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Abstract—A new approach to the nonparametric spectral esti-
mation on the basis of the support vector method (SVM) frame-
work is presented. A reweighted least squared error formulation
avoids the computational limitations of quadratic programming.
The application to a synthetic example and to a digital communi-
cation problem shows the robustness of the SVM spectral analysis
algorithm.

Index Terms—Spectral analysis, support vector method,
weighted least squares, Welch periodogram.

I. INTRODUCTION

NONPARAMETRIC spectral analysis of time series is a
widely scrutinized framework. The most relevant of the

classical spectral estimators, the Welch periodogram and the
Blackman–Tukey correlogram, are based on Fourier transform
representations, either for the observed time series and for its
estimated autocorrelation function [1], so their main advantages
are the low computational burden required and their simplicity.
On the other hand, their spectral resolution is limited due to the
windowing effect. Also, the periodogram shows a high sensi-
tivity to outliers, and it is strongly affected by impulsive noise,
which is frequently present in many communication systems.
An alternative approach to the classical nonparametric

spectral analysis can be drawn from the support vector method
(SVM), which was first suggested to obtain maximum margin
by separating hyperplanes in classification problems [2], and
it has been extended to the general learning theory [3], [4].
In [5], the standard SVM regression algorithm is modified
to provide an adequate approach to nonparametric spectral
analysis problems, which is called the SVM-Spect formulation.
SVM-Spect algorithms are solved via quadrating programming
(QP), whose time demand grows exponentially with the length
of the time series, making them useless for most of the practical
applications.
We present here a iterative reweighted least squares (IRWLS)

formulation [6] that overcomes this limitation. In Section II, the
new SVM-Spect algorithm is derived from a IRWLS formula-
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tion of the problem. In Section III, a simulation on synthetic
data, with an asymmetric digital subscriber line (ADSL) com-
munication system application, is presented to support the po-
tential of this approach.

II. SVM-SPECT FROM A WLS FORMULATION

The model for the harmonic decomposition of a discrete time
real-valued sequence , where consecutive samples are
observed at instant times , can be expressed in terms of the
Fourier series. For uniform sampling, is just the
sample lag. The sinusoidal approximation is given by

(1)

where the unknown parameters are amplitudes , phases
and frequencies for a number of sinusoidal components,
and is the model error for the th sample. This is a non-
linear relationship, except when frequencies are known. In this
case, (1) can be linearly expressed by using Cartesian coordi-
nates and

(2)

A vast number of methods have been suggested to find the
model coefficients, such as least square analysis or the discrete-
time Fourier transform [1], [7]. However, the performance of
thesemethods can degrade in situations like presence of atypical
samples (outliers), low SNR or low number of available obser-
vations. On the other hand, several robust cost functions have
been used in SVM regression, like Vapnik’s loss function [2],
Huber’s robust cost [8], or the ridge regression approach [9].
We propose here a more general cost function, which contains
the above as particular cases. Fig. 1 depicts the relationship be-
tween model approximation error and its corresponding cost,
denoted by . In the SVM approach, the norm of the
model coefficients and are simultaneously minimized.
We propose here a more general cost function, which contains
the above as particular cases. We minimize

(3)
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Fig. 1. Relationship between the error and loss function L (e).

with respect to , , , constrained to

(4)

(5)

(6)

for , where 1 are the losses, is the insen-
sitivity parameter, and control the trade-off between the
norm regularization of the coefficients and the losses, and ,

are the sets of samples whose residuals are in the quadratic
or in the linear zone of the cost function, respectively. Note that
when is small enough this represents the regularized Vapnik’s
-insensitive cost, whereas for it represents Huber’s ro-
bust cost. It can be easily shown that .
The derivation of the dual problem shows that the Cartesian

components can be expressed in the solution as

(7)

(8)

where are the Lagrange multipliers for the constraints
in (4) and (5). Therefore, the th coefficients correspond to the
cross-correlation of the Lagrange multipliers and the sinusoid
with frequency . In [5], these conditions are introduced into
the Lagrange functional in order to remove the primal variables,
leading to a dual problem that is solved with QP procedures.
The computational burden of this approach grows exponentially
with the number of data, and the QP problem cannot support an
adaptive version.
Further computational advantage can be obtained from an

IRWLS-based alternative formulation. Let us denote

(9)
(10)

1In the following, f� g will denote both f� g and f� g, and the same no-
tation is followed for f� g and f� g.

(11)

...

...

(12)

(13)

Then, the Lagrange functional [2] for the minimization of (3)
constrained to (4)–(6) is given by

(14)

and it has to be minimized with respect to , , and max-
imized with respect to , , constrained to ,

, . From the Karush–Khun–Tucker (KKT)
conditions, we have , so that

(15)

(16)

and the terms of on can be removed because (15) and
(16) must hold at the solution. If we denote
(i.e., is the residual of the th observation), and by denoting

(17)

(18)

the functional can be written down with the standard IRWLS
formulation

(19)

A straightforward relationship between the residuals and the
Lagrange multipliers can be derived from the KKT conditions.
In brief, for , and hence . For

, (15) holds and . For ,
(16) holds and . This relationship and its corresponding
for are summarized in (21) and (22).
By making zero gradient , the following matrix-form

expressed equation is obtained

(20)
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where denotes the diagonal matrix whose main diagonal
th element is . The samples for which can be re-
moved from the calculations, hence reducing the computational
burden. In the above step, are treated as constants, as usual
in IWRLS algorithms.
The fixed-point algorithm that is used for solving this IRWLS

problem can be summarized as follows.
1) Start with an arbitrary . Set .
2) Calculate errors .
3) Calculate the Lagrange multipliers by

elsewhere
(21)

elsewhere
(22)

where .
4) Calculate , as given in (17) and (18).
5) Solve (20) to obtain .
6) Set . If (maxiter) then go to Step 2).
Note that the solution coefficients are obtained by the empir-

ical cross correlation between the sinusoidal functions and the
Lagrange multipliers [as given in (7) and (8)]. As the last ones
are a nonlinear transformation of the residuals, given by (21)
and (22), controlling the value of allows to reduce the impact
of an outlier in the solution.

III. APPLICATION EXAMPLES

A. Insensitivity to Outliers
A simple synthetic data example is first presented to show

the capacity of SVM-Spect to deal with outliers. A discrete time
process is given by

(23)

where 0.3 Hz; is a white, Gaussian noise sequence with
zero mean and variance ; and is an impulsive noise
process, generated as a sparse sequence for which 30% of the
samples, randomly placed, are high-amplitude values given by

(where denotes the uniform distri-
bution in the given interval), and the remaining are null sam-
ples. The number of observed samples is , and we set

[Fig. 2(a)].
In order to avoid too sparse solutions, is used. A low

value of leads to a major emphasis on minimizing the losses,
so that overfitting to the observations occurs in this case. We
select a moderately high .
The appropriate a priori choice of the free parameter can

be addressed by considering that, according to (7) and (8), the
solution is a function (in fact, proportional to the empirical cross
correlation) of the multipliers and the data. Also, (21) and (22)
reveal that a high-amplitude residual, corresponding to an out-
lier, will produce a high-amplitude multiplier, which will dis-
tort the solution. But if the maximum value that the multiplier

(a)

(b)

(c)

Fig. 2. Insensitivity of SVM-Spect to outliers. (a) Sinusoid whithin impulsive
noise (up) and its Welch periodogram (down). (b) Histogram of the residuals
(scaled to  = 10) and control of the outlier impact onto the solution with C .
(c) SVM-Spect spectral estimators for different values of insensitivity, which is
controlled by the product C .

can take is properly limited by , the impact of the outlier on
the solution is weakened. Fig. 2(b) shows that should be low
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enough to exclude the residual amplitudes greater than the base
level. This level can be obtained from previous methods of es-
timation of the prediction error, from a priori knowledge of the
problem, or from training data. Fig. 2(c) shows the results for

, 1.2, and 0.2. Other experiments, not included here,
allow to show that similar solutions are obtained for a range of
values of being low enough.

B. ADSL Channel Estimation
A potential application where robustness of SVM-Spect can

be exploited is ADSL channel estimation. Discrete multitone
(DMT) modulation is used in ADSL because with the aid
of cyclic prefix [10], the equalization of the channel is done
simply by estimating the channel transfer function at the sub-
carrier frequency and dividing the received signal in each sub-
carrier by this estimation. Some of the DMT subcarriers are
used to transmit known symbols (pilots) for channel estimation.
In brief, a simplified model of an ADSL system using DMT
parameters, as specified in ANSI T1-413 [11],2 in a two-tap
frequency-selective channel with additive white Gaussian noise
and impulse noise, is simulated. A complete characterization
of impulse noise can be found in [12] where probability den-
sity functions of voltages, interarrival times and impulse length
are described. Since the simulation length involved in channel
estimation is shorter than interarrival times, a simplified model
is used with only one impulse following a Gaussian amplitude
and fixed duration much shorter than the DMT symbol dura-
tion. The channel is estimated at different SNR and impulse
noise conditions (measured by the standard deviation of im-
pulse noise voltages ) following two methods: the standard
fast Fourier transform (FFT)-based averaging over two and four
DMT symbols, and the SVM-Spect averaging over two sym-
bols. For the last one, an optimum set of the free parameters ( ,
, and ) are previously determined by cross-validation, and

these parameters remain fixed. The training process will allow
in this case to adapt to slow changes in the channel, and hence
it is more convenient that fixing and freezing the free parame-
ters a priori. The relative error is calculated at each realization
as

RE (24)

where represents either the FFT or the SVM-Spect
channel estimator, for a number of 500 realizations at each
SNR explored value.
Fig. 3 shows that the SVM-Spect method outperforms the

FFT-based channel estimation for low SNR values and impulses
of high amplitude. In the upper figure, it can be seen that the
percentage of subcarriers reserved for channel estimation (i.e.,
overhead) can be reduced from 20% to 10% while maintaining
or even improving (for low SNR) the performance obtainedwith
FFT-based estimation.

2See also http://www.dslforum.org.

Fig. 3. ADSL channel estimation. (Up) Averaged relative error with SNR.
(Down) Averaged relative error for SNR = 20 dB and impulsive noise in the
ADSL channel.

IV. CONCLUSION

The application of the SVM to classical, nonparametric spec-
tral analysis is a promising framework, given that insensitivity
to outliers can be easily handled by controlling its free param-
eters on an easy way, and also, its WLS-based implementation
allows to use it on real-time problems. The SVM spectral anal-
ysis is a potential robust approach to improve the performance
of communication systems in impulsive noise environments.
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