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1 Introduction 

The Prisoners' Dilemma represents social situations characterized by the 

existence of what is commonly known as the free rider problem. Let us 

consider two examples from the author's hometown. The city of Calcutta is 

renowned in India for Durga Puja, a religious festival during the month of 

October. There is hardly any corner of the city without a pandel (a Ben

gali term for a temporary tent-like construction) with idols of Durga the 

mother goddess, and her entire family. The festival is financed by collecting 

private donations from households of respective neighborhoods. Over the 

years, more and more Calcuttans have voluntarily contributed successively 

higher donations. On the other hand, the city is also renowned (and this 

time all over the world) for her neglected streets and localities. Some local 

private organizations have made efforts to collect private donations from 

member families of respective neighborhoods for the maintenance of their 

localities. Such efforts have repeatedly failed in most of the neighborhoods 

where such organizational efforts had been taken. Some cases showed com

plete failure from the very beginning while others eventually ceased to exist 

as the number of private contributors became negligible over time. When 

asked individually however, every citizen of Calcutta showed great concern 

and enthusiasm regarding the cleanliness of their localities. 

These two social situations, the likes of which are surely widespread, can 

be represented by a model of infinitely repeated Prisoners' Dilemma where 

at each period players decide whether or not to contribute for a public good. 

\Vhat is surprising is that while in the former we see that agents cooperate 

and achieve the Pareto dominant outcome (and the festival of Durga Puja is 

celebrated with great enthusiasm), in the latter the same agents behave as 

predicted by the static Nash equilibrium (and Calcutta remains neglected 

forever). Do we have a unified theory that is able to explain this difference in 

social behavior? To have one we need to be able to distinguish one Prisoners' 
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Dilemma from another. Is the Prisoners' Dilemma representing the former 

example different from the one representing the latter? 

As we will argue, a large part of the existing literature on repeated games 

does not answer this question. Nevertheless, since cooperative behavior is 

observed quite often, many authors have tried to explain convergence to 

such Pareto dominant outcomes in similar settings. The general intuition 

has been that when players are rational and sufficiently patient, almost 

any feasible payoff allocation that gives each player at least his minimum 

security level can be realized in an equilibrium of any repeated game. In 

the game theory literature, these feasibility theorems have been referred to 

as folk theorems. Naturally, the predictive power of these results is rather 

weak. Neyman (1985) shows that bounded complexity on part of the players 

justifies cooperation in finitely repeated Prisoners' Dilemma. Recently, the 

literature has taken a turn towards modeling ways by which players may 

actually learn to play games and see if such learning behaviors indeed lead 

to some equilibrium or stationary state. 1 

However, as mentioned before, most of these models are not sufficient in 

answering why the same group of players may in some Prisoners' Dilemma 

converge to cooperative behavior while in some other to the Nash equilib

rium. One may build up a model with two stationary long run outcomes, 

one where players cooperate and the other where players defect and conclude 

that such a diversity is a matter of chance and the evolution of play. We do 

not think this approach is satisfactory in answering our question. Given a 

specified behavior rule, we need a theory that is able to classify Prisoners' 

1 Bendor et al. (1995) show that if both players are aspiration driven and aspirations are 
static, players may exhibit long run cooperative behavior under certain initial conditions. 
Karandikar et al. (1997) show that with evolving aspirations, players will cooperate most 
of the time in a large class of games which includes the Prisoners' Dilemma. Kim (1994) 
studies a satisficing model oflearning where a 2 x 2 game is repeated by case-based players a 
la Gilboa and Schmeidler (1992) and shows that infrequent and simultaneous experiments 
with cooperative strategies are essential for convergence to cooperative behavior in the 
Prisoners' Dilemma. 
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Dilemmas into groups in terms of observable variables and show that play

ers converge to cooperation with probability one in all Prisoners' Dilemmas 

falling in one such group while they converge with probability one to the 

static Nash equilibrium in all Prisoners' Dilemmas falling in the other. 

In order to resolve this apparent puzzle, we study infinite repetition 

of a class of games ( our initial and fundamental analysis is however kept 

general) which all have the basic essence of the Prisoners' Dilemma that 

ensures existence of the free rider problem as cited in the examples above. 

Players are assumed to learn to play the game over time from past expe

rience. The learning model used by players is a variant of logistic quantal 

response learning (LQRL) a la McKelvey and Palfrey (1995). We assume 

that players have cognitive bounds in analyzing histories of past plays in 

order to decide upon their current choice probabilities. We call this learn

ing mechanism bounded logistic quantal response learning (BLQRL). Our 

model captures the fact that players cannot always look very long in the 

past if the past is also very heterogenous and therefore (we call) cognitively 

complex.2 The notion of complexity used in this paper is backward looking 

and is close to the basic idea of finite memory. However, we justify it for 

two reasons. Firstly, players forget distant past. In addition, the rate at 

which they forget the past increases with the heterogeneity of realized his

tory. This implies that players not only have finite memory but the length 

of their memory evolves probabilistically, conditional on future realization of 

actions which carve the path of play, thus making the length of their memory 

path dependent. Furthermore, players are parameterized by their degree of 

rationality in deciding upon the choice probabilities. McKelvey and Palfrey 

(1995) show that in any finite game where players use the quantal response 

lOur notion of complexity in decision making differs significantly from that of im
plementational complexity and finite automata as in Kalai and Stanford (1989) or Bin
more and Samuelson (1992), among others, which is typically forward looking and can be 
roughly thought of as equal to the number of states that a repeated game strategy can 
induce. 
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learning, play converges to a Nash equilibrium when this rationality parame

ter approaches infinity. Thus in our model we expect play to converge to the 

Nash equilibrium when complexity bounds and the rationality parameter go 

to infinity as essentially then the two models are equivalent. We show that 

(i) if players face cognitive bounds, for any finite stage game, play converges 

to stationary probabilities on the space of action profiles for all values of the 

rationality parameter; (ii) in addition, for the Prisoners' Dilemma, when the 

rationality parameter approaches infinity, play converges to the Nash defect 

with probability one if the weighted average defecting payoff is higher than 

the cooperative one and the weighted average cooperative payoff is lower 

than the defecting one, where the weights are determined by players' beliefs 

regarding outcomes without experience. However, if the reverse is true, that 

is if the weighted average defecting payoff is lower than that of cooperation 

and the weighted average cooperative payoff is higher than that of defec

tion (which is possible in some class of Prisoners' Dilemma games), play 

converges to cooperative outcome with probability one. 

We then apply the general results to study long run behavior in a large 

class of 2 x 2 games which includes Pure Coordination, Common Interest, 

and Chicken. Our results call for experiments where subjects play 2 x 2 

games studied in this paper and satisfying restrictions as demanded by the 

theory provided. One easy way of capturing and controlling the notion of 

cognitive bounds in such an experimental setup could be to impose time 

restrictions within which subjects need to decide upon their current actions. 

The rest of the paper is organized as follows. In section 2 we formally 

state the model. In section 3 we analyze exclusively the issues regarding 

memory and information sets, establishing some properties of an appropriate 

stochastic process which help us prove the two convergence results in section 

4. Section 5 uses these convergence results in selecting out unique long run 

outcomes in Prisoners' Dilemmas under appropriate payoff restrictions and 

suggests a possible resolution to the paradox described above. Section 6 
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studies other 2 x 2 games and applies the general results. An informal 

discussion on beliefs without experience is provided in Section 7. Finally 

the paper draws its conclusions in section 8. 

2 The General Environment 

Consider the following 2 x 2 game f : 

D 
player 1 C 

D f-----'-'--'----+--o:'--:c--1 

where E,e,{3 and a are all assumed to be positive.::! f is repeated infinitely 

between two players, player 1 and player 2. The action sets are Al = A2 = 
{C,D} with A = {C,D}2 ,a E A. Let 'Ui(t) : A -+ {c,t1,{3,a} be the period 

t payoff function for player i. By ft(A, u) we will mean the t-th repetition 

of f(A, u), t = 1,2, ..... Let Ht = At-I (the (t - I)-fold Cartesian product 

of A) be the set of all possible sequences of realized action pairs till the 

beginning of period t. Let ht E Ht and denote a(t) E A as the action 

pair realized at period t. \'Ve may also think of ht as a vector with (t - 1) 

components, each of which are elements of A. Furthermore, we may also 

think of each element a of A as a vector with two components. Interpreting 

histories and action profiles as vectors in appropriate spaces will be helpful 

in what follows. Typically, a repeated game strategy for player i at date t 

is a function if : Ht =t A. This implicitly assumes that players use entire 

histories in order to decide upon their current actions and therefore are able 

to use very long as well as possibly complicated histories as information 

sets. We would like to rule this out. So, suppose instead that players 

have cognitive bounds and therefore can only analyze histories of a certain 

cognitive complexity. For any 1 ::; Tb ::; Ta::; t, denote by ht (Tb, Ta) C ht a 

:1\'Vith 00 > Cl< > (3 > () > € > 0, r is the celebrated Prisoners' Dilemma. (The 
assumption that all entries in the payoff matrix are positive is discussed in subsection 
2.2). 
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segment of ht whose first period is Tb and last period is Ta. Let Ht(Tb,Ta) 

be the set of all possible segments of all possible elements of Ht. 

2.1 Cognitive Complexity 

Assume that players are unable to recognize patterns of histories.4 The 

cognitive complexity of a given history, or segment of history, is determined 

by its length and by its variability. The length of a history is straightforward 

to define, as it is simply the number of elements appearing in the history. 

Formally, length is an integer valued function f : Ht (Tb, Ta) -t Z+ defined 

as f(ht(Tb,Ta)) = Ta - Tb + 1. 

To obtain a formal definition of variability, we start defining, for a given 

segment of history ht(Tb,Ta) the finest partition P(ht(Tb,Ta)) as the parti

tion putting in the same set identical elements. For example, if 

and if 

ht(Tb,Ta) 

P(ht(Tb,Ta)) 

ht(Tb,Ta) 

P(ht(Tb,Ta)) 

{ , " '} 1 a, a, a ,a, a ,a, a ,t len 

{{a,a,a,a}, {a',a'} , {a"}} 

{a,a,a,a,a,a}, then 

{ {a, a, a, a, a, a}} . 

The measure of variability we use is simply the cardinality of this finest parti

tion minus 1. Formally, variability is an integer valued function v : Ht (Tb, Ta) 

-t Z+ defined as V(ht(Tb,Ta)) = iP(ht(Tb,Ta))i - 1. Thus, variability is 

directly related to the number of different elements appearing in a given 

history. From the above examples, 

v ( { a, a, a', a, a", a, a'} ) 2 and 

v({a,a,a,a,a,a}) o. 
·1 We agree that this is a relatively strong assumption and hope to relax it in future 

research. An interested reader may see Sonsino (1997) which studies a model of learning 
with the possibility of pattern recognition. 
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Given any history segment ht(Tb,Ta), we define the cognitive complexity 

(ccomp) of ht(Tb, Ta) as a function 

(1) 

with GO strictly increasing in C(ht(Tb, Ta)) and v(ht(Tb,Ta)). In this paper 

we adopt the following linear functional form for G(.) :3 

The cognitive complexity of a history segment simply equals the length of 

the segment plus its degree of heterogeneity. More generally our definition 

of cognitive complexity implies that cognitive complexity of an information 

set increases with the cardinality of the data set and the variation or hetero

geneity of its composition. Note however that sequences of realized action 

profiles with very simple patterns (like Tit-for-Tat for example) may turn 

out to be significantly heterogenous. 

2.2 Behavior Rules for Players 

Players face cognitive bounds which equal a positive integer ( and is the 

same across players. They are assumed to look at the most recent history 

segments. For any repetition period t, let ilt C 17.1- be a segment of ht 

satisfying the following two conditions: 

(i) ccomp(ilt):::; (and (ii) ilt E argmax {ccomp(ht(Tb,t -1))}. (3) 
ht(Th,t-l) 

Thus, ilt is the most recent history segment with the highest cognitive com

plexity that players can analyze at time t given their cognitive bound (. We 

assume that players always look at history segments ilt. To avoid abuse of 

notation, let E denote the relation 'is a component of the vector' and ~ the 

negation of E. Let IAil = N denote the number of actions available to player 

i = 1,2 (in the case of Prisoners' Dilemma, N = 2 for both players). For 

"Doing this does not affect the basic spirit of the results obtained. 
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any period t and for all k = 1,2, ... , N such that 3aEl1,t with a7Ea, define 

7r7(t)as 

(4) 

and for all k = 1,2, ... , N such that ~aEht with a7Ea, define 7r7(t) as 

N 

7r7(t) = L Wi (k, r) ui(a7, aj), i,j = 1,2. (5) 
r=l 

where Wi (k, r) 2: 0 is the belief probability held by player i regarding the 
N 

outcome (a7,aj) when she herself plays a7, with LWi (k,r) = 1 for all i. 
r=l 

Eq.(4) and Eq.(5) define what we will refer to as perceived payoff's of each 

action, In this paper we will work with the special case where Wi (k,r) = 

Wi (k, 1,1) for every r,1.1 E {I, 2, ... , N} . This is the case when players believe 

that all outcomes which are possible when they use strategies with no expe

rience are equally likely. The results thus obtained with this simplification 

can in spirit be generalized, (j 

Eq, ( 4) says that if there is some element a in the history segment h t such 

that player i has taken action a7, then player i evaluates the perceived payoff 

of playing a7 in the subsequent period as the arithmetic mean of payoffs 

obtained in all cases in which he played a7 in ht. For example, consider r 
and let 

ht = {(C,D),(C,C),(C,C),(D,C),(D,D)}. 

Then, 7rf(t) = (2fJ+c:)/3, 7rf(t) = (ex+B)/2, 7rf(t) = (2fJ+c:)/3 and 

7r!l(t) = (ex + B) /2. On the other hand, if ht does not contain any action 

profile in which player i takes action a7, the perceived payoff of action a7 is 

[; An extensive discussion on this issue is provided in Section 7, 

9 



simply the arithmetic mean of all possible payoffs to player i. For example, 

let 

llt = {(C,C),(C,D),(C,C),(C,C),(C,D)}. 

Then, 7rf(t) = (a + B) /2. 

To distinguish our way of computing perceived payoffs from that in the 

existing literature on quantal response learning, let t = 5, ( = 2 and consider 

the history 

ht = {(C, C), (D, D), (C, D), (D, C)} . 

From Eq.(3), 11t = {(D, C)} . Then, in our formulation, 

7rf(t) = (f3 + E)/2, 7rf(t) = a, 7rf(t) = E, and 7r?(t) = (0: + B)/2 

while in the standard formulation, 

7rf(t) = (f3+E)/2,7rf(t) = (B+a)/2,7rf(t) = (f3 + c:)/2 and 7r?(t) = (B+a)/2. 

Notice that vvith cognitive bounds, player 2 thinks that C is a relatively 

unfruitful action. This is because he forgets (or, in a time-constrained ex

perimental setup, does not have enough time to realize) that C had actually 

yielded a high payoff equal to f3 when his opponent also played C. This is 

not the case with unbounded cognition as then players will be able to keep 

account of all past experiences. 

After computing 7rf(t) for every k, players assign probabilities with which 

each action is chosen for play in period t. Let cTf(t) be the choice probability 

assigned by player i to action af at period t. Using the Logit framework/ 

(6) 

'This is in fact a "Luce" model of choice (see Luce (1959)). 
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with ,\ E [0,00] being a parameter measuring the degree of rationality of 

the players. By the use of the term 'rationality' we mean closeness of a 

players choice probabilities to those of the myopic best response choices. 

The functional form of a1(t) as in Eq.(6) is also used in Chen, Thisse and 

Friedman (1997). This formulation is invariant to linear transformations 

of the perceived payoffs. However it is undefined if for a history segment, 

the sum of payoff experiences is zero for at least one player. To avoid this 

problem, we assume that the payoff matrix of r has only positive entries. 

An alternative formulation, adopted by McKelvey and Palfrey (1995), is 

(7) 

This formulation has the advantage of taking care of negative payoffs but is 

not invariant to linear transformations. In appendix A.3, we show that our 

results hold with this alternative formulation as well. 

Notice that ht is the memory of the players and £ (il,t) is a stochastic pro

cess determined by the evolution of play. In the next section, we will study 

the nature of this stochastic process. As far as the rationality parameter is 

concerned, it is straightforward to see that if,\ = 0, players always play each 

action with probability equal to 11N. However, as ,\ increases, actions with 

better past experiences receive higher choice probabilities (,\ = 00 coincid

ing \vith myopic expected payoff maximization). From a statistical point of 

view, players may be thought of as committing errors in deciding upon the 

choice probabilities. Then,'\ varies inversely with these errors. tl With,\ = 0, 

there is a unique equilibrium at the centroid of the (N2 - 1)- dimensional 

simplex of probability measures over action profiles for any value of (. On 

"IVlention must also be made of the fact that players always have the option of using 
some belief updating mechanism (like the moving averages technique) which may only 
require them to keep track of few basic statistics. In such settings, the model studied in 
this paper can be approximated to cases where players make errors in such updating with 
such errors decreasing in ( and >.. 
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the other extreme, McKelvey and Palfrey (1995) show that with ( = 00, 

as A -t 00, every Logit equilibrium approaches the Nash equilibrium of the 

static game. The above kind of probability choice function is commonly 

known as logistic quantal response function (LQRF) as in McKelvey and 

Palfrey (1995). The learning process with which we deal here is therefore a 

variant of the logistic quantal response learning (LQ RL) of Mookherjee and 

Sopher (1997) in the sense that information sets are not any more the entire 

history that players confront; rather they are only segments of these histo

ries up to what cognitive bounds enable players to look at. We therefore call 

our learning process bounded logistic quantal response learning (B LQ RL ). 

Note that in our model, players have two bounds. The first one is a bound 

on their cognitive capability by which they are unable to analyze history 

segments of complexity higher than this bound. The second one is a bound 

on their rationality in computing choice probabilities while looking at these 

history segments. Two players may have enough cognitive capacity to ana

lyze long history segments but one who is endowed with Cl higher value of A 

will play more frequently those actions which yielded higher payoff's in the 

past. 

3 Analysis of memory and stochastic information 
sets 

In this section we show that the stochastic process generated by the behavior 

rules of players in rOO(A, u) can be represented by a Markov Chain for an 

appropriate state space defined below when the cognitive bound faced by 

players is finite. 

vVe begin with the following two lemmas. 

Lemma 1 For any repetition period t, for any ht E Ht, and for any ( < 00, 

( - 1 ~ ccon1p(ht) ~ (. 
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Proof. The right hand inequality is straightforward. Suppose the left 

hand inequality is violated and that (without loss of generality) ccomp(h,t) = 

( - 2. Increase £(h/) to £(f1,t) + 1 by including the last element of ht that did 

not enter fit. Call this extension fit!. Then, v(f1,tt) either equals v(f1,t) or is 

equal to v(h.t} + 1. It suffices to consider the case v(t;,tI) = v(h,t) + 1. Then, 

and therefore 

a contradiction. _ 

Although players can analyze histories with cognitive complexity equal 

to (, the evolution of play may be such that players are not able to use 

their full cognitive capacity at each repetition period because there may 

exist moments of play when, if they try to look at one more element of the 

history they confront, they get confused (or they run out of time in time

constrained experiments). In other words, there may be periods where there 

is no immediate history segment that matches exactly their cognitive bound 

and therefore players have no other choice but to analyze that segment which 

has the highest cognitive complexity given their cognitive bound. However, 

the above lemma also shows that there will never come a period where they 

will under utilize their capacity beyond one unit of their cognition. 

Define the set H(x) := { hE :9: Ht I £(h) + v(h) = x} and consider the 

set B(():= U H(x). Given Lemma(l), B(() is the set of all possible 
(-l:Sx:S( 

sequences of elements of A with cognitive complexities between ( - 1 and ( 

and therefore can be thought of as the set of all possible fit for all periods 

t. In other words, at any period the information set used by players must 

belong to B((). 
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As A is finite and ( < 00, B(() is a finite set (since £(h) :s: (V11 E B(()) 

and we call B(() the state space. We now proceed to define a Markov Chain 

on B((). 

Definition 2 Given any 11 E B((), h' E B(() is an immediate successor of 

h, denoted by (1)(11' I 11), iff (i) the £(h')-th component of j;,' is a new far 

7·ight addition to 11 and (ii) for each integer 0 :s: n :s: £(11) - 1, the n-th last 

component of h is the (n + l)-th last component of h'. 

Not all pairs of elements of B(() can be immediate successors of each 

other. Given any history segment h, a new realized action profile arrives 

in the subsequent period which necessarily becomes the last element of the 

immediate next history segment players utilize. However, since this may 

actually alter the variability of realized history, in order to satisfy the cogni

tiye bound, some initial elements of the previous history segment may need 

to be deleted in the construction of its immediate successor. For example 

consider r and let ( = 2. Then, 

B(() = { {(C,C)},{(D,D)},{(C,D)},{(D,C)},{(C,C),(C,C)}, } 
{(D, D), (D, D)}, {(C, D), (C, D)}, {(D, C), (D, C)} . 

Notice that with ( = 2 and given Lemma 1, vectors consisting of two com

ponents can be present only if they are identical. Let h = {(D,D),(D,D)} 

and let the current action profile be (C, C). Then the immediate successor of 

his (C,C). In fact, history segments {(D,D),(D,D)},{(C,C)},{(C,D)} 

and {(D, C)} are the only possible immediate successors of h. 

Let 11 be the current state of the Markov Chain. In our model, knowl

edge of 11 is all that is needed to determine the probability of the next 

period history segment. We therefore drop the use of time as a subscript 

for the period history segments. The process moves from this current state 

to an immediate successor state h' according to the following transition 
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rule. Denote by Pr(a(t) E A I h) as the conditional probability of real

izing action profile a = (aI, a2) at period t given information set h. We 

know that Pr(a(t) E A I h) = a~1(t).a~2(t), where a~i(t) is given by Eq.(6). 

Pr (a E A I h) then induces a probability distribution for h' given the com

plexity bound of the players. We denote this induced probability distribution 

by f ~1)(11' I h) and call it the transitional probability distribution (the use 

of). as a subscript for f is to highlight the dependence of f on ).). Thus the 

Markov chain is denoted by M == (B((),fl1)(h' I h)) ((B((),h) in short). 

Denote by B(()j~)(11) the support of fi1)(h' I 11). 

Lemma 3 If h' E B(()j~) (l1),then £(h') :::; £(h) + 1. 

Proof. To see this observe that if £(h') > £(h)+I, implying, without loss 

of generality, that £(11') = £(h) + 2, it must be that the first component (call 

it a*) of 11' is the last component in h E Ht, for some t ::::: [~] after which h 

is truncated to form 11. Since a*~h, it must be that for the extended vector 

(a* ,11), ccomp(a*, h) > (. But by construction, (a* ,11) c h' if£(h') = £(h) +2 

implying that ccomp( h') > ccomp( a*, h) and thus 11' tf. B( () and therefore 

cannot belong to a subset of it .• 

Between two consecutive periods, players cannot gain more than one 

unit length of memory. However, they may lose their current memory by 

more than one period if realization of play increases the heterogeneity of 

the current path of play significantly. As examples, let ( = 4 and consider 

the evolution of play given by the following end tail of a period t history 

ht = { ....... ,a',a,a,a}. Then, ht = {a, a, a}. Suppose now that at period 

t, the realized action profile is a. Then, 11t+1 = {a, a, a, a} and therefore 

£(11t+1) = 4 > £(ht) = 3. Now consider the end tail ht = { ....... a", a', a, ,a'} . 

Here, ht = {a', a, a'}. Suppose now that at period t, the realized action 

profile is a". In that case, ht+1 = {a',a"} and therefore £(ht+l) = 2 < 

£(11t) = 3. 
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In general, let (n) (h' I h) denote the relation that [1' is an n-period 

ahead successor of [1 and consider the set B(()j:) ([1). Before ending this 

section, we prove the following three lemmas on reducibility and periodicity 

of 1..1 == (B((), h). 

Lemma 4 If ( < 00, then Vh, h' E B((), 3n(h, h') < 00 such that h' E 

B(()f(~(hN))(hA), ".e., t t· h bl f t t· fi . 
A "every s a e zs reac a e ram any s a e m some mte 

time. 

Proof. 

Since A is a finite set, ( < 00, and Va E A, vh E B(() we have Pr (a E 

A I h,) > 0, we can begin to construct any [1' by adding from the right the 

first element of h' to [L, then adding to the far right the second element of 

h' to the previous extension of h, ..... , then adding to the far right the last 

element of h' to the previous extension of [1. This only needs finitely many 

such addition steps for any h,i1' E B(() .• 

To move to the next lemma, we require the notion of periodicity of 

NIarkov chains. Given the Ivlarkov chain M == (B((), h), the state ,; has 

period cl if 

where GC D stands for greatest common divisor. If cl = 1, 1..1 == (B( (), f>.) 

is called aperiodic. 

Lemma 5 (i)If ( = 1, then M = (B((), h) is aperiodic. 

(ii) If ( 2:: 2, M = (B((), h) has period greater than one. 

Proof. (i) When ( = 1, h is a singleton set, implying that B(l) = A. 

Since Pr(a' I a) > 0 Va, a' E A, the result follows. 

(ii) Take any ( 2:: 2 and any h E B((). The set B(()j~)([1) is such that 

V[1' E B(()j~) (h), 3m(h')with m(h')-th last element of [1 being the first ele

ment of h', m( h') + 1-th last element of h being the second element of [1', .... , 
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last element of h being the second last element of h', and the last element 

of h' being a new far right addition to h. Now, h' = 11, only if h is a finite 

constant sequence of elements of A. Since such sequences form only a proper 

subset of 8( (), M == (8( (), f>..) loses aperiodicity . 

• 
Since M == (8( (), f>..) is irreducible by lemma 3, any two states hand 

11' will have the same period and therefore we can define the period of the 

Markov Chain itself. For example, with ( = 2, 11, can be either {a, a} or 

{ a'} . If h = {a, a} and 11,' = {a} , ill) (11,' / 11,) = 0 since realization of action 

profile a given a history segment {a, a} implies that h' = {a, a} . 

4 Convergence Results 

Having established the above properties of the Markov chain M == (8((), f>..) , 

in this section we prove two convergence results, one when ( = 1, the case 

when the Markov chain is aperiodic, and the other when ( 2: 2, and the 

Markov chain loses aperiodicity. These results will help us characterize long 

run outcomes of roo. As the result for ( = 1 will turn out to be the funda

mental one, we will state and provide a self contained proof of it by closely 

following Theorem 8.9 in Billingsley (1986). We will then see that our result 

with ( 2: 2 is a direct consequence of the result with ( = 1 once we further 

show that our general :Markov chain satisfies an additional requirement of 

primitivity. We will deal with these issues separately in the following two 

subsections. 

4.1 (= 1 

In the following theorem we prove that if ( = 1, there is a long run stationary 

probability distribution for the evolution of the states of M. Let /8( () / 

denote the cardinality of 8((). Note that 8(1) = A. Define 

'Y = min /l)(h' / h). A •• A 
h,h'EB(l) 

(8) 
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T A is the minimum probability, over all possible pairs of history segments, 

of moving from a given current state to its immediate successor state. It 

therefore gives a lower bound to the probability of evolution of the path of 

play in the sense that given a realized path of play up to time t, TA is the 

lowest probability with which the most unlikely future path of play begins 

t.o evolve. 

Theorem 6 If ( = 1,1\11 = (B(l),1>.) has a stationary distribution f~(·) 

such that Vh, h/ E B(l), 

Ifin)(h, I il') - f~(h')1 ::; (1- IAIB(l)l)n 

with (1 -{AIB(OI) E [0,1). 

Proof. 

Let m(n)(il) = n~infin)(h I il,') , and M(n)(h) = n1,.axfin)(h I il/). It fol-
w w 

lows that m(n+1)(il) = n~inLfi1)(h" I iL').ft)(h I h") 2: n~inLf2)(h" I 
hi It" hi It" 

ill)m(n)(h) = m(n)(h) and M(n+1)(il) = m~axLf2)(il" I il').fin)(h I h") 
hi ;'/1 

::; maxit' L fi1) (il" I il') .!lI(n) (il) = M(n) (il). Since men) (i1) ::; M(n) (h,) 
it" 

viz E B(l), we have 

From the aperiodicity of M = (B(l), 1>.) , we know that fi1) (i1 i1') > 

OVi1,h' E B(l) so that 0 < TA ::; IB(l)l. Fix any two states h,* and i1**. 

For any arbitrary function gofi1) let L>g(2)(h)) be the summation over 

iz E B(l) such that fi1\il, I h*) 2: fi1)(fc I h**) and L<gUi
1\iz)) be the 

summation over i1 E B(l) such that fi1) (h I i1*) < fi1) (i1 I i1**). Then, 

L2 [fi1) (h I h*) - fll) (11 I 11**)] 

+ L< [fi
1
\h I i1*) - fi

1
\i1 I 11**)] = 0 (10) 
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Since 

we get 

2::2 [fi1\h 1 h*) - fi1)(h 1 h**)] = 1 - 2::< fi1)(h 1 h*) 

- 2::2 fi1)(h h**) 

< 1-I'AIB(1)1. (11) 

From Eq.(10) and Eq.(ll), we have 

fin+1) (i1' i1*) - fin+1)(h' 1 h**) 

= ~ (12) (i1 1 h*) - fi1) (h 1 h**)) fin) (i1' 1 i1) 
h 

< 2::2 (1i1)(h 1 h*) - fi1)(h 1 h**)) M(n) (h') 

+ 2::< (f2)(h 1 i1*) - fi1)(i11 h**)) m(n)(h/) 

= 2::2 (fi1)(i1 1 h*) - fi1)(i11 h**)) (M(n) (i1') - m(n) (i1')) 

< (1 - I'A 18(1)1) (M(n)(h') - m(n) (h') ) . 

Since i1* and i1** are arbitrary, we can write 

implying that 

(12) 

From Eq.(9) and Eq.(12), we know that M(n) (i1) and rn(n) (i1) have a common 

limit. Call this limit f~(i1). From Eq.(12), we get 

(13) 

Since 0 < )'A ::; IB«() I ' 1 -)A 18(1)1 E [0,1) . Therefore, 

lim (1 - I'>.18(1)lt = 0 implying that fin\h 1 h') -+ f~(i1) as n -+ 00. 
11.--+00 

• 
We are now in a position to deal with the case ( 2: 2. 
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4.2 (2: 2 

Since M == (B( (), f>.) is irreducible for all values of (, it is a standard 

result that there exist asymptotic stationary average probabilities of being 

in any state and these probabilities are independent of initial conditions. 

However, existence of a stationary distribution is not guaranteed and we 

will in fact show such existence. An interesting property of the Markov 

Chain, proved in Proposition 7 of this section, is that for each value of 

( there exists a positive integer n( () such that f~(() (h 1 hi) > 0 for all 

iL, hi E B( (). This makes the stochastic matrix primitive (a nonnegative 

matrix A is primitive if there exists some finite k > 0 such that A k > > 
0) and enables us to convert the Markov Chain Ai == (B((), f>.) into its 

n(()- step Markov Chain Ain(O == (B((), h..,n(O) such that a unit transition 

period of .Mn(() == (B((), f>.,n(()) is equivalent to n(() transition periods of 

Ai == (B((), f>.). Since Ain(() == (B((), f>.,n(O) is then not only irreducible 

but also aperiodic, ,ve obtain results on stationary distributions of states of 

1I171(() == (B((), h"n(()). This subsection will deal with these issues. 

Proposition 7 Let M == (B((), f>.) be the Markov Chain as described in 

section 3. Define an integer function n: Z+ \ {I} ----t Z+,T/,: (f-+ n(() such 

that 

n(() = argmin {m E Z+ 1 f;::(i7.1 i/,/) > O,ViL,f/ E B(()}. 
Tn 

Then, (i) n(() exists and (ii) n(() = (. 

Proof. 

(i) Denote by F(() = [f>.(h 1 i-L')] _ _ the stochastic matrix of the 
h,h'EB(O 

l\1arkov chain M == (B( (), f>.) and Fm its m- th power. We need to show the 

existence ofn(() E Z+ such that pn((»> 0, i.e., f~(()(i11 i7/) > O,Vh,i1' E 

B((). 
T 

Let (Pi)r=l be the set of eigenvalues of P(() and Jet C(p) = IT (p -
i=l 

Pi) be its characteristic function which can be rewritten as C(p) = pT + 
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r-l 

pi L aipi-(r-l) with ai -# 0 Vi = 1,2, ... , r. Define 
i=l 

b = # {Pi I v(F(()) = IPil , v(F(()) = mfx {pJ } . 

Thus v(F(()) is the spectrum of F((). Since F(() is such that V(, trace(F(()) > 
0, by lemma 4.10 in Graham (1987), b = 1. Since b = 1 is the definition for 

F( () to be primitive!!, our result follows. 

(ii) Part (i) establishes that for any value of (, there exists an integer n(() 

such that J~«()(h I h') > O,Vh,h' E B((). Let (E Z+ \ {I} and choose two 

constant (-length sequences (a,a, .... ,a) and (a',a', .... ,a') with a,a' E A, 

a -# a'. Since ccomp of these sequences equal (, they are elements of B((). 

Without loss of generality, let h = (a, a, .... , a) and h' = (a', a', .... , a') . It is 

straightforward to see that 

arg,;;lin {m E Z+ I Jr(l" I h') > O} = (. 

Now choose any other pair of states h * , h ** E B (() such that 

m* = arg~in {m E Z+ I Jr(I,,* I h**) > O} > (. 

Since Pr(a I I,,) > 0 Va E A,VI" E B((), and Vm < m* we have J';'(ll* I h**) = 

0, it must be that f!(ll*) = m* > ( implying that Il* rf:- B((). Therefore, 

n(() = ( .• 

We will now deal with lvI( == (B((), h,() which is irreducible and aperi

odic and prove the following theorem. Let 

"f>. ( = __ min J>.,dh I h'). 
, h,h'EB«() 

(14) 

Theorem 8 V( 2: 2, M( == (B( (), h,d has a stationary distribution g~ (-) 

such that VI", h' E B( (), 

Iftj(h I h') - g~(h)1 ~ (1 - "f>.,( IB(()lt 

!JIf b = 1, Ak »0 for some finite k > O. (See Graham (1987). 
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Proof. Given Proposition 7, this is a direct application of Theorem 6 .• 

Notice that g~ (i,) is the stationary distribution of the (- step Markov 

chain !vj(() == (8( (), f>..,d . Since our main concern is with the long run dis

tribution of the Markov chain NI == (8((),f>..) , we need to interpret g~(il,) in 

terms of NI == (8( (), f>..) . In this sense, gHi,) is the long run probability with 

which h occurs in every (- th period. Therefore the long run probability 

distribution of NI == (8((), f>..) is such that f;(h) will be around g~(h) and 

at every (- th period will exactly equal g~ (h). As far as our interests go, we 

can keep this informal interpretation in mind and proceed to characterize 

long run outcomes of r oo . 

5 Long Run Outcomes in Prisoners' Dilemma 

We are now in a position to characterize convergence of play in infinitely 

repeated Prisoners' Dilemma. In the previous sections we abstracted from 

action profiles and dealt with the evolution of history segments. These his

tory segments in turn are the information sets of the learning mechanism 

used in deciding upon the choice probabilities. Since choice of actions in 

turn determines the actual path of play and therefore the sequence of fu

ture history segments used as information sets, convergence in probability 

of information sets should also imply convergence of the choice probabilities. 

The case ( = 1 is rather simple as history segments are then singleton sets 

of realized actions and convergence of history segments immediately implies 

convergence of actions. However, when ( 2: 2, history segments may consist 

of more than one realized action pair and therefore we need to study conver

gence of actual play more carefully. As before, we will study these two cases 

separately. The following proposition shows that with ( = 1, highly rational 

probability choices converge to the stationary N ash equilibrium if defecting 

is highly rewarding but otherwise converge to the cooperative outcome. 

Proposition 9 Let ( = 1. 
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(i) If 0: + e < 2(3 and (3 + c > 2e, lim f; (C, C) = 1. 
),--+00 

(ii) If 0: + e > 2(3 and (3 + c < 2e, lim f;(D, D) = 1. 
),--+00 

Proof. Consider the stochastic matrix F),(( = 1) == [f>-(h I h')]~ ~ 
h,h'EB(l) 

of the Markov chain M == (8(1), f>-) . Since f; = (f;(h))~ is the sta-
hEB(!) 

tionary probability distribution, we have 

V).. E [0,00] . (15) 

(i) If 0: + e < 2(3 and (3 + c > 2e, and states are arranged in the order 

(C, C), (C, D), (D, C), (D, D), 

lim FA (( ~ 1) ~ ( ~ 
0 0 

n 0 0 
(16) 

),--+00 0 0 
0 1 1 

From Eq.(15) and Eq.(16), we have 

lim f>'(C,C) + lim f>'(D,D) = lim f>' (C, C) and 
). --+ 00 >. --+ 00 ),--+00 

lim f;(C, D) + lim f;(D, C) = lim f;(D, D). 
>.--+00 ),->00 ).->00 

Since 0 :::; f; (h) :::; 1 V)" E [0,00] , Vh E 8(1), it follows that 

lim f;(C, C) = 1 and lim f;(h) = 0 Vh E 8(1), h =I- (C, C). 
>.->00 ).->00 

(ii) If 0: + e > 2(3 and (3 + c < 2e and the order of the states are preserved 

as in part (i), 

lim F>.(( = 1) = ( o~ 
),--+00 

1 

From Eq.(15) and Eq.(17), we have 

o 0 
o 0 
o 0 
1 1 

(17) 

lim f>'(C, C) = lim f;(C, D) = lim f>'(D, C) = 0, lim f;(D, D) = 1. 
~oo ~oo ~oo ~oo 
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• 
Proposition 9 says that in Prisoners' Dilemmas with A ---* 00, if the 

average cooperative payoff is less than the defective payoff and the average 

defective payoff is higher than the cooperative payoff, sufficiently rational 

players individually converge to the Nash equilibrium and play D most of 

the time in the long run. On the other hand, if the average defecting payoff 

is less than the cooperative payoff and the average cooperative payoff is 

greater than the defective payoff, we expect rational play to converge to 

cooperation. The intuition here is that with one period memory (and we 

will see that this intuition holds for any finite cognitive bound), whenever 

play moves away from at least one player defecting, players perceive that a 

payoff from a deviation to action D is only the average of the two possible 

payoff realizations from such a deviation. On the other hand, with infinite 

memory, players always remember some past experience with action D that 

produced a higher payoff and therefore as A ---* 00, they eventually deviate. 

The proposition shows that we can define two classes of Prisoners' Dilem

mas, one where defecting is relatively more rewarding and we converge to 

the N ash equilibrium, and the other where cooperating is relatively more re

warding and we converge to the Pareto dominant outcome. There are other 

classes of Prisoners' Dilemmas which do not fall in either of the two classes 

mentioned above. However, Theorem 6 tells us that nevertheless, players 

will converge to some stationary probability distribution in any finite game. 

Proposition 10 Let 00 > ( 2: 2. 

(i) If a + B < 2{3 and {3 + c > 2B, 

1· *({(C C) (- time., (C C)}) - 1 1nl g). " .............. ,' -. 
).--->00 

(ii) If a + B > 2{3 and {3 + c < 2B, 

1· *({(D D) (- ti'lll(,,' (D D)}) - 1 1nl g). " .............. ,' -. 
).--->00 
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Proof. The strategy of the proof is as follows. We show that the system 

lim Figt = gt satisfies what is claimed in part (i) and part (ii) of the above 
),-+00 

statement. In order to do this, we first compute Fi and show that lim Fi 
),-+00 

satisfies conditions under which our results are outcomes of unique solutions 

to the system lim Figt = gt. The proof involves a number of steps, each 
),-+00 

considering subsets of the state space of history segments that partition the 

set 8((). For a given (2: 2, denote by Le(a,a', ..... ,a' .. · .. ') c Ht(Tb,Ta) the 

collection of history segments with cognitive complexity between ( and ( - 1 

and consisting all elements a, a', ..... , a'····.! at least once and no other element. 

(i) STEP l. Consider Ld(G,D), (D,G), (D,D)} C Ht(Tb, Ta). By the 

definition of the Prisoners' Dilemma, Vi = 1,2, we have 

{
CAt } lim (Ji (t) I h E Ld(G, D), (D, G), (D, D)} = O. 

),-+00 

STEP 2. ConsiderLd(G,D),(D,D)}andLd(D,G),(D,D)} C Ht(Tb,Ta). 

Given the definition of the Prisoners' Dilemma, 

lim {(JP(t) I ht E Le {(G,D), (D,D)}} 
),-->00 

lim {(JP(t) I ht E Ld(D,G),(D,D)}} l. 
),-+00 

STEP 3. Consider Ld(G, D), (G, G)} c Ht(Tb, Ta) and Ld(D, G), (G, G)} C 

Ht(Tb,Ta). Vht E Ld(G,D), (G,G)}, (Jf(t) -+ 0 as A -+ 00 (as Cl: > (3) and 

(JP(t) -+ 1 as A -+ 00 if fLt is such that (G, D) occurs sufficiently many times 

while (JP (t) -+ 0 as A -+ 00 if ht is such that (G, G) occurs sufficiently many 

times. Thus, Vht E Ld(G,D),(G,G)}, 

A tI At 
lim h,e( h I h ) = 1. 

),-+00 

hYELd(C,D),(D,D)} 

Take any htl E Ld(G,D),(D,D)}. Then, by STEP 2, Vi = 1,2, (Jf(t) -+ 

1 as A -+ 00. The argument is symmetric Vht E Le { (D, G), (C, cn . 
STEP 4. Let Ld(D,D),(G,G)} C Ht(Tb,Ta) be collection of history 

segments containing both (G, G) and (D, D). Ld(D, D), (G, C)} c 8(() if 
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( 2: 3. Since f3 > e, either 

1· f ((C C) (-tillles (C C) 1nl '\,( , , ............ , , 
,\ ..... 00 

1· f ((C C) (-I)-tillles (C C) Im '\,( , ,............, , 
,\ ..... 00 

ht E Ld(D,D), (C,C)}) = 1 or 

ht E L( {(D, D), (C, C)}) = 1. 

STEP 5. Let L( {(C, D), (D, C)} C Ht(Tb, Ta) be collection of history 

segments containing both (C,D) and (D,C). L( {(C,D), (D,C)} c B(() if 

( 2: 3. By the definition of the Prisoners' Dilemma, 

1im {ap(t) I j"t E Ld(C, D), (D,C)}} = 1. 
,\ ..... 00 

STEP 6. Let L«(a) c Ht(Tb,Ta) be collections of constant history seg

ments, a E A. If a = (C, C) and (a + e) /2 < f3 

If a = (D, D), and (f3 + E)/2 > e, 

lim h,((( C, C), .. ~.-: .. t~i:~l.':~.,( C, C) I fit E L( {(D, D)}) = 1. 
.>- ..... 00 

If a = (C, D) or (D, C), 

1· f ((D D) (- tilll"S (D D) Im .>-, , , ...•.. .' .•.. : .•• , , 
...\----+00 ,. 

l~t E Ld(C, D)}) = 

1· f ((D D) (- lilllPS (D D) 1nl '\,( , , ...... .' .... : ... , , 
,\ ..... 00 

j"t E L( {(D,C)}) = 1. 

(CC) 
STEP 7. Define L(' {a,a', ..... ,a'··'} c Ht(Tb,Ta) such that ::la' = 

A (C C) A 

(C, C) and ::la" f. (C, C). For any ht E L,' {a, a', ..... , a''''''} , ht cannot be 

rcpeated. To see this observe that given any j"t = {01, ..... , an} , for some 

n, if ak = (C,C), k :S n, and if::lj 2: 1 such that a(t + j) = (C,C), then 

Vm 2: 1, a(t+j +m) = (C,C) if (f3+E) > 2e and (a+e) < 2f3. Thus 

starting from any ,"t E L~C,C) {a,a', ..... , a''''''} ,we end up in anyone of the 

above cases. 

Now consider the stochastic matrix Fi = [h ((fi I '"')] _ _ of the 
, h,h'EB(() 

(-step Markov chain M( == (B( (), he). Since g~ = [g~ (h)] _ is the 
, hEB(() 
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stationary distribution V)" E [0,1] ,V2 :s; ( < 00, 

F ( * * ),.g),. = g),.. (18) 

Given STEP 1 through STEP 7 above, consider the permutation of Fi such 

that the states are ordered as 

{ (C C) (- t.imes (C C)} , , .............. ,' , 

{ (C, C), ~~.~~!.-:-.:!~~l.(:~( C, C) } , 

{ (D D) (- t.imes (D D)} , , .............. ,' , 

{(D, D), ~~.-:-.~!:-: .. t..i~~l.(:~(D, D) } , 

Then, as ).. -+ 00, Fi satisfies the following conditions: 

hi, i = 1, 2, 3, 4) = 1, 

(ii) )im J>.,dfLl 
A-+OO 

hi, i = 5, .... , IB(OI) = 0, and 

5, .... , IB(()II hj,j = 1,2, .... , IB(()I) = 0. 

Furthermore, since J>.,((fL I hi) E [0,1] vfL, hi E B(() and I: J>.,((h I hi) = 
hEB() 

IVh,1 E B(() and V)" E [0,00) ,it is easy to see that the unique solution to the 

system as ).. -+ 00 is 

1· *({(C C) (- t.illWS (C C)}) - 1 1nl g),. " ............ ,' -. 
),.-+00 

(ii) Following the proof in part (i) it can be shown that for the permu

tation of Fi such that the states are arranged in the following order, 

{ (D D) (- times (D D)} , , .............. ,' , 

{(D, D), ~~.-:-.~)::-.. t..i~~l.':~(D, D) } , 

{(C C) (- tinws (C C)} , , .............. ,' , 

{(C, C), ~~.-:-.~)::-.:,.i~~l.(:~(C, C)} , 
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if 0: + 8 > 2(3 and (3 + E < 28, as A --+ 00, Fi satisfies 

hi, i = 1, 2, 3, 4) = 1, 

hi,'i = 5, .... ,IB(()1 = 0, and 

(iii) lim fA,c(hi,i 
A->OO 

5, .... ,18(()11 hj,j = 1,2, .· .. ,18(()I) = 0 

and thus the result follows . 

• 
The above proposition shows that if 0:+8 < 2(3, i3+E > 28 and ( < 00, the 

Markov chain Aj( has stationary distribution g~ such that the probability of 

realizing the history segment { (C, C), . ~.-: .. t.i:~l.(:~, ( C, C) } tends to 1 as A --+ 00. 

Does this necessarily guarantee that for the Markov chain !vI == (8 (() , fA) , 

tl 1· t t {(C C) (- tilll('S (C C)} 1 t . d' ,le lIS ory segnlen " ...... ; ... ;'." a so occurs a every peno In 

the long run with probability one? The following Corollary deals with this. 

Corollary 11 Let!lI and Jvj( be as defined above 'With long run stationary 

distribu,tions f~ and g~ respectively. Consider any constant history segment 

{(a) ,~-:-:.~~~I!~:" (a)} of length ( 'With a E {C, D}2 such that 

1· *({() (- tilll,(:,' ( )}) - 1 1111 9 A a, .; .......... , a -. 
A->CXJ 

Then, 

1· f*({() (- hmI'S ( )}) - 1 IlTI A a, ............ , a -. 
A->OO 

Proof. Consider any (- length period starting at t - ( and ending at 

t - 1 for some t sufficiently large. Let 7r be the probability that a( T) = 
() "IT E {t - (, .... , t - I} and 7rT be the probability that a( T) = a 'iT E 

{t-(, .... ,T},T::; t -1 for some a E {C,D}2. It follows that 7rT 2:: 7r 

'iT E {t - (, ..... , t - I} . Since 

{}~~g~ ( { (a), .~.-: .. t.i:~l.(:~,(a) }) = 1 } =? 7r = 1 as t --+ 00, 
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we have 

1fT~lVTE{t-(, ..... ,t-l} ast-+oo. 

Since by definition, 1fT ::; 1, we get 

1fT = 1 'liT E {t - (, ..... , t - I} as t -+ 00 

which implies 

1· f*({() (- t.illWH ( )}) - 1 In1 A a, ............ , a -. 
A-->OO 

• 

The conditions Cl: + () < 2(3 and (3 + c > 2() guarantee that in the long 

run (C, C) is played with probability one while Cl: + () > 2(3 and (3 + c < 2() 

guarantee that (D, D) is played with probability one. 

6 Application to other 2 x 2 Games with (= 1 

In this section we apply our general results to a large class of 2 x 2 games 

which include Pure Coordination, Common Interest and the game of Chicken, 

under the restriction that the length of the memory cannot exceed unity. We 

then argue why the results in this section hold in principle even when the 

complexity of the history segments used exceed one. 

6.1 Pure Coordination 

Consider r with (3 > e > c, Cl: > 0 with c and Cl: close to zero and Cl: < (3. Then 

r is a game of Pure Coordination with two pure strategy Nash equilibria 

(C, C) and (D, D) with (C, C) Pareto dominating all other outcomes. 

Proposition 12 Let ( = 1 and r be a game of Pure Coordination. For 

c and Cl: sufficiently small, if 2() < (3 + c, (C, C) is the unique long run 

equilibrium for>.. -+ 00. 
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Proof. Following the procedure described in the proof of Proposition 9, 

if the states are arranged in the order (C,C),(D,D),(C,D),(D,C), and if 

2e < {3, we have 

( 
1 1 0 0) 

. 000 0 
}!.:!F.\(( = 1) = 0 0 0 1 

o 0 1 0 

and therefore the unique solution to the system FA (( 

desired when A -+ 00 . 

• 

l)f~ f~ IS as 

Our model therefore predicts that players will eventually converge with 

probability one to the Pareto dominant Nash equilibrium in a game of Pure 

Coordination if they have a unit cognitive bound and the Pareto dominant 

Nash equilibrium is sufficiently payoff rewarding. 

6.2 Common Interest 

Consider r with {3 > 0: > e > c > 0 with c close to zero. Then r is a game of 

Common Interest 'with two pure strategy Nash equilibria (C,C) and (D,D) 

with (C, C) Pareto dominating all other outcomes. 

Proposition 13 Let ( = 1 and let r be a game of Common InteTest. FaT 

c sufficiently small, 'if et > (f3t") > e, (C, C) is the unique long '/"Un equi

libTiwrl when A -+ 00. 

Proof. If the states are arranged in the order (C, C), (C, D), (D, C), (D, D), 

and if 0: > (f3t") > e, we have 

lim F)..(( = 1) = 
)..->00 ( 

0~1 ~~ ~~ 000

1

) 

and therefore the unique solution to the system FA (( 

desired when A -+ 00 .• 
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Our model therefore predicts that players will eventually converge with 

probability one to the Pareto dominant Nash equilibrium in a game of Com

mon Interest if they face unit cognitive bounds and Cl: > (,6~€) > e. The 

intuition behind this result is that with (,6~€) > e, payoff experience of e 
makes both players play C with very high probability and eventually both 

players start playing C. By the definition of a Common Interest game, once 

we observe play of (C, C), players keep playing C with high probabilities 

which converge to one as their rationality parameter approaches infinity. 

Moreover, if they ever observe play of (D, C) or (C, D), if Cl: > (,6~€) , the 

probability of both players playing D is very high. This further implies that 

with a very high probability (which tends to one as rationality is increased 

unboundedly) we observe play of (D, D) and then play converges to (C, C). 

If on the other hand Cl: < (~) , one may show that there exists a long run 

equilibrium where players alternatively mis-coordinate. 

6.3 Chicken and the Fairness Equilibrium 

Consider r with E > e > a > {3 > 0 . Then r is a game of Chicken with two 

pure strategy Nash equilibria (C,D) and (D,C). Following Rabin (1993) 

and Camerer (1997), suppose player 1 has a positive 'sympathy' coefficient 

when player 2 'kindly helps' player 1 and conversely a negative 'sympathy' 

coefficient when player 2 behaves 'meanly' by choosing an action that hurts 

player 1. Rabin assumes that such feelings add to the utility from money 

payoffs, but become relatively less important as money payoffs rise. These 

assumptions and a few others (see Rabin) lead to the concept of a fairness 

equilibrium. First let us study the following example to understand this 

concept of fairness. Let r be represented by the following payoff matrix. 

player 2 
fight accommodate 

player 1 fight I 0.01,0.01 6,2 

accommodate ~===2=,6===~=====4=,=4=, ===~ 
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In our model specification, C == fight, D == accommodate, E = 6, e = 4, ex = 
2,{3 = 0.01. The two pure strategy Nash equilibria are (C,D) and (D,C). 

Although in spirit it is a simultaneous move game, consider the following pre

play thinking on part of the two players. Suppose we are in (C, D). If player 

1 deviates and 'politely' plays D, she sacrifices 2 to benefit player 2 an extra 

amount of 2. This 'nice' choice triggers reciprocal niceness in the behavior 

of player 2 and rather than exploiting over player 1 choosing D, he prefers 

to sacrifice to repay player 1 's kindness and plays D. If player 2 also reasons 

in the same way, (D, D) is the unique outcome and is called the fairness 

equilibrium. Experimental evidence supports the fact that subjects tend 

to play fairness equilibrium strategies in a game of Chicken (see Camerer 

(1997)). 

Proposition 14 If e > (f1~E) > ex and r is game of Chicken, players 

converge to the fairness equilibrium with probability one as A ~ 00. 

Proof. It is easy to see that if the states are arranged in the order 

(D, D), (C, C), (C, D), (D, C), and if e > ({1~E) > et, we have 

and therefore the unique solution to the system FA (( 

desired when A ~ 00 .• 

l)f~ f~ is as 

From the above proposition we see that players converge to the fairness 

equilibrium (D, D) with probability one in the long run if e > (f1~E) > ex. 

Thus in the numerical example above our theory predicts that players will 

converge with probability one to the fairness equilibrium (D, D). This re

sult also supports in some sense the assumption of Rabin (1993) that utility 

'out of sympathy is outweighed by increased money payoff incentives from 

daring against a chicken which is necessary for the existence of a fairness 
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equilibrium. However, the intuition in our set up is that with unit cognitive 

bounds, since {3+e: < 2e, if we observe the action profile (D, D), players keep 

playing D with very high probabilities which tend to one as their rationality 

tends to infinity. Furthermore, if play ever leads to outcomes like (C, D) or 

(D, C), the player playing D deviates and plays C with very high probability 

while the player playing C keeps playing C with very high probability too. 

This implies that almost certainly, we may observe play of (C, C) in the 

subsequent period. By the definition of the Chicken game, with rationality 

close to infinity, players eventually start playing D with very high proba

bility. At the limit when the rationality goes to infinity, play gets stuck 

in (D, D). Mention must be made here that in the McKelvey and Palfrey 

(1995) formulation, players always converge to either (C, D) or (D, C). 

Before ending this section, we would like to mention the basic intuition 

by which we claim (without providing formal proofs) that the results for this 

section would actually hold for any finite cognitive bound. As long as players 

are forced to use only most recent and finite history segments as information 

sets for deciding upon the choice probabilities, the above conditions would 

drive them to information sets wherefrom playing the long run outcome is 

enforced with very high probability. The relative weights of payoffs are in 

some sense stability conditions for the dynamic system generated by the 

behavior rules of the players. 

7 A discussion on beliefs without experience 

The results obtained in this paper can be easily supported in spirit in a 

model with general belief-probabilities over outcomes generated by strate

gies for which players have no experience. In the Prisoners' Dilemma game 

for example, suppose players believe that whenever they have no experi

ence with a particular strategy, the opponent chooses C with probabil

ity W E (0,1). Consider a class of games where wa + (1 - w) e < {3 and 

w{3 + (1 - w) e: > e. Then, our theory would predict that players in the long 
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run will play (C, C) with probability one. Similarly, consider another class 

of games where wa+ (1 - w) B > (3 and w(3 + (1 - w) [ < B. Then, our theory 

would predict that players in the long run will play (D, D) with probability 

one. It follows from this discussion that beliefs "on the forgotten path" or 

"off the actual path" of play becomes central. However our aim is not to 

provide a theory as to how such beliefs are formed. One may argue that 

there is some inconsistency or asymmetry in these beliefs as hypothesized 

here in the following sense. It seems that a player's belief regarding whether 

her opponent cooperates or defects depends upon the action the player her

self chooses to play. For example, if the memory constrained information 

set contains only the outcome (C, C), the player believes that playing C 

results in the outcome (C, C) in the following period with probability one 

(which is possible only if the player believes that her opponent plays C 

with probability one), while playing D results in the outcome (D,C) with 

probability wand the outcome (D, D) with probability 1 - w (which is now 

possible only if the player believes her opponent plays C with probability 

w). Firstly, in logi t models like the one used here, it would be incorrect to 

interpret w in terms of a player's belief regarding what her opponent will 

choose. Rather, it should be thought of as the relative frequency of success 

(which could arise either when both players cooperate or for the player who 

defects when her opponent still cooperates). Clearly then, while confronting 

et strategy either without experience or with forgotten outcomes, w becomes 

arbitrary. Secondly, it is not unknown in social sciences and in particu

lar in various studies in psychology that perceptions towards risks may be 

different depending upon whether an agent is herself in a cooperative or a 

defective mood. Also, a drastic change in mood of a player within a period 

before an action is actually implemented may disturb the ongoing beliefs 

over outcomes thereby leading to apparent inconsistencies. lO 

IlIr thank Antania Cabrales and Luis Carchan far enlightening me in these issues. 
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8 Conclusion 

'''le conclude with a summary of our results and relevant comparisons with 

the existing literature. We studied infinite repetition of the Prisoners' 

Dilemma. Players were assumed to use a version of Logistic Quantal Re

sponse Learning behavior. However they face finite cognitive bounds in 

understanding histories of past play. We define two classes of Prisoners' 

Dilemma games: one in which the average defecting payoff is higher than 

the cooperative payoff and the average cooperative payoff is lower than the 

defective payoff; and the other where the average defecting payoff is lower 

than the cooperative payoff and the average cooperative payoff is higher than 

the defective payoff. As the degree of rationality goes to infinity, we show 

that as long as players face finite cognitive bounds, in the former class of 

games, play converges to the static Nash equilibrium which is Pareto dom

inated while in the latter, play converges to the Pm'eto dominant outcome 

where both players play the cooperative action. As the degree of assumed 

rationality is reduced, the convergence point moves away in both classes of 

games until it hits the centroid of the 3 dimensional unit simplex of prob

ability distributions over action pairs. Note that there are other classes of 

Prisoners' Dilemmas which do not fall in any of the classes mentioned above. 

However, we show that repetition of any finite game leads to some stationary 

long run distribution over the space of action profiles. Our theory calls for 

experiments where subjects play the Prisoners' Dilemma with an uncertain 

terminal period. One easy way of capturing the notion of cognitive bounds 

in such experimental set up would be to impose time restrictions within 

which subjects need to decide upon their current actions. We then apply 

the results obtained under the general framework to other classes of 2 x 2 

games like Pure Coordination, Common Interest and Chicken. We show 

that as long as players face unit cognitive bounds, under relevant ordinal 

payoff restrictions, play converges to the Pareto dominant Nash equilibrium 

in both Pure Coordination and Common Interest games. In case of the 
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Chicken game, we show that players converge to the fairness equilibrium if 

'daring' is not sufficiently rewarding. 

A APPENDIX 

A.1 Results with alternative formulation 

The McKelvey and Palfrey result of convergence of Logit equilibrium to the 

N ash equilibrium when A -+ 00 is proved with the alternative functional 

form of the choice probabilities as in Eq.(7). Here we show that our results 

hold with their formulation as well. In place of Eq.(G) or Eq.(7), consider a 

more general choice probability function 

k( ) _ F(n7(t), A) 
(J i t - -N-"'--"-'-'--'--- (19) 

L F(n7(t), A) 
k=l 

If FC) is continuous and bounded VA E (0, (0) and F(n7(t), A) > 0 V(n7(t), A) E 

lR x (0,00) , then these logistic choice probabilities are well defined. Further

more, if (F(n7(t),A)/F(n7'(t),A)) -+ 0 as A -+ 00 \vhenever F(n7(t),A) < 

F(nf (t), A), convergence to Nash equilibrium as in l'vIcKelvey and Palfrey 

(1995) is ensured. Thus our formulation as in Eq.(G) guarantees conver

gence to (D, D) with probability one when ( = 00. As far as our results 

with ( < 00 are concerned, they also hold good with Eq.(7) since our results 

depend on these conditions on F(.) as well. 
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