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Abstract. This paper presents a Road Detection and Classification al-
gorithm for Driver Assistance Systems (DAS), which tracks several road
lanes and identifies the type of lane boundaries. The algorithm uses an
edge filter to extract the longitudinal road markings to which a straight
lane model is fitted. Next, the type of right and left lane boundaries
(continuous, broken or merge line) is identified using a Fourier analysis.
Adjacent lanes are searched when broken or merge lines are detected. Al-
though the knowledge of the line type is essential for a robust DAS, it has
been seldom considered in previous works. This knowledge helps to guide
the search for other lanes, and it is the basis to identify the type of road
(one-way, two-way or freeway), as well as to tell the difference between
allowed and forbidden maneuvers, such as crossing a continuous line.

1 Introduction

The goal of Intelligent Transportation Systems is to increase security, efficiency,
and comfort of the transport, by improving the functionality of vehicles and
roads using information and communication technologies.

The development of a DAS able to identify dangerous situations involves deep
analysis of the environment, including elements such as road, vehicles, pedestri-
ans, traffic signs, etc. and the relationships among them. For instance, detecting
a vehicle in the scene represents a risky situation, but the risk is higher when the
vehicle is in an adjacent lane in a two-way road – i.e. it is oncoming – than when
it is in a freeway. Likewise, there are differences between crossing a broken line
in a freeway and crossing a continuous line in a two-way road. However, most
current DAS cannot tell the difference between these situations.

Regarding the perceptual system, a DAS may be based on passive sensors like
cameras or active sensors such as radar or lidar. The cameras give much more
information, but the radars and lidars have better performance in bad weather
conditions. However, according to statistics most accidents occur during daylight
and with good weather conditions. This fact makes computer vision an adequate
perception system in this case.

This paper presents the Road Detection and Classification module of the
IvvI project (Intelligent Vehicle based on Visual Information). Its goal is to
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automatically detect the position, orientation and type of road lanes that the
camera can be see. This is achieved by identifying the type of lane boundaries
(continuous, broken or merge), and looking for adjacent lanes when a broken
or merge line is detected. This perceptual ability pretends to be the basis of a
better evaluation of the potential danger of a situation.

1.1 Previous Work

Road detection algorithms for marked roads can be classified in two groups:

1. Model-based methods follow a top-down approach. Their main advantage is
that the lane can be tracked with a statistical technique, thus, false detections
are almost completely avoided. However, as they follow a top-down approach,
only the features included in the model are found. Therefore, it is difficult to
build a model that is able to adapt to new roads or environment conditions.

2. Feature-based methods follow a bottom-up approach. All the features that
are in the image are subject to be found, but noise can generate false
detections.

Most of the current research effort moves towards adjusting high order models
to the lane shape. The goal is to extract accurate information, overcoming the
instabilities and noise sensibility typical of more complex models such as the
4D [7] and zero-bank [6] [11]. In [14] horizontal curvature is modeled as a cubic,
and the lane is tracked with an enhanced CONDENSATION algorithm [10].
Similarly, in [4] the horizontal curvature of the road shape is also modeled as a
third order polynomial, and the vertical curvature as a second order polynomial.
Other works try to adjust splines [15] or snakes [17] [16], but these are more
difficult to track.

On the other hand, there are few works on longitudinal road markings clas-
sification and road type recognition, although this information is essential. Few
works consider the existence of other lanes, which is directly related to the road
type. The direction of vehicles on other lanes, the possible maneuvers and the
speed limit, are just some examples of facts that depend on the road type.

In [3] a six parameter model that merges shape and structure is used. The
shape is modeled as a second order polynomial, and the structural model con-
siders the road line as a square waveline, with its period, duty cycle and phase.
The parameters can be tracked from frame to frame, but the algorithm requires
an initialization step that is very time consuming. Besides that, only one lane
boundary mark is fitted to each frame. In [13] road lines are roughly classified
in solid or broken, by analyzing the gaps between the measurement points. If
the gap overcomes a threshold the road marking is classified as broken. Thus,
the algorithm can easily be confused with any obstacle or structured noise that
occludes the marking line, such as shadows or other vehicles. This work also
tries to estimate the left and right adjacent lanes assuming that some of their
parameters are identical to those of the central lane. Likewise, in [1] an array
of probabilities which defines the presence of lateral lanes is kept. The lanes
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are numbered, and another array stores the identification number of the lane in
which the vehicle is traveling.

In short, these methods can detect any number of lanes, but there is a need of
an external technique that indicates to the algorithm how many lanes to search
for, and where they can be located (right or left). The difficulty arises from the
use of a top-down approach without considering the lane marking type.

2 Tracking and Adaptative Detection of Road Lanes

Figure 1 shows the flow chart of the algorithm proposed in this paper. In brief,
this algorithm goes through the following steps. First, it generates a bird-eye view
of the road through a perspective transformation. Second, it segments the pixels
which belong to longitudinal road markings. Next, the right and left boundaries
of the ego-lane are extracted by the Hough Transform [9]. And finally, the pitch
angle is corrected, and the lane boundaries are classified in continuous, broken,
and merge. If a lane border is identified as a broken or merge line, the algorithm
keeps searching for other lane boundaries until a continuous line is found or the
image boundary is reached. These steps are explained in depth in the following
sections.

2.1 Perspective Transformation

The image analysis can be done in two different reference systems. Specifically,
the road can be analyzed from the car view image (Fig. 2(a)), as in [12], or from
a bird-eye view after a perspective transformation [2], assuming that the world
is flat (Fig. 2(b)).

The bird-eye view is easier to process because road lines appear parallel, have
constant width, and are mainly vertical. Besides, every pixel of the image appears
in world coordinates. This is very useful for the road lines classification, as will

Fig. 1. Flow chart of the proposed algorithm
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(a) (b)

Fig. 2. (a) On-board camera-view; (b) Bird-eye view

be explained in section 2.5, and this is the main reason why we have chosen
this reference system. Furthermore, the size of the bird-eye (256x128) is much
smaller than the original image (640x480), so that its processing is considerably
faster.

However, the bird-eye view presents calibration problems. If the extrinsic cal-
ibration parameters of the vision system – i.e. its position and orientation in
world coordinates – are not well calculated, the flat road assumption is violated,
and the bird-eye view image will show converging or diverging lines instead of
parallel ones. This leads to a bad calculation of the lane position and the lane
orientation. In order to overcome these problems, an auto-calibration algorithm
based on evolutionary techniques is used [5]. This algorithm gives a first esti-
mation of the extrinsic parameters of the vision system, and is run when the
cameras are installed in the vehicle. Thereafter, the pitch angle is corrected in
every frame by detecting the height of the horizon, as explained in section 2.6.

2.2 Road Model

The road model comprises two parts, the road geometry (linear, parabolic, etc.)
and the road type (one-way, two-way or freeway with a variable number of
lanes). As has been said in Sect. 1.1, many geometric road models have been
extensively researched, but there is little emphasis in road type interpretation.
This algorithm is designed to automatically classify the road lines, detect the
number of lanes, and track them. Thus, the main contribution of this paper is
the automatic road type detection. At present, the algorithm works in freeways
with a variable number of lanes.

With regard to road geometry, in this paper we consider the road to be straight
for three main reasons. First, straight lines are faster to detect an faster to track
than higher order models. They can be robustly and quickly extracted with
the Hough Transform, a technique that can hardly be applied to more complex
models in real time. Second, it eases other processes such as auto-calibration, the
tracking of the pitch angle, and, above all, the road lines classification. Finally,
it is a reasonable approximation in the nearby region of the road.
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Fig. 3. Road model

The geometric road model is shown in Fig. 3. It has three parameters: d is
the distance to the center of the ego-lane, θ is the yaw of the vehicle with regard
to the lane, and W is the lane width. The road type model considers the road
as a freeway with up to three lanes, in which the lane boundaries can be one of
three types: continuous, broken or merge.

2.3 Road Markings Detection

This step extracts from the original image the pixels that are candidates to
belong to a road line. Road lines can be considered as bright bands over a
darker background. As the lane curvature is small in the nearby region of the
road, these lines are mainly vertical in the bird-eye view image of the road.
Therefore, the search for pixels that belong to road markings consists of looking
for dark-bright-dark transitions in the horizontal direction.

The borders of the image are extracted with a spatial filter based on the ideas
of the Canny border extractor, which offers a good signal-noise ratio, compared
to other border extractors. This filter uses the intermediate steps of the Canny
filter to estimate the orientation of the border, and is used to obtain a horizontal
gradient image. Thus, the borders that are not essentially vertical are discarded.

Figure 4 shows how road markings produce two opposite peaks within a cer-
tain range of distances in a row of the gradient image. The algorithm scans the
horizontal gradient image row by row, searching for a pattern composed of a pair
of peaks of opposite sign which are spaced a distance equal to the line width.
The line width is considered to be between ten and fifty centimeters in world
coordinates. When this pattern is found, the middle point is labeled as a road
marking.

2.4 Adaptative Road Lanes Detection

Next, the Hough Transform is used to detect straight lines. Compared to other
model fitting methods, the Hough Transform is very robust as it uses global
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Fig. 4. Detection of pixels belonging to road markings

information. Then, it can easily detect the road lines even though they are broken
or partially occluded. In addition, when the model is simple and the image is
small, it is fast enough to be applied in real time.

The usual ρ-θ parameterisation is used for straight lines. As the lines are
mainly vertical, in the accumulator matrix the parameter θ is constrained to the
range [−15◦, +15◦]. Once the accumulator is calculated, only some regions of
interest (ROIs) are scanned for local maximums. The ROIs are delimited with
the predictions of the Kalman filter. This fact speeds up computation, and avoids
interferences with other features outside of the search region.

Kalman filter is used to track five variables: the lateral position (d) and speed
(ḋ) of the vehicle with regard to the center of the ego-lane, the orientation (θ) of
the vehicle respect to the lane, the angular speed (θ̇), and the lane width (W ).
The width and height of the ROIs – i.e. the interval in ρ and θ – are calculated
from the confidence interval of the lateral position and the orientation of the
vehicle, respectively.

For the first frame, only two ROIs are considered. These ROIs are big enough
to contain the right and left boundaries of the ego-lane. If several lines are found
in the same ROI, the algorithm tries to match each line or one ROI with a
line of the other ROI, i.e., find the opposite lane border, which should have the
same orientation. The best match is used as the initial observation that will be
tracked. If no lines can be matched, the most voted line is used. For subsequent
frames, if several lines are found, Kalman filter will select the observation that
gives the best χ2-test result.

Once the ego-lane has been detected, its lane boundaries are classified in
continuous, broken or merge (as explained in Sect. 2.5). When a line is identified
as broken or merge, an additional ROI is created to look for a new road line that
should be at the same side, and separated a distance equal to the lane width
(Fig. 5).
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Fig. 5. Regions of interest in the accumulator of the Hough Transform

2.5 Road Lines Classification

The extracted lines are classified in the different types of lines that are found on
roads. The main difficulty of this task is the lack of international standardization
of the length and frequency of the white stripes in broken lines. However, most
roads have three basic line types already mentioned, namely: continuous, broken
and merge.

In order to explain this stage of the algorithm, the three lines showed in Fig. 6
will be used as examples. Each of them represent one of the three classes that
are being considered.

The intensity line profile for each detected line (right column of Fig. 7) is
not a good data to feed the frequency analysis, because its appearance changes
substantially with the environment conditions. Besides, the resolution of the
bird-eye view in the distance is poor. This effect represents an inconvenience
in the merge lines, which appear blurred far ahead and could even look like a
continuous one (Fig. 7(a)). Besides, the power spectrum (left column of Fig. 7)
presents a tiny peak at the specific frequency of the merge line.

It is more robust to obtain the line profile from the thresholded image given
by the road markings detection step (Fig. 6(b)), which is showed on the left side

(a) (b) (c)

Fig. 6. (a) Remapped image; (b) Detected Road Markings; (c) Lines detected by Hough
Transform
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Fig. 7. (right) line profile extracted from the intensity image (Fig. 6(a)); (left) Power
spectrum of the Fourier analysis; (a) merge line; (b) broken line; (c) continuous line

of Fig. 8. Again, the right side of the figure shows the power spectrum of Fast
Fourier Transform applied to the line profile vector. The results show that a clear
sharp peak appears in the Fourier Transform power spectrum when the line is
broken, and that the value of the frequency associated to that peak gives the line
type (broken or merge). These peaks are showed on the left side of Fig. 8(a) and
Fig. 8(b) with arrows pointing at them. No significant peaks are present when
the line is continuous (Fig. 8(c)). It can now be seen that the peaks are sharper
and much easier to detect. It has been heuristically found that only the first 21
frequencies are significant in this analysis.

Thus, the classification is performed by scanning the first 21 frequencies. Two
requierements are needed in order to classify a line as broken or merge:

1. In the first place, a peak must be found within a certain range of frequencies.
Two different frequency ranges have been specified. The broken vertical lines
on the left side of Fig. 8(a) and Fig. 8(b) show the limits for merge and broken
lines, respectively.

2. In second place, the peak must overcome a threshold, which depends on
the frequency interval, as the height of the peak decreases as the frequency
increases. On the left side of Fig. 8, a horizontal line shows the threshold for
each frequency interval. Figure 8(c) shows that no peak exceeds the threshold
in neither of the specified frequency ranges when the line is continuous.

2.6 Pitch Angle Correction

The extrinsic parameters of the vision system are calculated during installation,
but these parameters suffer small drifts during driving, specially the pitch angle
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Fig. 8. Fourier analysis for the line profile; (a) merge line; (b) broken line; (c) contin-
uous line

due to the usual swaying of the vehicle, e.g. in sudden braking, dips, etc. This is
the most critical parameter because it notably distorts the bird-eye view obtained
through the perspective transformation.

In order to correct the pitch angle, the image is processed twice. First, two
lane boundaries are detected and its intersection point calculated. This point
should belong to the horizon line. These lines do not need to be classified since
they are only used to estimate the horizon height. Then the pitch angle (φ) is
given by the equation:

φ = arctan
(

yhorizon − ycenter

f

)
(1)

where:
yhorizon is the y coordinate of the horizon line in pixels,
ycenter is the y coordinate of the center of the CCD in pixels, and
f is the focal distance in pixels.

With the updated pitch angle, the bird-eye view is regenerated, now with
correct parameters. The corrected image is processed according to the steps
explained in previous sections.

3 Results

This algorithm has been tested in the IvvI platform. IvvI (Fig. 9) is a research
platform for the implementation of systems based on computer vision, with the
goal of building an Advanced Driver Assistance System (ADAS). It equipped
with a stereo-vision system composed of two B&N progressive scan cameras
used for road, vehicle, and pedestrian detection, a color camera, used for traffic
signs detection, a GPS to measure speed, and a processing system composed of
two Pentium IV computers.
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(a) (b) (c)

Fig. 9. (a) IvvI vehicle; (a) vision system; (c) processing system

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Examples of detected lanes. On each example, the remapped image is at the
top-right corner. The remapped region of the original image is delimited with a white
line.
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Figure 10 shows some examples of the execution of the algorithm. It can be
seen how adjacent lanes are searched when broken or merge lane boundaries are
detected.

The whole algorithm takes about 100 milliseconds in a Pentium IV, including
rectification of the image – the image needs to be rectified because it comes from
the left camera of a stereo-vision system –, perspective transformation (twice,
due to the correction of he tilt angle), Hough Transform and road lines classifica-
tion. Thus, it runs at about 10 fps. Higher rates can be achieved if the correction
of the tilt angle is used to remap the next frame, instead of the current one.

4 Conclusions and Perspectives

In this paper, the Road Detection and Interpretation module of the Advanced
Driver Assistance System for the IvvI project, has been presented. It is able to
track the ego-lane and automatically identify lane boundary types and detect
adjacent lanes if present. It can process a video sequence at nearly real time.

Detection and tracking of the road lanes is robustly performed. Also, the
road line classification works reasonably good. However, this parameter of the
model should be also tracked in the future, in order to filter some spurious
misclassifications.

Likewise, the performance can be enhanced if interaction with other modules
of the IvvI is implemented, especially with the vehicle detection one [8]. Lane
position helps vehicle detection by giving an idea of the regions of the image
susceptible of containing a vehicle, and the estimated size of the vehicle depend-
ing on the image position, which is related to the distance to the camera. It
also helps to know if a vehicle is likely to be oncoming or out-coming depending
on the lane where it is and the road type. Finally, the vehicle detection module
can help the lane detection module to avoid analyzing the areas of the image
occupied by other vehicles.
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13. R. Risack, P. Klausmann, W. Küger, and W.Enkelmann. Robust lane recognition
embedded in a real-time driver assistance system. In IEEE International Confer-
ence on Intelligent Vehicles, pages 35–40, 1998.

14. B. Southall and C.J. Taylor. Stochastic road shape estimation. In 8th IEEE
International Conference on Computer Vision (ICCV), volume 1, pages 205–212,
7-14 July 2001.

15. Y. Wang, D. Shen, and E.K. Teoh. Lane detection using spline model. Pattern
Recognition Letters, 21(8):677–689, July 2000. Pattern Recognition Letters, vol.21,
no.8, July 2000. p. 677-689.

16. Y. Wang, E. K. Teoh, and D. Shen. Lane detection and tracking using b-snake.
Image and Vision computing, 22:269–280, July 2004.

17. A. L. Yuille and J. M. Coughlan. Fundamental limits of bayesian inference: order
parameters and phase transitions for road tracking. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(2):160–173, February 2000.

12




