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Abstract

One of the most direct human mechanisms of promoting cooperation is rewarding it. We
study the effect of sharing a reward among cooperators in the most stringent form of social
dilemma, namely the Prisoner’s Dilemma. Specif cally, for a group of players that collect
payoffs by playing a pairwise Prisoner’s Dilemma game with their partners, we consider
an external entity that distributes a fxed reward equally among all cooperators. Thus, in-
dividuals confront a new dilemma: on the one hand, they may be inclined to choose the
shared reward despite the possibility of being exploited by defectors; on the other hand,
if too many players do that, cooperators will obtain a poor reward and defectors will out-
perform them. By appropriately tuning the amount to be shared a vast variety of scenarios
arises, including traditional ones in the study of cooperation as well as more complex sit-
uations where unexpected behavior can occur. We provide a complete classif cation of the
equilibria of the n-player game as well as of its evolutionary dynamics.
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1 Introduction

Self sh behavior seems to be one of the consequences of evolutionary dynamics.
Genes, organisms, generic entities acting in their own benef't do better in a strug-
gle for reproductive (understood in a wide sense) success and are selected in the
long term. In spite of this general trend, we f'nd in every evolutionary context (be it
biological, sociological, economic, etc.) many instances in which cooperative be-
haviors are evolutionarily successful. The explanation of this puzzle has developed
into an active line of research, and providing a complete answer to it is one of the
big open problems of XXI century (Pennisi, 2005). Many mechanisms have been
identif ed as responsible for these cooperative associations. Among them we fnd
kinship (Hamilton, [19644.b), reciprocity (Axelrod and Hamilton, |1981), reputation
gain (Nowak and Sigmund, [1998), and others (Axelrod, [1984; Nowak, 2006). One
of the most interesting mechanisms of this kind that has been identif ed is altru-
istic punishment and rewarding (Sigmund et al, 2001)) or voluntary participation
(Hauert et al, 2007). Through this mechanism social groups that are engaged in
social dilemmas, such as the one represented by the Public Goods game, can over-
come the well-known tragedy of the commons (Hardin, [1968).

The rewarding mechanisms just mentioned are of the bottom-up type, i.e., they
arise at the individual level and lead to cooperation at the group level. However,
in ecological and social contexts, there are several levels of organization which
make possible top-down approaches. For instance, parents, educators, governments
and other institutions promote prosocial behavior by rewarding individuals in dif-
ferent manners (prizes, incentives, tax deductions, etc.). In biological or ecologi-
cal contexts, some species reward symbionts that cooperate at the required level
by providing them with more resources (see Kiers et al. (2003) and references
therein). Companies also use similar mechanisms in their own beneft to induce
customers to supply useful information about consumption habits or social net-
works (Iribarren and Moro, 2007). Finally, another instance of top-down rewarding
can be found in team formation of animal societies (Anderson and Franks, 2001),
e.g. in cooperative hunting (Packer and Ruttan, [1988).

Top-down rewarding mechanisms can be generically implemented in two different
ways. The simplest one is to provide a f xed benef't to every cooperator. In terms of
game theory, this is tantamount to shifting the payoft matrix by a constant added to
entries related to cooperation. Thus, for instance, if one starts off with a Prisoner’s
Dilemma (PD) to model the baseline social behavior, introducing such a reward
transforms the dilemma into another one, either Snowdrift (Maynard-Smith and G. Price,
1973; Sugden, [1986) or Stag Hunt (Skyrms, 2003), or even suppresses completely
the dilemma, changing it into a Harmony game (Licht, [1999). A second, more sub-
tle mechanism is to distribute a f xed amount between all cooperators in the popula-
tion. In this case, the original PD becomes a new dilemma, because there is a clear
incentive to cooperate but if there are too many cooperators the incentive disap-



pears and hence defecting pays. This is reminiscent of the Minority game paradigm
(Moro, 2004) and, in fact, it may be seen as an alternative form of describing situ-
ations in which being in the minority (understood in a lax sense) is the best option.
We will refer to this situation as the shared reward dilemma

In this work we study the shared reward dilemma by considering an interaction
group of nindividuals. In order to understand it in the most stringent form of social
dilemma, interaction among individuals follows the PD (see [Doebeli and Hauert
(2005) for a review). Thus, we introduce a game in which payofts can be obtained
from two sources: frst, all players collect payoffs by playing a n-player general-
ization of the PD game with their partners (Hauert and Szabd, 2003), and second,
players who have chosen to cooperate share an extra payoff coming from a pool.
In the next section we analyze in detail the n-player game. Situations in which
multiple interior equilibria occur are completely determined, as well as the para-
metric settings in which equilibria increase, decrease or jump discontinuously with
the reward. In Section 3] we analyze the evolutionary stability of the equilibria dis-
cussed in Section 2] and provide the different asymptotic scenarios of cooperation
according to the replicator dynamics. Section 4] summarizes our conclusions and
presents some future prospects. Appendix [Al contains the main mathematical re-
sults on which the discussions of previous sections rest: a theorem and a corollary
that provide closed formulae for the symmetric Nash equilibria in terms of the
reward for f nite and large number of players, respectively. To complete our analy-
sis, we present in Appendix [Bla theorem which characterizes all asymmetric Nash
equilibria in pure strategies of the game.

2 Theshared reward dilemma

Consider an assembly of n players, each of whom can choose one out of two ac-
tions: cooperate (C) or defect (D) with the rest of the n— 1 players in an one-shot
game (i.e., all player’s actions are simultaneously performed). Players collect pay-
offs according to a PD game from every one of the n— 1 opponents. In addition,
players who have chosen to cooperate obtain an extra payoff coming from a f xed
reward p, provided by an external source, that is evenly distributed among all co-
operators.

To provide the strategic form of this game we introduce some notation. Let k be the
number of cooperators in the group. Payoffs of pairwise interactions are denoted
by the standard parameters of the PD game: a defector that exploits a cooperator
obtains the temptation T, but when she faces up another defector she receives the
punishment P; instead, the payoff for a cooperator meeting another cooperator is
the reward R (not to be confused with p, the reward to be shared that we propose in
this work), but obtains the sucker’s payoff Swhen she confronts a defector. For the
game to be a PD, the payoff must be ordered according to T > R> P > S Since the



game is symmetric, in the sense that the payoff to a particular player is independent
of her label and only depends on her actions, the total payoff of an arbitrary player
is given by

(1)

U— (k—1)R+(n—Kk)S+ E, if she cooperates,
KT+ (n—1—-Kk)P, if she defects.

The remaining of this section is devoted to study the Nash equilibria of this game.

Let us begin with the symmetric Nash equilibria in pure strategies, which can be
easily obtained from (). Full cooperation is an equilibrium if no player increases
her payoff by defecting unilaterally, that is, if and only if T(n—1) < (n—1)R+
p/n. Similarly, full defection is an equilibrium if no player increases her payoff by
cooperating unilaterally, i.e., if and only if (n—1)S+p < (n— 1)P. The former
constraint on p suggests a normalization of the shared reward, namely

P

0= nin—1)(T—-R)’

)

which will henceforth be referred to as scaled reward With this parameter, the
condition for full cooperation to be a Nash equilibrium is simply & > 1. As for the
second constraint, if we introduce a new parameter, the defection ratio

_T—-R

T

3)

the condition for full defection to be a Nash equilibrium is & < 1/ng. All the analy-
sis of the game can be performed solely in terms of these two parameters instead of
the fve parameters that originally def ne the game. As we have shown, the scaled
reward is the ratio between the actual reward and the reward needed for full co-
operation to be a Nash equilibrium; as for the defection ratio, it compares, in a
pairwise interaction, the excess of payoff a defector gets over a cooperator when
both confront a cooperator, with that when both face up a defector.

Note that both full defection and full cooperation will coexist if and only if 1 <3 <
1/nC. Clearly, no reward meets this condition unless { < 1/n. Thus we see that, by
increasing the reward, the symmetric Nash equilibrium in pure strategies changes
from full defection to full cooperation, and in between these two extremes there
may be either coexistence or absence of both equilibria, depending on whether C is
smaller or larger than 1/n, respectively.

The space of symmetric mixed strategies Nash equilibria consists of all 0 < q <1
such that a player cooperates with probability q and defects with probability 1 — Q.
The expected total payoffs of an arbitrary cooperator and of an arbitrary defector
when the rest of the players play an equilibrium @, are given by



fc()
fo(q)

where Pm(q) = E[(Sn+1)~'], Sn being a binomial random variable which is the
sum of mi.i.d. Bernoulli’s random variables with mean . As has been observed by
Chao and Strawderman (1972), pm(q) has the expression

E[U|she cooperates] = (n—1)qR+ (n—1)(1 — q)S+ pun—1(d), (4)
E[U|she defects| = (n—1)qT + (n—1)(1 —q)P, (5)

1, forq=0,

Hm(q) = 1—(1—q)m*! (6)
W, for0 <qg<1.

Symmetric Nash equilibria in completely mixed strategies can be computed by
solving fc(q) = fp(Q). To do that, it is convenient to distinguish when there are
more than two players and when there are just two players involved. The latter
case is particularly simple because it reproduces the major binary games used in
the study of cooperation. The payoff matrix (Gintis, 2000) of this binary game can
be easily obtained from by setting n = 2, and it is shown in Table [1l Thus,
depending on p, the game becomes a:

(i) Prisoner’s Dilemma, if T > R+ p/2 and P > S+ p;
(if) Snowdrift, if T > R+ p/2 and P < S+ p;
(iii) Stag-hunt, if T < R+p/2 and P > S+ p;
(iv) Harmony, if T < R+p/2 and P < S+p.

C D
C|R+p/2 | S+p
T =

Table 1
Payoff matrix for the binary case of the shared reward dilemma.

The Nash equilibria of these games are well known. Thus, the Snowdrift game has
two asymmetric Nash equilibria in pure strategies, {(C,D), (D,C)}, while the Stag-
hunt game has two symmetric Nash equilibria, {(C,C), (D, D)}. Both games have
a unique Nash equilibrium in mixed strategies q € (0, 1). Otherwise, the Prisoner’s
Dilemma and the Harmony game have just one Nash equilibrium (both players
defecting and both cooperating, respectively).

In terms of & and (, the above conditions (i)—(iv) can be rephrased as

(i’) Prisoner’s dilemma if & < min(1,1/2);
(ii’) Snowdriftif 1/2{ < d< 1;
(iii’) Stag-huntif 1 <& < 1/2(;
(iv’) Harmony if & > max(1,1/2Q).

In general, our results permit to characterize the changes in the structure of equi-
libria by varying & and fxing {. Therefore, we can study the effect of rising the
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Fig. 1. Symmetric Nash equilibria of the binary game as a function of the scaled reward &
for the two types of possible behavior, { > 1/2 (left) and { < 1/2 (right).

reward. In order to illustrate our approach, consider once more the binary game.
Upon increasing O the game changes from Prisoner’s dilemma to Harmony. For
{ = 1/2 this change occurs directly when 0 crosses at 1, but depending on whether
(> 1/2 or{ < 1/2, the change occurs via Snowdrift or via Stag-hunt, respectively.

Taking n =2 in (@) and (3) (hence Y;(q) = 1 —q/2) and solving fc(q) = fp(q) we
obtain a unique Nash equilibrium in mixed strategies 0 < < 1 given by

L 1-2&
R YA

If { > 1/2 (respectively { < 1/2) qis a continuous increasing (respectively decreas-
ing) function of 8. Figure[I]illustrates these two scenarios as well as the parametric
conditions for the existence and coexistence of equilibria in pure strategies. When
0 lies in between 1 and 1/2C, there is uncertainty as to the strategy that players
will choose: for { > 1/2, because no symmetric Nash equilibrium in pure strate-
gies exists when 1/2{ < 8 < 1; for { < 1/2, because there is coexistence of both
full cooperation and full defection in the range 1 < & < 1/2. In the former case
the mixed strategies Nash equilibrium that flls the gap has the expected behav-
ior: the probability of cooperating increases with the reward; however, in the latter
case the behavior of this Nash equilibrium is counterintuitive, as the probability of
cooperating decreases with the reward. This phenomenon can be explained in the
framework of evolutionary dynamics, where the binary game models pairwise inter-
actions between individuals of a large population. In this context, it is well known
that, under the replicator dynamics, the equilibrium in mixed strategies of the Stag-
hunt game is unstable and separates the basins of attraction of the two equilibria
in pure strategies (full defection and full cooperation). We will come back to this
issue in Section[3]in a more general setting, where we study in detail the replicator
dynamics by considering interactions in groups of n individuals.

(7

Let us now analyze the case n > 3. Notice that Py (q) defned in (6) is now a non-
linear function of q and thus there can be more than one solution of fc(q) = fp(q).
However, as such solutions are obtained as the intersection points of a straight line
with a strictly convex function, there can be up to two equilibria in the open interval
(0,1). As is proven in Theorem [I] of Appendix[Al the number of equilibria depends
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Fig. 2. Symmetric Nash equilibria of the n-player game (n > 3) as a function of d for the
three types of possible behavior, { > 1/2 (left) and 1/n < { < 1/2 (middle) and { < 1/n

(right).

only on the values of & and {. Moreover, the changes on the structure of equilibria
when 0 increases correspond to three possible scenarios, determined by { < 1/n,
1/n<{<1/2and > 1/2. (Notice that for n= 2 the middle case is empty, and the
other two cases correspond to those discussed above.) Figure [2| depicts the typical
structure of equilibria for these three cases.

For the case { > 1/2, Theorem [I] shows that there exists a unique symmetric Nash
equilibrium which is a continuous increasing function of d. It is strictly increasing
within [1/n¢, 1] from full defection at & = 1/nC to full cooperation at & = 1, and
constant outside the interval. However, when { < 1/2 we have two nontrivial, dif-
ferent scenarios. One feature common to both of them is the existence of a range
of rewards, namely max{1,1/n{} < & < &, for which two symmetric equilibria in
mixed strategies coexist. One of these equilibria increases and the other decreases
when the reward increases within this range. At the critical value & these equilibria
collapse and a further increase in & yields a discontinuous jump from a Nash equi-
librium with g < 1 to full cooperation. An upper bound for & is provided in Theo-
rem[Il The fundamental difference between the cases { < 1/nand 1/n<{ < 1/2
arises in the region min{1,1/n{} < & < max{1, 1/n{}, where there exists a unique
equilibrium 0 < q < 1: for 1/n < { < 1/2 we see that g increases with 8, while
for { < 1/n, we see that q decreases with 9, exhibiting the same counterintuitive
behavior reported for the binary case.

A case of particular importance is { = 1, because it reproduces the cost/benef't
parametrization of the PD game, by letting T =b, R=b—c, P=0 and S= —c,
with b > ¢ > 0. For this popular framework, suitable for biological applications, our
result shows that the equilibrium of the shared reward dilemma only depends on the
fxed amount p to be shared by the cooperators and on the cost C of cooperation,
but it is independent of the beneft b. An analogous result is observed in a spatial
evolutionary version of the shared reward dilemma (Jiménez et al, 2007).

When the number of players n — oo, we provide a simplif ed asymptotic version
of Theorem [I] in Corollary [I] of the Appendix [Al As in this limit the threshold
1/nC — 0, the third of the three cases shown in Figure 2 disappears. Notice that



in order to get 0 < & < o in the N — oo limit, we have to scale the reward with
the number of interactions in the game, n(n— 1). The reason is that the payoffs
collected per player from their pairwise interactions, in the frst step of the game,
are O(n), therefore the reward per player must be of the same order to produce
an effect. This makes p = O(n?). In that case, the shapes of the frst two cases in
Figure 2l are preserved, with a shift of the threshold 1/n¢ to 0 (full defection is an
equilibrium if and only if p = o(n?)). The critical value of the scaled reward, &, at
which the equilibrium jumps discontinuously from a value q < 1 to full cooperation
when { < 1/2, can be exactly computed in the asymptotic case N — . As it is
proved in Corollary [T &c = 1/4{(1 — Q).

The limit case { — 4o (equivalent to P — S") has also received special attention
in the analysis of PD games on complex networks (Nowak and Sigmund, 2000;
Eguiluz et al, 2005). Our results show (c.f. eq. (A.I)) that a well def ned mixed
Nash equilibrium exists for 0 < & < 1 which monotonically increases with d from
0 to 1, reaching full cooperation for d > 1. In the N — oo limit, using Corollary
we can obtain an estimate for the equilibrium when P — S*, namely the smallest
value between v/d and 1.

Asymmetric Nash equilibria in pure strategies, in which part of the players in the
group cooperate and the rest defect, can also be found for this game. For an inter-
val of rewards starting at 1,/n{ (the maximum reward for which full defection is a
Nash equilibrium) there exist asymmetric equilibria with k cooperators and n— Kk
defectors. The value of K increases stepwise, starting from K = 1, at reward values
1/n{ =98 <& < ... (see eq. (B.I)), with equilibria with k and K+ 1 coopera-
tors coexisting precisely and only at the separating values d. For instance, upon
increasing & above 1/n{, the full defection equilibrium is replaced by one with a
single cooperator and n— 1 defectors. In turn, this is the only Nash equilibrium in
pure strategies up &, where it is replaced by another equilibrium with two coop-
erators and n— 2 defectors. The maximum number of cooperators in asymmetric
equilibria is n— 1 if { > 1/2, or else the largest integer k < (n—1)/2(1 — Q) if
{ < 1/2. In order to complete the analysis of the static game, a full characteriza-
tion of these equilibria is given by Theorem 2| of Appendix Bl There is a particular
aspect of them which we would like to call attention upon: the fraction of cooper-
ators in the asymmetric Nash equilibria approaches either the unique or the lowest
mixed strategies Nash equilibrium 0 < g < 1 in the limit n — c. As we will see
in Section 3] for the study of the replicator dynamics based on the shared reward
dilemma, only the knowledge of symmetric Nash equilibria is necessary.

3 Evolutionary dynamics

In population dynamics, the evolution of cooperation can be modeled in several
ways. According to the replicator dynamics (Hofbauer and Sigmund, [1998), the



dynamics in inf nitely large populations is described by

%:x(l —x) [fe(x) - fo(X)], )

X(t) being the fraction of cooperators at time t and fc(x) and fp(X) the average f't-
ness (which is the evolutionary counterpart of the concept of payoff) of cooperators
and defectors in the population, respectively. In this paper we consider the approach
presented by [Hauert et al. (2006) to study replicator dynamics based on interaction
groups of individuals. The standard setup to obtain the replicator equation is to
assume a large population of individuals who randomly select partners to play a
two-person game. In this alternative approach, players select groups of n— 1 indi-
viduals and play an n-person game instead. This is an appropriate approach to study
the evolutionary behavior of populations interacting through Public Goods games
(Hauert et al, 2006), and it is also suitable to study the evolutionary behavior of
the shared reward dilemma.

If the population is well-mixed, the number of cooperators at timet in an interaction
group of N individuals is a binomial random variable with mean nx(t). Therefore,
the average ftnesses at time t are given by formulae (4)) and (3) with g = x(t). In-
serting these formulae in (8]) we model the evolution of cooperation when a reward
p is available for each interaction group.

It is clear that x = 0 and X = 1 are always f xed points of the replicator equation (8)),
but there will be further f xed points at the solutions of fc(X*) = fp(X") in the open
interval (0,1). All of them are the symmetric Nash equilibria discussed in previous
section. By the folk theoremof evolutionary game theory (Cressman, 2003), the
asymptotic stability of these f xed points will depend on the sign of fc(X) — fp(X).
For example, if it is always positive, X = 0 is unstable whereas X = 1 is stable,
and if it is always negative it is the other way around. The situation is different if
fc(X) — fo(X) changes sign in the interval (0, 1). By Theorem Il (see Appendix [Al),
we can determine how many roots (none, one or two) has fc(x) — fp(X) in the open
interval (0, 1). On the other hand, since fc(0) — fp(0) =n(n—1)(T —R)(d—1/nQ),
then x = 0 is stable if & < 1/nC and it is unstable otherwise. Thus, we will fnd
the following stability patterns, depending on the number of roots of (A.I)) in the
interval (0,1):

(I) if < 1/nC (in this case there is either none or just one root),

(a) if there are no roots, X = 0 is a stable and X = 1 an unstable f xed point;

(b) if there is one root 0 < X; < 1, then X = 0 is a stable, X; an unstable and
X =1 a stable fxed point, with X; separating the basins of attraction of
X=0and X=1;

(I ifd>1/ng,

(a) if there are no roots, X = 0 is an unstable and X = 1 a stable f xed point;

(b) if there is one root 0 < X; < 1, then X = 0 is an unstable, X; is a stable
and X = 1 an unstable f xed point;
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Fig. 3. Equilibria of the replicator equation (8). Solid lines represent the asymptotically
stable f xed points, while dashed lines represent the unstable ones.

(c) if there are two roots 0 < X; < X < 1, then X = 0 is an unstable, X; a
stable, X, an unstable and X =1 a stable f xed point, and X, separates the
basins of attraction of X; and X = 1.

All these situations are illustrated in Figure 3 Obviously the structure of fxed
points of the replicator equation is the same as that of the symmetric Nash equilib-
ria described in the previous section. The only difference is that now X=0and x=1
are always f xed points. What is really new is the stability patterns induced by the
dynamics. These patterns are shown in Figure [3| through fux lines which indicate
the direction in which the dynamics approaches the stable equilibria. It is worth
noticing that for the two cases with { < 1/2 (middle and right panels of Figure [3])
there is a critical value of the reward, &, at which, starting from a zero fraction of
cooperators, the asymptotic cooperation level jumps discontinuously from a value
g < 1 to full cooperation. In both of them there is also a region of d in which, de-
pending on the initial fraction of cooperators, the outcome may be full cooperation
or a smaller fraction of cooperators. This smaller fraction outcome may even be 0
in the case in which { < 1/n. An important consequence is that, X = 0 being unsta-
ble for any & > 1/ng, for a suitable reward, a single mutant in an interaction group
of defectors will spread cooperation in the population.

To complete our analysis, we summarize the different dynamical regimes that can
be obtained, by varying & and , in Fig.[dl These diagrams illustrate the transitions
between the different evolutionary outcomes: full defection, coexistence of coop-
erators and defectors, bi-stability —where full defection or full cooperation can be
reached, depending on the initial population—, full cooperation, and —only for
n > 3 players— bi-stability between a mixed population and full cooperation.

4 Conclusions

In this paper we have studied the effect of rewarding cooperation in a strict social
dilemma through the distribution of a f xed amount among all cooperative individ-
uals. By adding this payment to the standard payoffs of the Prisoner’s Dilemma,

10
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Fig. 4. Diagrams sketching the different dynamical regimes for n = 2 (left) and n > 3
(right) in terms of the two parameters ( (defection ratio) and d (scaled reward). Symbols
stand for full defection (D), full cooperation (C), co-existence of defectors and cooperators
in a mixed equilibrium (M), and existence of two stable equilibria, either full defection/full
cooperation (D-C) or mixed equilibrium/full cooperation (M-C), each of which is reached
depending on the fraction of cooperators in the initial population. The curve marking the
upper bound for the D and D-C regions in both f gures is given by { = 1/nd. As n — o
this curve moves towards the lower-left corner, thus shrinking these two regions, which
disappear in the strict limit. The other curve of the right f gure corresponds to the value of
0 at which the two mixed equilibria which are found for { < 1/2 coalesce (8; see text).

cooperators and defectors in an interaction group confront a dilemma: on the one
hand, individuals may be inclined to choose for shared reward despite the possibil-
ity of being exploited by defectors; on the other hand, if too many players do that,
cooperators will obtain a poor reward and defectors will outperform them. In the
simplest case with only two players, we recover the traditional binary games for the
study of cooperation where the social dilemma is relaxed: stag hunt and snowdrift.

Although intuition suggests that in this game there should be a threshold value of
the reward above which cooperation increases monotonically up to reaching satu-
ration, the game exhibits more complex situations. The equilibrium structure has
been characterized for the static game as well as for an evolutionary version of the
game based on the replicator dynamics. For a wide range of parameters, scenar-
ios with multiple interior equilibrium points are obtained, featuring critical values
of the reward at which cooperation jumps discontinuously. Also, counterintuitive
behavior where cooperation decreases as the reward increases may be observed.
On the other hand, the replicator dynamics provides additional stability criteria
for these equilibria. In the light of the stability patterns that arise, counterintuitive
equilibria in the static game, exhibiting a decrease of cooperation upon increasing
reward, turn out to be unstable equilibria of the dynamics separating basins of at-
traction of other stable equilibria. As a consequence, a most relevant conclusion is
that for many choices of the game parameters and initial conditions, the equilibrium
with lower value of the cooperation level is dynamically selected instead of the full
cooperation one.

11



The results presented in this paper allow for a complete characterization of the
shared reward dilemma in the following terms. Cooperation does not appear until
the reward increases above the threshold & = min{1,1/n{}. Interestingly, for & >
1/n, even a single cooperator can spread cooperation in the population, the more
the larger the reward. This is an important point supporting the effectiveness of the
reward mechanism for promoting the emergence of cooperation (Jiménez et all,
2007). Subsequently, for { > 1/2 the fraction of cooperators increases monotoni-
cally until full cooperation is reached for d = 1. However, and quite unexpectedly,
for { < 1/2 an interesting phenomenon is observed: starting with a single coopera-
tor, full invasion of the population only takes place when the scaled reward 0 > &,
for some &c > 1. This resistance to cooperation is remarkable because for & > 1 full
cooperation is a stable equilibrium of the dynamics, and agrees with the dynamical
analysis that shows that full cooperation is only reached if the initial fraction of
cooperators is already large. When crossing &c cooperation suddenly invades. At
that point, if we decrease the reward again, full cooperation persists down to & = 1.
A slight decrease below this point produces an abrupt spread of defection in the
population, which can even be completely invaded if { < 1/n. This hysteresis is
typical of critical phenomena, and it is very striking to fnd it in a model like this,
where naive intuition says that the more one rewards cooperation, the more coop-
erators should appear. The general, most important conclusion that can be drawn
from this picture is that the effects of rewarding cooperation are neither trivial nor
as straightforward as might be intuitively expected, and demand a more careful
analysis. The origin of this complexity lies in the dilemma that the players con-
front and the impossibility to know a priori how much reward a player can get by
cooperating.

One important issue for the shared reward dilemma is where this reward comes
from. In the Introduction we have mentioned situations in Biology that can f't the
setup of the shared reward dilemma, as well as mechanisms of direct rewarding to
foster more social behavior. To name just one, companies have realized the need of
searching for mechanisms that motivate, provide incentives or encourage coopera-
tive behavior among their employees in order to contribute to the effective success
of the teamwork. This context leads to another variant that we have not consid-
ered here: the case in which the reward is detracted from the payoff of all players.
This case is particularly interesting for two reasons: frst of all, for the feedback
mechanism that it implies, and secondly, because it models a common scenario of
taxation and subsequent subsidy of only certain people. Given the complexity of
the shared reward game as we have analyzed it here, the results of this new sce-
nario are presumed very rich. This tax-subsidy scenario has already been explored
by some of us (Lugo and Jiménez,[2000) in a spatial evolutionary setup, but further,
more detailed research is needed in view of the present f ndings. This issue will be
the subject of a forthcoming work.

In closing, we have shown that rewarding introduces a new social dilemma. De-
pending on the parameters, the game casts the classical scenarios of full defection,
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coexistence of cooperators and defectors, bi-stability of full defection and full co-
operation, or full cooperation, as well as more complex scenarios with two interior
mixed equilibria, where bi-stability between a mixed equilibrium and full coopera-
tion can occur. In addition, we have seen that the cooperative response may not be
continuous on the reward, implying that promoting cooperation may require sub-
stantial incentives. We have shown that the classical (static) analysis of the game
requires an evolutionary (dynamic) counterpart: while in the static case the counter-
intuitive phenomenon of the decrease of the cooperation level upon increasing of
the reward may occur, this is never found dynamically; on the other hand, in the
evolutionary framework we observe that very large rewards may be needed to es-
tablish a signif cant cooperation level, but once it is established, the reward may
be very much reduced without damage to the cooperative behavior. Therefore, our
general conclusion is that promoting cooperation through a reward mechanism is
far from trivial, in agreement with the non trivial behavior found in many social
contexts, and deserves careful consideration prior to, and during, application.
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A Characterization of symmetric Nash equilibria

Theorem 1 Let d = p/n(n—1)(T — R) be the scaled reward of the game and
(= (T —R)/(P—Y9) the defection ratio. Then, the following three scenarios can
be found for the symmetric Nash equilibria of the shared reward dilemma with a
number of players &> 3:

1. For( >1/2,
(i) if 8 < 1/ng, the unique Nash equilibrium is full defection£);
(i) if 1/nC < &< 1, the symmetric Nash equilibrium is a continuous function
of d which increases fro™ to 1, corresponding to the unigque solution on
(0,1] of

(Z—l)x+1—a‘>Z71_(IX_X)n =0; (A.1)
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(iii) if &> 1 the unique Nash equilibrium is full cooperation#£gl).
2. For1/n<{<1/2,
(i) if 8 < 1/nC the only Nash equilibrium is full defection;
(i) if 1/nl < & < 1 the symmetric Nash equilibrium is a continuous function
of 8 which increases frofi™ to some limit smaller than 1, corresponding
to the unique solution of0, 1) of (A.1);

(iii) if &> 1 there exist®. > 1 such that ifd > . the unique Nash equilibrium
is g= 1, whereas ifl < < & there are two additional symmetric Nash
equilibria corresponding to the solutiofs< g; < g, <1 of (A.1) (equality,

g = gp holds only ford = &:). The equilibria q and ¢ are continuous

monotone functions @f(increasing and decreasing respectively) and=q
1 whend = 1.

3. Forg < 1/n,
(i) if d < 1 the only Nash equilibrium is full defection;
(i) if 1 <& < 1/nC the symmetric Nash equilibria are full defection, full co-

operation and the unique solution ¢6, 1] of (A.1), which is a continuous
function ofd which decreases frorhto some limit greater than O;

(iii) if 8> 1/nC there exist®; > 1/n such that id > d. the unique Nash equi-
librium is g= 1, whereas ifl < < & there are two additional symmetric
Nash equilibria corresponding to the solutiofs< q; < ¢ < 1 of (A1)
(equality, g = g, holds only ford = &;). The equilibriag and g are con-
tinuous monotone functions &f(increasing and decreasing respectively)
and g = 0whend = 1/nC.

An upper bound fodc is given by

2
(1 = )
n n—1

ey =3

n—1

O < (A.2)

Proof. As we discussed in Section (2)), full cooperation is a Nash equilibria iff
0 > 1 and full defection is iff & < 1/n. To consider the remainder cases, let us
def ne the “loss function” @: [0,1] — R,

o) = % — (%)~ B (X, (A3)

where @ (X) =X({— 1)+ 1 and

n, for x=0,

®(X) = Np-1(1,%) = {l(lx)” (A.4)

, for0<x<1.
X
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(2) (®) ©

(d © (]

0 1 0 1 0 1

Fig. A.1. Relative situations of @; (X) and d{@, (X) (see text).

(c.f. eq. @)—(Q)). First of all, for & = 0 the only root of the loss function is at
X =1/(1—{), which, for any { > 0, is outside the interval [0, 1]. Hence @(x) > 0
for all x € [0, 1] and the only Nash equilibrium if full defection. Let us henceforth
assume O > 0. Function ¢ (X) decreases monotonically with X and, for any n > 2,
is strictly convex within the interval [0, 1]; instead, @ (X) is a straight line with
nonnegative or negative slope depending on whether { > 1 or { < 1, respectively.
For reasons that will be clear in a while, we need to consider separately the cases
(>1,{<1l/nand 1/n<{< 1.

Case( > 1:

As @(X) is nondecreasing, the loss function @(X) monotonically increases with X
and the only symmetric Nash equilibrium depends on the signs of @(0) = 1 —&¢n

and @(1) = (1 -9).

(i) Ifd<1/nC we have 0 < @(0) < @(1) and the unique Nash equilibrium is full
defection. This equilibrium is strict for 6 < 1/nc.

(ii) If 1/n{ < & < 1 we have @(0) < 0 and @(1) > 0, and the symmetric Nash
equilibrium in mixed strategies is the solution 0 < q < 1 of (A.I). Note that
@(x) decreases with &, thus q increases with d.

(iii) If 8> 1 we have @(0) < @(1) < 0 and the unique Nash equilibrium is full
cooperation, which is strict for & > 1.

In the next two cases { < 1 and therefore both @ (x) and @ (X) are decreasing
functions of X. As @ (X) is convex, the situations that can occur are all sketched in

fe. Al
CaseC < 1/n:

(i) If d < 1 then @(0) > 0 and @(1) > 0 and we have the situation sketched in
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(i)

(iii)

f g.[A.I(a). The only Nash equilibrium is full defection.

If 1 <d< 1/n{ we have ¢(0) > 0 and (1) <0, so the situation is as sketched
in fg.[A.1lb) and therefore there will be a symmetric equilibrium 0 < q < 1.
Note that =1 for & = 1 and decreases as & goes to 1/nC.

If 1/n{ <dthen @(0) < 0and @(1) < 0. Thus we will have one of the two sit-
uations plotted in f gs. [A.1(d) and [A.T(e) depending on the slopes of @; (X)
and @ (X) at X = 0 at the crossover & = 1/n{, where @0) changes sign.
If ¢, (0) > ¢,(0)/n the situation will be as illustrated in fg. [A.1(d), and if
@ (0) < @ (0)/n it will be as in fg. [A.Ile). In the former case there will be
two Nash equilibria, 0 < (; < g < 1, and in the latter the only Nash equilib-
rium will be = 1. As ¢} (X) ={—1 and

d(x) = nx(l—x)“—1—1+(1—x)”’ (A5)

X2

we have ¢ (0) = {—1 and ¢(0) = —n(n—1)/2. The condition ¢,(0) >
@ (0)/n reads { > (3 —n)/2, which holds for any n > 3. We thus fnd two
equilibria, 0 < q; < g < 1, which, upon increasing 8, approach each other
(q; increases and Qp decreases) up to &, where they coalesce in one Nash
equilibrium q € (0, 1). Finally, for & > &; the only Nash equilibrium is full
cooperation.

Casel/n<{ < 1:

(1)
(i)

(iii)

If & < 1/n then @(0) > 0 and @(1) > 0 and we have the situation sketched in
fg.[Adl(a). The only Nash equilibrium is again q = 0.

If 1/nC < & < 1 (this case is empty if { = 1/n) then @(0) < 0 and (1) > 0,
and we have the situation depicted in f g.[A.Ilc). There is a unique symmetric
Nash equilibrium g € [0, 1) determined by (A.T)). Also q= 0 for d=1/n{ and
increases as 0 goes to 1.

Ifd> 1 then @(0) < 0 and @(1) < 0. In this case we may have two additional
equilibria if the situation of fg. [A.1(d) occurs, or just one if either & > 1
and we have the situation of fg. [A.Ile), or d = 1 and the situation is like
in fg. [A.Ilf). The separation between the frst case and the last two cases
depends on which scenario, fg.[A.1l(d) or fg.[A.I(f) we have at & = 1. This,
in turn, depends on the slopes of @;(x) and @ (X) at x =1 when & = I: if
@ (1) < L@ (1) then we will have fg.[AT(d), and if ¢ (1) > (@ (1) we will
have f g.[A.I(f). The former is equivalent to { < 1/2, the latter to { > 1/2. So
if { > 1/2 the only Nash equilibrium is q = 1, whereas if { < 1/2 there will
be, for 1 < & < &, two equilibria, 0 < ¢; < ¢ < 1, which coalesce in a single
one at ® = . For & > & the only Nash equilibrium is = 1.

The limiting value & can be determined as the value of & at which the curve @ (X)
is tangent to dc{( (X) at a point X; € (0, 1). At this point the two equations

@ (%) =0l (Xe), @ (%)= Ocldh(Xc), (A.6)
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hold simultaneously. These two equations can be combined to yield

8c(1—%)" = xg(1 =) — %+ 8L, (A7)
[(N—1) = (N=2)qxg — (N—1420)%:+3cLn = 0. (A.8)

For X¢ to exist it is necessary that the second equation has a solution. The condition
for this to happen is

(N—1+22)>—4[(n—1)— (n—2){5:Ln > 0. (A.9)
Since { < 1/2 then (n—1) — (n—2){ > 0, so the above equation holds provided

2
n-1+202  (1+&) fn-
6C§4[(n—1)—(n—2)Z]Zn_4((1_2;%0( n ) (A.10)

This expresses an upper bound for d;. M

Corollary 1 Consider a sequencgy} of rewards such thgb, — c as h— oo in
such a way that

T Pn
6_nh—r>rolon2(T—R)’

with 0 < 8 < oo. Let us defind; = 1/4{(1 —{). Then, in the limit n— o, the Nash
equilibria of the shared reward dilemma are

(A.11)

(i) full defection ifd = 0;
(i) a unique equilibrium in mixed strategies

1—/1-8/%;
=0 (A.12)

ifo<d<1;
(i) full cooperation and two equilibria in mixed strategigs< q; < ¢ < 1, where

q is given by[(A.T2) and
1+4,/1-0/9
2= Z, (A.13)

if 1 <0< 8 and{ < 1/2 (equality q =g, = 1/2(1—{) only holds if6 = &),
and
(iv) full cooperation otherwise.

b=

Proof[Il As n— oo only two of the three cases of Theorem[Ilremain, corresponding
now to { > 1/2 and 0 < { < 1/2. Besides, eq. (A1) becomes the quadratic equation

(L—1)x+x—38L =0, (A.14)
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whose two solutions are

VA U 41 I RV (L 41 A1s)
2(1-0) P 2(1-7) ' '

Both are real whenever 0 < & < &; = 1/4¢(1 — ). On the other hand, ¢; monoton-
ically increases with 8. If { > 1/2, q; runs from 0 to 1 as d moves from 0 to 1; if
(< 1/2,0q; goes from 0 to 1/2(1 — ) as d goes from 0 to &;. As for 0p, the condi-
tion for it to be within the interval [0,1]is ( <1/2and 1 <3< &. When{ =1/2
and & = 1 then ¢p = q; = 1. When { < 1/2 then @, provides a second solution,
monotonically decreasing from 1 down to 1/2(1 — () as d runs from 1 to &, where
it coalesces with Q.

a

Finally, for & > & we have
(L—1)x+x—38 >0, (A.16)

so the only Nash equilibrium is full cooperation. B

B Characterization of asymmetric Nash equilibria

Theorem 2 Letd = p/n(n—1)(T —R) be the scaled reward of the game ahe-
(T —R)/(P—9S) the defection ratio. Let

n—1+(kk-1)(—1)
n(n—1)¢ ’
Then a configuration with < k < n— 1 cooperators and r k defectors will be

a Nash equilibrium in pure strategies of the shared reward dilemma if and only if
O <0< and, wherf < 1/2, k< (n—1)/2(1 —Q).

& =k

k=1,2,....,n—1. (B.1)

Proof. According to (I)), in a conf guration with k cooperators and n— k defectors
the payoff of a cooperator is

©

?c(k) = (k— 1)R+(n—k)S+E (B.2)
and of a defector

Pp(k) =KT +(n—1-K)P. (B.3)
For such a conf guration to be a Nash equilibrium in pure strategies two require-
ments must be met: (i) a cooperator cannot get higher payoff by defecting, and (ii) a
defector cannot get a higher payoff by cooperating. Condition (i) amounts to saying

that 2c(k) — Pp(k—1) >0, i.e.
(k=1)(T=R)+(n-K)(P—9 - | <0, (BA)
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and condition (ii) amounts to saying that 2p (k) — Pc(k+1) > 0, i.e.

HT—®+W—1—©W—$—E%TSO (B.5)

By def ning the parabola
Wx) =X~ 1)+(n={)x—A4, (B.6)

where A=p/(P—S) = n(n—1)d, and taking into account that P— S> 0, the two
conditions above can be rewritten

WK <0,  W(k+1)>0. (B.7)

In other words, an asymmetric Nash equilibrium in pure strategies exists if and only
if there exists K=1,2,...,n— 1 such that holds.

The two roots of the parabola (B.6)) are

-0+ /(07T AT 1)
2C-1) /

X4+

(B.8)

so for the discussion to follow we should treat separately the cases { > 1, { = 1 and
(< 1.

Case( > 1. In this case the parabola is convex, both roots are real and X_ < 0 and
X4 > 0. So there will be an asymmetric Nash equilibrium in pure strategies with k
cooperators if and only if K < x; < k41, i.e.

KZ-1) </ (N2 +4AC-1) - (- <2+ X —1)  (BI)

or equivalently

(2k—1)Z+n-2k< /(=2 +4AQC 1) < (2k+ )T +n—2(k+1). (B.10)

As { > 1 we have (2k—1){+n—2k > n—1 > 0, so all three terms in (B.10) are
positive numbers and can be squared to obtain, after simplifying,

kin—k+(k—=1)] <A< (k+1)(n—k—1+kZ). (B.11)
Given that A = n(n— 1), these inequalities can be rewritten

n—1+(k-1@-1)

D(
<0< =

(B.12)

Notice that if { > 1 then {&} forms an increasing sequence and that 8; = 1/n{ and
6n = 1
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Casel = 1. In this case only the root Xo = A/(n— 1) = nd exists, thus the condition
k <xo <k+1 is equivalent to (B.12)), where, of course, o = k/n.

Case( < 1. The parabola (B.6)) is now concave and the roots can be rewritten

_(-0F V({2401 Q)
2(1-0) |

X+

(B.13)

For them to be real we must have
(n—7)* —4A(1-0) > 0. (B.14)

Suppose this inequality holds; then we have X, > 0 and X; < X_. For an asymmetric
Nash equilibrium with k cooperators to exist we must have K < x; <k+4+1 < x_.

The inequalities X, < k41 < X_ are equivalent to

In—2k+ (2k—1)Z| < 1/ (n—2)? —48(1 - ). (B.15)

Squaring again this expression boils down to & < dy 1. The inequality k < X; can
be rewritten

V/(N=0)2 —4A(1 ) < n—2k+ (2k— 1)2. (B.16)

No value of A satisf es this inequality unless the right-hand-side is nonnegative; in
other words, unless
n J—
k < ¢

T 2(1-¢)
Assuming holds we can square and simplify once more to get & > .

(B.17)

But there is one last remark to make: O < & < & is empty unless O < Oy . If
( > 1 then & is an increasing sequence, but for { < 1 this is no longer true, and the

constraint & < Oy | implies
n—1
K< ——, B.18
<30-0 (B.13)

which is more restrictive than (B.I17). Notice that this only constraints the value of
K provided { < 1/2.
Finally, one can check that holds for any & because

(N—0)>—4n(n—1){(1-Qd = [(2k—1)(1-=)—n+1]*>0. W (B.19)
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