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1 Introduction 

There has recently been an incresing number of papers dealing with one prominent 

feature of the option pricing data. It is well known that after the October 1987 crash 

the implied volatility computed from options on stock indexes in the US market in

ferred from the Black-Scholes (1973) formula (BS henceforth) appears to be different 

across exercise prices. This is the so-called "volatility smile"l. In fact, as pointed 

out by Dumas, Fleming and Whaley (1996) (DFW henceforth), implied volatilities 

of the S&P 500 options decrease monotonically as the exercise price becomes higher 

relative to the current level of the underlying asset. 

Of course, given the BS assumptions, all option prices on the same underlying 

security with the same expiration date but with different exercise prices should have 

the same implied volatility. However, the volatility smile pattern suggests that the 

BS formula tends to misprice deep in-the-money and deep out-the-money options. 

There have been various attempts to deal with this apparent failure of the BS 

valuation modelo The stochastic volatility íramework of Hull and White (1987) was 

the first systematic approach in option princing literature to recognize nonconstant 

volatiliti. When volatility is stochastic but uncorrelated with the underlying asset 

price, they show that the price oí a European option is the BS price integrated over 

the probability distribution oí the average variance during the life oí the option3 . 

Unfortunately, however, this framework generally requires a market price of volatility 

risk. In other words, with stochastic volatility, a second factor is introduced requiring 

the option to satisfy a bivariate stochastic differential equation. Since the volatility 

-the second factor- is not spanned by existing securities, arbitrage pricing techniques 

lSee Rubinstein (1994), and Jackwerth and Rubinstein (1996) for a detailed discussion of this 
empirical regularity. 

2Ball and Roma (1994) show that the implied variance of the BS price when the true price 
process is subject to stochastic volatility is quadratic in the out-ness-of-the-money, and that 
the greatest downward bias occurs for at-the-money options. This suggests that the stochastic 
volatility option pricing model is consistent with the smile. 

3 Another related (non-stochastic) approach allows the volatility to depend functionally on the 
underlying security price. Various alternative proposals for the functional volatility process have 
been suggested. The well known constant elasticity of variance model due to Cox and Ross (1976) 
is the most promillent one. 
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are no longer valido We must therefore introduce the explicit exogenous market price 

of volatility risk. We face similar problems if we introduce any other non-traded 

sourse of risks such as systematic jumps or transaction costs. 

Recent advances in this literature include Stein and Stein (1991), Reston (1993), 

and Bates (1996). In particular, Reston (1993) shows that a closed-form solution 

for a European call can be derived as an integral of the future security price density 

which itself may be calculated by an inverse Fourier trransform. This method may 

also be applied when correlation between the increments of the driving Brownian 

motions of the underlying asset and the volatility is non-zero. Thus, while Rull and 

White (1987) is an approximation, Fourier inversion methods are potentially more 

precise. Of course, estimation methods remain quite challenging. 

An alternative approach for dealing with nonconstant volatility was suggested 

by Rubinstein (1994), Jackwerth and Rubinstein (1996) and Jackwerth (1996), and 

a related series of papers by Derman and Kani (1994), Dupire (1994), Chriss (1995), 

Derman, Kani and Chriss (1996). Instead of imposing a parametric funtional form 

for volatility, they construct a binomial or trinomial numerical procedure so that 

a perfect fit with observed option prices is achieved. This procedure captures (by 

construction) the most salient characteristics of the data. In particular, the implied 

tree employed in the numerical estimation must correctly reproduced the volatility 

smile. The most popular models within this family use recombining binomial trees 

implied by the smile from given prices of European options. Once the appropriate 

prices and transition probabilities corresponding to the nodes and links of the tree 

are calculated, any American path-dependent option may be priced consistently 

with the market. AIso, to eliminate arbitrage opportunities, negative node transition 

probabilities are not allowed and the branching process must be risk-neutral at each 

step. 

Emprirical tests of implied binomial trees have been proposed by DFW (1996) 

and J ackwerth (1996). D FW point out that none ofthe previous st udies analyze the 

out-of-sample behavoir of the time-varying volatility function obtained by the in

sample implied binomial trees. The key empirical issue becomes the stability of the 
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volatility íunction. Surprisingly enough, DFW find that the pricing (and hedging) 

out-oí-sample performance oí the implied binomial trees is worse than oí an ad hoc 

BS model with variable implied volatilities. They suggest that the BS model may 

be pertectly correct, but trading costs combined with option series clienteles may 

produce systematic patterns in implied volatilities4 • The point is that these patterns 

may have no relation with the distributional characteristics oí the underlying asset. 

On the other hand, Jackwerth (1996) tests the pricing períormance oí implied 

binomial trees, the BS model, and the constant elasticity oí variance model. He 

chooses the parameters oí these models to fit the observed prices oí longer term 

options best and then price shorter options with those parameters. In the post

crash period, Jackwerth íavours the pricing oí the impied binomial trees. 

Finally, the papers by Corrado and Su (1996a, 1996b) contain a related way to 

cope with the smile effect íeatured by the option data. It is well understood that 

volatility smiles are a consequence oí empirical violations oí the normality assump

tion in the BS model. In other words, skewness and kurtosis in the option-implied 

distributions oí stock returns are the source oí volatility smiles. This is, oí course, 

closely related to stochastic volatility models which can nicely explain the behaviour 

oí option prices in terms oí the underlying distribution oí returns. In particular, the 

correlation between the Brownian motions associated with the underlying asset and 

the volatility affects the skewness oí returns, while the volatility oí volatility is di

rectly related with kurtosis5 • Following this reasoning, Corrado and Su suggest an 

extended version oí the BS model to account íor biases induced by nonnormal skew

ness and kurtosis in stock return distributions. Their valuation íormula is given by 

the sum of the BS option price plus adjustment terms for nonnormal skewness and 

kurtosis. They find that their adjusted formula yields significantly improved pricing 

performance for deep in-the-money 01' deep out-oí-the-money options. 

Despite the fact that we have theoretical models consistent with the smile pattern 

across exercise prices, it is also true that the empirical smiles are about twice as large 

4For an alternative discussion of trading costs, see Longstaff (1995). 
5See the excellent discussion provided by Heston (1993). Hull (1997) also contains a general 

analysis of these issues. 
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as predicted by theory6. It seems quite clear that something else is going on. In this 

regard, given the evidence provided by Longstaff (1995) and DFW (1996), a serious 

candidate to explain the pronounced pattern of volatility estimates across exercise 

prices might be related to liquidity and trading costs. In fact, Corrado and Su may 

be explaining the effects of trading costs rather than an actual deficiency of the BS 

model. 

These remarks are at the origin of our research project. What is clearly missing 

in the extant literature is an analysis of the determinants of the implied volatility 

function. Surprisingly, none of the papers aboye has tried to explain directly the 

determinants of the smile, although this is a relevant issue. Otherwise, we may be 

missing an important point here; i.e., the reasons behind the "apparent" failure of 

the BS pricing model. Hence, the main objective of this paper is to study directly the 

determinants of the volatility smile. \\'e employ an extensive database of intraday 

transaction In'ices for options on the Spanish IBEX-35 stock exchange indexo This 

is one of the most popular option contracts traded in Europe. Given that we are 

particularly concerned with trading costs and liquidity effects, it may be relevant 

to explore alternative option markets which are probably narrower than the fully 

investigated S&P 100 index options traded at the Chicago Board Options Exchange 

(CBOE). 

Our empirical results show that transaction costs, proxied by bid-ask spreads, 

and variables related to the uncertainty about the return of the underlying asset 

and to the relative market momentum seem to be key aspects regarding the shape 

of the implied volatility function. Moreover, complex and nonlinear causality effects 

on the dynamic interrelations between these variables and the volatility smile are 

also found. 

This paper is organized as follows: the next section contains a brief surnmary 

of the Spanish option market. The data are described in Section 3. Sorne previous 

general results are reported in Section 4. In particular, smile seasonality is briefly 

discussed throughout this section. Section 5 presents the empirical results regarding 

6See Ghysels, Harvey and Renault (1996). 
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the determinants of the smile volatility. Finally, we condude with a summary and 

discussion. 

2 The Spanish IBEX-35 Index Options 

The Spanish IBEX-35 index is a value-weighted index comprising the 35 most 

liquid Spanish stocks traded in the continuous auction market system. The official 

derivative market for risky assets, which is known as MEFF, trades a futures contract 

on the IBEX-35, the equivalent option contract for calls and puts, and individual 

option contracts for blue-chip stocks. Trading in the derivative market started in 

1992. The market has experienced tremendous growth from the very beginning. 

Relative to the volume traded in the Spanish continuous market, trading in MEFF 

represented 40% of the regular continuous market in 1992, 156% in 1994, and 170% 

in 1995. The number of aH traded contracts in MEFF relative to the contracts 

traded in the CBOE reached 20% in1995. 

The IBEX-35 option contract is a cash settled European option with trading 

during the three nearest consecutive months and the other three months of the 

March-June- September-December cyde. The expiration day is the third Friday 

of the contract month. Trading occurs from 10:30 to 17:15. During the sample 

period covered by this research, the contract size is 100 Spanish pesetas times the 

IBEX-35 index, and prices are quoted in full points, with a minimum price change 

of one index point or 100 pesetas7
. The exercise prices are given by 50 index point 

intervals. 

It is important to point out that liquidity is concentrated in the nearest expira

tion contracto Thus, during 1995 almost 90% of crossing transactions occurred in 

this type of contracts. FinaHy, it should be noticed that option and futures con

tracts are dearly associated. The futures contract has exactly the same contract 

specifications as the IBEX-35 options. This will allow us to employ the futures 

price rather than the spot price in our empirical exercise. In fact, this is what is 

7This has recently been changed to 1,000 pesetas. 
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usually done by practitioners. 

3 The data 

Our database is comprised of all call and put options on the IBEX -35 index traded 

daily on MEFF during the period January 1994 through April 1996. Given the 

concentration in liquidity, our daily set of observations includes only calls and puts 

with the nearest expiration day. Moreover, we eliminate all transactions taking place 

during the last week before expiration. In other words, for each monthly expiration 

date cycle, we only take into account prices for the first three weeks of the cycle. 

As usual in this type of research, our primary concern is the use of simultaneous 

prices for the options and the underlying security. The data, which are based on all 

reported transactions during each day throughout the sample period, do not allow 

us to observe simultaneously enough options with the same time-to-expiratioIi on 

exactly the same underlying security price but with different exercise prices. In order 

to avoid large variations in the underlying security price, we restrict our attention 

to the 45-minute window from 16:00 to 16:45. It turns out that almost 25% of 

crossing transactions occur during this interval. Figure 1 contains the average hourly 

percentages of crossing transactíons during the whole sample periodo Moreover, care 

\Vas also taken to eliminate the potential problems with artificial trading that are 

most likely to occur at the end of the day. Thus, aH trades after 16:45 were eliminated 

so that we avoid data which may reflect trades to influence market maker margin 

requirements. At the same time, using data from the same period each day avoids 

the possibility of intraday effects in the IBEX-35 index options market. FinaHy, 

we eliminate from the sample all call and put prices that violate the well known 

arbitrage bounds. 

These exclusionary criteria yield a final daily sample of 7,947 observations. The 

implied volatility for each of our 7,947 options is estimated next. Note that we take 

as the underlying asset the average of the bid and ask price quotation given for 
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each futures contract associated with each option during the 45-minute interva18 • 

Recall that we are allowed to use futures prices given that the expiration day of 

the futures and option contracts systematically coincides during the expiration date 

cycle. Moreover, note that dividends are already taken into account by the futures 

price. To proxy for riskless interest rates, we use the daily series of annualized repo 

T -bill rates with either one week, two weeks or three weeks to maturity. One of 

these three interest rates will be employed depending upon how close the option is 

to the expiration day. 

As discussed by French (1984), volatility appears to be a phenomenon that is 

basically related to trading days. However, interest rates are paid by the calendar 

day. Vve therefore employ Black's (1976) option pricing formula adjusted by two 

time measures to reflect both trading days and calendar days until expiration. 

We next observe all calls and puts with the same exercise price for each day in the 

sample and for our 45-minute interval. We average all implied volatilities previously 

estimated for each level of the exercise price available during each daily window. All 

underlying futures prices associated with each exercise price level are averaged to 

obtain the corresponding level of the underlying asset associated with each average 

implied volatility. We define moneyness as the ratio between the exercise price 

and the average of the futures price relative to each average implied volatility as 

previously obtained. We can now estimate our daily volatility smile. It should be 

pointed out that the number of observations within a day may vary according to the 

number of crossing transactions associated with different exercise prices available 

for ea.ch day. In any case, this procedure reduces our sample to 3,016 observations 

from January 1994 to April1996. This implies that, on average, we have between 5 

a.nd 6 options available for alternative exercise prices during each day. 

Figures 2, 2.2 and 2.3 present the representative smiles for the whole period 

and two consecutive subperiods. We employ five fixed intervals for the degree of 

8There might be that lack of liquidity in the futures market is responsible for the lack of variation 
in the price of the underlying asset during the 45-minute window. However, this is not the case. In 
fact, the futures market is, at least, as liquid as the spot market in terms of comparable me asures 
of trading volume. 
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moneyness, and compute the median over the alternative subperiods of the implied 

volatility within that fixed interval. These intervals are given by the following de

grees of moneyness: 0.8598-0.9682; 0.9682-0.9913; 0.9913-1.0101; 1.0101-1.0321; 

1.0321-1.1875. It is interesting to note that the Spanish market seems to be "smil

ing" independently of the subperiod employed in the estimation. 

Finally, Figure 3 reports similar evidence when the smile is obtained for calls 

and puts independently. As before, a rather well defined smile seems to be a typical 

phenomenon in the Spanish options market. However, it should be recognized that 

a somewhat clearer picture emerges for puts than for calls. 

This generally well behaved smile contrasts with the evidence found in the US 

market where the typical shape of the volatility function after the 1987 crash is 

doser to a "sneer". Formal tests among the two alternatives are performed in the 

following section. 

4 The implied volatility function and smile sea
sonality 

\Ve next investigate the determinants of the smile. The idea is to estimate the 

volatility function by fitting the implied volatility through six alternative structural 

fo1'ms: 

A10del 1 : (J' ba + t 
Model 2:(J' ba + b¡X + t 
A10del 3:(J' ba + b¡X + b2X 2 + t 
A10del 4:(J' ba + b¡ U + b2D2 + t (1) 

A10del 5:(J' ba + b¡ U + b2X 2 + t 
A10del 6:(J' ba + b¡ U + b2X 2 + b3 D + t 

where X is the deg1'ee of moneyness; this is to s ay, the exe1'cise price divided by 

the futures price. Let J( be the exercise p1'ice and F the futures p1'ice associated to 
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a particular levelof the underlying futures price, then X is equal to K! F. Thus, 

model 1 is the volatility function of the BS constant volatility model. Model 2 

posits a linear relation between volatility and the degree of moneyness. Model 3 

incorporates a quadratic term to capture the typical smile shape. Finally, Models 4 

to 6 employ three different ways of recognizing potential asymmetries in the shape 

of the volatility function. In particular, Model 4 as sumes that the left side of the 

volatility function is linear on the degree of moneyness, but a quadratic term is 

necessary to capture sorne degree of curvature in the right side of the function. 

Thus: 

u = (Ut, . .. , Un) and D = (D l , ... , Dn) where: 

o if Xi < 1 
Xi if Xi ~ 1 

where n is the total number of exercise levels for a given day within our 45-minute 

window. 

Fol' each day in the sample, we run the l'egl'essions given by (1). Given the 

numbel' of obsel'vations available during each day, not all models can be run fol' 

evel'y day. Table 1 contains the average adjusted R2 weighted by the number of 

obsel'vations available fol' each day within each model. The results are reported for 

the whole sample period, two different subperiods, and for all available quarters. 

The results suggest that model 3 is the best model in capturing variation in implied 

volatility attributable to moneyness. This quadratic model explains almost 63% of 

the variability of implied volatility. It should also be noted that Model 6 explains, 

in general, as well as the quadratic model. 

Given that the behaviour of the implied volatility pattern seems to be different 

in Spain than in the U .S. market, it was decided to run a formal test to compare 

statistically the different performance of the "sneer" (model 2) and the smile (model 

3)9. In arder to investigate this issue, the regression below is estimated by stacking 

9It should be pointed out that the evidence found in the U .S. market is best described by a 
"straight sneer". Rubinstein's (1994) findings are a good example. In this sense, model 2 becomes 
the relevant benchmark. 
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all of the observations and using OL8 procedures: 

(2) 

where (Jjt is the implied volatility of each option j available during the 45-minute 

window and for each day t in our sample, and X is the degree of moneyness. 

The idea is to test whethel' the coefficient associated with the quadratic term, 

a2, is statistically different from zero. 8ince our two models are nested, we are able 

to use a LM statistic that is asymptotically distributed as a chi-squal'ed with one 

degl'ee of freedom. It turns out that this statistic is equal to 353.29 (p-value = 

0.0000). This implies that the estimate of a2 is statistically different form zero, so 

that we favour model 3 relative to model 210 • 

Finally, we also look at both call and put options separately. Given that the 

put-call parity relationship implies that European call and put options of identi

cal moneyness and maturity should have identical implied volatilities, there is no 

theoretical reasons to expect a significantly different behaviour between calls and 

puts. In fact, this turns out to be the casell . Model 3 presents the highest average 

adjusted R2 weighted by the number of obsel'vations available for each day within 

each model for both call and put options. Moreover, when we run l'egression (2) 

stacking all available observations, we find that the Lagrange Multiplier statistic 

equals to 87.46 (p-value = 0.0000) and 148.16 (p-value = 0.0000) for calls and puts 

respecti vely. 

Given these results, we will focus on the coefficients estimated with Model 3. It 

is important to emphasise that Model 3 is estimated every day in the sample period 

with enough observations. In other words, to run the corresponding regression fol' 

Model 3 evel'y day we need to have enough levels of exel'cise pl'ices throughout the 

45-minute interval. In particular, for Model 3 and using all call and put options 

at the same time, we have 446 days with enough obsel'vations. Thel'efore, in this 

case and on a daily basis, we can cross-sectionally estimate 446 coefficients for 

l°It should be noted that Lagrange Multipler Test ~ Likelihood Ratio Test ~ Wald Test. Thus, 
we would also reject the null with either one of the alternative statistics. 

llThis evidence is consistent with the empirical findings reported by Bates (1991). 
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Daily return seasonalities have been a very popular research topic in recent years. 

Moreover, daily microstructure seasonalities have also been investigated by Foster 

and Viswanathan (1993) for the US market, and Lehmann and Modest (1994) for 

the Tokyo Stock Exchange market among others. They conclude that volume is 

lowest on Mondays, reflecting both reduced demand for liquidity traders who may 

fear incl'eased adverse selection, and the higher trading costs on Monday since this is 

the day when bid-ask spreads are clearly largest. In the Spanish continuous auction 

market, Rubio and Tapia (1996) find both higher bid-ask spreads and lower depth 

on Monday. They conclude that liquidity is unambiguously lower on Monday. 

These findings may imply that the smile volatility function does not remain stable 

throughout all week days. There may be seasonalities in the shape of the volatility 

smile which may reflect different degrees oí liquidity, institutional a1'rangements 01' 

a continuous learning process of market makers throughout the week which may 

suggest a diffe1'ent implied volatility function at the beginning of the week. 

These issues are investigated by running the íollowing 1'egressions: 

where bit is either bot , bu or b2t and MON, TU E, lV ED, T HU and F RI are 

dummy variables for Monday through Friday. The estimates of bMO , bTU, ... ,bFR are 

the sample n1.eans corresponding to each day of the week fol' the three coefficients of 

Model 3. Newey-West consistent standard error s with five lags are employed in all 

estimations. Moreover, in this case the statistic to jointly test seasonalities across 

week days follows a X2 distribution asymptotically, under the null hypothesis. 

The results are reported in Table 2. Average coefficients for bo, b1 and b2 are 

significantly different írom zero throughout the sample periodo This confirms the 

charactel'istics of the volatility smile intuitively suggested by Figure 2. It seems 

certainly the case that, on average, the Spanish smile is characterized by a large 

degree oí curvature. At the same time, independentIy of the day of week, all three 

coefficients are, on average, significantIy different from zero. However, their magni-
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tude seems quite different from one day to another. In particular, the results suggest 

that Monday presents a lower slope and lesser degree of curvature than other week 

days. In fact, our X2 statistic significantIy rejects the equality of coefficients across 

aH days. 

To formally test daily seasonality, we run the following regressions: 

(4) 

where TU E, W ED, T HU, and F RI are dummy variables for Tuesday through 

Friday. The estimate of (31 is the sample mean for Monday, while the estimates 

of the remaining coefficients are equal to the difference between the sample mean 

for each day and the sample mean for Monday. The results are contained in Table 

3. The reported figures in the last line of the table are obtained by running the 

foHowing regression: 

(5) 

where (3; is sample mean for all days except Monday, and ¡3~ is the difference between 

Monday and the rest of the week. 

The results clearly suggest that the slope of the implied volatility function on 

Monday is statistically lower than in the rest of the week. It turns out that the 

difference becomes more and more relevant to the end of the week. A similar finding 

is obtained relative to the degree of curvature. Monday presents a statistically 

significant lower degree of curvature than the rest of the week. As before, this 

characteristic becomes more evident as we get closer to the end of week. Thus, 

Friday has the highest degree of curvature and the highest slope relative to the 

beginning of the week. It should be pointed out that there is an almost perfectly 

negative correlation coefficient between b1 and b2 . If we take the derivative of Model 

3 relative to the degree of moneyness, X, and equate to zero to find the minimum 

level of X, we note that X min = -bd2b2 • It turns out that X min is very close to 

one most of the time. That is to s ay, the minimum implied volatility on a daily 

basis is generally very close to at-the-money implied volatility. Hence, the estimate 

of b1 should be approximately equal to minus two times the estimate of b2 • These 

characteristics are refiected in the results reported in Table 3. 
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In summary, we may conclude that the volatility smile is statistically different 

on Monday relative to the rest of the week. Both the slope and the cul'vature are 

different. This implies a significant daily seasonality in the shape of the volatility 

smile. It may be interesting to have a single series summarising the three series 

of coefficients given by Model 3. It was decided to synthesise these coefficients 

computing the first principal component of the 446x3 matrix of our daily estimates. 

Given that, as discussed above, the col'relation of the estimated parameters are very 

high, the first principal component explains almost 100% of the variability of these 

series12
. 

The analysis of the seasonality of the principal component of the volatility smile 

is carried out by the same regl'essions given by equations (3), (4) and (5). The 

results are reported in Tables 4 and 5. As expected, l'elative to the l'est of the week, 

our results indicate a significantIy diffel'ent behaviour of the principal component 

on Monday. It is quite striking to observe how the principal component is negative 

on Monday and becomes progressively positive towards the end of the week. The 

Spanish options market smiles very differently on Monday than on other week days. 

More specifically, the Spanish smile is statistically different at the beginning of the 

week relative to the end of the week. We may even conclude that, if this behaviour 

is directly associated with the failure of the BS option pl'icing framework, the BS 

model might be working better at the beginning of the week while its performance 

gets worse as the week nears its end. The next section investigates the reasons 

behind this surprising seasonality and othel' determinants of the implied volatility 

function. 

5 On the determinants of the implied volatility 
function 

As argued in the introduction, the key issue of this papel' concerns the direct analysis 

of the reasons explaining the volatility smile. It is important to emphasize that, 

12The principal component is positively correlated with bo and b2 , and negatively correlated with 
b1 · 
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given that the IBEX-35 option contract is a European option, the pattern of implied 

volatilities across different exercise prices provides direct evidence of the shape of the 

risk-neutral density, relative to the lognormal benchmark. Of course, this is because 

the second derivative of the European caH (put) option price with respect to the 

exercise price is proportional to the appropriate risk-neutral probability density. 

This argument implies that, in fact, our objective is to explain the true implicit 

distribution in actual option prices. 

Under this line of reasoning, the results from our previous sections suggest that 

the implicit distribution in the Spanish market is leptokurtic in (both) the right and 

the left tail of the distribution. This means that out-of-the-money calls (in-the

money puts) and puts (in-the-money calls) which pay off under realizations in the 

tails are more valuable than predicted by the BS model with its lognormal distribu

tion assumption. An important point of our research is therefore to investigate the 

characteristics of the (deep) out-of-the-money calls (in-the-money puts) and puts 

(in-the-l110ney calls). 

5.1 Data and preliminary findings 

Analysis of the deterl11inants of the volatility sl11ile is based on three categories of 

economic variables. The econol11ic determinants should include relevant characteris

tics of the underlying asset, econol11ic variables that help to predict the future stock 

l11arket, and some characteristics of the options market itself. In particular, viola

tions of a constant implied volatility function may be due to the effects of trading 

costs or to the degree of options market liquidity. Proxies for these characteristics 

should be included in the list of relevant variables. 

To capture the possibility of market-related effects on option pricing, we include 

the annualised standard deviation of the IBEX for each day in the sample estimated 

with minute by minute observations, and the naturallog of the number of shares 

traded (volume) by the components of the IBEX during the 45-minute interval for 

which we have option pricing data. The idea is to incorporate both a measure of 

uncertainty and a measure of the level of activity in the underlying asset. 
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Two variables are employed in order to incorporate variables that may help in 

predicting the market. Both measures reflect the relative market momentum oí the 

underlying economic situation oí the Spanish economy. The idea is to construct 

variables that reflect levels oí asset prices. This is obviously somewhat arbitrary. 

However, there is well known evidence that suggests some useíul instruments in 

predicting general market conditions and expected returns oí risky assets13• 

Our first variable oí this type is the log relative treasury bill rate (RT B) given 

by the íollowing expression: 

rt 
RT Bt = log t-61 (6) 

¿o L rr 
r=t-l 

where rt is the one week Treasury bill repo rate available at day t. It provides 

a relative measure oí the interest rate levels with respect to its three-month (60 

trading days) moving average. 

The second variable (M KT) is the log oí the ratio oí the previous short-run 

level of the IBEX, given by its three-month moving average, to its current level: 
t-61 

¿o L IBEXr 

MKT = log r=;~EXt (7) 

where 1 BEXt is the level oí the value-weighted Spanish stock exchange index at the 

end oí day t. 

The underlying justification íor including both types oí determinants in our 

analysis (two relevant characteristics oí the underlying asset, and two economic 

variables that help to predict the íuture stock market) líes in the possibility of their 

having path-dependent effects on option pricing. If such effects exist, they may 

impact the market valuation oí out-oí-the-money calls (in-the-money puts) and 

puts (in-the-money calls). 

The last group of variables which may be relevant in explaining implied volatility 

patterns across exercise prices is associated with the characteristics of the option 

13See for example, Keim and Stambaugh (1986) and Campbell (1996). 
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market itself. As a measure of transaction costs, we employ the daily average relative 

bid-ask spread for the options transacted during the 45-minute interval. They reflect 

the market-making costs and adverse selection risks faced by agents participating in 

the option market. Finally, as a measure of the level of activity in the option market, 

we include the naturallog of the number of option contracts negotiated during the 

45-minute interval employed in this papel'. It provides a reasonable estimate of the 

generalliquidity of the option market. 

Before presenting a time-series regression analysis relating the main character

istics of the volatility smile to the variables described aboye, we must analyze the 

potential non-stationarities in our chosen variables. Augmented Dickey-Fuller (DF) 

tests for unit roots are reported in Table 6. The tests are also performed for the first 

principal component of the 446x3 matrix of coefficients bo,b1 and b2 characterizing 

the smile over time. Independently of the specification employed in the analysis, the 

results imply that the log relative Treasury bill repo rate (RT B) is nonstationary, 

while for the rest of our chosen variables, we are able to reject the existence of a 

unit-root. In the tests below, we therefore use the first daily differences of the log 

relative repo rateo 

Our first test consists of simple regressions, with Newey-\.Vest robust standard 

errors, relating the variables described previously to either the principal component 

of the smile or the coefficients themselves. This section of the paper analyzes several 

factors (potentially) related to the volatility smile, but it does not test for causes of 

the smile. The hypothesis merely involves correlation between the volatility smile 

and sorne other variables. 

In the regressions below, we also include a dummy variable for Monday, and 

two other control variables for moneyness and time to expiration. In particular, the 

average degree of moneyness of all options used in the analysis, and the time-to

expiration of the options employed in our database are taken into account. Note 

that, for a given day, all options available throughout the 45-minute interval have the 

same tíme-to- expiration. However, the volatility smile may be changing throughout 

16 



the life of the options14
• 

In order to explain the variability of the principal component and the coefficients 

which characterizes the smile, the following time-series regressions are run: 

(8) 

where: 

• pe is the principal component of the 446x3 matrix of coefficients (bo, b1 and 

b2 ) characterizing the volatility smile throughout the time period employed in 

the analysis; 

• AJON is the dummy variable for Mondays; 

• AI KT is the log of the relative market momentum given by expression (7); 

• SI G AI A is the annualized standard deviation of the IBEX for each day in the 

sample estimated by minute by minute observations; 

• 11 AI KT is the log of the number of shares traded by the individual stocks 

conforming the IBEX calculated during the 45-minute interval; 

• D RT B is the first daily difference of the log relative Treasury bill repo rate 

given by expression (6); 

• B A is the daily average relative bid-ask spread for the options transacted 

during the 45-minute interval considered in the analysis; 

• 11 O PT is the log of the number of options contracts negotiated during the 

45-minute interval; and 

• TI AI E is the annualized number of days to expiration of the options transacted 

during the 45-minute interval. 

14Given that the degree oí moneyness does not have any significant infiuence in the results, it is 
not included in the regressions shown in the papero 
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The regressions are run with a one-period lag for the volatility variable, and for 

the volume related variables in the option and stock markets. In principIe, it would 

be desirable to use available information at each day t if we want to make stronger 

statements about these regressions. However, the results reported are based on the 

contemporaneous bid-ask spread and the contemporaneous market momentum. It 

should be pointed out that very similar results are found when we also use a one

period lag for the market momentum variable and the bid-ask spread. Somewhat 

better statistical fit values are obtained, however, when we run the regression model 

given by (8)15. 

The results are shown in Table 7. They suggest that the principal component 

(and therefore the degree of curvature) of the volatility smile is positively and signif

icantly related to transaction costs represented by the bid-ask spread. On average, 

whenever the bid-ask spread tends to increase, the degree of curvature of the volatil

ity smile increases (and the slope increases). Alternatively, when market makers tend 

to face higher adverse selection risks, out-of-the-money calls (in-the-money puts) 

and puts (in-the-money calls) are more highly valued by the market relative to the 

BS model. 

On the other hand, the principal component (the degree of curvature) is neg

atively and significantIy related to the historical volatility of the underlying asset, 

and to time to expiration. It is interesting to point out that options with short 

times to expiration tend to have a higher degree of curvature (and higher slope) in 

the implied volatility pattern across exercise prices. It is also interesting that high 

volatility periods tend to be assocÍated with lower curvature (lower slope) of the 

smile. 

Finally, the relative momentum of the market seems to be weakly related to the 

degree of curvature and the principal component of the smile. Whenever the current 

level of the stock market improves relative to the past, we find that, on average, the 

degree of curvature of the smile increases (the slope increases). 

15Stepwise regressions are also employed in deciding the variables and the number of lags to be 
included in the regressions reported in the paper. 
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The results regarding the correlations between market momentum, historical 

volatility and the shape of the volatility smile suggest that relatively calm periods 

but with, at the same time, increasing current levels of the market stock exchange 

index tend to be associated with a higher degree of curvature (higher slope) of the 

volatility smile. This suggests that at these particular moments of time out-of-the

money puts (in-the-money calls) are asyrnmetrically valued by the market relative 

toin-the-money puts (out-of- the-money calls). Alternatively, the pattern across 

exercise prices becomes more flat (and with a less degree of curvature) whenever 

the volatility of the undedying asset goes up, and the relative market momentum 

gets worse. At these periods of time, out-of-the-money puts (in-the-money calls) 

become more symmetrically valued by the market relative to in-the-money puts 

(out-of-the-money calls). 

To finish the discussion of this preliminary evidence, it should be pointed out that 

the Monday dummy variable do es not seem to be significant once other variables 

are taken into account by the analysis. 

In SUl11mary, we may conclude that transaction costs influence the relative valu

ation of out-of-the-money puts (in-the-money calls) and in-the-money puts (out

of-the-money calls). Higher transaction costs are associated with higher market 

values of extreme (in term of moneyness) options, but in a rather asymmetric way. 

These costs seem to affect more out-of-the-money puts (in-the-money calls) than 

in-the-money puts (out-of-the-money calls). However, higher uncertainty seel11S to 

be associated with a more symmetric valuation (and lower slope) of extreme options. 

Hence, out-of-the l110ney puts (in-the- money calls) are relatively more valued than 

in-the-money puts (out-of-the-money calls) at periods of time for which there is a 

decrease in uncertainty and the relative market level goes up. 

Therefore, it seems that two quite distinct forces are associated with the shape of 

the volatility smile. On the one hand, transaction costs are related to higher market 

valuation of extreme (in terl11S of moneyness) options relative to the BS model; 

they are particularly associated with the degree of curvature of the smile, but given 

the asyml11etric relative valuation of extreme options, they are also associated with 
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a higher slope. Secondly, relative market momentum and the uncertainty of the 

market, proxied by the volatility of the underlying asset, also affect the shape of 

the smile. With relatively high index levels and low volatility, the market might 

be giving more value to out-of-the-money puts (in-the-money calls) relative to 

the values of the in-the-money puts (out-of-the-money calls). This asymmetric 

valuation and the effects of market conditions might be related to skewness effects 

on option In"ices. As shown by Heston (1993), the correlation between volatility and 

the spot asset 's price is a key issue for explaining skewness. In particular, negative 

skewness which is consistent with asyrnmetric GARCH effects found in the IBEX-

35 index by León and Mora (1996) might be the explanation of our preliminary 

evidence16• 

5.2 Linear Granger causality tests and the volatility smile 

The general idea behind causality tests is that they can provide useful information on 

whether knowledge of past values of the variables employed in the previous section 

improves short-run forecasts of current and future variability on the shape of the 

volatility smile. In this section, we employ traditional Granger tests to investigate 

the presence of linear predicting power between the variables discussed previously 

and the shape of the volatility smile. 

Let us assume that we observe two stationary and ergodic time series, Xt, and 1~. 

Let F(Xt I Zt-l) be the conditional probability distribution of X t given a bivariate 

information set Zt-l' This information set is formed with the Lx-Iength vector of 

past values of X tl Xt-Lx, and the Ly-Iength vector of past values of yt, l~-Ly. Given 

these lags, the series, yt, does not strictly Granger cause X t if: 

F(Xt I Zt-l) = F(Xt I (Zt-l - yt-Ly)); t = 1,2, .... (9) 

Alternatively, of course, if the equality (9) does not hold, then knowledge of past 

16Negative skewness or higher downside volatility might be explained by either the well known 
leverage effects or by weaIth effects. The later consists of economic agents becoming more risk 
averse as prices (wealth) go down. Hence, the arrival of new information cause a greater reaction 
among agents, so that volume of trading and volatility increase. 
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values of Yt is useful in predicting current and future values of Xt , and therefore Y 

is said to strictly Granger cause X 17 • 

In order to implement this test, we estimate the following bivariate vector au

toregression (VAR) model: 

(10) 

where, a and f3 are two constant terms, peOt is the principal component of the volatil

ity smile18, and DET represents the variables employed in the previous section of 

the papero In particular, DET can be one of the following variables: the log relative 

market momentum (Al KT), the annualized historical volatility of the underlying 

asset (SIGMA), the log of the number of shares traded in the underlying asset 

(V Al KT), the first differences of the log relative Treasury bill repo rate (D RT B), 

the log of the number of contracts negotiated in the option market (VOPT), and the 

average relative bid-ask spread of the options transacted in our 45 minutes interval 

(BA). Moreover, An(L), A12(L), A21 (L), and A22 (L) are lag polynomials of the 

same order in the lag operator L, and the residuals Ut and liVt are assumed to be 

mutually independent and individually i.i.d. variables with zero mean and constant 

vanance. 

To test for linear Granger causality from DET (A1KT, SIGMA, ... ,BA) to the 

principal component or, alternatively, to the set of coefficients characterizing the 

smile, a standard joint F test of exclusion restrictions is carried out to determine 

whether lagged values of D ET have significant linear predicting power for the prin

cipal component (or the smile coefficients). The appropriate number oflags is deter

mined in each case on the basis of four alternative information criteria: the Akaike 

information criterion, the Schwarz specification test, the final prediction error cri

terion, and the Hannan-Quinn test. When conflicts are found, the Akaike criterion 

17\Vhen the bivariate information set includes the current level of Y, we have the concept of 
instantaneous Granger causality. 

18Similar regressions were run for the three coefficients characterizing the smile, bo, b1 and b2 . 
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is employed19
• The null hypothesis that DET do es not Granger cause the principal 

component (the smile coefficients) is rejected if the coefficients on the elements in 

A12(L) are jointly significantly different from zero. When feedback causality exists, 

then the coefficients on the elements in both A 12 (L) and A 21 (L) arejointly different 

from zero. 

Table 8 reports the results of testing linear Granger causality between the prin

cipal component of the smile (and the coefficients) and the average relative bid-ask 

spread (BA)20. By analyzing rejections of the null hypothesis of Granger linear non

causality at the 5% level, our tests indicate that there is clear unidirectional causality 

from transaction costs, proxied by the bid-ask spread, to the principal component 

of the smile. Moreover, the evidence of unidirectional causality is also found for each 

of the coefficients characterizing the smile: the intercept, the slope and the degree 

of curvature. The conclusion is quite clear: the bid-ask spread does Granger cause 

the shape of the volatility smile. This is also the case when we analyze the case 

of instantaneous linear Granger causality. Finally, an important point is that the 

shape of the volatility smile also Granger causes transaction costs. Bi-directional 

causality is therefore found between transaction costs and the volatility smile. 

Table 9 reports the same linear Granger causality tests for the rest of the variables 

used in our analysis. Granger noncausality from the alternative variables to the 

principal component cannot be rejected at the 5% significance leve!. 

These results suggest that transaction costs, represented by the average bid-ask 

spread, is a key determinant of the shape of the implied volatility function. A quick 

way of checking the consistency of these results is reported in Table 10. This is not 

a formal test, but it provides an intuitive explanation of the results found in the 

paper. The table employs the five fixed intervals for the degree of moneyness used 

throughout the papero The average of the relative bid-ask spread within each of 

the fixed intervals is calculated. As expected, given the empirical evidence reported 

19Sil11ilar results across aH criteria are generaHy obtained for aH variables used in the analysis. 
In each case, the nUl11ber oflags is always the sal11e for the principal cOl11ponent and DET (M KT, 
SIGMA, .. , , BA). 

20The same results are found when using White standard errors and a X2 test of exclusion. 
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in this paper, the extreme options (in terms oí moneyness) have the highest bid

ask spreads. In other words, deep out-oí-the-money (in-the-money) options have 

the highest transaction costs, while the at-the-money options present the lowest 

transaction costs. This pattern oí transaction costs seems to be reflected in the 

pricing oí options. They are precisely the options most highly valued on average 

relative to the BS model. It may easily be the case that these higher transaction 

costs reflect higher adverse selection costs faced by market-makers when negotiating 

these options. 

As previously mentioned, smile patterns are consistent with leptukortic distribu

tions. However, it seems difficult to accept that transaction costs, proxied by bid-ask 

spreads, cause leptukortic distributions relative to the lognormal benchmark. In íact, 

as pointed out by Bates (1996), extremely high values of the volatility of volatility 

are necessary to obtain implicit leptokurtosis oí a magnitude consistent with the 

empirically observed volatility smile. Our results suggest that the missing variable 

to explain the actual pattern oí implied volatility across exercise prices is proxied by 

the bid-ask spread. Thereíore, on the one hand, we have a theoretical justification 

for the smile -the volatility of volatility or leptokurtosis-, and on the other hand, 

transaction costs seem to be the ultimate reason behind the actual magnitude oí 

the smiles. 

Finally, it should be recognized that the linear causality íound in the tests also 

runs in the opposite direction. In other words, the íact that these extreme options 

are more highly valued seems also to Granger cause higher transaction costs. 

5.3 N onlinear Granger causality tests and the volatility 
smile 

There is increasing interest in the study oí nonlinearities in the dynamic interrela

tions between financial time series. The point is that by removing linear predictive 

power with a linear VAR model of equation (10), there may be a remaining incremen

tal predictive power oí one residual series to another. In this case, this incremental 

predictive power is considered to be nonlinear. 
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Vve íollow the modified version oí Baek and Brock's (1992) nonlinear Granger 

causality tests as suggested by Hiemstra and Jones (1994). Let us consider two 

strictly stationary and weakly dependent time series Ut and W?I. Denote the m

length lead vector of Ut by Ut+m, the Lu-length vector of past values of Ut, by Ut- Lu , 

and the Lw- length vector of past values oí TVt , by Wt - Lw . 

Por a given value of m, Lu, and Lw 2:: 1 and for 8 > 0, W does not strictly 

Granger cause U if: 

Pr (IlUt+m - Us+mll < 8 IIUt- Lu - Us-Lull < 8, IlWt- Lw - lFs-Lwl! < 8) 

IIUt- Lu - Us-Lull < 8) (1l) 

where P1'(.) represents probability and 11.11 is the maximum norm. This definition 

indicates that the conditional probability that two m-length lead vectors oí Ut are 

within a distance 8 of each other, given that the Lu-Iength lag vectors of Ut and Lw

length lag vectors of lVt are within 8 of each other is the same as the conditional 

probability that two m-Iength lead vectors of Ut are within a distance 8 of each 

other, given that the Lu-Iength lag vectors of Ut are within 8 of each other. 

Hiemstra and Jones express the conditional probabilities in terms oí the corre

sponding ratios of joint probabilities. Let Cl(m + Lu, Lw, 8)jC2(Lu, Lw, 8) and 

C3(r7l + Lu, 8)jC4(Lu, 8) be the ratios oí joint probabilities corresponding to the 

LHS and RHS of equation (11). Recall that the conditional probability Pr(X I Y) 

can be expressed as Pr(X n Y)j Pr(Y) and that, by the definition oí the maximum 

nor111: 

Pr (1IUt+m - Us+mll < 8, IIUt- Lu - Us-Lull < 8) = Pr (1IUt+m- Lu - Us+m-Lull < 8) 

Then, these joint probabilities can be defined as: 

C 1 (m + Lu, Lw, 8) - Pr (11 Ut+m- Lu - Us+m- Lu 11 < 8, 11 vf!t-Lw - TVs- Lw 11 < 8) 

C2(Lu, Lw, 8) Pr (1IUt- Lu - Us-Lull < 8, IIlVt-Lw - lVs-Lwll < 8) 

C3(m + Lu,8) - Pr (IIUt+m- Lu - Us+m-Lull < 8) 

C4(Lu,8) _ Pr (IIUt- Lu - Us-Lull < 8) 

(12) 

21 In the application, these series correspond to the residuals of the VAR model of equation (10). 
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Rewriting the condition for nonlinear noncausality given by (11), we say that, for a 

given value of m, Lu, and Lw 2:: 1 and for 8 > O, W do es not strictly Granger cause 

U if: 
C1(m + Lu, Lw, 8) 

C2(Lu, Lw, 8) 
C3(m + Lu, 8) 

C4(Lu, 8) 
(13) 

In order to implement the test based on equation (13), Hiemstra and Jones sug

gest using the correlation-integral estimators of the joint probabilities in equation 

(12). Denote the time series of realizations on Ut and Wt by Ut and Wt. More

over, let I(Xl , X 2 , 8) be the kernel that equals 1 when the two vectors Xl and 

X2 are within the maximum-norm distance 8 of each other and zero otherwise. 

Correlation-integral estimators can then be expressed as: 

2 
C1(m + Lu, Lw, 8, n) ( ) ¿ ¿ I(Ut+m-Lu, Us+m-Lu, 8)· I(Wt-Lw, Ws-Lw, 8) 

n n - 1 t<s 
2 

62(Lu,Lw,8,n) ( ) ¿¿ I(Ut-Lu, Us-Lu, 8) . I(Wt-Lw,Ws-Lw,8) 
n n - 1 t<s 

63(m+Lu,8,n) (2 )LLI(Ut+m-Lu,Us+m-Lu,8) (14) 
n n - 1 t<s 

2 
64(Lu, 8, n) - ( ) L ¿ I(Ut-Lu, Us-Lu, 8) 

n n - 1 t<s 

where t, s = max( Lu, Lw) + 1, ... , T - m + 1; n = T + 1 - m - max( Lu, Lw) 

Given these joint probability estimators, we can test the nonlinear Granger non

causality condition in equation (11). For a given value of m, Lu, and Lw 2:: 1 and 

for 8 > O, if Wt does not strictly Granger cause Ut then: 

r::: (C1(m + Lu, Lw, 8, n) _ 63(m + Lu, 8, n)) N (O 2( L L C)) v n ~ ~ ~,(J m, u, w, u 
C2(Lu, Lw, 8, n) C4(Lu, 8, n) 

(15) 

where (J2(m, Lu, Lw, 8) and a consistent estimator for it are given by Hiemstra and 

Jones in their appendix. A significant positive value of the statistics given by (15) 

implies the existence of a nonlinear causality from W to U. In the application, this 

would suggest a nonlinear causality of any of the variables under D ET in equation 

(10) to the shape of the vol at ilit y smile22• 

2::?Hiemstl'a and Jones (1994) al'gue that the modified Baek and Bl'ock test has good finite
sample size and powel' propel'ties against a val'iety of linear and non linear causal and noncausal 
l'elations. Note that by allowing the errors to be weakly dependent, the key difference between 
the original test of Baek and Brock and the test employed in this paper lies in the estimators fol' 
(T2(m, Lu, Lw, 6). 
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To implement the test of equation (15), we set the lead length for all cases at 

m = 1, and set Lu = Lw, using a common lag length of 1 to 4. Recall that these 

tests are based on the residuals of the VAR system of equation (10), so that the 

appropriate number of lags in the VAR has already been chosen according to our 

information criteria. Moreover, each series of residuals is standardized so that the 

two series have the same standard deviation, i.e., <7 = 1. 

The scale parameter, ó, is chosen to be either ó = 1.5<7 or Ó = 0.5<7, where <7 = 1 

is the standard deviation of the standardized time series of residuals. Note that, 

since we standardized the series, all of them share a common scale parameter. It 

should be pointed out that the joint probabilities given by (12) should be lower 

whenever the scale parameter is smaller. The (joint) probabilities of two vectors 

being within a given distance of each other will be smaller whenever the distance 

becomes smaller. As expected, this is actually the case in the application below. 

However, this does not imply a systematic effect on either the statistic of equation 

(13) or the significance level of the test given by (15). In other words, there is no 

a p1'io1'i monotone relation between the distance imposed and the acceptance of the 

null hypothesis. 

The results are reported in Tables 11, 12 and 13 for the three sets of variables 

employed in this work to explain the shape of the volatility smile, i.e., the charac

teristics of the options market itself (the bid-ask spread and the volume negotiated 

in the derivative market), the economic characteristics of the underlying asset (the 

volatility and its volume), and our economic variables that help to predict the stock 

market (market momentum and the relative level of interest rates). Panel A of these 

tables refers to a given ó of 1.5, while Panel B imposes a ó of 0.5. 

Interestingly, the results are not robust to alternative scale parameters. For a Ó 

of 1.5, there seem to be no clear signs of nonlinear causality. The null hypothesis 

of noncausality cannot be rejected when evaluated with right-tailed critical values 

of the asymptotic N (O, 1) distribution. If anything, there is sorne slight evidence 

of unidirectional nonlinear Granger causality between market momentum and the 

principal component of the smile. 
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On the other hand, for 8 = 0.5, independently of the number of lags assumed 

in the estimation for Lu = Lw, we find seemingly strong evidence of nonlinear 

Granger causality from the bid-ask spread, volume in both the underlying asset and 

the option market, market momentum, to the principal component of the smile. It is 

also the case that for shorter lags, there seems to be evidence of nonlinear causality 

from the volatility of the underlying asset and even the relative level of the interest 

rates to the principal component of the smile. 

Unfortunately, the interpretation of the results is rather complicated. It may the 

case that, for this particular application, the nonlinear predictive power improves 

significantly when we use not only the variable itself, but also other variables such 

as the bid-ask spread or market momentum, as long as the required distance in the 

tests becomes smaller. 

In any case, it is certainly relevant to find evidence of nonlinear causality, partic

ularly for those cases for which traditional linear Granger tests have not been able 

to detect evidence of causality. Once again, the substantial differences found in this 

paper between linear and nonlinear causality tests suggest the relevan ce of testing 

for both linear and non-linear predicting power between economic variables. 

Our results imply that the dynamic interrelations between the implied volatility 

function and economic variables such as transaction costs or market momentum 

and other relevant variables such as the volatility of the underlying asset are, to 

a certain extent, non-linear. Future research should probably be concentrated on 

using non-linear theoretical mechanisms when developing models of microstructure 

dynamic interrelations between information flow and the pricing of extreme (in terms 

of moneyness) options. 

6 Conclusions 

To the best of our knowledge, this work analyzes for the first time the underlying 

determinants of the well known pattern of implied volatilites across exercise prices for 

otherwise identical options, i.e., the so called volatility smile. We employ a database 
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comprised of all call and put options on the IBEX -35 Spanish index traded daily 

during the 45-minute interval from 16:00 to 16:45 from January 1994 to Apri11996. 

Contrary to the US market, where the smile is rather a (straight) sneer, we find that 

the Spanish market tends to smile consistently throughout the sample periodo 

In order to understand the behavior of the implied volatility function, formal 

tests are performed under a simple regression framework together with more sophis

ticated tecniques of both linear and nonlinear Granger causality tests. Our results 

suggest a strong seasonal behavior in the volatility smile. However, this seasonality 

tends to disappear when we include several economic variables in the analysis. In 

particular, transaction costs proxied by the bid-ask spread of the negotiated op

tions, the volatility of the underlying asset, time to expiration and relative market 

momentum seem to be key variables in explaining the variability of the implied 

volatility function over time. 

Linear causality tests point to bidirectional linear Granger causality between 

the shape of the smile and transaction costs. No other economic variable seems to 

linearly cause the smile. Somewhat surprisingly, however, nonlinear nonparamet

ric tests also suggest that levels of activity in both the derivative market and the 

underlying asset market, the volatility of the stock market index, and the relative 

market momentum and relative interest rates present evidence of nonlinear causality 

to the shape of the smile. More research to understand these nonlinearities is clearly 

justified. 

As a. more general conclusion, it seems that current market conditions proxied 

by both volatility of the underlying asset and relative market momentum, playa 

relevant role in shaping the smile. High levels of the market index and, on average, 

the corresponding low level of volatility as a consequence of negative skewness effects 

might be pushing the behavior of the smile towards a rather asymmetric valuation 

of extreme options. Out-of-the-money puts (in-the-money calls) are more highly 

valued whenever market conditions get better relative to in-the-money puts (out

of-the-money calls). This suggests that, whenever the market is relatively high (and, 

on average, volatility is relatively low) , economic agents assign a higher probability 
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(relative to a normal distribution) to weaker future market conditions. 

It should be pointed out, however, that the key finding of this paper is associated 

with the importance of the bid-ask spread in explaining the shape of the volatility 

function. Transaction costs are a key determinant of the smile. They cause a higher 

degree of curvature and, at the same time, a higher slope in the implied volatility 

function. 

To conclude, both forces -transaction costs and market conditions- playa simul

taneous role in explaining the shape of the implied volatility pattern across exercise 

prices. Taking into account the significant and inverse relationship between time to 

expiration and degree of curvature, we are tempted to conclude that market con

ditions and transaction costs are relatively more important whenever there exists a 

short way to go in the life of the option. 
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FIGURE 2: 

AVERAGE SMILES OVER THE SAMPLE PERIOD 
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2.3 March 1995-April 1996 
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FIGURE 3: 
AVERAGE SMILES OVER THE SAMPLE PERIOD FOR CALLS 

AND PUTS. JANUARY 1994-APRIL 1996 
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TABLE 1 
HOW DO WE SMILE? 

ADJUSTED R2 WEIGHTED BY THE NUMBER OF OBSERVATIONS 
AVAILABLE FOR EACH DAY WITHIN EACH OF 5 ALTERNATIVE MODELS 

AND DIFFERENT PERIODS 

The five models are the following: 

Model 2:u = bo + b1X + { 
Model 3:u = bo + b1X + b2X 2 + { 
Model 4:u = bo + b1U + b2D2 + { 
Model 5:u = bo + b1 U + b2X 2 + { 
Model 6:u = bo + b1 U + b2X 2 + b3D + { 

These regressions are run from J anuary 1994 to April 1996, where X is equal to the exercise price 
divided by the underlying asset value (K/F), and U and D capture asymmetries in the smile. AH 
calls and puts over the 45 minutes interval from 16:00 to 16:45 are employed in the estimation. 

PERIODS MOD2 MOD3 MOD4 MOD5 MOD6 
FULL SAMPLE PERIOD 
J anuary 1994-April 1996 0.4802 10.62931 0.4211 0.4865 0.6257 

FIRST SUBPERIOD 
January 1994-February 1995 0.4640 0.5889 0.4223 0.4728 10.61611 

SECOND SUBPERIOD 
March 1995-April 1996 0.4973 10.67271 0.4198 0.5010 0.6635 

FIRST QUARTER 0.5861 0.7232 0.5495 0.5960 0.7276 

SECOND QUARTER 0.4027 0.5686 0.3486 0.4029 0.5154 

THIRD QUARTER 0.5989 0.7169 0.5984 0.6468 0.7748 

FOURTH QUARTER 0.3106 0.3187 0.2588 0.3075 0.3936 

FIFTH QU ARTER 0.3804 0.5660 0.2674 0.3345 0.4886 

SIXTH QUARTER 0.3618 0.5221 0.4021 0.4696 0.5470 

SEVENTH QUARTER 0.4259 0.5845 0.2967 0.3793 0.5711 

EIGHTH QUARTER 0.4526 0.7035 0.3340 0.4114 0.7104 

NINETH QUARTER 0.6879 0.8324 0.6154 0.7063 0.8168 

MONDAYS ONLY 0.5218 10.61521 0.4528 0.5096 0.5967 

REST OF WEEK DAYS 0.4700 10.63271 0.4132 0.4807 0.6321 



TABLE 2 
SMILE DAILY SEASONALITY 

A quadratic model relating implied volatility and moneyness is fitted from January 1994 to April 
1996: (j = bo + b1X + b2X2, where X = I</ F, the exercise price divided by the underlying asset 
value. AH calls and puts over the 45 minutes interval from 16:00 to 16:45 are employed in the 
estimation. The reported coefficients are the mean of the daily estimates of b¡; i = 0,1,2. The 
following regression is run: 

where MON, TUE, WED, THU and FRI are dummy variables for Monday, through Friday. 
Newey-West robust standard errors with five lags are employed (t-statistics in parenthesis). The 
use of a consistent covariance matrix implies that the test statistic under the null follows asymp
totically a X2 distribution. 

X h 

b2 DAYS bo b1 NO.OBS. 
MONDAY 3.428 -6.220 2.982 81 

(5.48) ( -5.01) (4.84) 

TUESDAY 5.167 -9.698 4.722 94 
(3.14) ( -2.96) (2.90) 

WEDNESDAY 4.951 -9.297 4.537 87 
(5.66) ( -5.34) (5.23) 

THURSDAY 6.060 -11.48 5.613 92 
(5.93) (-5.65) (5.56) 

FRIDAY 7.062 -13.48 6.608 92 
(5.94) ( -5.67) (5.57) 

ALL DAYS 5.384 -10.14 4.943 446 
(9.65) ( -9.12) (8.93) 

Test statistics fol' the term bo: 
X2(1){,BMo = (,BTU + ,BWE + ,BTH + ,BFR)/4} = 14.490; p - value = 0.00014 

X2 (4){,BMO = ,BTU = ,BWE = ,BTH = ,BFR} = 15.981; p - value = 0.00304 

Test statistics for the term b1 : 

X2(1){,BMO = (,BTu + ,BwE + ,BTH + ,BFR)/4}=14.680; p-value=0.00013 

X2(4){,BMo = ,BTU = ,BWE = ,BTH = ,BFR} = 16.002; p - value = 0.00302 

Test statistics for the term b2 : 

X2 (1){,BMo = (/hu + ,BwE + ,BTH + ,BFR)/4} = 15.016; p - value = 0.00011 

X2(4){,BMo = ,BTu = ,BWE = ,BTH = ,BFR} = 16.093; p - va/ue = 0.00290 



TABLE 3 
SMILE DAILY SEASONALITY: MONDAY VS. THE REST OF THE WEEK 

A quadratic model relating implied volatility and moneyness is fitted from January 1994 to April 
1996: (1 = bo + b1X + b2X2, where X = I</ F, the exercise price divided by the underlying asset 
value. AH caHs and puts over the 45 minutes interval from 16:00 to 16:45 are employed in the 
estimation. The reported coefficients are the mean of the daily estimates of bi = 0,1,2. The 
results are estimated by running the following regression: 

where TU E, W ED, T HU and F RI are dummy variables for Tuesday through Friday. The estimate 
of {Jl is the sample mean for Monday, while the estimates of the remaining coefficients are equal 
to the difference between the sample mean for each day and the sample mean for Monday. The 
reported figures in the last line are obtained by running the foHowing regression: 

where {Ji is the sample mean for aH days except Monday, and {J; is the difference between Monday 
and the rest of the week1 . Newey-West robust standard errors with five lags are employed (t-
statistics in parenthesis). 

DAYS bo b1 b2 

MONDAY 3.428 -6.220 2.982 
(5.48) (-5.01) (4.84) 

TUE-MON 1.1740 -3.478 1.739 
(1.01) ( -1.01) (1.01 ) 

WED-MON 1.523 -3.077 1.555 
(1.55) ( -1.57) (1.60) 

THU-MON 2.632 -5.258 2.631 
(2.29) ( -2.31) (2.33) 

FRI-MON 3.634 -7.259 3.626 
(2.84) (-2.84) (2.84) 

MON-REST WEEK -2.391 4.784 -2.396 
(-2.75) (2.76) (-2.78) 

1 Monthly seasonality was also investigated. August seems to be a month with a higher slope 
and a more pronounced curvature. However, the differences are not statisticaHy significant. 



TABLE 4 
SMILE DAILY SEASONALITY: THE PRINCIPAL COMPONENT APPROACH 

A quadratic model relating implied volatility and moneyness is fitted from January 1994 to April 
1996: (T = bo + blX + b2X 2 , where X = K/ F, the exercise price divided by the underlying asset 
value. AH calls and puts over the 45 minutes interval from 16:00 to 16:45 are employed in the 
estimation. We have 446 daily observations available. A 446x3 matrix of coefficients, bo, b1 and 
b2 , is formed and its first principal component is estimated.The reported coefficients are the mean 
of the daily estimates of the principal component, pCo. The following regression is run: 

where MON, TU E, W ED, THU and F RI are dummy variables for Monday, through Friday. 
Newey-West robust standard errors with five lags are employed (t-statistics in parenthesis). The 
use of a consistent covariance matrix implies that the test statistic under the null foHows asymp
totically a X2 distribution. 

DAYS PRINCIPAL COMPONENT NO.OBS. 
MONDAY -4.796 81 

( -3.15) 

TUESDAY -0.536 94 
( -0.13) 

WEDNESDAY -1.027 87 
( -0.48) 

THURSDAY 1.646 92 
(0.66) 

FRIDAY 4.095 92 
(1.41) 

Test statistics for the principal component pCo: 
X2(1){,BMo = (,BTU + ,BWE + ,BTH + ,BFR)/4} = 34.792; p - value = 0.00000 
X2(4){,BMo = ,BTU = ,BWE = ,BTH = ,BFR} = 16.016; p - value = 0.002997 



TABLE 5 
SMILE DAILY SEASONALITY AND THE PRINCIPAL COMPONENT 

APPROACH: 
MONDAY VS. THE REST OF THE WEEK 

A quadratic model relating implied volatility and moneyness is fitted from January 1994 to April 
1996: (T = ba + bI X + b2X2, where X = K/ F, the exercise price divided by the underlying 
asset value. AH calls and puts over the 45 minutes interval from 16:00 to 16:45 are employed 
in the estimation. A 446x3 matrix of coefficients, ba, bI and b2 , is formed and its first principal 
component estimated. The reported coefficients are the mean of the daily estimates of the principal 
component, PCot. The following regression is run: 

where TU E, W ED, T HU and F RI are dummy variables for Thesday through Friday. The estimate 
of f3I is the sample mean for Monday, while the estimates of the remaining coefficients are equal 
to the difference between the sample mean for each day and the sample mean for Monday. The 
reported figures in the last line are obtained by running the following regression: 

where f3i is the sample mean for all days except Monday, and f32 is the difference between Monday 
and the rest of the week I . Newey-West robust standard errors with five lags are employed (t
statistics in parenthesis). 

DAYS 
MONDAY 

TUE-MON 

WED-MON 

THU-MON 

FRI-MON 

REST OF WEEK 

MON-REST OF WEEK 

PRINCIPAL COMPONENT 
-4.976 

( -3.15) 
4.260 
(1.01) 
3.769 

(1.58) 
6.442 
(2.31) 
8.891 

(2.84) 
1.064 
(0.61 ) 

-5.860 
( -2.77) 

1 'Ve also tested whether the average coefficient was different than the average coefficient for the 
rest of week assuming that the variance during the rest of week was three times the variance for 
Monday. This is known as the Behrens-Fisher problem in Statistics. The result was again signif
canto Monthly seasonality was also investigated. August seems to be a month with a higher average 
principal component. However, the difference with other months is not statistically significant. 



TABLE 6 
TESTS FOR UNIT ROOTS 

The following (augmented) DF models are run with daily data from January 1994 to April 1996: 

K 

!::..Xt = a + (Pl - 1 )Xt - 1 + L: bTXt - T + Vt (1) 
T=l 

K 

!::..Xt = a + bt + (Pl - 1)Xt _ 1 + L bTXt - T + Vt (2) 
T=l 

where X is the variable for which the test is performed, and the number of lags f{ is previously 
determined in each case for each variable using the Akaike information criterion. The test statistic 
is given by: (h - l)/SE(h). The empirical cumulative distribution is tabulated by Dickey and 
Fuller. The variables analized are the following: M f{T is the logarithm of the ratio of the previous 
short-run level of the IBEX (three-month moving average) to its current level, SIG!l1A is the 
annualized standard deviation of the IBEX during each day in the sample estimated with minute 
by minute observations, V M KT is the logarithm of the number of shares traded by the components 
of the IBEX calculated during the 45-minute interval, RT B is the log relative (with respect to its 
three-month moving average) treasury bill rate, BA is the daily average relative bid-ask for the 
options available during the 45-minute interval, VOPT is the logarithm of the number of option 
contracts negotiated during the 45-minute interval, and pe is the first principal component of the 
446x3 matrix of coefficients bo, b1 and b2 characterizing the smile over time 

VARIABLES DF MODEL (1) DF MODEL (2) 
MKT -3.027 -3.462 

SIGMA -8.854 -9.133 

VMKT -5.820 -5.835 

RTB -1.289* -1.108* 

BA -10.373 -10.511 

VOPT -5.932 -7.506 

pe -10.509 -10.535 

* ,,ye cannot reject the existence of a unit root. At the 0.05 level and for 500 observations, the 
critical values given by Dickey and Fuller for models (1) and (2) are -2.87 and -3.42 respectively. 



TABLE 7 
THE DETERMINANTS OF THE IMPLIED VOLATILITY FUNCTION 

A quadratic model relating implied volatility and moneyness is fitted from January 1994 to April 
1996: (T = ba + blX + b2X 2 

, where X = I</ F, the exercise price divided by the underlying asset 
value. AH calls and puts over the 45-minute interval from 16:00 to 16:45 are employed in the 
estimation. We have 446 daily observations available. A 446x3 matrix of coefficients, bo, bl and b2 , 

is formed and its first principal component is estimated. Time-series regressions are run to explai"u 
the variability of the principal component and the coefficients which characterized the volatility 
smile. The following regressions are run: 

pCot(bit) = f30 + f3l MONt + f32 M K'rt + f33 SIGM At-l + f34 V M K'rt-l + f35DRTBt+ 

+f36 BAt + f37VOPTt- l + f3sT1MEt + (t 
where M O N is a dummy variable for Monday, M I<T is the logarithm of the ratio of the previous 
short-run level of the IBEX (three-month moving average) to its current level, SIGMA is the 
annualized standard deviation of the lBEX for each day in the sample estimated by minute by 
minute observations, V M KT is the logarithm of the number of shares traded by the componentes 
of the IBEX calculated during the 45-minute interval, DRTB is the first daily differences of the 
log relative (with respect to its three-month moving average) treasury bill rate, BA is the daily 
average relative bid-ask for the options available during the 45-minute interval, VOPT is the 
logarithm of the number of option contracts negotiated during the 45-minute interval, and TIME 
is the annualized number of days to expiration of the options available in the sample. Newey-West 
robust standard errors are employed (t-statistics in parenthesis). The reported coefficients are the 
estimated coefficients divided by 100. The (average) adjusted R2 is 0.19. 

COEFFICIENTS PRINCIPAL SMILE SMILE SMILE 
COMPONENT INTERCEPT (bo) SLOPE (b l ) CURVATURE (b2 ) 

INTERCEPT -0.063 0.025 -0.050 0.026 
(-0.34) (0.33) ( -0.33) (0.35) 

MONDAY(t) -0.027 -0.011 0.022 -0.011 
(-1.34) (-1.34) (1.33) (-1.34) 

MKT(t) -0.465 -0.188 0.382 -0.188 
(-1.76) (-1.73) (1. 76) (-1.75) 

SIGMA(t-1) -0.406 -0.165 0.331 -0.166 
( -2.18) (-2.18) (2.18) (-2.17) 

VMKT(t-1) 0.027 0.011 -0.022 0.011 
(1.12) (1.15) (-1.12) (1.09) 

DRTB(t) -1.364 -0.555 1.115 -0.558 
( -1.29) ( -1.28) (1.29) ( -1.29) 

BA(t) 0.302 0.123 -0.246 0.124 
(2.36) (2.35) (-2.36) (2.38) 

VOPT(t-1) 0.003 0.001 -0.003 0.001 
(0.43) (0.49) (-0.43) (0.38) 

TIME(t) -0.033 -0.014 0.027 -0.013 
(-6.10) (-6.10) (6.10) (-6.09) 



TABLE 8 
LINEAR GRANGER CAUSALITY TEST RESULTS BETWEEN THE RELATIVE 

BID-ASK SPREAD AND THE CHARACTERISTICS OF THE VOLATILITY 
SMILE: JANUARY 1994-APRIL 1996 

This table reports the results of the linear Granger causality test based on the following bivariate 
VAR model: 

PCOt = ll' + Au(L)pcat + Al2(L)BAt + Ut 

BAt = ¡3 + A 2l (L)pcot + A22(L)BAt + Wt 

where EA is the daily average relative bid-ask for the options available during the 45-minute 
interval, and pco is the first principal component of the 446x3 matrix of coefficients bo, bl and b2 
characterizing the smile over time. Similar analysis are performed with respect to the intercept 
(bo), the slope (b l ) and the curvature (b 2) of the smile. The results are based on exclusion tests 
relative to an F(q, T - I<) where q is the number of excluded (lags) variables and T - f{ is the 
number of observations minus the number of independent variables. Hence, the p-value denotes the 
marginal significan ce level of the computed F-statistic used to test the zero restrictions implied by 
the null hypothesis of Granger noncausality. Alllag lengths are set on the basis of four alternative 
criteria: the Akaike information criterion, the Schwarz specification test, the Final Prediction Error 
Criterion, and the Hannan-Quinn test. Similar results across alI criteria are generalIy obtained; 
when conflicts are found, the Akaike test is employed. 

Lengh 
3 

Ho: EA does not cause peo 

Stat-F 
3.442 

p-value 
0.018 

Ho: BA does not cause instantaneously peo 

Lengh 
3 

Stat-F 
2.841 

p-value 
0.025 

Ho: BA does 1l0t cause the illtercept (ba) 

Lellgh 
3 

Stat-F 
3.448 

p-value 
0.017 

Ho: BA does not cause the slope (b!) 

Lengh 
3 

Stat-F 
3.436 

p-value 
0.018 

Ho: BA does not cause the curvature (b2) 

Lellgh 
3 

Stat-F 
3.455 

p-value 
0.017 

Lengh 
3 

Ho: peo does 1l0t cause BA 

Stat-F 
9.145 

p-value 
0.000 

Ha: peo does not cause instantaneously BA 

Lellgh 
3 

Stat-F 
5.206 

p-value 
0.001 

Ho: The intercept (bo) does not cause BA 

Lengh 
3 

Stat-F 
9.114 

p-value 
0.000 

Ho: The slope (b!) does not cause BA 

Lengh 
3 

Stat-F 
9.143 

p-value 
0.000 

Ha: The curvature (b2) does not cause EA 

Lengh 
3 

Stat-F 
9.180 

p-value 
0.000 



TABLE 9 
LINEAR GRANGER CAUSALITY TEST RESULTS BETWEEN 

CHARACTERISTICS OF THE UNDERLYING STOCK INDEX, MARKET 
CONDITIONS AND OPTION ACTIVITY, AND THE VOLATILITY SMILE: 

JANUARY 1994-APRIL 1996 

This table reports the results of the linear Granger causality test based on the following bivariate 
VAR model: 

PCOt = a + Al1(L)pcot + A12(L)DE7t + Ut 

DE7t = f3 + A21(L)pcot + A22 (L)DE7t + Wt 

where DET represents the following variables: M KT is the logarithm of the ratio of the previous 
short-run level of the IBEX (three-month moving average) to its current level, SIGMA is the 
annualized standard deviation of the IBEX for each day in the sample estimated by minute by 
minute observations, V M KT is the logarithm of the number of shares traded by the components 
of the IBEX calculated during the 45-minute interval, D RT B is the first daily differences of the 
log relative (with respect to its three-month moving average) treasury bill rate, VOPT is the 
logarithm of the number of option contracts negotiated during the 45-minute interval, and pco is 
the first principal component of the 446x3 matrix of coefficients bo, b1 and b2 characterizing the 
smile over time. The results are based on exclusion tests relative to an F(q, T - K) where q is the 
number of excluded (lags) variables and T - K is the number of observations minus the number of 
independent variables. Hence, the p-value denotes the marginal significance level of the computed 
F -statistic used to test the zero restrictions implied by the null hypothesis of Granger noncausality. 
All lag lengths are set on the basis of four alternative criteria: the Akaike information criterion, 
the Schwarz specification test, the Final Prediction Error Criterion, and the Hannan-Quinn test. 
Similar results across all criteria are generally obtained; when conflicts are found, the Akaike test 
is employed. 

Ha: M KT does not cause pea 

Lengh 
2 

Stat-F 
0.498 

p-value 
0.608 

Ha: SIGMA do es not cause pea 

Lengh 
4 

Stat-F 
0.984 

p-value 
0.417 

Ha: V M KT does not cause pea 

Lengh 
2 

Stat-F 
0.238 

p-value 
0.788 

Ha: DRTB do es not cause peo 

Lengh 
3 

Stat-F 
1.390 

p-value 
0.247 

Ha: VOPT does not cause pea 

Lengh 
3 

Stat-F 
1.434 

p-value 
0.233 

Ha: pea does not cause M KT 

Lengh 
2 

Stat-F 
0.673 

p-value 
0.511 

Ha: pea does not cause SIGMA 

Lengh 
4 

Stat-F 
0.589 

p-value 
0.671 

Ha: pea does not cause V M KT 

Lengh 
2 

Stat-F 
0.294 

p-value 
0.746 

Ha: pea does not cause DRTB 

Lengh 
3 

Stat-F 
2.063 

p-value 
0.105 

Ha: pea do es not cause VOPT 

Lengh 
3 

Stat-F 
2.165 

p-value 
0.092 



TABLE 10 
AVERAGE TRANSACTION COSTS ACROSS FIVE FIXED INTERVALS FOR 

THE DEGREE OF MONEYNESS: JANUARY 1994-APRIL 1996 

This table reports the average transaction costs (relative bid-ask spreads) across five fixed intervals 
for the degree of moneyness. We define moneyness as the ratio between the exercise price level 
and the average of the future price relative to each average implied volatility. 

CLASIFICATION MONEYNESS RELATIVE BID-ASK SPREAD 

Deep OMP (IMe)· 0.8598 - 0.9682 0.3333 

OMP (IMe) 0.9682 - 0.9913 0.1946 

AMP (AMe) 0.9913 - 1.0101 0.1616 

IMP (OMe) 1.0101 - 1.0321 0.2166 

Deep IMP (OMe) 1.0321 - 1.1875 0.3668 

·OMP is out-of-the-money puts; IMe is in-the-money calls; AMP (AMe) is at-the-money 
puts (calls); IMP is in-the-money puts; OMe is out-the-money calls. 



TABLE 11 
NONLINEAR GRANGER CAUSALITY TEST RESULTS BETWEEN THE 

OPTION MARKET CHARACTERISTICS AND THE VOLATILITY SMILE: 
JANUARY 1994-APRIL 1996 

This table reports the results of the modified Baek and Brock nonlinear Granger causality test 
applied to the VAR residuals corresponding to the principal component oí the 446x3 matrix oí 
coefficients bo, b1 and b2 characterizing the smile ayer time and the relative bid-ask spread (and 
number of option contracts negotiated) of the options available in the sample. BA is the daily 
average relative bid-ask for the options available during the 45-minute interval employed in the 
analysis, and VOPT is the logarithm of the number of option contracts negotiated during the 
45-minute interval. Lu = Lw denotes the number oí lags on the residuals series used in the test. 
In all cases reported below, the tests are applied to unconditionally standardized series, the lead 
length, m, is set to unity, and the length scale, 6, is set to either 1.501' 0.5. DIF and STAT, 
respectively, denote the difference between the two ratios oí joint probabilities of the Baek and 
Brock nonlinear test in equation (12) and the standardized tests statistic (the modified Baek
Brock test) in equation (14). Under the null hypothesis oí nonlinear Granger noncausality, the 
test statistic is asymptotically distributed N(0,1). The test statistic should be evaluated with 
right-tailed critical values. 

PANEL A: 6 = 1.5 

Ha: BA does not cause pea 
Lu = Lw DIF STAT 

1 
2 
3 
4 

0.00036 
0.00091 
0.00103 
0.00122 

1.0106 
1.4665 
1.4939 
1.5878 

Ha: V O PT does not cause pea 
DIF STAT 

0.00068 
0.00062 
0.00038 
0.00065 

1.7315 
1.3888 
0.7962 
1.0426 

PANEL B: 6 = 0.5 

Ha: BA does not cause pea 
Lu = Lw DIF STAT 

1 
2 
3 
4 

0.00484 
0.00582 
0.00439 
0.00495 

2.7882 
2.9094 
2.4558 
2.6637 

Ha: V O PT do es not cause pea 
DIF STAT 

0.00553 
0.00582 
0.00514 
0.00619 

2.8246 
2.5921 
2.1477 
1.9667 



TABLE 12 
NONLINEAR GRANGER CAUSALITY TEST RESULTS BETWEEN THE 

UNDERLYING INDEX CHARACTERISTICS AND THE VOLATILITY SMILE: 
JANUARY 1994-APRIL 1996 

This table reports the results of the modified Baek and Brock nonlinear Granger causality test 
applied to the VAR residuals corresponding to the principal component of the 446x3 matrix of 
coefficients bo, b1 and b2 characterizing the smile over time and the annualized volatilty (and 
number of shares negotiated). SIGMA is the annualized standard deviation of the IBEX for each 
day in the sample estimated by minute by minute observations, and V M I<T is the logarithm of the 
number of shares traded by the components of the IBEX calculated during the 45-minute interval. 
Lu = Lw denotes the number of lags on the residuals series used in the test. In all cases reported 
below, the tests are applied to unconditionally standardized series, the lead length, m, is set to 
unity, and the length scale, Ó, is set to either 1.5 or 0.5. DIF and STAT, respectively, denote 
the difference between the two ratios of joint probabilities of the Baek and Brock nonlinear test in 
equation (12) and the standardized tests statistic (the modified Baek-Brock test) in equation (14). 
Under the null hypothesis of nonlinear Granger noncausality, the test statistic is asymptotically 
distributed N(O, 1). The test statistic should be evaluated with right-tailed critical values. 

PANEL A: Ó = 1.5 

Ha: SIGMA do es not cause pea 
Lu = Lw DIF STAT 

1 
2 
3 
4 

0.00099 
0.00191 
0.00202 
0.00213 

1.4967 
1.5446 
1.6389 
1.6747 

Ha: V M I<T does not cause pea 
DIF STAT 

0.00082 
0.00089 
0.00083 
0.00103 

0.7990 
0.7390 
0.7367 
0.7958 

PANEL B: Ó = 0.5 

Ha: SIGMA does not cause pea 
Lu = Lw DIF STAT 

1 
2 
3 
4 

0.00686 
0.00761 
0.00733 
0.00657 

3.0978 
1.8324 
1.7750 
1.5366 

Ha: V M KT does not cause pea 
DIF STAT 

0.00773 
0.00710 
0.00771 
0.00752 

2.9144 
2.2880 
2.6617 
2.2336 



TABLE 13 
NONLlNEAR GRANGER CAUSALlTY TEST RESULTS BETWEEN MARKET 
CONOITIONS ANO THE VOLATILlTY SMILE: JANUARY 1994-APRIL 1996 

This table reports the results of the modified Baek and Brock nonlinear Granger causality test 
applied to the VAR residuals corresponding to the principal component of the 446x3 matrix of 
coefficients ba, b1 and b2 characterizing the smile over time and the relative index level (and 
changes in relative interest rate levels). M I<T is the logarithm of the ratio of the previous short
run level of the IBEX (three-month moving average) to its current level, and DRTB is the first 
daily differences of the log relative (with respect to its three-month moving average) treasury bill 
rateo L" = Lw denotes the number of lags on the residuals series used in the test. In all cases 
reported below, the tests are applied to unconditionally standardized series, the lead length, m, is 
set to unity, and the length scale, 5, is set to either 1.5 or 0.5. DIF and STAT, respectively, denote 
the difference between the two ratios of joint probabilities of the Baek and Brock nonlinear test in 
equation (12) and the standardized tests statistic (the modified Baek-Brock test) in equation (14). 
Dnder the null hypothesis of nonlinear Granger noncausality, the test statistic is asymptotically 
distributed N(O, 1). The test statistic should be evaluated with right-tailed critical values. 

PANEL A: 5 = 1.5 

Ha: M I{T do es not cause pea 
Lu = Lw DIF STAT 

1 
2 
3 
4 

0.00180 
0.00297 
0.00311 
0.00363 

1.6067 
1.9904 
1.8869 
2.0384 

Ha: DRTB do es not cause pea 
DIF STAT 

0.00054 
0.00090 
0.00095 
0.00114 

1.4509 
1.6447 
1.3978 
1.4861 

PANEL B: 5 = 0.5 

Ha: M I{T does not cause pea 
Lu = Lw DIF STAT 

1 
2 
3 
4 

0.00920 
0.00962 
0.00920 
0.00964 

3.3671 
2.6405 
2.2795 
2.2093 

Ha: D RT B do es not cause pea 
DIF STAT 

0.00657 
0.00702 
0.00572 
0.00679 

2.8353 
2.0536 
1.3509 
1.4376 
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