(p− ε)/p

h(p) + h′(p) (p− ε) + σ (n− 1)ε/p2

It is easy to see that this derivative is always negative (the numerator and the
denominator are positive). The result follows.

Figure 3.2 depicts the cost of innovation (i.e. the price of the inputs) as a
function of σ for the uniform distribution and for n = 10 and ε = 0.1.

The cost of innovation is monotonically decreasing in σ because of increased
competition as the inputs become more substitutable. As σ → ∞ price con-
verges to marginal cost ε, which is the standard Bertrand price competition
result with homogeneous goods.

1.3.2 Complements and Substitutes.

We will classify inputs in market complements and substitutes according to the
sign of the cross-price derivative of expected demand which, in this setting,
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Figure 1.1: Cost of innovation as a function of σ.

is equivalent to analyzing the cross-price derivative of expected profit. This
classification is equivalent to the one used in game theory, where the actions
of two agents are said to be complements (substitutes) when an increase in the
action of one of them implies a decrease (increase) in the payoff of the other
agent. In our model, the actions are prices and the payoff is expected profit.
Notice that this is an equilibrium definition since it is based on the best response
of the innovator.

Definition 1 (Market complements and substitutes) Input j is a market
complement (substitute) of input i if ∂E(xi)

∂pj
< 0

(
∂E(xi)
∂pj

> 0
)

.

An increase in the price of input j has two effects on the expected demand of
input i. On one hand, the conditional demand of input i increases (substitution
effect). On the other hand, the probability of innovation decreases because the
inputs are more expensive to the innovator (innovation effect). The sign of
the cross-price derivative depends on which of the two effects is stronger. The
cross-price derivative is:

∂E(xi)
∂pj

= (1− F (c))
∂xi
∂pj

+
∂(1− F (c))

∂pj
xi.

The first effect is related to the standard substitution effect of consumer de-
mand theory. Remember that the Cost Minimization Problem is equivalent to
the Expenditure Minimization Problem and in this case there are no wealth ef-
fects of price changes (the conditional factor demands are equivalent to Hicksian
demands). In principle, the derivative ∂xi/∂pj could be positive, negative or
zero. However, the property of negative semidefiniteness of the matrix of cross-
price derivatives (which implies that every input must at least have one techni-
cal substitute), together with the symmetry of the production function, implies
that this derivative is non-negative. The inputs will be technical substitutes
(∂xi/∂pj > 0) except in the case of perfect complements, where ∂xi/∂pj = 0.

The second effect is due to the fact that the demand for inputs is downward
sloping in the cost of innovation. The cost of the inputs used in research affects
the profitability of innovation. Therefore, an increase in the price of any input
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will lower the probability of innovation. This effect is negative, except in the
case of perfect substitutes, when it is zero.

Now that our definition of complementarity and substitutability is clear, we
can be precise in our exposition. In what follows when we say that inputs are
complements or substitutes, we mean that they are market complements or sub-
stitutes. We will see that the distinction between complements and substitutes
is crucial for the predictions of the model.

The following lemma shows the value of σ that makes the cross-price deriva-
tive equal to zero.

Lemma 2 The cross-price derivative ∂E(xi)/∂pj is zero in the symmetric equi-

librium if and only if σ = σ∗, where σ∗ is the argument that solves h
(

σ
σ−1ε

)
=

σ − 1.

The cross-price derivative is:

∂E(xi)
∂pj

= (1− F (c))
∂xi
∂pj
− f(c)xi.

By Shepard’s Lemma, ∂c/∂pj = xj . Imposing symmetry, xi = xj = 1/n and
∂xi/∂pj = σ/(n2 p). Rearranging terms we get:

∂E(xi)
∂pj

=
1

n (1− F (p))

(
σ

p
− h(p)

)
.

This will be zero in the symmetric equilibrium only when h(p) = σ/p. Introduc-
ing this into the first order condition (1.2) and rearranging we get (p−ε)/p = σ−1

or p = σε/(σ − 1). Plugging this value of p in h(p) = σ/p we get the desired
result.

The following proposition classifies inputs in complements and substitutes
according to Definition 1. It is interesting to see that this distinction depends
on the values of σ and ε, but not on the value of n.

Proposition 3 In the symmetric equilibrium, inputs are complements when
σ < σ∗ and substitutes when σ > σ∗.

We know from Lemma 2 that the cross-price derivative is zero when σ = σ∗

and that its sign depends on σ/p− h(p). The latter expression is increasing in
σ because p is decreasing in σ from Proposition 2 and h is non-decreasing in p
from Assumption 1. The result follows.

Interestingly, the value of σ which divides inputs in complements and sub-
stitutes has to be larger or equal than 1. To see this, suppose that σ∗ < 1. This
means that h(εσ∗/(σ∗−1)) < 0, which is not possible. In the case of the uniform
distribution, for example, inputs are complements when σ < (1 + ε)/(1− ε) and
substitutes when σ > (1 + ε)/(1− ε).

1.3.3 Increasing complexity.

Proposition 4 shows that the sign of the effect of an increase in the complex-
ity of the innovation (n) depends on whether the inputs are complements or
substitutes.
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Proposition 4 The cost of innovation increases as innovation becomes more
complex if the inputs are complements (σ < σ∗) and decreases if the inputs are
substitutes (σ > σ∗).

We are looking for the effect of a unit increase in n, but it will suffice to
determine the sign of ∂c/∂n. Equation (1.2) provides an implicit function of
c in terms of n. Therefore, we can calculate ∂c/∂n using the implicit function
theorem:

∂c

∂n
=

1− σ (p− ε)/p
h′(p) (p− ε) + h(p) + σ(n− 1)ε/p2

We know that the denominator is always positive. Therefore, the sign of this
derivative depends on the sign of the numerator.

From equation (1.2) we get the following relation in equilibrium σ (p−ε)/p =
(n− h(p) (p− ε))/(n− 1). Introducing this in the numerator and operating, it
becomes (h(p) (p− ε)− 1)/(n− 1). We know that h(p) (p− ε) = 1 when σ = σ∗

from the proof of Proposition 2.1. Given that h(p) (p− ε) is increasing in p, it
is decreasing in σ. Therefore, the numerator is positive when σ < σ∗ and it is
negative when σ > σ∗. The result follows.

The probability of innovation is simply 1− F (c), so it moves in an opposite
direction to the cost:

dPr

dn
= −f(c)

dc

dn
.

As before, the effect on the probability of innovation of an increase in the com-
plexity of innovation depends on the substitutability between the inputs. If
inputs are complements, then the probability decreases as n increases. If inputs
are substitutes, then the probability increases as n increases.

Figure 1.2 shows what happens in the uniform distribution example as the
complexity of the innovation increases from n = 5 to n = 15, for ε = 0.1. The
cost schedules cross when σ = 1.22, which is exactly σ∗ = (1 + ε)/(1− ε). This
means that the cost of innovation increases if the inputs have low substitutability
and decreases in case of high substitutability.

Figure 1.2: Effects of an increase in the complexity of innovation.

Proposition 4 says that patents are very harmful when innovation is sequen-
tial and the research inputs are essential or difficult to substitute, but do not
pose an important problem when inputs are easily replaceable.
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Figure 1.3a shows cost as a function of n for complementary inputs and
ε = 0.1 in the case of the uniform distribution. As innovation becomes more
complex, the cost of innovation increases and converges to 1 when n→∞. This
means that the probability of innovation decreases with n and converges to 0.
Convergence is faster when σ gets closer to zero. When the substitutability
between the inputs is very low (σ close to zero), the probability of innovation is
very small even for simple innovations (low n).

Figure 1.3b shows that the conclusions change when the research inputs are
substitutes. In this case the cost of innovation decreases when the complexity
of innovation increases (i.e. the probability of innovation increases with n).

(a) Complements. (b) Substitutes.

Figure 1.3: Cost of innovation as a function of n.

1.3.4 High complexity and Monopolistic Competition.

It is interesting to analyze the equilibrium of the economy when n → ∞ for
two reasons. First, n→∞ represents innovations that are highly complex and
therefore require a large number of inputs to be developed. The innovator faces
a patent thicket and has to gather inputs from many patentees. We know how
the probability of innovation changes as n increases, but it is interesting to
determine in what cases it will go to 0 or 1 − F (ε). Second, in this limiting
economy there is an infinite number of input sellers, so the effect of a price
change by a single firm has a infinitesimal impact on the cost of innovation, and
the market becomes monopolistically competitive.

Proposition 5 characterizes equilibria with positive probability of innovation
(p < v̄). In this case there are values of σ for which there is no equilibrium with
positive probability of innovation.

Proposition 5 A SSPE with p < v̄ exists only when σ > σ̂ where σ̂ = v̄
v̄−ε .

The equilibrium price and cost of innovation are p = σ
σ−1 ε.

Dividing the first order condition (1.2) by n, we get:

h(p) (p− ε) 1
n

+ σ

(
n− 1
n

) (
p− ε
p

)
− 1 = 0.

As n → ∞, the term with the hazard function goes to zero. This is because
each firm becomes negligible and does not affect the probability of innovation
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on its own. It is clear that the equilibrium price of the limiting economy solves:

σ

(
p− ε
p

)
− 1 = 0.

Therefore, p = σ
σ−1 ε, which is between ε and v̄ only when σ > v̄/(v̄ − ε).

It is interesting to comment on three characteristics of the equilibrium. First,
any p ≥ v̄ is an equilibrium for any value of σ in this limiting economy. If p ≥ v̄
the probability of innovation is zero, but if a single input seller deviates, its
impact on the cost of innovation is infinitesimal, so the probability of innovation
(i.e. expected profits) remains unchanged. Therefore, there are no profitable
deviations when p ≥ v̄.

Second, the equilibrium quantity xi goes to zero as n→∞. This is because
the number of inputs is increasing towards infinity but the total quantity of
inputs required is keeping constant, given our assumptions on the innovation
technology.

Finally, it is easy to show that 1 ≤ σ̂ < σ∗. The first inequality follows
trivially from the fact that σ̂ = v̄/(v̄ − ε). Therefore, σ̂ = 1 only when v̄ → ∞
or ε = 0. For the second inequality, it is enough to compare the equilibrium price
when σ = σ̂ with the equilibrium price when σ = σ∗, since price is decreasing in
σ. When σ = σ̂, price is equal to v̄. When σ = σ∗ we know that the equilibrium
price solves h(p)(p − ε) = 1. If p = v̄, then h(p) (p − ε) → ∞, which is much
larger than 1. For h(p) (p − ε) to decrease and approach 1, p has to decrease.
This means that equilibrium price is larger with σ̂ and therefore σ̂ < σ∗.

Figure 1.4 shows the cost schedule as a function of σ when v̄ = 1 and ε = 0.1.
The equilibrium of the limiting economy does not depend on the distribution of
v, but it depends on the upper bound of the support of the distribution.

Figure 1.4: Cost of innovation in the limiting economy.

The equilibrium price is the same than Dixit and Stiglitz’s (1977) monop-
olistic competition model. When inputs are substitutes, firms set a mark-up
over marginal cost equal to 1/(σ − 1). This means that the pricing inefficiency
decreases as n increases, but it does not disappear even when n→∞.

For complements, the outcome depends on whether σ is greater or less than
σ̂ = v̄/(v̄ − ε). When σ > v̄/(v̄ − ε), firms set a mark-up just like in the
substitutes case. When σ ≤ v̄/(v̄− ε), the only equilibria have p ≥ v̄ and so the
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probability of innovation is zero. In this case, as n increases the inefficiency due
to monopoly pricing increases and it is at its maximum when n→∞.

1.3.5 The Tragedy of the Anticommons Revisited.

The model presented in this paper gives a formal treatment to the tragedy of
the anticommons in sequential innovation. An anticommon (Heller 1998) arises
when multiple owners have the right to exclude each other from using a scarce
resource, causing its inefficient under-utilization. This problem is symmetric
to the tragedy of the commons, where multiple owners have the right to use
a scarce resource, but nobody has exclusion rights and resources tend to be
overused.

Heller and Eisenberg (1998) have raised the question whether the tragedy of
the anticommons may apply to innovation in biomedical research. They point
out that in this sector excessive patenting of research tools might reduce the
incentive to innovate, because the innovator has to face a possibly high cost of
bundling all the licenses together. This is a concern that might be shared by
other hi-tech sectors where innovation follows a similar cumulative process.

The model presented above predicts that anticommons may arise in sequen-
tial innovation, but only under certain circumstances. In our model, the scarce
resource is the state-of-the-art technology for innovation, over which each patent
holder of a research input has a claim. Each patent holder decides the selling
price of her input. It is interesting to notice that when σ ≤ 1 all the inputs
are essential to perform the innovation so all the input sellers can potentially
impede the innovation by setting a high price.

Proposition 4 shows that, when the inputs are market complements, the cost
of producing an innovation increases as technologies become more complex. This
proposition says that when the number of patented and complementary research
tools to be used in R&D increases, the probability of innovation is reduced:
that is, anticommons applies to sequential innovation when research inputs are
market complements. This result holds not only for perfect complementarity
between the inputs, but whenever the elasticity of substitution is not sufficiently
large to compensate the negative effect of price changes on the probability of
innovation. The opposite is true when research tools are market substitutes: in
this case there is no anticommons because, as the number of research inputs
increases, competitive pressure reduces their price fast enough to reduce also
the cost of innovation.

Proposition 5 reinforces the previous result: when the number of patented
research tools grows large, and they are highly complementary, the anticommons
is so strong that the probability of innovation goes to zero.

Finally, it is important to remark that the anticommons effect arises in the
absence of any kind of transaction costs. The anticommons arise as a natural
consequence of the uncoordinated market power of the input producers. As we
will see in section 1.6.2, asymmetric information is not essential for our results.
All we need is a downward sloping expected demand for the inputs.
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1.4 Patent Policy

We have shown that strong patents and fragmentation of ownership lead to a
low probability of innovation when inputs used in research are complementary.
The government could reduce the patent thicket by granting less patents, or
by reducing the breadth of the patents. However, weaker patents imply a re-
duced incentive to discover research inputs in the first place. The problem of
the division of profit between sequential innovators has been studied by Scotch-
mer (1991), Green and Scotchmer (1995), Chang (1995), Scotchmer (1996) and
Hopenhayn, Llobet, and Mitchell (2006). In this section we complement ex-
isting literature by analyzing the optimal division of profits between sequential
innovators when the final innovation requires multiple inputs to be performed.
Our objective is to determine the effects of higher complexity on the optimal
patent policy.

The innovation technology is the same as the one in section 1.2. For tractabil-
ity, we focus on the perfect complements case, so the final good can only be
introduced only if all inputs are invented. Without loss of generality (for the
σ = 0 case), we assume that once the inputs are invented they can be repro-
duced at zero marginal cost (ε = 0). Finally, we will concentrate on the uniform
distribution case, v ∼ U [0, 1], which provides linear demands for the innovation.

An important difference with Section 1.2 is that now the n inputs must be
invented at an earlier stage. We assume that there is a fixed (sunk) cost K/n
of inventing the inputs. Each input will be introduced if expected revenues
are larger than the fixed cost. As is standard in the literature of sequential
innovation, the fixed cost of the input sellers is unknown to the policy maker.
All the policymaker knows is that the sunk cost has a distribution K ∼ U [0, K̄].
Therefore, the patent policy cannot depend on the realization of K.

Our assumptions imply that the social cost and value of the innovation do
not change as n increases. All that changes is the number of input producers
with which the final innovator has to agree to perform her innovation.

We introduce a patent policy parameter φ ∈ [0, 1]. This policy parame-
ter can be interpreted as the patent breadth, the novelty requirement, or the
strength with which Intellectual Property law is enforced in courts: there is a
probability φ that the input innovator is granted a patent and that the patent
can be successfully defended in court. We also assume that imitation is cost-
less: Bertrand competition will ensure that inputs not protected by patents
are sold at marginal cost. Consequently the innovator only has to pay a non-
competitive license fees for inputs that are covered by patents, and can buy the
rest at marginal cost.

We will first analyze the case in which patent policy affects only input inno-
vators (first stage innovations). In this section therefore we abstract from the
fact that in some cases the same patent policy should apply to the final (second
stage) innovation. This is standard in the literature on sequential innovation
where the focus is on the effect of patents on the optimal division of profits
between first and second stage innovators. For completeness, in Section 1.4.2
we will analyze what happens when patents apply equally to first and second
stage innovations (symmetric patent policy). We will show that the qualitative
results do not change.

The timing of the game is as follows: (i) input innovators observe the sunk
cost of innovation, and decide whether to invent their input or not, (ii) if all
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inputs are invented, Nature decides which inputs are protected by patents, (iii)
patent holders set a price for their patented inputs, (iv) Nature decides the value
of the innovation, (v) the final innovator decides whether to innovate or not.

Research inputs will be invented only if the expected revenue from selling the
input is higher than the sunk cost of inventing it. Expected revenue depends on
whether they are granted a patent and on how many other patents are granted.
Remember that each input innovator is granted a patent with probability φ.
Suppose m patents are granted in the second stage. Then, the price of the
inputs, the cost of innovation and the probability of innovation are, respectively:
pm = n

m+1 , cm = m
m+1 and Prm = 1

m+1 .
Consider an input innovator who is granted a patent. In the third stage, her

revenues depend on how many other patents have been granted. Let k = m− 1
denote the number of patents granted, in addition to the patent of the input
innovator we are considering. Actual revenues (after uncertainty is resolved)
are Πk = 1/(k + 2)2. Expected revenues are:

E(Π) = φ
n−1∑
k=0

(
1

k + 2

)2 (n− 1)!
(n− 1− k)!k!

φk(1− φ)n−1−k (1.4)

There are two effects of increases in φ on E(Π). First, a higher φ increases
the probability of being granted a patent, which increases E(Π). Second, the
increase on φ increases the probability that more patents are granted in addi-
tion to mine, which decreases E(Π) because of the anticommons effect. Our
simulations indicate that the first effect always dominates the second effect for
n small, so that E(Π) are increasing in φ. For larger n, though, the second
effect dominates the first for large φ, so E(Π) first increases and then decreases
with φ. Figure 1.5 shows the expected revenue of input producers as a function
of patent strength for n = 5.

Figure 1.5: Expected revenues for inputs. n=5

Let us now focus on how patent policy affects the probability of innovation.
In order for the final innovation to be introduced, two things must happen: (i)
expected revenues have to be larger than the fixed cost for the input sellers, and
(ii) the value of the innovation for the final innovator has to be larger than the
cost of paying the inputs protected by patents. The probability that (i) happens
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is Pr(E(Π) > K/n) = nE(Π)/K̄. The expected probability that (ii) happens
is:

E(Pr(v > c)) =

(
n∑

m=0

1
m+ 1

n!
(n−m)!m!

φm(1− φ)n−m
)
.

It is easy to see that E(Pr(v > c)) is decreasing in φ. This is because, assuming
the inputs are invented, a higher φ increases the probability that more patents
are granted, which implies a lower probability of introducing the final innovation
due to the anticommons problem.

The probability of introducing the final innovation is simply the product of
the previous two probabilities: Pr = Pr(E(Π) > K/n)E(Pr(v > c)).

Pr =
nE(Π)
K

(
n∑
k=0

1
k + 1

n!
(n− k)!k!

φk(1− φ)n−k
)

(1.5)

Figure 1.6 shows that the probability increases with respect to φ, reaches a
maximum (for the optimal policy φ*), and then decreases, for n = 5. There are
two effects pulling in opposite directions: on one hand increasing φ increases
the probability of inventing the inputs, on the other hand it increases the cost
of the final innovator.

Figure 1.6: Probability of final innovation. n=5

Interestingly, the policy that maximizes Pr is smaller than the policy that
maximizes E(Π). This is because is always decreasing in φ. This has an
implication for rent seeking activities: at the optimal policy, input innovators
would push for stronger patents on research inputs, and final innovators would
push for weaker patents.

The following proposition presents the most interesting result of this section.

Proposition 6 The optimal patent strength is decreasing in the complexity of
the innovation.

Rather than going though an analytical proof, it suffices to analyze Figure 1.7.
This figure shows the policy that maximizes the probability of innovation, as
a function of n. Given that the optimal policy does not depend on K̄ or any
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Figure 1.7: Increasing complexity and optimal patent strength

other parameter, this actually shows the effect of increases on n on φ∗, which is
clearly decreasing.

In models of sequential innovation, the degree of patent protection deter-
mines the division of profits between sequential innovators. Stronger patents
increase the protection for early innovators, as they grant them a claim over
following innovations. When innovation builds on several prior inventions, the
uncoordinated market power of earlier patentees generates an anticommons ef-
fect. Proposition 6 shows that as the number of claims increase, the anticom-
mons gets worse, and the optimal response is to reduce the degree of patent
protection.

It is important to remark that in our model a minimum amount of protection
is always needed, otherwise input producers would have no incentives to invent
the inputs in the first place. The important result, however, is that the degree
of patent protection should decrease as n increases. In section 1.4.2 we will show
that the same result holds in a more sophisticated model where patent policy
also affect the revenues of the final innovator.

1.4.1 Patent Policy with Imperfect Substitutability

In this section we relax any constraint on the substitutability between research
inputs, and allow it to vary between zero and infinity. Any degree of substi-
tutability higher than one requires a positive marginal cost ε for the inputs,
otherwise the innovator would only use unpatented inputs and would be able
to innovate at zero cost. As before, inputs require a fixed cost of K/n to be
invented, with K ∼ U [0, K̄], and v ∼ U [0, 1].

This setting represents a generalization of the analysis of Section 1.4. How-
ever, the problem becomes analytically untractable, and we have to resort to
numerical simulations.

The results in this section are in line with those of Section 1.4: increasing
complexity reduces the optimal patent strength. Figure 1.8 shows the optimal
patent breadth φ∗ as a function of the elasticity of substitution σ, with ε = 0.1
and K̄ = 0.4, for n = 5 and n = 10. Increasing n reduces φ* for any σ, and the
result holds for any n ≥ 2.

Another interesting result is that the optimal patent strength φ∗ is increas-
ing in σ. This is because substitutability increases competition among input
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producers, thus reducing their ability to set a price above the marginal cost.
This is equivalent to redistribute revenues from input producers to the final
innovator. In order to compensate for this redistribution, and return to its op-
timal level, patents must be strengthened. Notice however that, for this same
reason, patents in this case are less harmful as they provide a more limited
market power. Finally, it is interesting to note that there is some value of σ,
larger than 1, for which the optimal patent policy is 1, i.e. inputs have to be
protected with strong patents when the substitutability is very large.

Figure 1.8: Increasing complexity and optimal patent strength for imperfect
substitutes (ε = 0.1,K = 0.4)

1.4.2 Symmetric Patent Policy.

Here we complete the analysis of section 1.4 by assuming that the patent policy
also applies to the final good innovator: there is a probability φ ∈ [0, 1] that, if
the final innovation is introduced, it will be protected by a patent. The expected
revenue of the final innovator is φ v, where v ∼ U [0, 1] is the gross social value
of the innovation, just as before. This change introduces an additional factor in
favor of strong patents: the expected private value of the innovation φv, to be
shared between the final innovator and the input producers, it is now increasing
in patent strength.

The rest of the model is the same as in Section 1.4, so we focus on the perfect
complements case with linear demand for the final innovation. Research inputs
need to be invented in a previous stage, with a fixed cost K ∼ U [0,K], and the
necessary condition for this to happen is that expected profits from selling the
input E(Πi) = (1− F (c/φ)) xi pi are higher than this sunk cost of innovation.
The timing of the game is also left unchanged.

Interestingly enough, introducing this extension does not change our results.
Input producers completely internalize the effect of φ on the expected profits of
the final innovator, and leave the probability of innovation unaffected. When
m inputs receive patent protection, inputs price and cost of innovation become
respectively p = φn

m+1 and c = φm
m+1 . As has been said, the probability of

innovation is the same: Pr(φv > c) = 1
m+1 .

On the other hand, the revenue of a patent holder when k = m−1 additional
patents are granted is now φ times lower at φ

(1+k)2 . This obviously has a negative
effect on the overall probability of getting the final innovation Pr = Pr(E(Π) >
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K/n)E(Pr(v > c)). It also has a positive effect on the level of the optimal
patent strength (the one that maximizes Pr). Still it does not affect the main
result: optimal patent strength is decreasing in the complexity of the innovation,
as shown if Figure 1.9

Figure 1.9: Increasing complexity and optimal patent strength: the case of
symmetric patent policy

This result reinforces the one in section 1.4, and gives an idea how strong
the anticommons effect is as technological complexity increases. The result is
even more remarkable when taking into account that, in this model, the final
innovator is a perfect price discriminator. This implies that reducing patent
strength reduces the expected producer revenue (φv) on a one-to-one basis,
which we see as a realistic upper bound on the impact of patents on the incentive
to innovate.

1.5 Patent Pools

Even though our objective is to analyze the optimal patent policy, it is interest-
ing to analyze what would happen if research inputs were priced cooperatively,
either by a collective institution such as a patent pool or by a single patent
holder (monopolist) that owns all the patents. This analysis is interesting be-
cause the USPTO (US Patents and Trademarks Office) itself has recommended
the creation of patent pools to ease the access to biotechnology research tools
(Clark, Piccolo, Stanton, and Tyson 2000).

For this analysis, we come back to the basic model of Section 1.2 (the inno-
vator requires n inputs, which are already invented and protected by patents of
infinite breadth). Proposition 7 shows the equilibrium price in this case. The
difference with the previous case is that now the patent holder maximizes joint-
profits and therefore takes into account the cross-price effects between expected
demands.

Proposition 7 (Patent Pool) The equilibrium price when all the inputs are
priced cooperatively, p∗, is the argument that solves h(p)(p− ε) = 1.

Given the symmetric input demands, the pool wants to sell a symmetric
bundle. Therefore xi = 1/n and pi = p for all i and the pool wants to maximize
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total profits n (1− F (p)) (p− ε). The first order condition is n(−f(p) (p− ε) +
1− F (p)) = 0. Rearranging terms we get the desired result.

Notice that p∗ depends only on the functional form of h and the value of ε,
but not on the values of σ or n. The following proposition compares the cost
of innovation when the inputs are priced individually, c, with that of a patent
pool, p∗.

Proposition 8 The cost of innovation when the inputs are priced non-cooperatively,
c, is equal to that of a patent pool, p∗, when the cross-price derivative is zero
(σ = σ∗), it is larger when the inputs are complements (σ < σ∗) and it is
smaller when the inputs are substitutes (σ > σ∗).

We know from the proof of Lemma 2 that when σ = σ∗, the cross-price
derivative is zero and σ = p h(p). Replacing this in (1.2) and rearranging we get
h(p)(p−ε) = 1, which is the cooperative result. Given that p is decreasing in σ,
whereas p∗ is independent of σ, p > p∗ when σ < σ∗ and p < p∗ when σ > σ∗.

The difference between cooperative and non-cooperative pricing is that in
the first case the firms take into account the effect of an increase in the price
of one input on the demand for the rest. When σ = σ∗ this effect is zero so
the price of the pool coincides with that of the non-cooperative equilibrium.
When σ < σ∗ the effect is negative, so the pool knows that an increase in
price will decrease the demand for the rest and will set a price smaller than the
uncoordinated input sellers. The opposite happens when σ > σ∗.

In the case of the uniform distribution, the pool price is p∗ = (1 + ε)/2.
Figure 1.10 compares this price with the non-cooperative price for ε = 0.1 and
n = 5.

Figure 1.10: Cooperative and non-cooperative pricing.

Our results are similar to those found in Lerner and Tirole (2004). As we
discussed in Section 1.2.4, the difference between the two papers is that we have
assumed that inputs are used in research in a continuous fashion, while Lerner
and Tirole (2004) consider discrete input choices (1 if the input is used and 0
otherwise).

Under the latter approach, the equilibrium will depend on whether the com-
petition margin or demand margin bind. When the competition margin binds,
if the input seller raises her price, her input would be evicted from the bundle
of patents bought by the final innovator. When the demand margin binds, the
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input seller can raise price without excluding its input from the basket, but the
overall demand for the bundle would decrease.

These competition and demand margins are related to our substitution and
innovation effects. The substitution effect says that an increase in the price of
one of the inputs lowers the demand for that input and increases the demand
for the rest (holding overall demand constant). The innovation effect says that
an increase in the price of an input lowers the overall demand for the basket of
inputs (holding the relative demand of the inputs constant).

Therefore, our model can be interpreted as a ”smooth” version of Lerner
and Tirole’s. In Lerner and Tirole, as inputs become more complementary, it
is more likely that the demand margin will bind. In our model, both margins
always bind (except when σ = 0 or σ → ∞), but as inputs become more
complementary, the innovation effect becomes more important relative to the
substitution effect.

In this sense, the contribution of our model is twofold: (i) we show that
Lerner and Tirole’s results extend to the continuous innovation technology case,
and (ii) we explain the effects of patent pools on innovation using the traditional
definition of complementarity based on cross-price derivatives (precisely because
the effects of price changes are smooth), while Lerner and Tirole base their defi-
nition of complementarity on the shape of the revenue function of the innovator.

1.6 Extensions.

In this section we analyze the consequences of relaxing some of the basic as-
sumptions of the model.

1.6.1 Social value and cost depend on complexity.

Until now, we have assumed that the distribution of values of the innovation and
the social cost of the inputs do not depend on n, and that there are no returns
from specialization. Under these assumptions, a change in n only changes the
number of producers from whom the innovator has to buy the research inputs
in order to innovate, but does not change the probability that the innovation is
socially valuable.

However, it could be argued that the revenues of the innovator or the cost of
the inputs are increasing or decreasing in n, or that a higher number of inputs
has a positive impact in the R&D technology due to a higher division of labor.
All these changes have equivalent effects on the probability of innovation so we
will concentrate on changes in the distribution of returns of the innovation.

Let the return of the innovation be a(n) v, with a′(n) ≥ 0 or a′(n) ≤ 0 and
limn→∞ a(n) = a∞ > 0. v has a cumulative distribution F (v) as before. Notice
that we are not setting an upper bound on a∞. All we require is that if a is
non-increasing it does not go to zero as n → ∞. This is because if a∞ = 0
then the distribution of values of the innovation will collapse to zero and the
innovation will never be profitable when n is very large by assumption.

The probability of innovation is 1−F (c/a), and in the symmetric equilibrium
c = p and x = 1/n. The equilibrium price of the inputs (i.e. the cost of
innovation) solves:

(p− ε)h(p/a)/a = n− σ (n− 1) (p− ε)/p
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but we are more interested in the ratio k = c/a, which enters in the probability
of innovation. Replacing in the previous equation we have:

(k − ε/a)h(k) = n− σ (n− 1) (k − ε/a)/k. (1.6)

This equilibrium is equivalent to the one in Proposition 1, thinking of k = c/a
as the cost of innovation and ε/a as the social cost of the inputs. We can prove
the same theorems as before with respect to the difference between complements
and substitutes, the welfare effects of patent pools and ∂k/∂σ. However, ∂k/∂n
will be different because now ε/a is a function of n.

Using the implicit function theorem on the equilibrium relation (1.6) we get:

∂k

∂n
=

h(k) (k−ε/a)−1
n−1 − na′

a
ε/a

k−ε/a

h′(k) (k − ε/a) + h(k) + σ(n− 1)(ε/a)/k2

As before, the sign of this derivative depends only on the sign of the numer-
ator, but now there is an additional term which shifts the threshold value of σ
that divides positive and negative changes in k. This threshold value will be to
the left of σ∗ when a′(n) > 0 and to the right of σ∗ when a′(n) < 0.

Two important remarks are in order. First, if a′(n) is large then the last
term in the numerator will determine the sign of the derivative. In this case, the
effect of changes in n on revenues completely overcomes the effect on the pricing
of inputs, and ∂k/∂n has the opposite sign of a′(n) irrespective of the value of
σ. Second, even for small a′(n), when a′(n) > 0 and σ → ∞ the derivative
is always positive. Therefore when a′(n) is small and positive, there are two
regions where ∂k/∂n is positive: one with low values of σ and another with
large values of σ.

According to the previous analysis, assuming that the return of the innova-
tion depends on n has an effect on the derivative of the probability of innovation
with respect to n. Next, we will show that this assumption has no significant
effect on the analysis of the equilibrium as n→∞.

The equilibrium price solves:

h(p) (p− ε) 1
an

+ σ

(
n− 1
n

) (
p− ε
p

)
− 1 = 0.

When n → ∞, the first term will go to zero because a∞ > 0. Therefore,
the equilibrium price is the same as before, p = σ

σ−1 ε, which is less than the
maximum possible revenue (a∞ v̄) only if σ > a∞v̄/(a∞v̄ − ε). When σ ≤
a∞v̄/(a∞v̄ − ε), on the other hand, there is no equilibrium price such that the
probability of innovation is positive.

The probability of innovation is 1−F (p/a∞). There are two possible cases.
If a∞ < ∞ then the probability of innovation is less than optimal, just as in
the basic model. If a∞ =∞ then the probability of innovation will go to 1 for
σ > 1 and 0 for σ ≤ 1, which is the same as assuming ε = 0 in the basic model.

1.6.2 No Asymmetric Information.

Another assumption of the basic model is that there is asymmetric information
on the value of the innovation (?, read)for good discussions of why this assump-
tion makes sense]Gallini.Wright.1990,Bessen.2004. However, our results do not
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depend on the existence of asymmetric information. All that is needed for the
results is a downward sloping demand for innovations.

An alternative interpretation could be that there is a continuum of innovators
with decreasing returns to their innovations. Suppose that the innovators are
indexed by the return to their innovations, which ranges between v and v̄. Now,
F (v) is the measure of innovations with a return less or equal to v. Also, assume
that the innovations do not compete against each other in the final goods market
and that the input sellers cannot price discriminate between the innovators. It
is easy to see that all the previous results translate directly into this setting.
All that changes is that now 1 − F (c) is not the probability of innovation but
the measure of innovations performed.

1.6.3 No price discrimination.

We can also relax the assumption that the innovator is a perfect price discrim-
inator. Dropping this assumption introduces a wedge between the social and
private values of the innovation. This means that the distribution of values of
innovation changes, and that now there is also an inefficiency in the final goods
sector. Assume that the social value of the innovation is still distributed ac-
cording to F (v), with probability density function f(v). The private value of
the innovation is now vp, which is less than the social value of the innovation.
With a linear demand for the final good, for example, the private return of the
innovation would be vp = v/2, which has a probability density function given
by 2 f(2vp). The qualitative results are the same as before. All that changes is
that now the probability of innovation decreases for each value of σ, and so the
values of σ∗, σ̂ and σ̄ increase. Also, the optimal patent protection is lower for
each value of σ and n than in the case of perfect price discrimination.

1.6.4 Uncertain return of the innovation.

We have also assumed that the innovator is the only one that knows the value
of the innovation. In this section we ask what happens if v is also unknown to
the innovator. Formally, we do this by changing the timing of the game: (i) the
input producers simultaneously set the price of their inputs, (ii) given prices,
the innovator calculates the input mix that minimizes the cost of innovation
and decides whether to innovate or not, and (iii) Nature extracts a value v for
the innovation from the distribution F (v).

We begin by solving the second stage of the game. The innovator decides
what would be the optimal combination of inputs to perform the innovation in
case he decides to perform it. This leads to the same cost of innovation and
conditional demands as before. Then, the innovator decides whether to perform
the innovation or not, in order to maximize expected profits E(v) − c. The
innovation will be performed if E(v) ≥ c and will not be performed otherwise.
If E(v) < ε, then the innovation will never be performed, so we assume that
E(v) ≥ ε. We also assume that the innovator will perform the innovation if
E(v) = c.

The uncertainty has now passed from the input sellers to the input producer.
The problem of the input sellers is deterministic, they know E(v) and they know
that if the price is higher than E(v) the innovation will not be performed (i.e.
their demands will be zero). Now, the inputs are always market substitutes
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unless σ = 0. It is easy to show that the innovation will always be performed,
and that the elasticity of substitution only affects the distribution of payoffs
between the input sellers and the innovator.

Lemma 3 shows that input demands are discontinuous at a certain price,
and Proposition 9 proves that in the symmetric equilibrium c ≤ E(v) so the
innovation is always performed.

Lemma 3 Input demands are discontinuous at

pi =

nE(v)1−σ −
∑
j 6=i

pj
1−σ

 1
1−σ

.

The demand for inputs is positive if the cost of innovation is not larger than
the expected value of the innovation, that is:

n−
1

1−σ

(
n∑
i=1

pi
1−σ

) 1
1−σ

≤ E(v).

Rearranging terms, we get the condition on the price of the input:

pi ≤

nE(v)1−σ −
∑
j 6=i

pj
1−σ

 1
1−σ

.

If pi is larger than this value, then the innovation is not performed and the
demand for all inputs is zero.

The input sellers want to maximize profits xi (pi − ε). Proposition 9 states
the solution of the game.

Proposition 9 The equilibrium price when the return of the innovation is un-
certain for the innovator is:

p =

{
σ(n−1)

σ(n−1)−nε if σ > n
n−1

E(v)
E(v)−ε ,

E(v) otherwise.

After imposing symmetry, the derivative of xi (pi − ε) with respect to pi
becomes:

D(p) =
1
n

(
−σ(n− 1)

n

p− ε
p

+ 1
)
.

Lemma 3 implies that if the derivative with respect to price is positive at
p = E(v), this is a symmetric equilibrium, as firms are making positive profit,
do not want to lower price (D ≥ 0), and would have a zero profit if they would
rise price. This happens when σ ≤ n

n−1
E(v)
E(v)−ε .

When σ > n
n−1

E(v)
E(v)−ε , on the other hand, the equilibrium price solves the

unrestricted first order condition D(p) = 0.
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1.7 Conclusions.

In this paper we extend the literature of sequential innovation in two directions.
First, we study how the probability that an innovation is privately profitable
changes as technologies become more complex, and the inputs used in research
are patented. We find that the results depend on the substitutability between
these research inputs.

When the inputs are complements, the profitability of the innovation is de-
creasing in the technological complexity. In the limit (when n→∞), when the
degree of substitutability is below a threshold level, which is higher than 1, the
innovation is never profitable. This paper therefore gives a formal treatment of
the tragedy of the anticommons.

On the other hand, when the inputs are substitutes, the profitability of the
innovation is increasing in technological complexity. Even in this case, when
n→∞, the cost of gathering all the inputs for the innovation is always too high
from a social point of view and thus the probability of innovation is suboptimal.

Second, we study the optimal response of patent policy to increasing com-
plexity of innovation. We find that, because of the anticommons effect, the
optimal degree of patent protection is decreasing in the complexity of the in-
novation. The degree of patent protection determines the division of profits
between sequential innovators. Stronger patents distribute more revenues from
the last innovator to the previous innovators. This result says that increasing
complexity of innovation reduces the optimal amount of protection granted to
earlier innovators. This result is very robust: numerical simulations suggest
that it holds for any degree of substitutability between previous innovations,
and also holds when patent protection affects the revenues of the final innovator
(i.e patents also affect the amount of profits to be distributed between successive
innovators).

These results are at odds with respect to what we observe in the real world:
the complexity of technology is increasing but patents are becoming stronger.
Not only they have been recently extended to sectors previously lacking pro-
tection (sexually reproduced plants, software, business methods, products and
processes of biotechnology, including plants and animals). Also patent length
has been increasing over the years, and patent systems are being created in
countries where they did not previously exist. We think this is a contradiction
worth being studied further.

Finally, we also study what happens when inputs are priced cooperatively,
either by a collective organization as a patent pool or by a single owner of
all the inputs. We find that the cost of the innovation decreases with respect
to the non-cooperative pricing, when inputs are market complements, while it
increases when inputs are market substitutes. This result is in line with the
intuition of Shapiro (2001) and the model of Lerner and Tirole (2004). Still, we
believe it complements these previous papers by using a standard definition of
complementarity/substitutability, allowing us to exactly identify the economic
forces driving the result.
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2.1 Introduction

Patents are intended to enhance private investment in R&D through the monopoly
power they grant to the innovator over the commercial exploitation of her inven-
tion. Generally, innovations are sequentially linked. For instance, the invention
of the radio would have been impossible without the previous discovery of elec-
tromagnetic waves. This sequential nature of innovation introduces the issue of
how to divide the revenues of the sequence of innovations among the different
innovators. Suppose that two innovations may be introduced sequentially (the
second innovation cannot be introduced until the first one has been introduced).
If a patent is granted to the first innovator, she may obtain a claim over part
of the revenues of the second innovator. The policy maker is confronted with
an important trade-off: if the patent covering the first innovation is strong,
it may imply that the second innovation becomes unprofitable. On the other
hand, if the patent is weak, it may provide low incentives to introduce the first
innovation.

This problem has been studied in depth by the literature on sequential in-
novation, pioneered by Scotchmer (1991). Usually, this literature analyzed the
optimal division of profits between two sequential innovators. But what hap-
pens when each innovation builds on several prior inventions? Going back to the
case of radio, it was not only electromagnetic waves that radio was based upon,
but also high-frequency alternator, high-frequency transmission arc, magnetic
amplifier, the crystal detector, diode and triode valves, directional aerial, etc. In
the words of Edwin Armstrong (inventor of FM radio) “it was absolutely impos-
sible to manufacture any kind of workable apparatus without using practically
all of the inventions which were then known”.

In this paper, we extend the literature on sequential innovation by analyzing
the case in which patents generate cumulative claims on subsequent innovations.
If the number of claims is large, innovators may face a patent thicket and may be
threatened by the possibility of hold up, namely the possibility that a socially
desirable innovation fails to be performed due to the lack of agreement with
previous inventors Shapiro (2001).

Patent thickets are pervasive in hi-tech industries, like software, hardware,
biotechnology and electronics. For example, in the 1980s IBM accused Sun Mi-
crosystems of infringing some of its 10,000 software patents 1; development of
golden rice required access to 40 patented products and processes (Graff, Cullen,
Bradford, Zilberman, and Bennett 2003); and there are 39 patent families “po-
tentially relevant in developing a malaria vaccine from MSP-1” (Commision on
Intellectual Property Rights 2002).

When a patent thicket arises the innovator must pay license fees on many
patented previous discoveries, which may lead to low innovation. Heller and
Eisenberg (1998) were the first to suggest that a reduction in innovation ac-
tivity would have stemmed from what Heller (1998) defines the tragedy of the
anticommons. This phenomenon arises when too many agents have rights of

1http://www.forbes.com/asap/2002/0624/044.html
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exclusion over a common, scarce resource, and as a consequence the common
resource is under-utilized, in clear duality with the tragedy of the commons.
In our case, the anticommons could arise if too many patentees have exclusive
claims on separate components of the state-of-the-art technology, placing an
obstacle to future research. In this paper we build a model to analyze whether
anticommons in sequential innovation is a theoretical possibility.

Abstracting from transaction costs, or the possibility that one or more paten-
tees refuse to license their idea therefore blocking innovation, anticommons are
similar to complementary monopoly: many monopolistic input providers selling
their inputs to a final good producer. The problem of complementary monopoly
was first analyzed by Cournot (1838). He modeled a competitive producer of
brass who has to use copper and zinc as perfect complement inputs in produc-
tion. He showed that, when the inputs are sold by two different monopolists, the
total cost of producing brass is higher than when the two inputs are sold by the
same monopolist. Sonnenschein (1968) showed that complementary monopoly
is equivalent to duopoly in quantity with homogeneous goods, and Bergstrom
(1978) generalized this result to a general number n of inputs and any degree
of complementarity among them.

Recently Shapiro (2001) and Lerner and Tirole (2004) applied the instru-
ments of complementary monopoly to the analysis of patent pools. Their results
reinforced the results on complementary monopoly: patent pools (or equiva-
lently a single monopolist owning all the patented inputs) reduces the cost of
innovation when patents are complements, and it increases it when they are sub-
stitutes. Boldrin and Levine (2005b) and Llanes and Trento (2009) also made
use of complementary monopoly to show that, as the number of complementary
patents increases, the probability that a future innovation is profitable goes to
zero.

All these papers, while making important contributions, present static mod-
els. In other words, the first innovation has been already invented, so patents
and patent pools only affect the profitability of introducing a second innova-
tion. This introduces an important asymmetry between previous and future
innovations. We believe that adding a dynamic dimension is an important step
towards a better understanding of the mechanism of anticommons in sequential
innovation.

Developing a dynamic model is important for several reasons. First, it will
eliminate any bias stemming from the asymmetric treatment of old and new
ideas. Second, patent policy will affect not only current but also future in-
novative activity. Third, it will allow us to analyze the problem of assigning
resources to promote innovations with low commercial value (basic research).
Fourth, some of the previous findings in the literature will be affected by the
introduction of the temporal dimension, and new issues will arise precisely be-
cause of this modification.

We present a dynamic model to study the division of profit when each in-
novation builds on several prior inventions. There is a sequence of innovations
n = 1, 2, . . .. Innovation n cannot be introduced until innovation n− 1 has been
introduced. Each innovation has a commercial value (the profit it generates as
a final good), which is random and private information of the innovator, and a
deterministic cost of R&D to be developed.

Our model provides a good description of the innovation process in several
industries. For example, in the software industry the first programs were written
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from scratch, and therefore built on little prior knowledge. As more and more
programs were developed, they progressively became more dependent on tech-
nologies introduced by the first programs. According to Garfinkel, Stallman,
and Kapor (1991), nowadays software programs contain thousands of mathe-
matical algorithms and techniques, which may be patented by the innovators
who developed them. Similar examples can be found in other hi-tech industries.

Formally, our model is a multi-stage game in discrete time with uncertain
end. Interestingly, the probability of reaching the next period is determined en-
dogenously. Our theoretical contribution is to present a simple dynamic model
that can obtain closed form solutions for the sequence of probabilities of inno-
vation. The equilibrium concept we use is Subgame Perfect Equilibrium with
Markovian Strategies (Markov Perfect Equilibrium).

We are interested in determining equilibrium dynamics under three scenar-
ios: patents, no patents and patent pools. The novel aspect of our model is that
patents generate cumulative claims on the sequence of innovations. Patents af-
fect the innovator in two ways: on one hand, the innovator has to pay licensing
fees to all previous inventors, but on the other hand, she will collect licensing
revenues from all subsequent innovators, in case they decide to innovate. There-
fore, it is not clear what is the net effect of patents on innovation as the sequence
of innovations progresses.

We find that with patents, innovation becomes harder and harder with more
complex innovations. The probability of innovation goes to 0 as n → ∞. The
probability of innovation is higher than in the static case, but not enough to
stop the tragedy of the anticommons from happening.

In the no patents case, on the other hand, the probability of innovation is
constant and depends on the degree of appropriability of the commercial value
of the innovation in the final goods sector. The no patents case will provide
higher innovation than the patents case unless the innovator can appropriate a
very small fraction of the value of the innovation.

When ideas are protected by patents, the formation of a patent pool increases
the probability of innovation for all innovations. Interestingly, the probability
of innovation with a pool is constant and higher than what it would be in the
static case. This result strengthens the findings of Shapiro (2001), Lerner and
Tirole (2004), and Llanes and Trento (2009) for static models. The comparison
between the pool and the no patents case depends once again on the degree of
appropriability of the value of the innovation in the latter case.

We find that pools are dynamically unstable: the temptation to remain out-
side the pool increases as the sequence of innovations advances. This means that
early innovators have more incentives to enter the pool than later innovators.
In this model patents are perfect complements and a deviation from the pool,
while privately profitable is socially undesirable. The design of a mechanism to
solve the pool instability problem, along the line of Brenner (2009), is beyond
the scope of this paper. However we find that the patent pool outcome can be
replicated by a scheme in which each innovator buys all patent rights from the
preceding innovator, instead of paying only for the permission to use the idea
(innovator 1 sells all the rights over innovation 1 to innovator 2, who sells all
the rights over innovations 1 and 2 to innovator 3 and so on). This means that
the complete sale of patent rights will generate higher innovation than licens-
ing. This scheme may be difficult to implement when the nature of innovations
is difficult to describe ex-ante, in which case patent pools would be easier to
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enforce. An alternative scheme, leading to the same innovation outcome, is
to allow subsequent competition between the licensee and the original licensor.
This removes the monopoly power of all but the last patent, eliminating the
anticommons effect.

We find the optimal innovation policy that maximizes the expected welfare
of the sequence of innovations. We find that innovation is suboptimal in the
three policy regimes. In the no patents regime, there is a dynamic externality:
innovators do not take into account the impact of their decision on the techno-
logical possibilities of future innovators. In the two other policy regimes, the
inefficiency stems from asymmetric information and market power: patent hold-
ers do not know the exact value of the innovation, but they know its probability
distribution. This generates a downward sloping expected demand for the use
of their ideas, and market power implies a price for old ideas above marginal
cost.

It is interesting to analyze the second best innovation policy, implemented
through transfers between innovators when the patent office does not know the
value of the innovations. In this case, we find that patents are larger than these
transfers, and therefore the patent regime cannot even attain the second best.
Finally, we extend the basic model to analyze what happens when the sequence
of innovations does not stop after an innovation fails, and to analyze the optimal
patent policy when patents have finite length.

Our paper is related to Hopenhayn, Llobet, and Mitchell (2006), which also
presents a model of cumulative innovation with asymmetric information. How-
ever, the focus of that paper is different. In their paper innovations are substi-
tutes: the introduction of a new product automatically implies the disappear-
ance of old versions in the market. Patents block the introduction of subsequent
innovations for the duration of the patent. The question they study is how to
allocate monopoly power in the final goods market to successive innovations.
A trade-off arises because the promise of property rights to the first innovator
limits what can be offered to the second innovator. In our paper, innovations
are complementary: all prior inventions are necessary to introduce a new idea.
We study what is the effect of intellectual property rights on the pricing of old
ideas. The problem is that granting too many rights on sequential innovations
implies an increase in licensing fees, potentially hindering innovation as a conse-
quence. Therefore, the two papers offer complementary analysis of the process
of sequential innovation when the value of innovations is private information.

2.2 Innovation with patents

There is a sequence of innovations n = 1, 2, . . .. Innovation n cannot be in-
troduced until innovation n − 1 has been introduced. Formally, the model is
a multi-stage game with uncertain end. At each stage, an innovator may in-
troduce an innovation. If the innovation is performed, the game continues and
further innovations may be introduced. If the innovation fails to be performed,
the game ends and no other innovation can be introduced (we will relax this
assumption in Section 2.10). We will see that the probability that the game
continues is determined endogenously.

The innovation process is deterministic. At stage n, the innovator may
introduce the new idea by incurring in an R&D cost of ε. The new idea is
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based on n − 1 previous ideas. These previous ideas are protected by patents,
which means that the innovator has to pay licensing fees to the n− 1 previous
innovators (patent holders), in case she wants to introduce the innovation. The
cost of innovation is the sum of the cost of R&D and the licensing fees paid to
patent holders.

The innovation process reflects the fact that usually earlier innovations do
not have a solid background to build upon, while as the market comes to ma-
turity further innovations are more and more indebted to previous ones.

Each idea has a commercial value vn, which represents the revenues obtained
by selling the new product in the final goods market. In order to concentrate on
the effects of patents on innovation activity, we will assume that the innovator
is a perfect price discriminator in the final goods market, which means that the
commercial value of the innovation is equal to the social surplus generated by
the new product.

The value of the innovation is private information of the innovator. Patentees
only know that vn is drawn from a uniform distribution between 0 and 1, with
cumulative distribution function F (vn) = vn.

The new idea will be protected by a patent of infinite length, which means
that the innovator can request licensing fees from all subsequent innovators (we
will relax this assumption in Section 2.11). The total revenues of the innovation
equal the commercial value of the innovation plus the future licensing revenues.

The timing of the game within each stage is the following: (i) the n − 1
patent holders set licensing fees pin, (ii) Nature extracts a value for vn from
distribution F (vn), (iii) the innovator decides whether to innovate (In = 1) or
not (In = 0).

At each stage, patent holders only care about maximizing the expected future
licensing revenues. Let J in denote the expected future licensing revenues of
innovator i at stage n, given that stage n has been reached. Then,

J in = Prn p
i
n + Prn Prn+1 p

i
n+1 + . . . (2.1)

=
∞∑
m=n

pim

m∏
k=n

Prk,

where Prn is the probability that the nth innovation is introduced, given that
all prior innovations have been introduced. Notice that the probabilities Prn
work as intertemporal discount factors, which arise endogenoulsy from the spec-
ification of the model.

J in can also be expressed in a recursive way:

J in = Prn (pin + J in+1), (2.2)

This means that with probability Prn the innovation is performed, and the
patent holder gets the licensing fee from the innovator plus the continuation
value of her expected licensing revenues.

The innovator’s payoff is In(vn + Jnn+1− cn− ε), where cn =
∑n−1
i=1 p

i
n is the

sum of licensing fees paid to previous innovators.
We will focus on Markov strategies. A strategy for player i specifies an action

conditioned on the state, where actions are prices and the state is simply the
number of previous innovations introduced. The equilibrium concept is Markov
Perfect Equilibrium.
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Perfectness implies that future prices will be determined in following sub-
games, as the result of a Nash equilibrium. Thus, players understand that no
action taken today can influence future prices and probabilities. Current ac-
tions only affect the probability that the following stage is reached, through the
effect of current prices on the probability of innovation. We have just proved
the following lemma:

Lemma 4 J im for m > n does not depend on any action taken at stage n.

The game is solved recursively. The solution to the innovator’s problem is
straightforward. Given vn and cn, the innovator forecasts Jnn+1, and decides
to innovate (In = 1) if the revenues from the innovation exceed the cost of
innovation:

In =
{

1 if vn + Jnn+1 ≥ cn + ε,
0 otherwise, (2.3)

which implies that the probability of innovation is Prn = 1 + Jnn+1 − cn − ε.
At stage n, patent holders want to maximize their expected licensing rev-

enues from stage n onwards. They know their decisions do not affect J in+1 (they
can only affect the probability that stage n+ 1 is reached), and decide a licens-
ing fee pin, taking the decision of the other patent holders as given. The patent
holder’s problem is:

max
pin

J in = Prn (pin + J in+1), (2.4)

which leads to a price equal to pin = (1− ε)/n.
Imposing symmetry, pin = pn and J in = Jn for all i. Replacing prices and

probability in Jn, we get Jn =
(

1−ε
n + Jn+1

)2. Rearranging this equation,
Jn+1 =

√
Jn − 1−ε

n , which is a decreasing sequence, converging to 0 as n→∞.
The sequence of probabilities of innovation is:

Prn+1 =
(
Prn −

1− ε
n

)1/2

, (2.5)

which is also a decreasing sequence converging to 0 as n→∞. This means that
innovation gets harder and harder with more complex innovations (those that
are based on more previous innovations).

The probability of innovation decreases with complexity because patent hold-
ers do not take into account cross-price effects: patent holder i set the price of
her patent by equating the marginal revenue and the marginal cost of increasing
her license fee. The marginal revenue is simply the additional revenue in case
the new innovation is performed. The marginal cost is the reduction in expected
demand, and depends on the fact that - since all patents are essential for the new
innovation - increasing the price of patent i decreases the probability of innova-
tion. As a matter of fact, increasing the price of patent i reduces the expected
demand for all other inputs, but this effect does not enter the marginal cost for
patent holder i. This generates the anticommons effect that closely resembles
the tragedy of the commons: patent holders ignore this cross-price effects and
set a price that is higher than the price they would set if they coordinated (see
section 2.4).

In practice the anticommons can be interpreted as a combination of coordi-
nation failure and market power. Each patent produces a claim over part of the
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revenues generated by subsequent innovations. Since each patent is essential,
and patent holders do not take into account cross-price effects, they set a license
fee that is too high. As the number of claims increases, the coordination prob-
lem gets worse, until eventually the new innovator is left with negative expected
profits with probability one.

2.3 Innovation without patents

Suppose that a policy reform completely removes patents. This change has
two effects on innovation. First, the revenues of the innovator in the final
goods sector will decrease as a result of imitation. Specifically, assume that
the innovator can only appropriate a fraction φ ∈ [0, 1] of the consumer surplus
generated by the innovation. Second, innovators will not pay licensing fees to
previous innovators, nor will they charge for the use of their ideas in subsequent
innovations. Therefore, cn = 0 and Jn = 0 in the previous model.

At each stage: (i) nature extracts a value of the innovation vn, and (ii) the
innovator decides to innovate or not. The innovator will innovate if φ vn ≥ ε
and will not innovate otherwise. Thus, the probability of innovation is constant
and equal to 1 − ε/φ if φ > ε. If φ ≤ ε, then the probability of innovation is
zero.

2.4 Patent pools

In this section we analyze what happens when licensing fees are set cooperatively
by a collective institution like a patent pool. At each stage, the pool maximizes
the future expected revenues of current patent holders. The pool will set a
symmetric price for all current patent holders. Once an innovation is performed,
the innovator becomes a member of the pool in all subsequent stages. In the
first stage there is no pool because no innovation has been introduced (the pool
plays from stage 2 onwards).

The probability of innovation is Prn = 1 + Jn+1 − (n − 1)pn − ε, and the
pool’s problem is

max
pn

Jn = Prn (pn + Jn+1). (2.6)

The difference with respect to the non-cooperative case is that the pool recog-
nizes cross-price effects, and therefore is encouraged to set lower prices than in
the no-pool case.

A higher Jn+1 fosters innovation in two ways. First, it increases the fu-
ture revenues of the innovator. Second, it encourages the pool to set a lower
price, because it increases the loss of current patent holders if the sequence of
innovations is stopped.

The equilibrium price is pn = 1−ε
2(n−1) −

n−2
2(n−1)Jn+1, which is equal to the

price a pool would set in a static model (see section 2.8.1) minus an additional
term arising from the pool’s concern of keeping future revenues.

The probability of innovation becomes Prn = 1−ε
2 + n

2 Jn+1. Introducing
price and probability in Jn, we get

Jn =
1

n− 1

(
1− ε

2
+
n

2
Jn+1

)2

. (2.7)
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This is a first order non-linear difference equation. Jn is decreasing in n and
converges to 0 as n→∞.

The sequence in terms of probabilities is

Prn =
1− ε

2
+

1
2
Pr2

n+1. (2.8)

which is a constant sequence such that Prn = 1−
√
ε for n ≥ 2. To determine

Pr1 we need J2, which is equal to (1−
√
ε)2. Then, Pr1 = min{1, 2(1−

√
ε)}.

2.5 Comparison

Figure 2.1 shows the evolution of the probability of innovation in the three cases
studied above: infinitely lived patents, no patents and patent pool. The cost of
R&D is ε = 0.2 and we consider φ = 1 (full appropriation) and φ = 0.3 (the
innovator appropriates 30% of the social surplus generated by the new product)
for the no patents case.

Comparing the patent and no-patent cases, we can see that patents increase
the probability of the first innovations but decrease the probability of further in-
novations. The number of innovations for which patents increase the probability
depends on φ. For example, when φ = 1, patents only increase the probability of
the first innovation. Nevertheless, even when φ = 0.3 the probability increases
only for the first two innovations. For patents to increase the probability of
several innovations, it is necessary that φ is very small and close to ε (i.e. when
there is very little appropriability without patents).

When ideas are protected by patents, the formation of a patent pool in-
creases the probability of innovation. Figure 2.1 shows that the probability of
innovation with patent pools is always larger than the patents case. Moreover,
with a pool the probability of innovation does not go to zero as n → ∞. The
comparison with the no patents case depends on ε and φ. If φ is low, a patent
pool increases the probability of all innovations. When φ is high, the pool in-
creases the probability of the first innovation, and decreases the probability of
all posterior innovations.

2.6 Complete sale of patent rights

The tragedy of the anticommons stems from fragmented ownership of comple-
mentary patents. In this case, the probability of innovation decreases as more
innovations are introduced, converging to 0 as n → ∞. The formation of a
patent pool would alleviate this problem by concentrating all pricing decisions
on one entity. In this section, we discuss a possible alternative solution, which
is to enforce the sale of complete patent rights, instead of allowing the sale of
individual access rights through licensing fees. These patent rights, in turn, can
be resold to other innovators. In this case, innovator 1 would sell the complete
patent rights over innovation 1 to innovator 2 for a price ℘1. Innovator 2 then
would sell the patent rights on innovations 1 and 2 to innovator 3 for a price
℘2, and so on. We will show that this mechanism eliminates the coordination
failure at the basis of the anticommons, and that it replicates the innovation
outcome under a patent pool.
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Figure 2.1: Comparison of equilibria.

The cost of innovation n becomes ε + ℘n−1, its expected revenues vn +
Prn+1℘n, and the probability that innovation n is performed Prn = 1 − ε −
℘n−1 +Prn+1℘n. At stage n, innovator n−1 solves the following maximization
problem:

max
℘n−1

Jsn = Prn ℘n−1 (2.9)

where Jsn represent expected revenues of selling the n− 1 patent rights to inno-
vator n.

Solving the maximization problem yields a price for patent rights ℘n−1 =
1−ε

2 + 1
2J

s
n+1, and a sequence of probabilities of innovation Prn = 1−ε

2 + 1
2Pr

2
n+1

exactly as in the patent pool case. As before, the sequence is Pr1 = min{1, 2(1−√
ε)}, and Prn = 1−

√
ε for n ≥ 2.

This scheme may be difficult to implement when the nature of innovations is
difficult to describe ex-ante. For example, when selling the rights over innovation
n to innovator n + 1, it is difficult to describe what innovation n + 2 may be.
In this case, complete contracts may be difficult to write, making patent pools
easier to enforce.

An alternative policy arrangement leading to the same result would be the
following: restoring the possibility of licensing access rights, but at the same time
allowing subsequent competition between the licensee and the original licensor.
In this case, if innovator n licenses the use of innovation n to innovator n + 1,
then innovator n+ 2 can license the use of innovation n from innovators n and
n+1. Under this policy arrangement, innovator n will only get positive revenues
from the licensing of her innovation to innovator n+ 1, because at stage n+ 1
she is a monopolist. After that, she will face competition from other innovators,
and Bertrand competition will imply a licensing fee equal to zero.
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2.7 Endogenous patent pool formation

In section 2.4 we have assumed that all innovators, after innovating, automat-
ically join the patent pool. Let us now endogeneize this choice, by analyzing
the incentives for innovator n to join the pool. In particular let us compare the
expected revenues from joining the pool (Jn from section 2.4) with the expected
revenues from setting the price of her patent non-cooperatively (Jon).

We start with the non-cooperative choice. For expositional clarity let us refer
to the patent pool members as insiders and to the non-cooperative member as
the outsider. The pool maximizes the expected revenues of the insiders:

max
pin

J in = Prn (pin + J in+1) (2.10)

where pin is the cooperative price of any insider’s patent, and Prn = 1 +J in+1−
(n− 2)pin − pon − ε, with pon denoting the price of the outsider’s patent.

On the other hand, the outsider maximizes:

max
pon

Jon = Prn (pon + Jon+1). (2.11)

From first order conditions we know that Jon = (n − 2)J in, meaning that
if there is one outsider it is convenient to be her. Now let us compare the
expected revenues from not joining the pool (Jon) to the expected revenues of
joining the pool given that everybody else is in the pool (Jn from section 2.4).
In equilibrium, deviating from the pool produces and expected revenue of Jon =
(3−

√
1 + 8ε)/4, which is constant and only depend on the R&D cost ε. If, on

the other hand, innovator n decides to join the pool together with the n − 1
previous innovators, her expected revenue is Jn = (1 − ε)2/(n − 1) which is
decreasing in n. This is because the patent pool maximizes the joint profits,
thus keeping total cost of innovating constant. This constant amount must be
divided among an increasing number of insiders, therefore the expected revenue
of an insider is decreasing in n. Figure 2.2 shows the gains from deviating from
the pool, that is the difference between Jon and Jn, as a function of n, for ε = 0.1.
For any ε ∈ [0, 1] there is a nun(ε) such that for n > nun(ε) it is convenient for
the innovator to set her price non-cooperatively2.

Figure 2.2: Gains from not joining the patent pool. ε = 0.1

2Note that nun(0) = 5 and
∂nun(ε)
∂ε

< 0 for ε ∈ [0, 1]



46CHAPTER 2. ACCUMULATION OF CLAIMS IN SEQUENTIAL INNOVATION

Patent pools can improve innovation activity, but are dynamically unsta-
ble. Early innovators have more incentives to enter the pool than subsequent
innovators. Brenner (2009) finds an elegant mechanism to solve the instability
problem of socially desirable patent pools in a static model. We leave the de-
sign of an equivalent mechanism in the context of a dynamic model for future
research. Without such a mechanism, however, patent pools are likely to be
unstable. This might explain why governments in some cases have to enforce
the creation of patent pools, as the US government did in the radio and aircraft
cases for example.

2.8 Socially optimal innovation

The relevant measure of welfare is the expected social value generated by the
sequence of innovations. The social value of an innovation is equal to the increase
in consumer surplus minus the cost of the resources spent in R&D. Therefore,
at stage n, the social value generated is vn − ε if an innovation is performed,
and 0 otherwise. Let W be the expected social value. Then,

W =
∞∑
n=1

E(vn − ε / In = 1)Pr(In = 1) + E(0 / In = 0)Pr(In = 0)

=
∞∑
n=1

E(vn − ε / In = 1)
n∏

m=1

Prm

=
∞∑
n=1

∫ 1

wn

vn − ε
1− wn

dvn

n∏
m=1

(1− wm)

=
∞∑
n=1

(
1 + wn − 2ε

2

) n∏
m=1

(1− wm), (2.12)

where wn is the smallest vn such that the innovation is performed. In the cases
studied above, wn = ε/φ when there are no patents and wn = cn + ε − Jn+1

with patents or patent pools.
Suppose now that the decision of whether to innovate or not is taken by

a centralized agency or social planner. The social planner has to determine
{wn}∞n=1, namely what is the minimum value of vn she would require to perform
the innovation at stage n. The planner may decide to perform an innovation
even when the realization of vn is less than ε, if the expected gain from future
innovations exceeds the current loss in terms of welfare.

Proposition 10 (Socially optimal innovation) In order to maximize expected
social welfare, the innovation should be performed at stage n if and only if
vn ≥ w∗n, where

w∗n =
{

0 if ε ≤ E(vn) = 1/2,√
2 ε− 1 if ε > E(vn) = 1/2. (2.13)

Because previous decisions are irrelevant once a stage is reached, the social
planner’s problem at stage n is exactly the same as the problem at stage n+ 1,
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which means that wn = w for all n. The social planner wants to maximize

W =
∞∑
n=1

(
1 + w − 2 ε

2

)
(1− w)n (2.14)

=
(

1 + w − 2 ε
2

)
1− w
w

The first order condition is −(1 + w2 − 2 ε)/(2w2) ≤ 0, with equality if w ≥ 0.
The value that equates the first order condition, w∗ =

√
2 ε− 1, makes sense

only when ε ≥ 1/2. On the other hand, when w → 0, the first order condition
converges to sign(2 ε− 1)∞, which means that w∗ = 0 only if ε < 1/2.

Figure 2.3: Socially optimal innovation.

Proposition 10 implies that innovation will be suboptimal in the three cases
studied above, unless ε = 0. There are three reasons why this is so: dynamic
externalities, market power and asymmetric information.

The dynamic externality is best described by analyzing the no patents case.
Without patents, the innovator will perform the innovation when vn ≥ ε/φ.
Given that w∗n ≤ ε, the innovator may decide not to perform an innovation when
it is socially optimal to do so, even if φ = 1. There is a dynamic externality:
the innovator ignores the effect of her decision on the technological possibilities
of future innovators. This effect is well known in the literature of sequential
innovation (Scotchmer 1991, Hopenhayn, Llobet, and Mitchell 2006), and is
similar to the one found in the literature of moral hazard in teams (see for
example Holmstrom, (1982)), where each agent internalizes only his reward
from the effort exerted.

With respect to the patents and patent pool cases, the inefficiency arises
from a different source: market power and asymmetric information. Because
patentees care about the stream of future licensing revenues, they internalize
the effect of today’s decision on future innovation. However, asymmetric infor-
mation implies a downward sloping expected demand for old innovations, and
market power implies inefficient pricing of patents, which leads to suboptimal
innovation. As the number of holders of rights on innovation increases, the
inefficiency due to market power increases.
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Figure 2.4: Comparison of expected welfare.

2.8.1 Static versus dynamic incentives

Previous models of complementary monopoly, sequential innovation and patent
pools were static (Shapiro 2001, Lerner and Tirole 2004, Boldrin and Levine
2005b, Llanes and Trento 2009). It is interesting to ask what changes when we
add the dynamic dimension.

To see what happens in the static case, assume only one innovation is be-
ing considered. The innovation uses n − 1 old ideas, which have already been
invented. If the innovation is performed, the innovator obtains a value v from
a uniform distribution between 0 and 1, and incurs in a cost ε of R&D. The
probability of innovation is Pr = 1 − ε − cn, with patents or patent pool and
Pr = 1− ε/φ without patents.

With patents, the patent holder’s problem is to maximize Pr pi, the equilib-
rium price is 1−ε

n and the probability of innovation is 1−ε
n . We have shown that

in the dynamic model, the probability is 1−ε
n +Jn+1, with Jn+1 > 0. This extra

term arises because the innovator gets licensing revenues from future innovators.
Dynamic incentives imply a higher probability of innovation, but the increase
is not enough to prevent the probability from converging to 0 as n→∞.

A patent pool would consider cross-price effects, which would lead to a price
of 1−ε

2 (n−1) and a probability of innovation of 1−ε
2 . The probability of the corre-

sponding dynamic model is 1−ε
2 + (n − 1)Jn, with Jn+1 > 0. In this case, the

extra term arises not only due to the future licensing revenues of the innovator,
but also because the pool is concerned with keeping the future licensing revenues
of current patent holders.

With respect to the no patents case, the profit-maximizing decision is the
same as in the dynamic case. This means that innovators will perform the
innovation if φ vn ≥ ε, which leads to a probability of Pr = 1− ε/φ. However,
in the dynamic case innovation is suboptimal even when φ = 1, which contrast
with the static case, where innovation is socially optimal because there is no
intertemporal link between innovations and therefore there is no externality.
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2.9 Dynamic externalities and optimal transfers

In the previous section we have shown that sequential innovation is suboptimal
because of the presence of dynamic externalities and asymmetric information.
Without patents, current innovators do not take into account the effect of their
decisions on the innovation possibilities of future innovators. The solution to
this problem would require intertemporal transfers between innovators. Patents
provide a way to transfer resources from future innovators to current innovators,
but we have shown that with patents, market power leads to high licensing fees
for old innovations, and therefore to low innovation. In this section we ask
how close can the government get to the social optimum when it does not have
information on the value of innovations (second best analysis).

To do this, we will use a simplified 2-period version of the general model. In
the first period, innovator 1 has the option of introducing an innovation with
value v1 and cost ε. If innovator 1 decides to perform the innovation, in the
second period, innovator 2 can introduce an innovation with value v2 and cost
ε. Innovator 1 does not know v2.

To determine the social optimum, we have to assume the social planner
knows v1 at stage 1, and v2 at stage 2. It is likely to think that the government
would have reduced information on vn, but assuming the social planner does
not know vn would imply that innovation decisions without patents give higher
welfare than the social optimum, which does not make sense. Later we will
analyze government policy, and we will assume that the government does not
know vn.

2.9.1 First best

Let us begin by finding the optimal innovation policy in this 2-stage model.
At stage 2 the value and cost of the first innovation are sunk. Therefore, the
second innovation should be performed if v2 ≥ ε, and should not be performed
otherwise. Consider now the first innovation. The social planner will introduce
this innovation if

v1 + Pr(v2 ≥ ε)E(v2 − ε/v2 ≥ ε) ≥ ε, (2.15)

v1 + (1− ε)
(

1− ε
2

)
≥ ε.

which leads to a probability of innovation Pr∗1 = min{1, (1−ε)(3−ε)
2 }.

Without patents, the probability of introducing the second innovation is
Pr2 = 1− ε, which is optimal. However, the probability of introducing the first
innovation is also Pr1 = 1 − ε, which is less than optimal. The reason is the
same as in Section 2.8: the first innovator does not take into account the effect
of her decision on the innovation possibilities of the second innovator.

With patents, innovator 1 sets a licensing fee p1 to try to extract part of the
surplus of innovator 2 (in this 2-period model, the patent and patent pool cases
are the same). The probability of innovation of innovator 2 is Pr2 = 1− ε− p1.
Innovator 1 maximizes:

max
p1

v1 − ε+ (1− ε− p1) p1, (2.16)
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which leads to a price p1 = (1 − ε)/2. The probabilities of innovation are
Pr1 = min{1, (1−ε)(5−ε)

4 } and Pr2 = (1 − ε)/2, so Pr1 ≤ Pr∗1 and Pr2 < Pr∗2 .
This is due to the combined effects of asymmetric information and market power.

Therefore, the 2-period model presents a simplified version of the general
model but still allows to capture the externality and asymmetric information
problems.

2.9.2 Second best: optimal transfers

One way to correct the dynamic externality would be to allow for transfers from
future innovators to current innovators. We have seen that patents fail to convey
appropriate incentives because of asymmetric information. In this subsection
we analyze what is the optimal transfer a government should set to maximize
expected welfare when it does not have information on the value of innovations,
and we compare it with that of the patents case.

Assume that the government does not know v1 nor v2. In this case, the
government cannot make the transfer depend on the realization of v2, and it
will be impossible to reach the optimum. The best the government can do is to
set a transfer equal to t if innovator 2 innovates, and 0 otherwise.

In this case, innovator 1 will innovate if v1 +Pr2 t ≥ ε, and innovator 2 will
innovate if v2 ≥ ε+ t. The government wants to maximize expected welfare:

W = Pr1

(
E(v1 − ε/v1 + Pr2 t ≥ ε) + Pr2E(v2 − ε/v2 ≥ ε+ t)

)
(2.17)

=
1
2

(1− ε)(2− ε− t)(1− ε+ t(1− t− ε)).

Solving this problem we get that the second best transfer with asymmetric
information is:

t∗ =
3− 2ε−

√
6− 6ε+ ε2

3
, (2.18)

where t∗ < p1. Therefore, even if the government does not know v2, it will set a
lower transfer than the licensing fee of innovator 1 with patents. This is due to
the combined effects of asymmetric information and market power with patents.

2.10 Ongoing innovation

In this section we analyze what happens if the sequence of innovations does
not stop after one innovation fails to be performed. There is a sequence of
innovations n = 1, 2, . . ., just as before, but now there can be many trials until
an innovation is successful.

Innovator n, j is the jth innovator trying to introduce innovation n (j −
1 previous innovators tried to introduce innovation n without success). The
innovator has to pay licensing fees to n−1 patentees (the n−1 previous successful
innovators), and obtains a draw vnj from the same distribution as before. If
the revenues from the innovation are higher than the cost, innovator n, j will
introduce the innovation, and in the next stage, innovator n + 1, 1 will try to
introduce innovation n+ 1. If revenues are lower than cost, innovator n, j fails
to introduce innovation n, which will then be tried by innovator n, j + 1 in the
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following stage. This innovator will face the same n− 1 patent holders and will
have a new draw of the value of innovation vn,j+1.

For this model, we need to be more specific about the time dimension. Specif-
ically, assume that stages correspond to time periods. At each period only one
trial for one innovation is performed. The discount factor of innovator and
patent holders is β. At stage n+ j the game is summarized by a state {n, j}.

Let J inj be the expected future licensing revenues of patentee i at trial j
of innovation n, given that stage n + j has been reached under state {n, j}.
Expressed in a recursive way:

J inj = Prnj (pinj + βJ in+1,1) + (1− Prnj)βJ in,j+1, (2.19)

where Prnj is the probability that innovation n is introduced in trial j. With
probability Prnj , the patent holder gets the price pinj plus the continuation value
of J of the first trial of the next innovation, J in+1,1, appropriately discounted
by β. With probability 1−Prnj , the innovation will not be introduced and the
patent holder gets the continuation value of J corresponding to the next trial
of the current innovation.

The profit of the innovator is Inj (vnj + βJn+1,1 − cnj − ε).
Just as before, subgame perfection implies that the patent holders take

J in+1,1 and J in,j+1 as given when deciding pinj . The profit maximizing price is
pinj = (1− ε+ βJ in,j+1)/n. In a symmetric equilibrium, pinj = pn and J inj = Jn
for all i, j.

Replacing in the probability of innovation, we get Prn = 1−ε
n + βJn+1 −

n−1
n βJn, and introducing in the expression for J inj :

Jn =
1

1− β

(
1− ε
n

+ βJn+1 −
n− 1
n

βJn

)2

. (2.20)

Rearranging this expression:

Jn+1 =
1
β

(√
(1− β)Jn −

1− ε
n

)
+
n− 1
n

Jn, (2.21)

which is a decreasing sequence converging to 0 as n→∞.
The sequence in terms of probabilities is:

Prn+1 =
1− β
β

(
Prn +

n− 1
n

β

1− β
Pr2

n −
1− ε
n

)1/2

, (2.22)

which is also a decreasing sequence converging to 0 as n → ∞. Therefore, the
main conclusions of the basic model still hold under when innovation does not
stop when a single innovation fails.

2.11 Finite patents

In this section we analyze what happens if patents have finite length. Each stage
corresponds to one period and only one innovation is attempted at each period.
If the innovator decides to introduce the innovation, she obtains a patent for
L periods. This means that the innovator has to pay patents for L previous
innovations, but also charges licenses to L future innovators.
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The main difficulty of the present analysis is that now the identity of the
patent holders matters. The price and future expected licensing revenues will
be different for different patent holders, depending on how long will it take for
her patent to expire.

The innovator will introduce the innovation if the revenues from innovation
are larger than the cost:

vn +
n+L∑

m=n+1

pnm

m∏
k=n+1

Prk ≥
n−1∑
i=n−L

pin + ε, (2.23)

which means that the probability of innovation is

Prn = 1 +
n+L∑

m=n+1

pnm

m∏
k=n+1

Prk −
n−1∑
i=n−L

pin − ε. (2.24)

The L current patent holders differ in their objective functions. Let J in be
the future expected revenues of patent holder i at stage n, given that stage n
has been reached. Then,

J in = Prn(pin + J in+1). (2.25)

The patent holder charging a license for the last time is patent holder n−L,
so Jn−Ln+1 = 0. The patent of n−L+ 1, on the other hand, will last for one more
period, so Jn−L+1

n+1 = Prn+1 p
n−L+1
n+1 . In this way, we can construct the future

expected revenues of the L patent holders.
The profit maximization problem is

max
pin

J in = Prn(pin + J in+1). (2.26)

The first order condition is −pin− J in+1 +Prn = 0, so pin + J in+1 = Prn and
J in = Pr2

n for all i. This also implies that pn−Ln = Prn.
We are interested in stationary equilibria, which means that Prn = Pr for

all n. This, together with the first order condition, implies that pin = Pr(1−Pr)
for i ≥ n− L. Replacing in the probability of innovation, we get:

Pr = 1 +

n+L∑
m=n+1

pnm

m∏
k=n+1

Prk −
n−1∑
i=n−L

pin − ε

= 1 +

L−1∑
m=1

Pr(1− Pr)Prm + PrPrL − (L− 1)Pr(1− Pr)− Pr − ε.(2.27)

Solving for Pr, we get:

Pr =
L+ 1−

√
(L− 1)2 + 4Lε
2L

(2.28)

which is the stationary equilibrium probability of innovation.
Figure 2.5 shows the probability of innovation as a function of the patent

length for ε = 0.2. We can see that the probability of innovation decreases
with L, which means that patents hurt more than benefit the innovator. This
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is because the innovator has to pay licenses that are certain to the patent hold-
ers, but the future licensing revenues are uncertain, as they depend on future
innovations being performed.

It is also interesting to see that Pr → 0 when L→∞ and Pr → 1− ε when
L → 0, which correspond to the previously analyzed patents and no patents
cases (with φ = 1).

Figure 2.5: Probability of innovation and patent length.

2.11.1 Revenues depend on patent length

We have assumed that the revenues from selling the new product in the final
goods market are independent of patent length. In this subsection we ana-
lyze what happens when we relax this assumption. Assume the revenues of
the innovator are φ(L) vn, with φ′(L) ≥ 0, φ′′(L) ≤ 0, limL→0 φ(L) = φ and
limL→∞ φ(L) = 1. Here, φ is the fraction of social surplus the innovator would
appropriate without any patent protection, due to trade secrets or first mover
advantages.

In this case, the innovator will innovate if

φ(L) vn +
n+L∑

m=n+1

pnm

m∏
k=n+1

Prk ≥ ε+
n−1∑
i=n−L

pin. (2.29)

Applying a similar procedure as that of the previous case, we obtain the prob-
ability of innovation in the stationary equilibrium:

Pr =
L+ 1−

√
(L− 1)2 + 4Lε/φ(L)

2L
. (2.30)

The effect of patent length on the probability of innovation depends on the
functional form of φ(L). Let φ(L) = 1− 1−φ

(L+1)γ , where γ measures the speed at
which revenues grow when L increases. Figure 2.6a shows that when φ is more
concave (γ = 1), the probability of innovation first increases and then decreases
with patent length. The optimal length is positive and finite (in this case L = 1).
Figure 2.6b shows that for a lower degree of concavity of φ(L) it is optimal to
completely remove patents. Therefore, the results do not change significantly
when the revenues in the final goods sector depend on patent length.
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(a) φ = 0.2, ε = 0.1, γ = 1. (b) φ = 0.2, ε = 0.1, γ = 0.1.

Figure 2.6: Probability of innovation as a function of patent length.

2.12 Conclusion

In this paper we build a dynamic model where accumulation of patents generates
an increasing number of claims on cumulative innovation. The model is intended
to reproduce the central feature of innovation activity in hi-tech industries: new
products are more complex than old products, because they build on a larger
stock of previously accumulated knowledge.

We study the policy that maximizes expected social welfare and compare it
with the outcome of three patent policy regimes: patents, patent pools and no
patents. We find that, even abstracting from the monopolistic inefficiencies of
patents, none of these policies attains the optimum.

With patents, the innovator has to pay an increasing number of license fees
to previous innovator. Asymmetric information on the value of the innovation
and uncoordinated market power of licensor create an anticommons effect that
reduces the incentives to innovate as innovation becomes more complex. The an-
ticommons effect is weaker than in the static case, but it is still strong enough to
drive the probability of innovation to zero as the number of licenses grows large.
Enforcing a patent pool solves the lack of coordination but not the asymmetric
information problem. As a result the outcome of patent pools is more desirable
but still it does not achieve the first best. Eliminating patent protection solves
the two problems but introduce a non-internalized externality: previous inno-
vations set the foundations for future innovations. Therefore it might be the
case that the social cost of one innovation is higher than its instantaneous social
value (the social value the innovation creates per se), and yet the innovation is
socially desirable because it allows the development of further innovations. This
is the typical problem faced by basic research.

Then we study alternative solutions to the anticommons: (i) the complete
sale of patent rights of each innovator to the next one, and (ii) the possibility
that the licensee compete with the original licensor. Both alternatives exactly
replicate the sequence of innovations under the patent pool regime. Another
interesting result of the paper is that patent pools are dynamically unstable, as
the incentives to remain outside the pool increase as the sequence of innovations
progresses.

We also find that the outcome of these three policy arrangements does not
even attain the second best. The second best is achievable by means of govern-
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ment transfers, assuming that the government does not know the value of the
innovation.

This paper shows that patent protection may be the wrong way to pro-
vide incentives to innovation in complex industries like electronics, software and
hardware. Enforcing patent pools or eliminating patent protection would im-
prove welfare, but still would not reach the social optimum. We hope this paper
will contribute to future research on the design of an optimal innovation policy.
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3.1 Introduction

Technological progress, especially in hi-tech sectors, is widely recognized as one
of the main forces behind economic growth. In these sectors innovation is se-
quential, meaning that new products build upon existing ones.

This is evident when the new good is an improvement over existing prod-
ucts. It is also true when the discovery of the new good requires the use in
R&D of research inputs which are previous discoveries themselves. In hi-tech
sectors the number of these research inputs often grows large. Patent pools
constitutes considerable evidence of this phenomenon. A patent pool is an
agreement between two or more patent holders to license one or more of their
patents together as a package. The first patent pool was formed in 1856 around
intellectual property conflicts in the sewing machine industry. Other important
patent pools are those on movie projectors in 1908, on aircrafts in 1917, on
radio in 1924, and many more until the most recent one on Blue-ray Disc pro-
moted by MPEG LA in 2007. Some of these patent pools are composed by an
incredibly high number of patents: the MPEG2 pool contains more than 600
patents by 25 patent holders. In the absence of a patent pool, the innovator
has to purchase a high number of research inputs from different patent holders.
This was the case of Golden Rice, whose discovery required the use of around
forty patented products and processes (Graff, Cullen, Bradford, Zilberman, and
Bennett 2003). Or the development of a malaria vaccine based on the MSP1
protein, that would infringe upon 39 patent families (Commision on Intellectual
Property Rights 2002).

These examples show that Intellectual Property Rights (IPRs) affect both
the cost and the revenues of the innovator. Therefore the widely believed view
that stronger IPRs necessarily increase the incentives to innovate no longer
holds. This intuition is at the basis of the literature on sequential innovation
initiated by Scotchmer (1991). This literature, with the contributions of Green
and Scotchmer (1995), Chang (1995), Scotchmer (1996), and many others, uses
two stage innovation models where the first innovation builds the foundations
for the second one. It then studies how the optimal patent policy should be de-
signed in order to redistribute profits between the two innovators, so that all the
socially valuable innovations are performed. Through static partial equilibrium
models, this literature analyzes carefully the effects of IPRs on the profitability
of innovation.

The literature on endogenous growth, on the other hand, focuses on the
dynamic effects of R&D and innovation on growth. The contribution of this
literature has been to make technological progress the result of agents’ rational
economic decisions. The papers of Romer (1990), Aghion and Howitt (1992),
Grossman and Helpman (1991), just to cite a few, have brought fundamental
insights on the relationship between R&D and economic growth. This literature
also recognizes the cumulative nature of innovation, with each innovation build-
ing upon the previous one. In these models the sequentiality of innovation is
treated as a big externality from the previous to the next innovator. Innovators
do not have to pay for the technologies that have been previously invented and
patented, and can freely improve upon them, so that the IPRs policy does not
affect the cost of innovation. It does however affect the revenues of the innova-
tor. In this context the incentives to innovate are monotonically increasing in
patent length, hence the adoption of an infinite patent life policy.
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Therefore there are two separate streams of literature: the one on sequential
innovation studies in depth the effects of IPRs on innovation by means of static
partial equilibrium models. The one on endogenous growth uses dynamic general
equilibrium models to study the effects of innovation on economic growth, but
it is not concerned with the response of innovation to different IPRs policy. In
order to fully understand how patent policy can stimulate economic growth,
there is a need to build a bridge between these two literatures.

Surprisingly, no attempt has been done yet in this sense. There is a grow-
ing literature on optimal patent length, but this literature is mostly concerned
with a different issue. These models assume that the incentive to innovate is
strictly increasing in patent length, and then study the trade-off between the
growth enhancing effect and the static inefficiency of the monopoly provided by
the patent. Judd (1985) finds that, under certain conditions, infinite patents
achieve the efficient rate of growth. This is because when all goods are patented
and priced the same, the marginal rate of substitution still equals the marginal
rate of transformation and the inefficiency disappear. The same conclusion does
not hold true for finite patent length: in this case goods whose patent is expired
are priced at marginal cost, while patent protected goods are sold at a mark-up
over the marginal cost. ? reverse this result and find that the optimal patent
length is finite. This is because they add labor in the production function of
the final good. Therefore, even if all intermediate goods are priced the same
in the infinite patent case, there is an inefficiency in the choice between labor
and intermediate goods. Acemoglu and Akcigit (2007) expand the analysis to
include state-dependant IPRs. They find that patent policy should depend on
the technological gap between the leading firm and the followers. O’Donoghue
and Zweimuller (2004) assume infinite patent duration and focus on policy in-
struments other than patent length. In particular they examine in depth the
patentability requirement and the leading breadth. All these papers, while clar-
ifying many aspects of the role of patent policy in growth, do not take into
account its effect on the cost of the innovation.

To the best of my knowledge this is the first paper studying sequential in-
novation in a dynamic general equilibrium model where IPRs affect both the
cost and the revenues of the innovation. In this paper I develop a model of
endogenous growth with cumulative innovation, where the innovator has to use
a generic number n of research inputs in R&D in order to come up with a new
product. The n research inputs are previous innovations, so that the model is
a dynamic general equilibrium version of Llanes and Trento (2009). The R&D
success rate follows a stochastic poisson process, meaning that the time of in-
novation is uncertain. In this context patent length plays a central role: by
the time R&D takes place, patents on some of the research inputs might have
expired. Thus, depending on patent length, a fraction of the research inputs
might be sold at a competitive price. The larger this fraction, the lower - ceteris
paribus - the cost of R&D. But reducing patent length also reduces expected
revenues from the innovation. This trade off is the central theme of the paper.

I find that the infinite patent length always provides a less than optimal
research effort in the steady-state equilibrium. This result is new with respect
to the existing literature on quality based growth. This literature finds that
infinite patents might lead to an equilibrium rate of innovation that can be
slower, equal or faster than the optimal one. The new result of this paper stems
from the fact that the model takes into account the effect of IPRs on the cost
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of the innovation.
Then I perform numerical simulations of the model under a regime of finite

patent length. These simulations display an hump-shaped level of R&D effort
on patent length, suggesting the existence of a finite optimal patent length. This
optimal patent length increases the equilibrium level of innovation relative to a
system of infinitely lived patents. Also in this case, though, the steady state level
of innovation is always below the one a benevolent planner would choose. In
other words, a varying patent length is not a good policy instrument to achieve
the socially optimal rate of innovation. I use numerical simulations to study
the characteristics of the optimal patent length. These simulations suggest that
optimal length is decreasing in the size of the economy. This could be the result
of the scale effect: the larger the economy the lower the opportunity cost of
investing in R&D, and therefore the higher the growth rate of the economy. Or
it could be the result of the fact that the larger the economy, the larger the
profits of the innovator at each moment in time, and therefore the lower the
need for long patents. Or a combination of the two. In the paper I argue that
the second one is the only sensible explanation. This is in line with the results
of the static analysis of Boldrin and Levine (2005a) and it might be relevant
in the context of the recent discussions about introducing an IPRs system in
developing countries.

Numerical simulations also suggest that the optimal patent length is increas-
ing in the degree of substitutability between the research inputs used in R&D,
reinforcing the results from the static model of ?, and calling for a weaker patent
protection in sectors characterized by a higher complementarity in R&D.

The rest of the paper has the following structure: in section 3.2 I set up
the model to be used throughout the paper. Section 3.3 studies the efficient
R&D effort as the solution to the social planner problem. Section 3.4 analyzes
the decentralized equilibrium with infinite patent length, and compares it to
the efficient one. In section 3.5 I study the decentralized equilibrium with finite
patent life, and I analyze the optimal patent length and its characteristics. Then
in section 3.6 I draw some conclusion and policy implications of this model.

3.2 The Model

The structure of the model is a classical endogenous growth model, in line with
Grossman and Helpman (1991). In this framework I introduce a technology
for R&D that mimics the innovation process of hi-tech sectors, where many
R&D inputs are previous innovations themselves. R&D effort depends on the
access to these previous discoveries, which in turns depends on the IPRs policy.
This structure allows me to study the optimal patent length in a decentralized
equilibrium.

3.2.1 Environment.

Time is continuous and denoted by τ . There is one final good supplied in many
different qualities. The number of qualities available to the consumers expands
with innovation. I denote the quality of the good by the subscript j, where j
is an integer number. Each innovation increases the quality of the good by a
factor γ > 1. I denote quality j by qj , therefore qj = γs qj−s.
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There is a mass L of identical households, each provided with one unit of
labor that he supplies inelastically in exchange for a wage w. Households only
derive utility from the consumption of the final good.

3.2.2 Preferences.

Households’ utility is increasing in both the quality and the quantity of the good
consumed. Let dj be total consumption of quality j good, then lifetime utility
of the representative household is:

U =
∫ ∞

0

e−βτ log

∑
j

γj dj(τ)

 dτ (3.1)

where β is the subjective discount rate.

3.2.3 Technology.

Labor is the only input in the production of goods of any quality. The produc-
tion function is linear, with one unit of good requiring one unit of labor to be
produced, independently of its quality:

xj = lj (3.2)

3.2.4 R&D

Quality improvement, as the source of economic growth, is determined endoge-
nously by R&D. I build the R&D production function taking into account two
intrinsic features of hi-tech sectors: (i) innovation is sequential, meaning that
new goods are built upon existing goods; (ii) a large number of recently discov-
ered techniques and products are used in research. In order to capture these
features I assume that innovation requires the use in R&D of n lower quality
goods. In particular I assume that the discovery of quality j + 1 requires the
use in R&D of qualities j− 1, ..., j−n. The R&D effort for the j+ 1 innovation
is measured as follows:

yj+1 = A

 j−1∑
i=j−n

xi
ρ

 1
ρ

(3.3)

where A is a scale parameter, xi is the amount of quality i good used as input
in R&D, and ρ ∈ [0, 1] is a parameter related to the substitutability between
inputs. In what follow I set A = n(ρ−1)/ρ in order to eliminate increasing
returns from specialization. Therefore y only depends on the total amount of
inputs used 1.

There is free access to the R&D technology (3.3). Innovation is characterized
by uncertainty: the time of the discovery of a new product follows a Poisson
process. The larger the research effort, the higher the instantaneous probability
of discovering a new good, λy. Because of this, the expected time between the

1In most models of monopolistic competition A = 1. This implies that, for a fixed amount
of total input X = nx, output is increasing in n, see (Romer 1987)
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discovery of quality j − 1 and quality j is 1
λ yj

. Notice that because (3.3) is a
constant returns to scale technology, and because the sum ofN Poisson processes
with parameter λ is a poisson process with parameter N λ, the number of firms
engaging in R&D is irrelevant. If there are H firms indexed by h = 1, 2, ...,H
engaging in R&D, then the instantaneous probability of innovation is λyj,h for
firm h and λ

∑H
h=1 yj,h for the economy. Since the number of R&D firms is

irrelevant we can assume that in equilibrium there will be only one, in order to
save notation.

3.3 Social Planner

The social planner has to allocate resources efficiently between the production
of goods for consumption and the production goods to be used in R&D. The
total amount of resources (labor) is L.

The planner maximizes (3.1), subject to the production technology (3.2),
the R&D technology (3.3), and the resource constraint:

L =
j∑
i=0

li (3.4)

Since all goods share the same technology, the planner will choose to produce
only the highest quality good (j) for consumption. Also, because R&D is a
concave and symmetric technology, he will choose to use the same quantity of
each input: xj−1 = ... = xj−n = x. Substituting this choice of inputs in (3.3),
the research effort becomes: yj+1 = nx. Also, since qualities j − n− 1, ..., 0 are
not used in consumption nor in R&D, it is efficient not to produce them at all,
meaning that goods eventually become obsolete.

The resource constraint becomes L = lj + yj+1, where lj and yj+1 are the
amount of resources used in the production of the consumption good and in
R&D respectively. It follows that total quantity produced of the consumption
good is dj = L− yj+1. Therefore the optimization problem for the planner is:

max
yj+1

E(U) = E
∫∞

0
e−βτ log [qj(τ) (L− yj+1(τ))] dτ (3.5)

s.t. (3.2), (3.3), (3.4)

After some calculations, the expected lifetime utility becomes (See Ap-
pendix):

E(U) =
1
β

(
λy log(γ)

β
+ log(L− y)

)
(3.6)

The planner faces a trade-off between more consumption today and a more
valuable consumption tomorrow. Maximizing (3.6) with respect to the constant
research effort y, gives the following first order condition:

λ log(γ)
β

=
1

L− y
(3.7)

This condition states that the marginal benefit of employing resources in
R&D (the lhs) must be equal to its marginal cost (the rhs). The marginal benefit
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is increasing in the Poisson parameter λ, which sets the pace of innovation for
any given research effort, and in γ, the quality step. Not surprisingly it is
decreasing in the subjective discount rate. The marginal cost is the opportunity
cost of employing resources in R&D rather than in the production of the good
for consumption: the foregone marginal utility of consumption.

Solving (3.7) for y, the following proposition holds:

Proposition 11 (Planner Allocation) The optimal amount of research ef-
fort in the steady-state equilibrium is y∗ = L − β

λ log(γ) . This is increasing in
total labor resources (L), the size of quality step (γ) and the effectiveness of
R&D (λ). It is decreasing in the subjective discount rate (β).

These relationships are all very intuitive. The research effort y is an increas-
ing function of λ, the effectiveness of R&D, and γ, the increase in marginal
utility after an innovation arrives. It is decreasing in β because β decreases
the present value of future utility. And it is increasing in the total amount of
resources available in the economy L. This is because increasing total resources
reduces the opportunity cost of investing in R&D. This relationship creates
what is known as ”scale effect”, which is an unwelcome feature of many growth
models (Romer 1990, Aghion and Howitt 1992, Grossman and Helpman 1991).
The scale effect, in its strongest form, means that there is a positive correlation
between the size of the economy and its growth rate. Recently there has been
a successful attempt to correct for the scale effect (see Jones (1999) for a sur-
vey). This paper, like other endogenous growth papers interested in the effect of
patents (Judd 1985, O’Donoghue and Zweimuller 2004, ?), abstracts from this
scale effect by just assuming that population is constant.

3.4 Decentralized Steady-State Equilibrium With
Infinitely Lived Patents

This section analyzes the decentralized steady-state equilibrium level of the
R&D effort. This level is determined by the interaction of households, R&D
firms and producers.

3.4.1 Representative Household.

There is a continuum of households of measure L. Household ` maximizes
total lifetime utility subject to an intertemporal budget constraint. Utility only
depends on consumption, while labor is inelastically supplied for any wage w >
0. The household values both quantity and quality of consumption. Households
own the firms, but we will see that firms have zero expected profits: the Law of
Large Numbers then implies that the value of households’ share is zero, this is
why it does not appear in the budget constraint. The maximization problem is
the following:

max
d`
j

U ` =
∫∞

0
e−βτ log

[∑
j q

`
j(τ) d`j(τ)

]
dτ (3.8)

s.t
∫∞

0
e−rτE`(τ)dτ ≤ A`(0) +

∫∞
0
e−rτw dτ
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where E` =
∑
j pj d

`
j represents total expenditures of household `, A`(0) is

household’s initial wealth, and r is the instantaneous interest rate. The rep-
resentative households solves the maximization problem in two steps: first she
solves a static problem by deciding the composition of her expenditure at each
point in time. Second she decides the optimal expenditure plan. Given prefer-
ences, at each point in time the household only consumes the good with the low-
est pj/qj ratio, where pj is the price of quality j. I assume that, when faced with
goods of the same price/quality ratio, the household prefers the good with high-
est quality. Therefore at each point in time household ` demands d`j = E`/pj
of the good with lowest price/quality ratio, and zero of the rest of the goods.

Initial wealth A`(0) is identical across all household. Household’s wealth
increases according to Ȧ`(τ) = rA`(τ) + w − E`(t). I focus on the steady state
with Ȧ`(τ) = 0, which leads to a constant expenditure plan:

E`(τ) = rA`(0) + w (3.9)

Therefore the interest rate equals the discount rate, and consumption ex-
penditures are constant in time. Aggregate demand is just E(τ) =

∫ L
0
E`(τ)d`.

Because all households are identical E(τ) = LE`(τ).

3.4.2 R&D firms.

At each point in time R&D firms use technology (3.3) in a constant effort to
innovate. If firm h exerts effort yj+1,h, its instantaneous probability of innova-
tion is λyj+1,h, and its expected arrival rate of innovation j + 1 is 1/(λyj+1,h).
As noted above, there is free access to the R&D technology, and we assume
that there are no externalities in research, meaning that individual R&D firms’
probability to innovate are independent. It follows that the number of firms
engaging in R&D is indeterminate, so we can get rid of subscript h.

When one R&D firm discovers quality j + 1, it gets a patent, becomes a
producer and starts selling quality j + 1 to consumers as the highest quality
good in the market. And after quality j + 2 is discovered, quality j + 1 is also
sold as a research input for the discovery of the next n qualities. I will be more
precise about this timing later on. Also, as soon as quality j + 1 is invented
by one firm, all the other R&D firms close their R&D race for the invention of
quality j + 1 with losses, and a new R&D process begins for the discovery of
quality j + 2.

Since the number of firms in the R&D sector is indeterminate, I will use a
representative firm. The R&D firm chooses the research effort y to maximize
expected profits. When engaging in the discovery of quality j + 1, it solves:

max
yj+1

Π = λ yj+1Vj+1 − cj+1(yj+1) (3.10)

where cj+1 is the cost of performing yj+1 level of R&D, Vj+1 denotes total
profits from selling quality j + 1 in case the R&D process is successful, and
again λ yj+1 is the instantaneous probability of innovation. In section 3.4.4 I
will make Vj+1 explicit, as a function of production technology, patent policy,
and R&D technology. For now it is only important to know that Vt+1 is the
sum of (i) the profits from being the quality leader in the final good sector, plus



3.4. DECENTRALIZED STEADY-STATE EQUILIBRIUM WITH INFINITELY LIVED PATENTS65

(ii) the profits from being the supplier of one of the n inputs used in the R&D
process.

The R&D firm maximizes (3.10) in two steps: first, given prices of quality i,
for i = j−1, ..., j−n, it derives conditional factor demands for the corresponding
inputs xi in order to minimize cj+1:

cj+1 = minxi
∑j−1
i=j−n pi xi (3.11)

s.t. n
ρ−1
ρ

(∑j−1
i=j−n xi

ρ
) 1
ρ ≥ yj+1 (3.12)

Solving (3.11) we get the conditional factor demands, and the cost function
of R&D effort:

xi = n−
1

1−σ p−σi

 j−1∑
i=j−n

p1−σ
i

 σ
1−σ

yj+1 (3.13)

cj+1 = n−
1

1−σ

 j−1∑
i=j−n

p1−σ
i

 1
1−σ

yj+1 (3.14)

where σ = (1− ρ)−1 is the elasticity of substitution between inputs.
After deriving conditional factor demands, the R&D firm maximizes (3.10).

The first order condition is:
∂cj+1

∂yj+1
= λVj+1 (3.15)

Because of constant returns to scale, Poisson arrival rate of innovation which
makes expected revenues linear in y, and free access to the R&D technology,
expected profits from R&D will be zero. We will state the zero-profit condition
in section 3.4.4.

3.4.3 Producers.

At each point in time there are: an indeterminate number of R&D firms and
n + 1 producers, each one of them producing one of the last n + 1 qualities in
the market. Nothing prevents qualities to be sold both to consumers and to
R&D firms, but we will see that in equilibrium only the last quality is sold to
consumers, and the other n qualities are used in R&D. For simplicity we assume
that the producer of any quality is the R&D firm that invented it. Also, in order
to avoid strategic pricing, we assume that the goods are sold anonymously to
the R&D firms. In the next subsection we will see that the optimal pricing
depends on whether the quality is used in R&D or it is sold to consumers. I
will refer to qualities used in R&D as inputs.

One last remark: for the sake of simplicity I maintain throughout the as-
sumption that the highest quality in the market does not enter the R&D tech-
nology. This assumption is crucial because it means that in equilibrium no
quality is sold both to consumers and to R&D firms. While certainly not very
realistic, this assumption allows me to solve the model while keeping the two
main characteristics of innovation in hi-tech sectors: (i) the quality of new goods
is higher than that of older goods; (ii) older innovations are inputs in the R&D
process leading to the discovery of new products.



66 CHAPTER 3. IPRS IN A MODEL OF ECONOMIC GROWTH

3.4.4 Balanced Growth Path.

Input producers set the usual monopolistic competition price pi = σ w
σ−1 , and

since the R&D production function is symmetric they all set the same price
pi = p. Since all inputs are priced the same, and because of symmetry and
concavity of (3.3), the innovator will demand the same quantity of each input.
In fact, substituting p into the conditional demand (3.13) we get xi = yj+1/n
for i = j − n, ...j − 1. Also, substituting p into the cost function and plugging
it into (3.15), we get the zero profit conditions:

V =
σ w

(σ − 1)λ
(3.16)

which we will use later to find the equilibrium value of the R&D effort in the
balanced growth path. Since V depends only on constant parameters and on
the numeraire w, I removed the subscript j + 1.

Now that we have the no profit condition we can be more specific about
the value of quality j + 1. We said that this value depends on the profits the
innovator will make: (i) as a final good producer until quality j + 2 is invented,
and (ii) as an input producers by selling its good to R&D firms for the discovery
of better qualities. Let us start from the last one. In equilibrium, given the
mark-up pricing and (3.13), instantaneous profits of the inputs producers are:

Πip = (pi − w)xi =
σw yj+1

n (σ − 1)
(3.17)

Let us now turn to the optimal pricing of the qualities sold to consumers.
The successful innovator is the quality leader in the market for the consumption
good. His quality qj+1 is γ times higher than the previous innovation’s quality
qj . Since consumers only consume the quality with the lowest pi/qi ratio, the
innovator maximize profits by setting a price that is γ times higher than the
price of his competitors. The constant marginal cost of one unit of any good is
w. Therefore the optimal price for the last innovator is2 γ w. At each point in
time she makes profits:

ΠL = (γ w − w)
E

γ w
=
(

1− 1
γ

)
E (3.18)

After the following innovation takes place, quality j+1 is replaced by quality
j + 2 in the final good market At this point it is sold as an input in the R&D
market for the next n innovations.

Therefore total expected revenues of engaging in R&D for the discovery of
quality j + 1 are:

Vj+1 =
∫ ∞

0

e−rτ

[
e−(λyj+2)τΠL +

n+1∑
i=2

e−(λyj+i)τ
((λyj+i)τ)i−1

(i− 1)!
Πip

]
dτ (3.19)

This expression represents the expected value of the innovation j + 1. It is
equal to the discounted expected profits from selling quality j + 1 as a quality

2The innovator does not set a lower price because he is facing a unitary elastic demand
(remember dj = E/pj for the quality with the lowest price/quality ratio). With a unitary
elastic demand the innovator would want to set a price equal to infinity, but he is constrained
by competition to set p = γ w, otherwise the demand for his good will be zero
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leader in the consumption good market first, and then as one of the n inputs
producers for the next n innovations. The first term inside the square bracket
is the probability that nobody has discovered quality j + 2 at time τ , times the
profits as quality leader in the market for consumption. The second term is the
probability that, at time τ , quality j+ 1 good is still in the R&D process, times
the profits as input producer. For quality j + 1 to be part of the R&D process
we need that: (i) quality j + 2 has already been invented; (ii) no more than n
innovations have been made after the invention of quality j + 1.

Substituting (3.17), (3.18) and the resource constraint3 into (3.19) and solv-
ing for V in the balanced growth path, we obtain:

V ∗ =
(γ − 1)w (L− y)

r + λy
+
λy2w

(
1−

(
λy
r+λy

)n)
n r(r + λy)(σ − 1)

(3.20)

The following result holds:

Proposition 12 (Decentralized Equilibrium) A decentralized steady state
equilibrium with infinite patents exists and it is unique. The research effort (y∞)
and total Welfare (W∞) are less than optimal. y∞ is decreasing in n and r, and
it is increasing in γ, λ and σ.

in the Appendix
The result that, in the presence of infinite patents, the decentralized equi-

librium delivers an insufficient level of R&D is new. The previous literature
on quality-ladder based growth, by ignoring the cost-effect of patents studied
here, concluded that, depending on different constellations of parameters, R&D
effort could be higher, equal or lower than socially desirable. This paper shows
that incorporating a more realistic R&D production function, where IPRs af-
fect both cost and revenues of the innovator, leads to a different conclusion.
Patents of infinite length always fail short of delivering the correct incentives to
innovate as the monopoly power they attribute to past innovators more than
compensate for the extra profits they bestow upon the current one. The next
section analyzes whether a finite patent length may achieve the socially desir-
able innovation effort and, in that case, the properties of the optimal patent
length.

3.5 Decentralized Steady-State Equilibrium With
Finite Patent Length

This section analyzes the decentralized equilibrium when patents have a finite
life. Let the patent policy parameter φ > 0 represent patent length. I assume
that the innovator does not have any advantage over imitators so that, after the
patent expires, a costless imitation process immediately drives the price down
to the marginal cost w.

A finite patent length reduces both expected cost and expected revenue of
the R&D firms. We have seen in the previous section that when patents are

3Notice that E
γw

in (3.18) is the quantity sold in the market for consumption good. If the

highest quality is j, then dj = E
γw

= L− yj+1



68 CHAPTER 3. IPRS IN A MODEL OF ECONOMIC GROWTH

infinitely lived the research effort is lower than optimal. Therefore if a finite
patent length has to bring an efficiency gain, it must increase the incentives
to innovate by reducing the cost of R&D more than it reduces the expected
revenue.

With finite patent life the representative household analysis stays the same:
she will only consume the good with the highest quality/price ratio. Because
of the effects on cost and revenues from R&D, the innovator’s problem changes.
Equation (3.10) becomes:

max
yφ,j+1

Πφ = λ yφ,j+1Vφ,j+1 − cφ,j+1(yφ,j+1) (3.21)

where all variables are defined as in (3.10), and the subscript φ indicates that
we are now operating with finite patent life.

The R&D firms solve the same cost minimization problem, therefore (3.11)
and (3.13) still hold. Inputs still protected by a patent are sold at the monopo-
listic competition price pi = σ w

σ−1 , but goods whose patent has expired are sold
at marginal cost w. The policy maker takes into account the effect of patent
length on expected cost of R&D. For a given patent length φ, the expected cost
becomes (see Appendix):

E(cφ) = n−
1

1−σ

(
np1−σ −

(
p1−σ − w1−σ) e−λyφ(n+

n∑
i=1

i
(λyφ)n−i+1

(n− i+ 1)!

)) 1
1−σ

yφ

(3.22)
The first order condition of (3.21) is:

∂cφ,j+1

∂yφ,j+1
= λVφ,j+1 (3.23)

and again, constant returns to scale, Poisson arrival rate of innovation and free
access to the R&D technology, make expected profits from R&D zero. In section
3.5.1 I will make the zero-profit condition explicit.

3.5.1 Balanced Growth Path.

In order to find the steady-state equilibrium I follow the same steps as in the
previous section: I first find the equilibrium prices and demands, and then use
them to find the zero profits conditions. Finally I use the zero profit condition
together with the the resource constraint to find the equilibrium research effort
in the balanced growth path.

Because of the symmetry of the R&D production function, all inputs covered
by a patent have the same price, which is the usual mark up over the marginal
cost p = σ w

σ−1 . Inputs whose patent is expired are sold at marginal cost w.
Notice that, because inputs are priced differently depending on being patent
protected or not, the demands will no longer be symmetric. Also, substituting
the optimal p in the cost function and solving the first order condition of the
R&D firm (3.23) in the balanced growth path, we get the zero profit condition:

Vφ =
E(cφ)
λyφ

(3.24)

where E(cφ) is as in (3.22).
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Let us now be more precise about the value of quality j+1, once it has been
invented. We said that the value depends on the profits made by selling quality
j + 1 as a final good until quality j + 2 is discovered, and as a research input to
R&D firms. Let us start from the last one. Instantaneous profits for the input
producer in the balanced growth path are:

Πφ,ip = (pi − w)xφi (3.25)

where expected demand in the Balanced Growth Path for input i is (see Ap-
pendix):

xφi = n−
1

1−σ p−σi

(
np1−σ −

(
p1−σ − w1−σ) e−λyφ(n+

n∑
i=1

i
(λyφ)n−i+1

(n− i+ 1)!

)) σ
1−σ

yφ

(3.26)
and pi = σ w

σ−1 if input i is still protected by a patent, while pi = w if the
patent on quality i has expired. As in the infinite patents case, the last innovator
finds it profitable to set the price γw. Instantaneous profits for the innovator
as the quality leader in the consumption good market is:

Πφ,L = (γw − w)
E

γ w
=
(

1− 1
γ

)
E (3.27)

Total expected profits for the successful innovator are:

Vφ,j+1 =
∫ φ

0

e−rτ

[
e−(λyφ,j+2)τΠφ,L +

n+1∑
i=2

e−(λyφ,j+i)τ
(λyφ,j+iτ)i−1

(i− 1)!
Πφ,ip

]
dτ

(3.28)
The following proposition holds:

Proposition 13 In the decentralized economy with finite patent life, a steady-
state equilibrium with positive innovative effort exists and is unique

in the Appendix
In what follows I present the results of numerical simulations that analyze the

characteristics of the optimal patent policy. Table (3.1) shows the benchmark
values of the parameters (the values used in the graphs) and the range of values
upon which robustness checks have been ran.

Benchmark Range

σ 3 [1.1, 50]
β 0.04 [0.03, 0.1]
L 1 [0.9, 1.1]
n 10 [2, 50]
λ 0.4 [0.1, 1.37]
γ 1.25 [1.05, 2]

Table 3.1: Parameters values

The parameters have been chosen as follows: for the annual discount rate,
equal to the interest rate, I take the standard value r = 0.04, but then I run
robustness checks for r ∈ [0.03, 0, 1].
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For γ and λ I used a reasoning similar to Stokey (1995): the average annual
rate of economic growth due to technological progress is between 0.5 and 1 per
cent. In the model the expected rate of economic growth is the probability of
innovation times the quality improvement λy(γ − 1). Since y is endogenous to
the model it is complicated to calibrate the model to exactly match the data on
economic growth. Also I have one degree of freedom in the choice of γ and λ
that match the data. Therefore I let both parameters vary within a reasonable
range. The benchmark values of γ and λ imply a growth rate due to innovation
(λy(γ − 1)) of about one percent. Higher values of γ and lower values of λ fit
better the data in sectors where the innovation activity is rare yet radical. On
the contrary, lower values of γ and higher values of λ better illustrate the case
of constant but little innovation. The wage rate does not affect the equilibrium,
since it is just the numeraire in the model. In the benchmark case I take the
elasticity of substitution between inputs σ = 3, but then I run robustness check
for σ ∈ [1.1, 50]. The number of inputs entering the R&D process in the baseline
case is 10, but I allow it to decrease and increase between 2 and 50. I take total
labor L = 1 and then I let it vary to study how the size of the economy affects
the optimal patent policy.

Although the results of the simulation obviously change quantitatively for
different values of the parameters, the qualitative results are very robust. The
simulation suggests that the steady-state level of R&D effort (yφ) and total
Welfare (Wφ) with finite patents are hump shaped in φ. No finite patent length
reaches the social optimum. Figure (3.1) depicts the research effort under infi-
nite patent policy y∞ and under finite patent policy yφ, as a function of patent
length. The efficient level of R&D y∗, is much higher, at 0.55 and of course it
does not depend on patent length.

Figure 3.1: Patent length and research effort

Figure (3.2) shows the behavior of the total Welfare of the economy as a
function of patent length. It is evident that total Welfare behaves similarly
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to research effort, so that the patent policy that maximizes the research effort
also maximizes total Welfare of the economy. Patents affects Welfare in two
ways: through its effect on the rate of growth of the economy and through the
inefficient allocation stemming from the monopoly it provides. In this model
the first effect is the crucial one. There exist two inefficiencies of the monopoly:
the monopoly on the good for consumption (the latest innovation), and the
monopoly on the research inputs (the older innovations). The optimal patent
length is always longer than the arrival rate of one innovation, therefore the
first monopoly is almost irrelevant. In words, reducing or eliminating this in-
efficiency would require a patent length that is shorter than the arrival rate of
one innovation, but this patent length is never optimal, as it is too short to
provide incentives to innovate in this model of costless and timeless imitation.
The second monopolistic inefficiency, the one on research inputs, turns out to be
marginal. This is because the inefficiency here is the misallocation of resources
between patented and non-patented inputs, which stems from the competitive
versus non-competitive pricing of equally productive inputs. Any patent length
longer than the arrival rate of one innovation implies such a misallocation. It
turns out that the difference in the magnitude of this inefficiency is always dom-
inated by the effect on economic growth. This is why, in this model, a patent
life that maximizes economic growth also maximizes Welfare.

Figure 3.2: Patent length and Welfare

Tables (3.2),(3.3),(3.4),(3.5) report the values of the research effort, the level
of welfare and the growth rate of the economy under the optimal finite patent
policy (yφ,Wφ, gφ), and under infinite patents (y∞,W∞, g∞) for varying values
of the parameters σ, n, β and γ.

The tables suggest that under a finite patent duration regime the economy
can perform better than in the infinite patent length regime, both in terms of
economic growth and welfare. Nevertheless, in this numerical simulation, no
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σ
1.1 3 5 25 50

yφ∗ 0.091 0.112 0.115 0.118 0.119
y∞ 0.000 0.058 0.084 0.113 0.117
Wφ∗ 2.697 3.278 3.358 3.452 3.463
W∞ 0.000 1.745 2.507 3.315 3.408
gφ∗ 0.912% 1.120% 1.149% 1.183% 1.187%
g∞ 0.000% 0.581% 0.845%, 1.113% 1.117%

Table 3.2: Robustness Check for different values of σ
Baseline parameters values: λ = 0.4, β = 0.04, n = 10, γ = 1.25, L = 1

n
2 5 10 20 50

yφ∗ 0.098 0.107 0.112 0.115 0.116
y∞ 0.062 0.059 0.058 0.058 0.057
Wφ∗ 2.897 3.145 3.278 3.366 3.387
W∞ 1.853 1.775 1.745 1.731 1.728
gφ∗ 0.983% 1.072% 1.120% 1.152% 1.159%
g∞ 0.618% 0.591% 0.581% 0.576% 0.573%

Table 3.3: Robustness Check for different values of n
Baseline parameters values: σ = 3, λ = 0.4, β = 0.04, γ = 1.25, L = 1

finite patent length reaches the optimal level of innovation and welfare, suggest-
ing that varying patent length is not an optimal policy instrument. A simple
way to reach the efficient level of R&D in this model would be to eliminate
patent protection and give a fixed subsidy equal to wy∗ (the cost of the socially
optimal R&D effort) to the innovating firms.

A second interesting result of the simulation is that the optimal patent length
is decreasing in the size of the economy, L. There are potentially two forces
pushing in this direction. One is that this model incorporates a scale effect :
the larger the size of the economy, the faster ceteris paribus the growth rate
of the economy. The mechanism works through the marginal cost of employ-
ing resources in R&D, which is decreasing in L. Therefore, as it is clear from
Proposition (11), increasing L increases the R&D effort more than proportion-
ally. The second force depends on the fact that L also represents the size of
market for the new innovation. The larger the market, the larger the profit of
the innovator at each point in time. Meaning that the innovator will be able
to recoup the cost of R&D sooner, and patent length can be reduced, with the
beneficial consequence of reducing the R&D cost of following innovations.

I do not believe that the first one is the leading effect on the optimal patent
length. In fact I do not think it has an effect at all. If that was the case, the
argument would go this way: since, by increasing L I increase R&D effort more
than proportionally, I want to offset this excessive reaction of y by reducing
patent length. But this argument must be wrong because, in the numerical
simulations, R&D effort under finite patent length is always lower than the
socially optimal one (yφ < y∗). Then there is no reason why we would want to
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β
0.03 0.04 0.05 0.06 0.10

yφ∗ 0.131 0.112 0.093 0.075 0.000
y∞ 0.081 0.058 0.036 0.014 0.000
Wφ∗ 8.306 3.278 1.372 0.559 0.000
W∞ 5.222 1.745 0.552 0.115 0.000
gφ∗ 1.309% 1.120% 0.933% 0.748% 0.000%
g∞ 0.811% 0.581% 0.360% 0.143% 0.000%

Table 3.4: Robustness Check for different values of β
Baseline parameters values: σ = 3, λ = 0.4, n = 10, γ = 1.25, L = 1

γ
1.2 1.3 1.4 1.5 1.6

yφ∗ 0.078 0.144 0.202 0.253 0.297
y∞ 0.030 0.085 0.136 0.183 0.226
Wφ∗ 1.517 5.561 11.348 18.329 26.116
W∞ 0.599 3.368 7.811 13.518 20.163
gφ∗ 0.620% 1.729% 3.231% 5.053% 7.136%
g∞ 0.237% 1.024% 2.183% 3.666% 5.428%

Table 3.5: Robustness Check for different values of γ
Baseline parameters values: σ = 3, λ = 0.4, β = 0.04, n = 10, L = 1

reduce patent length to reduce the R&D effort yφ .
I therefore conjecture that the second force is the most important if not only

force behind the effect of L on optimal patent length.
The result of the numerical simulation on the effect of L on optimal patent

protection is in line with the results of Boldrin and Levine (2005a). Using a
static framework, they show that an increase in the market size for innovation
should be accompanied by a decrease of patent strength. Figure (3.3) shows the
negative relationship between L and φ∗.

On the other hand numerical simulation suggests that optimal patent length
is increasing in the degree of substitutability between research inputs. Figure
(3.4) shows this positive relationship between optimal patent length and σ.

This numerical finding is quite intuitive because inputs producers compete
in price, and the degree of substitutability sets a bound on their market power.
When inputs are perfect substitutes for instance, no matter if they are patent
protected they will set a price equal to the marginal cost. In this extreme
case patents do not affect the cost of the innovation. Nevertheless they still
affect expected revenues from innovating. Consequently an infinite patent length
would maximize economic growth.

The other side of the medal is that the higher the complementarity between
the research inputs, the weaker the optimal patent protection. This would point
in the direction of allowing for different patent policies in differently structured
sectors: hi-tech sectors, often characterized by a high complementarity in R&D,
are likely to suffer from an excessive patent protection. This is in line with the
concern about the surge of anticommons in these sectors, namely that strong
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Figure 3.3: Size of the economy and optimal patent length

and fragmented IPRs make it so difficult for the innovator to gather all the
needed licenses that they reduce rather than spur innovation.

3.6 Conclusions and Policy Implications

In this paper I investigate the effects of intellectual property rights on economic
growth when the latter is due to sequential innovations feeding on earlier ones.
Previous models of endogenous innovation abstracts from the fact that earlier
innovations are inputs in the R&D process for new ones, thereby assuming an
increasing relationship between the length of the patent and the incentives to
innovate. The literature on static sequential innovation has made clear that,
when innovation is sequential, patents affect both the revenue from and the
cost of innovations. This is especially true in high tech sectors, where many of
the products and processes used in R&D are previous innovation themselves,
and therefore likely to be patent protected. In this context, stronger patent
protection does not necessarily increase the incentives to innovate and it may
well reduce it.

This is the first time in which this dual effect of IPRs on innovation is
considered in a dynamic general equilibrium setting, and the results are novel.
In particular, I find that, in the steady-state equilibrium, an IPRs system with
infinitely lived patents does not maximize either social welfare or the rate of
economic growth: it provides a level of R&D which is too low.

I also analyze the steady-state balanced growth path with finite and optimal
patent life. Numerical simulations suggest that R&D effort is initially increasing
and then decreasing in patent length. This inverse-U shape is easily explained
by two effects. Because of the, extreme, assumption of costless and timeless
imitation, zero patent protection results in no innovation. As patent protection
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Figure 3.4: Degree of substitutability and optimal patent length

increases, the level of R&D steadily increases, until it reaches its maximum at
a level which is higher than its corresponding level with infinite patents. After
that it slowly decreases until it reaches its infinite patent length equilibrium
value. It would be interesting to study what happens to the optimal patent
length if imitation is neither costless nor timeless

I also run numerical simulation of the model which suggest that, under the
maintained assumptions, there exists a unique optimal finite patent length. The
numerical exercise exhibits a negative relationship between this optimal length
and the size of the economy, which coincides with the market for the innovation.
In the paper I argue that this relationship does not depend on the scale effect,
but rather on the fact that large markets imply larger monopolistic rents at
each moment in time, reducing the necessity for long patent life. Reducing
patent length then has the beneficial effect of reducing the R&D cost of further
innovation, by reducing the amount of license fees the innovator has to pay. I
believe that this point should be further investigated, especially in relation to
the recent debate about enforcing IPRs in developing countries. If this happens
then the size of the market for the innovator obviously increases, with some
repercussion on the optimal patent length

Another interesting numerical result relates the optimal patent life to the
degree of substitutability of the research inputs. There seems to be a positive
relationship between the two: higher substitutability calls for a longer patent
protection, meaning that sectors characterized by a higher complementarity in
R&D should receive weaker patent protection.

The model can be extended in a least two ways: by introducing specialized
labor into the R&D production function and by relaxing the assumption of cost-
less and timeless imitation. In the first extension one could assume that new
goods can be obtained either by means of patented inputs or by using special-
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ized labor to discover around existing patents, or a combination of both. This
extension would introduce an additional inefficiency: because of the monopoly
distortion created by the presence of patents, the demand for specialized labor
is higher than it would be at the efficient allocation, with some implication on
the wage od specialized labor. The second extension would be to provide the
innovator with a first mover advantage, yielding competitive rents that in turn
affect the optimal patent policy. I leave these extensions for future research.

3.7 Appendix

3.7.1 Derivation of expected utility

The Bernoulli instantaneous utility function is separable in quality qj(τ) and
quantity (L − yj+1(τ)). It is easier to work with this two term separately.
Expected utility is:

E(U) = E

∫ ∞
0

e−βτ log (qj(τ)) dτ + E

∫ ∞
0

e−βτ log (L− yj+1(τ)) dτ

Let us label E(Uq) the first term on the r.h.s., and E(Ud) the second term on
the r.h.s.. E(Uq) depends on quality, which is a random variable, while E(Ud)
depends on quantity, which is a deterministic variable.

Given that innovation follows a Poisson process with arrival rate4 λ y,

E

∫ ∞
0

e−βτ log [qj(τ)] dτ =
∫ ∞

0

e−βτ
∞∑
j=0

log[qj ]e−λyj+1τ
(λyj+1τ)j

j!
dτ

=
log(q0)
β + λy

+
λy log(γ q0)
(β + λy)2

+
(λy)2 log(γ2 q0)

(β + λy)3
+ ...

=
log(q0)
β + λy

∞∑
i=0

(
λy

β + λy

)i
+
log(γ)
β + λy

∞∑
i=0

i

(
λy

β + λy

)i
=

log(q0)
β

+
λy log(γ)

β2

E(Ud) = E
∫∞

0
e−βτ log [L− yj+1(τ)] dτ = log(L−y)

β . Setting q0 = 1 we have
that total expected utility E(U) = E(Uq) + E(Ud) is:

E(U) =
1
β

(
λy log(γ)

β
+ log(L− y)

)

3.7.2 Proof of Proposition (12)

I find the equilibrium by equating the zero profit condition (3.16) and the re-
source constraint (3.20). Because of constant returns to scale, the zero profit
condition (3.16) does not depend on y. The same is not true for equation (3.20).

4The research effort yj is the same for any j, since the dynamic problem is actually a
sequence of identical static problems
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In particular:

∂ V ∗

∂ y
=
w
(
λL
(

2r + λy −
(

λy
r+λy

)n
((2 + n)r + λy)

)
− nr(σ − 1)(γ − 1)(r + λL)

)
n r(r + λy)2(σ − 1)

(3.29)
This expression is negative if H is negative, where H is:

H = −nθn + (1− θn)
(

2 +
θ

1− θ

)
(3.30)

with θ =
(

λy
r+λy

)
< 1. H is positive if and only if n < ( 1

θn − 1)
(

2 + θ
1−θ

)
. We

have
∂ [( 1

θn−1)(2+ θ
1−θ )]

∂ θ < 0 and, applying de L’Hospital, limθ→1

[
( 1
θn − 1)

(
2 + θ

1−θ

)]
=

n. Therefore H is negative and so is (3.29).
Also, for y = 0, V ∗ is the discounted value of the infinite stream of profits

as leader in the consumption good: V ∗ |{y=0}=
(γ−1)wL

r . And for y = L,

V ∗ |{y=L}=
λL2w(1−( λL

r+λL )n)
n r(r+λL)(σ−1) > 0

Now we know that: (i) (3.16) is positive and constant in y; (ii) (3.20) is
positive for all y ∈ [0, L] and it is decreasing in y. Therefore there exist an equi-
librium if and only if V ∗ |{y=0}< V < V ∗ |{y=L}. In this case the equilibrium
is unique. Notice that, in the end, the existence of the equilibrium depends on
the value of L. Therefore an opportune choice of L assures the existence and
uniqueness of the equilibrium.

Also substituting the optimal value of R&D, y∗ (the one solving the social
planner problem) we get (3.16)>(3.20):

V − V ∗ =
σ

(σ − 1)λ
+

r(γ − 1)
(r + λL) log(γ)− r

+
(r − λL log(γ))2

(
1−

(
λL log(γ)−r

(r+λL) log(γ)−r

)n)
n r(σ − 1) log(γ) ((r + λL) log(γ)− r)

where the three terms are positive, since L > r
λ log(γ) . This proves that

the decentralized level of research effort is suboptimal and it is lower than y∗.
Figure (3.5) depicts the uniqueness and the sub-optimality of the equilibrium.

The effects of r, γ, λ and σ on y∞ follows from straightforward applications
of the implicit function theorem.

3.7.3 Derivation of equation (3.22)

We start with the cost function of equation (3.13). When patent length is finite
there is the possibility that some inputs are no longer protected by patent. Let
Prob

(
N(τ)−N(τ−φ) = k

)
be the probability that in the period from τ−φ to τ

exactly k innovations are discovered. Given the time of innovation is a Poisson
process, this probability is e−λyφ (λyφ)k

k! . Then the expected cost of innovation
becomes:

E(c) = n−
1

1−σ

[
nw1−σe−λyφ

+ nw1−σe−λyφλyφ
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Figure 3.5: Uniqueness of equilibrium - Infinite patent length

+
(
(n− 1)w1−σ + p1−σ) e−λyφ (λyφ)2

2!

+
(
(n− 2)w1−σ + 2p1−σ) e−λyφ (λyφ)3

3!
...

+
(
w1−σ + (n− 1)p1−σ) e−λyφ (λyφ)n

n!

+ np1−σ
(

1− e−λyφ − e−λyφ(λyφ)− e−λyφ (λyφ)2

2!
− ...− e−λyφ (λyφ)n

n!

)] 1
1−σ

yφ

Reorganizing we get equation(3.22) :

E(cφ) = n−
1

1−σ

(
np1−σ −

(
p1−σ − w1−σ) e−λyφ(n+

n∑
i=1

i
(λyφ)n−i+1

(n− i+ 1)!

)) 1
1−σ

yφ

3.7.4 Derivation of equation (3.26)

Starting from (3.13), this is analogous to derivation of equation (3.22).

3.7.5 Proof of Proposition (13)

The solution to (3.28 along the balanced growth path, given the resource con-
straint, is:

V ∗φ =

(
1− e−(λy+r)φ

)
(γ − 1)w (L− y)

r + λ y
+BΠφ,ip (3.31)
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where Πφ,ip is as in (3.25) and

B =
n∑
i=0

( λy

(λy + r)

)i+1
1− e−(λy+r)φ

n−i∑
j=0

(λyφ)j

j!


−e
−(λy+r)φ

λy + r

(
(λyφ)n

n!
+

(λy)2φ

λy + r

) n∑
i=2

(λyφ)i

i!

Equations (3.24) and (3.31) determine the steady-state equilibrium level of
R&D yφ. (3.24) is strictly increasing in y, while (3.31) is decreasing in y. As in
the case of the infinite patent length, a large enough value of L assures that the
two lines cross. Figure (3.6) shows the steady state equilibrium where the two
curves cross, for benchmark value of the parameters.

Figure 3.6: Uniqueness of equilibrium - Infinite patent length
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