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Abstract _ 

The existence of maxmim bond portfolios is proved in very general contexts, and so for instance, 

this existence holds if an immunized portfolio does not exist but atl the considered portfolios have 

duration equal to the investor planning periodo To characterize the maxmin portfolio, saddle point 

conditions are found, and from them, an algorithm is given. This algorithm permits to find the 

maxmin portfolio in practical situations. Relations between maxmin portfolios and the ones 

minimizing the dispersion measures (for instance, the M-squared or the Ñ measure) are also 

studied. In particular, it will be proved that minimizing the dispersion measure and looking for 

maxmin portfolio are equivalent strategies only when we are working with pure discount bonds. 

Finally, as a consecuence of the obtained results, two new strategies to invest are proposed. 
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Abstract 
Literature on immunization has shown that an immunized portfolio is a 
maxmin portfolio, but the opposite is not necessarily true .. In models where 
immunization is not feasible, in addition to matching duration, many strate­
gies has been proposed, i.e., minimizing dispersion measures M 2 or Ñ, to in­
elude a maturity matching bond, etc. However, in these models the maxmin 
portfolios have never been computed, and it seems that the proposed strate­
gies are halfway between a matching duration and a maxmin portfolio. 

In this paper we shall show that maxmin portfolios are characterized by 
saddle point conditions and from them an algorithm is given to compute 
the maxmin portfolios. Our model is specialized on the very general set 
of shocks from which the dispersion measures M 2 and Ñ have been devel­
oped. 'vVe shall show that by minimizing the dispersion measure, subject to 
matching duration, and by computing the maxmin portfolio both are only 
equivalent strategies if we work with zero coupon bonds. We shall compute 
the maxmin portfolios with examples using coupon bonds, and from them, 
two new strategies will be proposed. 

o� 





I. Introduction 

Several authors have studied maxmin portfolios in financial immunization 
theory. The concept was introduced initial1y by Bierwag and Khang (1979) 
revealing that maxmin portfolios guarantee the largest amount of money after 
an additive shock on the interest rates. Bierwag and Khang (1979), Khang 
(1983) and Prisman (1986) have proved in different models, and under differ­
ent assumptions on the shocks on interest rates, that immunized portfolios 
are always maxmin ones, and are also matching duration portfolios. 

In a recent paper, Balbás and Ibáñez (1995) show that the opposi te fails 
in models for which total immunization is not possible. Furthermore, in these 
models, besides a matching duration, many strategies have been proposed. 
For instance, Fong and Vasicek (1984) (see also Montrucchio and Peccati 
(1991)) show that the A12 measure gives us a bound on the possible cap­
ital losses after a shock, and therefore, this dispersion measure should be 
minimized. Another dispersion measure (which should also be minimized) is 
given in Balbás and Ibáñez (1995). Bierwag et al. (1993) and others show 
that the strategy that works best empirical1y is including a maturity match­
ing bond. Prisman and Shores (1988) propose to minimize other dispersion 
measures without matching duration. 

However, in these models the maxmin portfolio has been never computed, 
and it seems that these proposed strategies (defined for example as "Risk 
Minimizing Strategies for Portfolio Immunization", Fong and Vasicek (1984)) 
are halfway between a matching duration and a maxmin portfolio. Moreover, 
in these models, Balbás and Ibáñez (1995) prove that a maxmin portfolio 
ahvays exist and that both concepts, maxmin and immunized are equivalent 
only if the latter can be found. Therefore we have that the concept of maxmin 
portfolio clearly extends and generalizes the concept of the immunized one 
beyond more general models. Al1 these precedents show that studing and 
computing the maxmin portfolio is not only a new work and a important 
task by themselves, but is closely related to sorne puzzles in this literature, 
and therefore form the objeet of the present paper. 

In this paper we fol1ow the model of Balbás and Ibáñez (1995) where, 
amongst other things, they prove the existence of maxmin portfolios amongst 
bonds under three very general assumptions. We begin the paper by extend­
ing the existence results amongst bonds up to a convex subset of feasible 
portfolios, with a finite number of extreme points, e.g., matching duration 
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portfolios. Then, fol1owing an very common approach in game theory, we 
show that maxmin portfolios are charaeterized by saddle point conditions, 
and therefore, by means of an equations system. This system is non-linear 
and more difficult to solve than the one that usual1y appears in game the­
ory. Furthermore, the system cannot be solved with a linear program and 
consequently, an algorithm is developed, which leads to the maxmin bond 
portfolio. 

The model is specialized on the set of shocks from which the dispersion 
measures M 2 (Fong and Vasicek (1984)) and Ñ (Balbás and Ibáñez (1995)) 
are developed. The sets of shocks have bounded derivative and have bounded 
variations between two arbitrary instants, respeetively. Both set of shocks 
are very general and they al10w almost any change on the instantaneous 
forward interest rates. We show that the four strategies by minimizing both 
dispersion measures or computing the maxmin strategies are equivalent, only 
if we work with zero coupon bonds. 

Final1y, \Ve compute the maxmin portfolio in two examples for both sets 
of shocks with coupon bonds, amongst bonds and also amongst matching du­
ration portfolios because this is the classical immunization result, see Fisher 
and Weil (1971). By computing the maxmin portfolio we also obtain the 
worst shock and the guaranteed value of this portfolio. These two values can 
be very interesting to the inyestor. \Ve compute the maxmin portfolio for 
many values for parameter A, to see the path of the maxmin portfolio. As 
a consequence of the results obtained and from the theoretical advantages 
of the bounded shocks, two new strategies are proposed for the shocks of 
Balbás and Ibáñez (1995). First, estimating the parameter A and computing 
the maxmin portfolio amongst bonds, which is theoretical1y the best strat­
egy. Second, estimating the parameter A and computing the maxmin portfo­
lio amongst matching duration portfolios, because these portfolios work well 
empirical1y and do not depend very much on parameter >.. 

The paper's outline is the fol1owing. The second seetion establishes the 
set of hypotheses, and from them, the existence of maxmin portfolios is 
proved in a general contexto The third section is devoted to charaeterizing 
the maxmin portfolios by means of saddle point conditions. The fourth one 
compares the maxmin portfolio with the one obtained if we apply other pro­
posed strategies, and in particular, if we minimize sorne dispersion measures. 
In the Fifth section we solve the maxmin portfolio under two examples with 
coupon bonds, by applying a previously developed algorithm. Final1y, the 
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last section points out the most important conclusions. 

11. Existence of Maxmin Portfolios 

In this section we will follow the notation introd uced in Balbás and Ibáñez 
(1995). Let [O, T] be a time interval being t = O the present momento Let 
us consider n default free and option free bonds with maturity less or equal 
than T, and with prices PI, P2 ,"', Pn respeetive1y. Let f{ be the set of 
admissible shocks on the interest rate, f{ being a subset of the vector space 
of real valued funetions defined on [O, T]. 

Let m, (O < m < T) represent the investor planning period, and the real 
valued functionals 

Vi : f{ -+ R i = 1,2,"" n 

be such that Vi(k) (where k E ]< is any admissible shock) is the i-th bond 
value at time m if shock k takes place. 

In Balbás and Ibáñez (1995) were assumed the fol1owing three hypotheses: 
Hl: f{ is a convex seto 
H2: Vi is a convex funetional for i = 1,2,' .. ,n. 
H3: Vi(k) > Ofor i = 1, ... ,n and for any k E f{. 

These assumptions are quite simple and clear. 

Let e > O be the total amount to invest, and let q = (qI, q2, ... ,qn) be 
a vector such that q¡, i = 1,2,' .. ,n, represents the number of units of the 
i-th bond that the investor is going to buyo The constraints 

n 

¿ q¡p¡ = e, q¡ 2: O i = 1, ... , n. (1) 
¡=l 

are clear, and we will represent by Q the set of portfolios q such that expres­
sion (1) holds. 

The functional 

n 

V(q, k) = ¿q¡Vi(k) (2) 
i=I 

gives us the value for time m of portfolio q if the k shock takes place, and it 
is linear in the q variable and convex in the k one. 
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Let us define the guaranteed amount by portfolio q as follows 

V(q) = Inf{V(q, k); k E K} 

We will say that q* is a maxmin portfolio in Q if it solves the program 

Max V(q) } (PQ) 
q E Q 

Now we will introduce the concept of maxmin portfolio in any convex 
closed subset of Q. 

If Q* is a convex closed subset of Q then q* is a maxmin portfolio in Q* 
if it solves 

M;~ ~~q) } (PQ*) 

Let us point out that if q' is maxmin in Q and q* is maxmin in Q* then the 
inequality 

V(q*) < V(q') 

could hold, that is, the guaranteed amount by portfolios in Q could be bigger 
than the guaranteed amount in Q*. Balbás and Ibáñez (1995) show that 
program (PQ) always has a solution, i.e., there always exists a maxmin 
portfolio. Now we are interested in generalizing the latter result to convex 
subset Q* with a finite number of extreme points. 

Theorem 2.1. If Q* has a finite number of extreme points, then program 
(PQ*) has a solution, i.e., there always exists a maxmin portfolio q* E Q*. 

?reof. See the Appendix. O 

The interest of the latter result would be clearer if we consider the set Q* 
as the set of feasible partfolios with a duration equal to the investor planning 
periodo This is the classical strategy for immunizing a bond portfolio against 
additive shocks. If the shocks are continuously differentiable (as in Fong and 
Vasicek (1984)) then an immunized portfolio does not exist, but there are 
maxmin portfolios in Q and also in Q*. We have an analogous situation if we 
consider integrable and bounded shocks (as in Balbás and Ibáñez (1995)). 
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IIJ. The Saddle Point Conditions 

Once we know that maxmin portfolios do exist, we wiII study the general 
conditions for characterizing them in practical situations. If we carefully 
analyze the proof of theorem 2.1, we wiII obtain that for a portfolio q* maxmin 
in Q* 

V(q*) = In!{U(k)j k E I<}C (3) 

where U is the real valued functional given in (25). Therefore, if we consider 
the minimization program 

and k* E K is its solution, then 

V(q*) = U(k*)C (4) 

The functional U may be also gi ven by 

U(k) = A1ax{ V(q, k); q E Q*} (5)
C 

since for a fixed shock k, V is linear in the q variable and then its maximun 
must be attained in an extreme point of Q*. Therefore, (4) may be written 
as 

Max In! V(q,k) = In! Max V(q,k) 
(6)

{qEQ*} {kEK} {kEK}{qEQ*} 

The latter equality is \Vell known in game theory, characterizes the existence 
of saddle points for two persons zero sum games. This fact may be applied 
in immunization theory to obtain the maxmin portfolios by means of saddle 
point conditions. 

Definiton 3.1. We will say that a pair (q*, k*) E Q* x K is a saddle 
point of functional V in Q* x K if for any portfolio q E Q* and for any 
admissible shock k E K we have 

V(q, k*) ~ V(q*, k*) ~ V(q*, k) 
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Prisman (1986) shows that a portfolio q is immunized if and only if (q,O) is a 
saddle point of V. The following result may be considered as an extension of 
Prisman's (1986), and may be applied in models for which total immunization 
is not possible. 

Theorem 3.2. Given a portfolio q* E Q and a shock k* E K, then q* is 
maxmin in Q* and k* solves (PK)l if and only if (q*, k*) is a saddle point of 
V in Q* x K. 

Proof. See the Appendix2 • O 

Let us introduce a system of equations to characterize the saddle points 
of V (q, k) in Q* x K. To do this, we are going to consider that the set 
{ql, q2, ... , ql} of extreme points of Q* is known, and therefore, portfolios 
in Q* are given by their linear convex combinations. We are also going to 
assume, that set K is included in a normed space, that all its points are 
interior, and that functionals Ví, V;, ... , Vn are Gateaux differentiable (see 
Luenberger (1968)). 

It may be easily proved that (q*, k*) is a saddle point of V if and only if 

1 
* "\""" * Iq = L.J a i q 

i=l , 
and 

1 

La; = 1 (7)
i=l� 
ai[V(qi,k*) - Max{V(qj,k*); j = l,···,l}] = O i = {l,···,l} (8)� 
a~ > O i = {l ... l} (9)�

I - " 

ta~8V(qi,k)1 =0 (10)
i=l 8k k=k"I 

where the derivative in equation (10) is the Gateaux differential of functional 
V with respect to its k variable evaluated in k = k* (see Balbás and Ibáñez 
(1995)). As it will be shown, this are only the partial derivatives with respect 
to the shock parameters when working with reasonable kind of shocks. 

To prove equations (7) to (10) let us point out that if (q*,k*) is a saddle 
point then (10) clearly follows from V(q*,k) 2: V(q*,k*), (7) and (9) are 
obvious, and (8) is due to V(q*, k*) 2: V(q, k*) and for a linear program, any 
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maximum is a linear convex combination of points which are extremes and 
maxlmums. 

Conversely, if the system of equations holds, then in order to prove that 
(q* , k*) is a saddle point we only have to bear in mind that the necessary opti­
mality conditions for convex minimization programs (or linear maximization 
programs) are also sufficient. 

IV.� Is Minimizing the Dispersion Measures equivalent to looking 
for Maxmin Portfolios? 

Following the usual assumptions in immunization, let us consider that the 
q portfolio pays a continuous coupon c(t) (O ::; t ::; T). If g(s) (O ::; s ::; T) 
represents the instantaneous forward interest rates and k(s) is a shock on 
g(s), then the q portfolio value at time mis given by 

T m 

V(q, k) = 1 c(t)exp [l (g(s) + k(s))ds] dt� (11) 

Denoting the capitalization rate between Oand m by 

R = exp [1m 

g(s)ds]� (12) 

and the coupon present value by 

c(t,O) = c(t)exp [-l t 

g(s)ds]� (13) 

\re havé 

T 

V(q, k) = R 1 c(t,O)exp [1m 

k(s)ds] dt� (14) 

Many dispersion measures have been introduced by the literature (see for 
instance Alexander and Resnick (1985)) but perhaps only two allow us to 
bound the possible capitallosses after a shock on the interest rates. These 
measures are given by 
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and 

Ñ = fT Im- tI c(t,O)dt
Jo e 

and were defined in FV and BI respectively4. 

In this section we will consider the set of shocks for FV and BI since they 
are very general (FV only assumes shocks with a bounded derivative and 
BI works with bounded shocks) and, as already mentioned, possible capital 
losses may be measured. By working with these two kinds of shocks, our 
purpose is to compare the final result for the investor if he or she follows one 
of the four following strategies in choosing the portfolio. 

a) Look for the maxmin portfolio in the FV case. 
b) Look for the maxmin portfolio in the BI case. 
b) Minimize the dispersion measure M2. 
c) Minimize the dispersion measure Ñ. 

Let us analyze two different situations. First, it will be proved that if we 
work with pure discount bonds, then options a), b), c) or el) lead to the same 
solution (the same final portfolio). Ho\Vever, in the general case (that is, if 
\Ve consider coupon bonds) then a), b), e) or d) are far from being equivalent, 
as will be shown in sorne examples. 

Let us consider that we are in the FV case. Then, any shock k( s) is 
continuously differentiable and there exists a constant >. such that 

dk( s) < >. for O< s < T. 
ds - - -

Then, if we define the worst shocks k*(s) by 

k*(s) = >'0 + >.(s - m) (15) 

being >'0 = k(m), it clearly follows from the mean value theorem (see also 
BI) that 

k(s) 2:: k*(s) if s:::; m } (16)
k(s):::; k*(s) if s> m 

From (14) and (16) we obtain 

V(q, k) 2:: V(q, k*) (17) 
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for any portfolio q, and therefore 

U(k) ~ U(k*) (18) 

being U the functional introduced in (25). Since U is a convex functional (it is 
the maximun of a finite number of convex functionals as stated by expression 
(3)), in order to prove that program (PK) has an interior solution, it is 
sufficient to show that U(k*) ---+ +00 if Ao ---+ +00 or Ao ---+ -oo. This may be 
easily proved if we take into account (14) and (15) to evaluate V(q, k*), and 
also amongst the n feasible bonds there is at least one coupon paid before m 
and another paid after m. 

By analogy, in the BI case, there exists a constant A such that 

and therefore, given a shock k(s), one can find a real number Ao (see BI) 
such that 

k( s) ~ Ao - i if s::; m } (19)
k( s) ::; Ao + 7: if s > m 

The \Vorst shocks now are given by the step function 

k*( s) = { Ao - i ~f s ::; m (20)
Ao + 2" If s > m 

and following the ideas in the latter case, it may be easily proved that pro­
gram (PK) also has an interior solution in this case. Hence, the results of the 
second section can be applied to both cases, either FV shocks or BI shocks. 

A. The case of pure discount bonds 

Proposition 4.1. Let us assume that the n considered bonds are pure 
discount bonds, and let q* E Q be .a feasible portfolio. Then, the four follow­
ing conditions are equivalent. 

i) q* is maximin in Q if we consider the FV shocks.� 
ii) q* is maximin in Q if we consider the BI shocks.� 
iii) q* solves the program� 

Min M2 } 
q E Q* 
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where M2 represents the FV dispersion measure and Q* is the set of matching 
duration portfolios in Q. 

iv) q* solves the program 

Afín Ñ } 
q E Q* 

where Ñ represents the BI dispersion measure and Q* is the same as iii). 

Proof. See the Appendix. O 

If TI < T2 ••• < Tn represents the maturity of the n considered bonds 
and if Ti =1- m for í = 1,"', n, we show in the proof that the q* portfolio 
satisfying any of these four conditions has a duration equal to m, there are 
only two bonds in q*, and these two bonds have a couple (Ti, Ti) of maturities 
such that Ti < m < Ti, Ti is the largest maturity amongst the ones smaller 
than m, and Ti is the smallest maturity amongst the ones greater than m. 

The surprising result derived from Proposition 4.1 is that amongst zero 
coupon bonds the maxmin portfolio always has a duration equal to the in­
vestor planning periodo From this, it is clear that sorne strategies proposed 
in Prisman and Shores (1988) as alternative strategies to the one proposed 
by FV (1984) are not very reasonable, since the FV strategy is the maxmin 
strategy. 

B. The case of coupon bonds 

If the bonds pay coupons the situation is quite different, and maxmin 
portfolios must be determined by equations (7) to (10). It may be difficult 
in practice to solve this system of equations, since we have to simultaneously 
determine shock k* and the extreme portfolios weights. In any case the 
system becomes far easier if we know the shock k*. 

\Ve wil! now present an algorithm to find the maxmin portfolios for both 
BI shocks and FV shocks. As has already been stated, U(k) is a convex 
functional which can be analyzed by means of real function U(AO)5 for which 
we always have an interior global minimum AO' Once we know the set 
{q1, q2,"', ql} of extreme points of Q* (or Q) we can evaluate U(Ao) by 

U(AO) = Max {V (qJ AO) , ... , V (q~ AO) } (21 ) 
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To calculate A(; we start at an initial value AO(1) and consider the sequence 

where Ao(i + 1) = A(i) + s being s > Othe step. This setp may be taken as 
small as necessary. 

Then we consider the sequence 

U(Ao(l)), U(Ao(2)), Upo(3)),'" (22) 

where U(Ao(i)) is given by (21). 
Since U is a convex funetion, A(; will be determined when the secuence 

(22) begins to increase. 
Once we have A(;, the maxmin portfolio may be easily determined from 

the system of equations (7) to (10). 

V. Solving rnaxrnin portfolio in sorne exarnples 

VVe are going to apply the latter algorithm to solve a simulation model 
which tests how maxmin portfolios and the ones minimizing the dispersion 
measures \Vork out in practice. The algorithm has been applied by taking 
the step s = 10-8

. 

VVe will take an investor planning period of five years, m = 5, along the 
line of empirical studies on immunization, see Bierwag et al. (1993). We will 
assume aplane term strUeture on the interest rates, r = 10%, to make it 
easler. 

Let us consider the set of coupon bonds presented in Table 1 and denote 
by QI (respective1y Q2) the set of feasible portfolios (see (1)) (respeetive1y, 
the set of feasible portfolios which do not contain bond number thirteen). The 
first column in Table 1 is the bond number, the second one is its maturity, the 
third is the coupon (as a percentage), the fourth is the coupon periodicity (in 
months), the fifth is the bond duration, in years, the sixth is its M2 measure, 
and the last one is its Ñ measure. 

In Table 2 (respectively 3) we give the extreme points of Qí (respeetively 
Q2)' which are the set of portfolios in QI (Q2) matching duration. The first 
column is the portfolio number, the second is the first bond in the portfolio, 
the third is the second bond in the portfolio, the fourth is the first bond 
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percentage and the last columns are their M 2 and Ñ dispersion measures. 
The portfolios are arranged according to their Ñ measure. 

By applying the algorithm, we have solved the five fol1owing questions, 
and the results are given in Tables (4) to (11). 
i) The maxmin portfolios in Q1, Q2, Qi, Q;. 
ii) The weights of the different bonds (or portfolios) in the maxmin strategy. 
iii) The worst shock, i.e., number Aa' . 
iv) The value at m guaranteed by the maxmin portfolio as a percentage with 
respeet to the promised amount. 
v) The maxmin portfolio duration. 

Let us remark that in order to choose the set of bonds we have taken 
into account the empirical result revealed by in Bierwag et al. (1993). They 
empirical1y show that the best immunization strategy is matching duration 
but including a maturity matching bond. This strategy is better than a bul1et 
or a barbel1 matching duration strategies, a maturity matching strategy and 
the FV strategy. At the time the work was canied out the Ñ measure had 
not been developed. 

The reason for studying two different situations, (i.e. working with or 
without bond number thirteen) is that this bond must play an important 
role in immunization strategies. In fact, its maturity is exactly five years, 
which means (according to Bierwag et al. (1993) result) that this bond wil1 
probably be in the "best strategy". Gn the other hand, this bond pays 
the lowest coupon (only 9% per year) which will be useful to minimize the 
dispersion measures. The remaining bonds can be considered very normal 
bonds found in the market. The differences amongst them arise from their 
maturities, and from their periodicity in paying the coupons (one or two 
coupons per year). 

A. The FV and the BI shocks. 

Now we point out three arguments given in BI about the advantages of 
the BI shocks over the FV shocks. 

First, the bounded shocks have a theoretical argument in their favor with 
respect to the FV shocks. In the bounded shocks the parameter A can be 
understood as a volatility measure, as how much the shocks on the forward 
instantaneous interest rates can differ between two instants, and this param­
eter can be estimated. Gn the other hand, the FV shocks parameter which 
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is a derivative, has a more complex economic meaning and it is more difficult 
to estimate. 

Second, shocks with a bounded derivative are also bounded but the op­
posite is falseo Shocks with small variations could have a very big derivative. 
Then, we have that bounded shocks include the Fong and Vasicek shocks but 
the opposite is falseo 

Finally, the worst shocks on the term structure of interest rates, in the 
FV situation are very unreal, because they imply very big values when t is 
far from m, see BI. 

B. The Risk Irnrnunization Measures M 2 and Ñ. 

Before starting the maxmin portfolio analysis, we can spend sorne time 
discussing measures M 2 and Ñ. 

An initial result that we can observe in table 2 is that the portfolio min­
imizing the Ñ measure includes a maturity matching bond (bond number 
13). If we work without the bond EJ-umber 13 (see table 3) then we obtain six 
portfolios with almost the same N measure and portfolios number 3,5 and 
6 (which include a maturity matching bond) have a Ñ measure very close 
to the minimum value of this dispersion measure. Gn the other hand, the 
portfolio with the minimum M 2 measure, is far from including a maturity 
matching bond. 

The reason why portfolio 1 in table 2 has the mininum Ñ but a very high 
11{2 could be the fol1owing. Bond thirteen has a lower duration and therefore, 
the portfolio must invest more money in another bond to match the duration 
with m. Since M 2 is a quadratic dispersion measure, the second bond makes 
it increase a lot, while the Ñ measure does not grow as fast in this second 
bond. Portfolio number 4 has the minimum M 2 because it is composed by 
60% of bond number nine (which has a maturity of six years, a duration close 
five years, and not large M 2

). 

Likewise, in Table 1 regarding the first twelve bonds, we observe that 
the second (or eigth) bonds, which are maturity matching bonds, have an 
Ñ measure which is approximately half of the adjacent bonds, the first and 
third (or seventh and neinth). These bonds mature upon four or six years 
respectively. There is a drastic reduction in the dispersion of the second (or 
eigth) bond when using Ñ measure. This reduction is the greatest between 
each pair of consecutive bonds. However, if we use M 2 measure, we can 
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see that the reduction is not as large. Moreover, the said reduction is the 
smallest between each pair of consecutive bonds. 

It is seems that there exists a closer relation between a maturity matching 
bond and the BI strategy than between a maturity matching bond and the 
FV strategy. 

Let us now analyze results obtained on the maxmin portfolio. 

C. Maxmin Portfolio amongst bonds. 

In all the situations considered (FV shocks, BI shocks, working with or 
without bond number thirteen) we can see in Tables 4,5,8 and 9 the maxmin 
portfolio paths. We think these paths are very robust since they do not seem 
to depend on the considered bonds nor on the plane term structure (r=10%) 
initially taken. vVhen parameter A is big enough, the maxmin portfolio is 
almost composed only by a maturity matching bond. However, there is 
always little percentage invested in a bond with a maturity bigger than five 
years in order to avoid a shock (Ao --+ -00) which implies that the value of 
the porfolio would be nothing at m. If A decreases, the percentage invested 
in the maturity matching bond also decreases and the portfolio duration 
increases. This duration is always smaller than five years, because the bonds 
pay their coupon before they pay their principal. When A closes to zero the 
maxmin portfolio converges to the minimum M 2 (for FV shocks) or to nearly 
the minimum Ñ (for BI shocks). 

Regarding BI shocks, we can see in Table 4 that the maxmin portfolio is 
ahvays composed by the same bonds (12 and 13) and only the percentage of 
bonds in the portfolio changes. In Table 5, when parameter A is lower than 
0.11 then the maxmin portfolio is not unique. Bonds 8 or 9 combined with 
bonds 10,11 or 12 also make a maxmin portfolio, although only one solution 
appears in Table 5. For FV shocks, in Tables 8 and 9, we can see that the 
maxmin portfolio does not follow such a robust path. There is a value for 
parameter A from which a maturity matching bond appears in the maxmin 
portfolio. Then, it seems there is more coherence in the results obtained with 
BI shocks than with FV shocks. The maturity matching bond that appears 
in all the tables is the bond with the lowest annual coupon. . 

The presence of a maturity matching bond is very clear because if A takes 
big values, then the worst shocks are big and the principal paid by this bond 
is completely riskfree. 

14 



We can see that the six month coupon bonds do not appear in the maxmin 
porfolio, ceteris paribus, these bonds have more dispersion than the annual 
coupon bonds. 

The path for the worst shock, independent of the type of shocks, is also 
very easy to understand. If >. grows, then the rate invested in the maturity 
matching bond or in bond number 9 also grows. Therefore, the duration of 
the maxmin portfolio decreases, which implies that the worst shock will be 
a lower interest rateo 

So, from the results of Table 4 and 5 and the theoretical advantages of 
Bl shocks we propose the fol1owing strategy. The investor must estimate pa­
rameter >. for Bl shocks and compute the maxmin portfolio for the estimated 
parameter and for the set of feasible bonds. This strategy could include a 
maturity matching bond. 

D. Maxmin portfolio among matching duration portfolios 

The reasons for looking for the maxmin portfolio among matching dura­
tion portfolios are clear if \Ve remember that a matching duration portfolio is 
the classical result for immunization (Fisher and \\leil (1971)). AIso, paral1el 
changes on the interest rates are a strong proportion of the total change as 
shown empirical1y by Litterman and Scheinkman (1991). Final1y, we con­
sider the more recent empirical study on immunization by Bierwag et al. 
(1993). Five of the six strategies that they empirical1y test to see which is 
the best strategy for immunization have a duration equal to m, and the sixth 
one, a maturity matching strategy, has a lower duration and has the worst 
empirical behaviour. Bierwag et al. (1993) show that the best immunization 
strategy consists of a matching duration and including a maturity matching 
bond. This strategy is better than a barbel1, bul1et or FV strategy6. 

Regarding Bl shocks we can observe in tables 6 and 7 that the maxmin 
portfolio is independent of parameter >. (which is a very interesting property). 
This portfolio includes a maturity matching bond with the lowest annual 
coupon at the greatest percentage. So, an alternative strategy to the aboye 
mentioned one may be to estimate paramater >. for Bl shocks and to compute 
the maxmin portfolio amongst the duration matching portfolios. When there 
are several portfolios minimizing the Ñ measure (see table 3, portfolios 1 to 
6), this strategy would al10w to select one of these portfolios for a smal1 
parameter >.. This strategy could be consistent with the empirical result of 
Bierwag et al. (1993). 
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\Vhen we consider FV shocks, the maxmin portfolio minimizes the M2 
for smal1 values for parameter A. vVhen parameter A is large enough, we 
can see in tables 10 and 11 that the maxmin portfolio contains the solution 
for the maxmin portfolio for BI shocks (tables 6 and 7) which increases 
proportional1y to A. 

H is worth emphasizing that the value guaranteed by the maxmin portfo­
lio amongst matching duration portfolios (for reasonable values for parameter 
A) is very close to the value guaranteed by the maxmin portfolio amongst 
bonds. However, those porHolios do not seem to depend too much on pa­
rameter Afer both FV and BI shocks. 

Final1y, sorne maxmin portfolios have associated worst shocks which lead 
to negative interest rates. This is a very undesirable property of the model. 
But we think that it is not that important because negative interest rates 
only appear when A is very large, which is not very reasonable for both 
FV and BI shocks. If we prevented the worst shock in zero from avoiding 
negative interest rates, the maxmin portfolio and its guaranteed value would 
change only slightly. Then, from a qualitative point of view, things would 
not change. vVe also assume that the interest rates can go to +00 or -00 

to easily prove that there is an interior global minimum, but the theory 
developed in the first and the second section is general enough to analyze 
more complicated situations. 

VI. Conclusions 

\Ve have shown that when it is not possible to immunize a bond portfolio, 
we can still find a maxmin portfolio. Moreover, if we want to match the 
portfolio duration, to immunize against additive shocks, we could still find a 
maxmin portfolio among these duration matching portfolios. 

Once the existence of maxmin portfolios has been proved we characterize 
them by means of a saddle point condition and also by means of an equation 
system. 

We have analyzed the strategy of minimizing the risk immunization mea­
sures (M2 and Ñ) and the maxmin strategy for both bounded shocks and 
shocks with a bounded derivative. We have proved that these strategies are 
only equivalent when we consider pure discount bonds. Minimizing disper­
sion measures is equivalent to minimizing the worst shock effect, for each set 
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of shocks considered. If we consider coupon bonds, then the strategies for 
minimizing dispersion measures are not maxmin strategies since they solve 
different programs. We have also given an algorithm For FV shocks and B1 
shocks in order to find the maxmin portfolios. The worst shock may also be 
obtained from these programs. 

With two examples (two sets of bonds) we have computed the maxmin 
portfolio amongst bonds, amongst matching duration portfolios and for both 
FV shocks and B1 shocks. 

For B1 shocks the parameter >. has a sound economic meaning. It can be 
understood as the volatility of interest rates. From looking at the maxmin 
portfolio amongst bonds (tables 4 and 5) we have suggested to estimate 
parameter >. and to compute the maxmin portfolio. This is theoreticaly, in 
our point of view, the best strategy for immunization. This strategy has a 
duration slightly lower than m and could be empirically tested. 

If we wishs to immunize against additive shocks, then an alternative strat­
egy is to estimate parameter >. for B1 shocks, and to compute the maxmin 
portfolio amongst the duration matching portfolios. This strategy could be 
an alternative strategy for minimizing the Ñ measure and it could be consis­
tent with the empirical results of Bierwag et al. (1993). 

Once we have computed the maxmin portfolio and the worst shock, it is 
easy to compute how much money may be lost. This is another interesting 
property of this model. 

The FV shocks have a disadvantage, which is the meaning of the param­
eter >.. 1s a large or a small number for >. reasonable? With FV shocks, and 
for a small >. the maxmin portfolio, amongst bonds or amongst matching du­
ration portfolios and the portfolio with the minimum M 2

, may be obtained 
by buying the same bonds. If >. increases, a maturity matching bond appears 
in the maxmin portfolio, and its percentage increases with >.. 
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Appendix 

Prooi oi Theorem 2.1. Let {ql, q2 , , ql} be the set of extreme points in 
Q*. Then the functionals V( qi, k) i = 1 , 1are convex and positive in the 
k variable. Therefore the hypotheses H2 and H3 still hold and we are under 
the assumptions of Lemma 1.1 in Balbásand Ibáñez (1995) which proves the 
existence of a riskless shadow asset that guarantees a return 110' 

Since Q* is the convex hull of {ql, q2, .. . , ql}, then given any q E Q* one 
can find Al, A2,' .. , Al non negative real numbers such that 

1 

q ¿ aiqi 
i=1 

1 = 
1 

¿ai 
i=1 

(24) 

Let us consider the functional 

U(k)=AIax{V(~,k); i=l, ... ,I} (25) 

and let 

11~ = In f {U(k); k E K} (26) 

Clearly 110 2 Oand \Ve are going to prove that 

V(q) :S l10G (27) 

holds for any q E Q-. 
For any k E I< \Ve have that 

1 1 

V(q,k) = ¿aiV(qi,k):S G¿aiU(k) = GU(k) 
i=1 i=l 

and therefore 

V(q) = Inf{V(q, k); k E I<} :S Inf{U(k); k E K}G = I1~G. 

It follows from (27), that if we can find a portfolio q* in Q* such that V(q*) = 
l10G then q* will be maxmin in Q* and the theorem will be proved. To find 
this q*, let us remark that for any k E I< we have 

U(k) 2 11~ 
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and therefore, since U(k) is given by (25) there exist i E {1,"', l} (which 
depends of k) such that 

V(qi, k) " 
C "?:. J1-o 

Now, the existence of q" trivially follows from Lemma 1.1 of Balbás and 
Ibáñez (1995). O 

Proof of Theorem 3.2. Let us assume that q" is a maxmin portfolio in 
Q~ and that k" solves (PK). Then we have from (8) that V(q") = U(k")C. 

For any q' portfolio in Q" we have 

V(q', k") :::; Max{V(q, k"); q E Q*} = U(k")C = 

= V(q") = In! {V(q", k) k E I<} :::; V(q", k") 

Furthermore, for any k' admissible shock 

V(q*, k') "?:. In! {V(q", k); k E I<} = V(q*) = 
= U(k*)C = J\1ax{V(q, k"); q E Q*} "?:. V(q*, k") 

Conversely, let us assume that (q", k") is a saddle point and let us prove that 
q* is maxmin. Since V( q~, k*) :::; V( q*, k) for any k E I< we have that 

V(q*) = V(q*, k*) 

and q* will be maxmin if \Ve show that V(q) :::; V(q", k*) for any q E Q". 
This is true since 

V(q) = In! {V(q, k); k E I<} :::; V(q, k") :::; V(q*, k") 

Let us finally prove that k* solves (PK). Since V(q, k") :::; V(q*, k*) for any 
q E Q~ \Ve have that 

U(k") = V(q",k") 
C 

and k* \Vill solve (PK) if we show that U(k) "?:. V(qj k") for any k E I<. But 

U(k) = M {V(q, k). Q} > V(q*, k) > V(q", k") O 
ax C ,q E - C - C . 
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Proof of Proposition 4.1. Let us consider that the n bonds have their 
maturity at instants Tl < T2 •.• < Tn respeetive1y and that the n bonds pay 
one monetary unit at maturity. The proposition is obvious if there exists a 
bond i such that Ti = m since the solution for the four programs is to invest 
capital e in this bond. 

Let us assume that Ti =J. m for i = 1, ... ,n. 
If we assume that condition ii) holds, then, as has been stated, the min­

imums of functional U are at tained in shocks k* (s) wi th the form given in 
(20). There, A > O is constant and therefore the shock is given by Aa. In 
order to achieve an easier notation we indentify the shock wi th Aa, and since 
al! the bonds are pure discount bonds, (14) becomes in this case 

(28) 

and therefore 

(29) 

where qi, (i = 1,'" ,n) is any extreme point of set Q, and clearly, it consists 
of a portfolio which has invested capital e in the i-th bond. If 

1 

* """" * 1q = L...J ai q 
i=l 

is the maximin portfolio, conditions (7) to (lO) must hold, and then, from 
(28) and (29) we obtain 

h 

¿ai=1 (30) 
i=l 

Ao(m - Ti) - 2"
A 1m - Ti I has its maximum in j for j = 1," " h(31) 

a~ > O i = {1 ... h}
1 - " 

h 

¿ ai(m - Ti) = O (32) 
i=l 

where we have assumed that the portfolios qi, . .. ,qh are the only ones in the 
maxmin portfolio, again in order to achieve easier notation. 
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Expressions (30) and (32) imply that the maxmin portfolio q* is a match­
ing duration portfolio, i.e., q* E Q*. 

Since q* has a duration equal to m and none of the bonds has m maturity, 
at least two bonds (i and j) must be in the maxmin portfolio, and the 
following inequality must hold Ti < m < Ti' 

We have from (31) 

A A 
Ao (m - Ti) - "2 Im - Ti 1= Ao(m - Ti) - "2 Im - Ti I 

from where the worst shock will be 

A(2m - T· - T;)A* - J t 

0- 2(Ti - Ti) 

and therefore 

since this expression has to be maxima (see (31)), it will be proved that a 
maxmin portfolio only has two bonds, if we prove that 

= (m - Ti)(Ti - m) . . h -1..'F(T,. T,) 
tl J T. _ T,. t,) = 1,"', ,i r) (33) 

J t 

only has one minimum. 
Clearly 

8F [T' - m]2
-- J <O
8Ti -- Ti-Ti 

8F [m - Ti]2-- >0
8Ti - Ti-Ti 

and F increases with Ti and decreases with Ti' Given that Ti < m < Ti the 
minimum is attained at the point (Ji, Ti) c10sest to m. 

By analogy, if we assume that i) holds, then following the ideas in the 
latter case, the worst shock will be given by 

A(2m - T· - T,.)A* - J t 
0- 2 
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and the only two bonds in the maxmim portfolio will be obtained by mini­
mizing the expression 

Therefore, the maxmin portfolio will be the one computed in the latter case. 

Let us assume that iv) holds. 
Let al, a2, ... ,an be the percentages invested in bonds 1,2, ... , n respec­

ti vely and clearly q* solves the fol1owing program 

n 

Min� ¿ ai Im - Ti I 
i=l 

subject to L:i=l aiTi = m } 
L:i=l ai = 1 

ai ~ O i = 1, ... , n 

Since the program is linear, the minimum must be attained at an extreme 
point. Gn the other hand the basic feasible solutions (extreme points) have 
only two non-zero variables (there are two constraints), the first constraint 
shows that the two bonds in the solution must have maturities smaller and 
greater than m respectively. If a¡ and aj (T¡ < m < Tj ) are non zero in the 
solution, then 

from where 

a'l m-T,'I +a'l m-T.I= 2(m-T¡)(Tj -m) 
I I� JJ� Tj-T¡ 

and it has already been proved that the latter expression becomes minima 
when the couple (Ti, Tj ) is as near as possible to m. 

If we assume that iii) holds we obtain the same solution q* in an analogous 
w~ O 
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Footnotes 

1 From now on, if k" solves (PK) it is called the "worst shock". 

2'We are going to show the proof although it is very similar to the very 
well known proof in game theory. 

3We observe that having defined V(q, k) as in (ll) the Hyphotesis H4 of 
Balbás and Ibáñez (1995) holds, which says that lI¡(ü) = RPi , i = 1,' .. ,n. 

4From now on, FV and BI will mean Fong and Vasicek (1984) and Balbás 
and Ibáñez (1995) respectively. 

5U(-\0) represents the number denoted by U(k) in the second section. 

6Prisman and Tian (1994) in an empirical work on the effects of taxes 
on immunization point out that there is no theory underyliyng the strat­
egy proposed by Bierwag et al. (1993), and consequently, there are no 
guidelines regarding the weight of such bond in the portfolio. 
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Table 1: Set of Bonds 

Band Maturity caupan caupan Duratian M2 Ñ 
number (years) in % (manthly) (years)� 

1 4 5 6 3.39029 3.78821 1.60970� 
2 5 5 6 4.04855 3.12539 0.95144� 

3 6 5 6 4.64453 3.71997 1.55018� 
4 7 5 6 5.18397 5.34059 2.09212� 

5 8 5 6 5.67211 7.78769 2.58253� 
6 9 5 6 6.11372 10.8897 3.02620� 

7 4 10 12 3.48232 3.27130 1.51767 

8 5 10 12 4.16101 2.59822 0.83898 

9 6 10 12 4.77597 3.22315 1.45880 

10 7 10 12 5.33285 4.90932 2.02011 
11 8 10 12 5.83689 7.45157 2.52818 

12 9 10 12 6.29287 10.6728 2.98782 

_1_3------l__5 9 1_2_1 4.21496 12.43114 10.78503 I 
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Table 2: Matching-duration Portfolios, Qí. 

I number ~ lth bond 1 2th bond 

1 12 13� 
2 11 13� 
3 10 13� 
4 9 10� 
5 9 11� 
6 8 10� 
7 9 12� 
8 8 11� 
9 8 12� 
10 6 13� 
11 6 9� 
12 5 9� 
13 2 10� 
14 5 13� 
15 6 8� 
16 2 11� 
17 3 10� 
18 4 9� 
19 5 8� 
20 2 12� 
21 3 11� 
22 4 13� 
23 3 12� 
24 4 8� 
25 3 4� 
26 2 4� 
27 3 5� 
28 3 6� 
29 2 5� 
30 2 6� 
31 7 10� 
32 1 10� 
33 4 7� 
34 1 4� 
35 7 11� 
36 1 11� 
37 5 7� 
38 1 5� 
39 7 12� 
40 1 12� 
41 6 7� 
42 1 6� 

26� 

I % (lth) I� 

37.77 
48.40 
70.22 
59.77 
78.88 
28.40 
85.23 
49.93 
60.64 
41.34 
16.74 
24.99 
25.91 
53.87 
42.96 
46.79 
48.35 
54.90 
55.52 
57.60 
70.18 
81.01 
78.43 
82.01 
34.10 
16.20 
65.40 
75.80 
41.39 
53.92 
17.98 
17.13 
89.18 
10.25 
35.54 
34.20 
69.30 
29.45 
46.00 
44.54 
57.67 
40.89 

M2 I Ñ 
5.544 1.617 
4.861 1.628 
4.171 1.652 
3.901 1.684 
4.116 1.684 
4.252 1.684 
4.323 1.684 
5.027 1.684 
5.775 1.684 
5.928 1.711 
4.507 1.721 
4.364 1.739 
4.446 1.743 
5.316 1.753 
6.160 1.778 
5.427 1.790 
4.334 1.792 
4.385 1.806 
5.479 1.807 
6.325 1.814 
4.832 1.841 
4.788 1.843 
5.219 1.860 
4.847 1.866 
4.787 1.907 
4.981 1.907 
5.127 1.907 
5.454 1.907 
5.857 1.907 
6.702 1.907 
4.614 1.929 
4.717 1.949 
5.116 2.030 
5.181 2.042 
5.965 2.169 
6.198 2.214 
6.401 2.255 
6.609 2.295 
7.268 2.311 
7.606 2.373 
7.665 2.387 
7.985 2.446 



Table 3: Matching-duration Portfolios, Q2' 
Q 

I number ~ lth bond 12th bond I % (lth) I M2 I N 
1 9 10 59.77 3.901 1.6846132 
2 9 11 78.88 4.116 1.6846172 
3 8 10 28.40 4.252 1.6846198 
4 9 12 85.23 4.323 1.6846211 
5 8 11 49.93 5.027 1.6846342 
6 8 12 60.64 5.775 1.6846482 
7 6 9 16.74 4.507 1.7212876 
8 5 9 24.99 4.364 1.7397250 
9 2 10 25.91 4.446 1.7431487 
10 6 8 42.96 6.160 1.7787185 
11 2 11 46.79 5.427 1.7903170 
12 3 10 48.35 4.334 1.7928698 
13 4 9 54.90 4.385 1.8065498 
14 5 8 55.52 5.479 1.8070234 
15 2 12 57.60 6.325 1.8147429 
16 3 11 70.18 4.832 1.8417463 
17 3 12 78.43 5.219 1.8602143 
18 4 8 82.01 4.847 1.8667515 
19 3 4 34.10 4.787 1.9072982 
20 2 4 16.20 4.981 1.9072993 
21 3 5 65.40 5.127 1.9073001 
22 3 6 75.80 5.454 1.9073020 
23 2 5 41.39 5.857 1.9073042 
24 2 6 53.92 6.702 1.9073090 
25 7 10 17.98 4.614 1.9297429 
26 1 10 17.13 4.717 1.9497946 
27 4 7 89.18 5.116 2.0300177 
28 1 4 10.25 5.181 2.0426442 
29 7 11 35.54 5.965 2.1690124 
30 1 11 34.20 6.198 2.2140047 
31 5 7 69.30 6.401 2.2556923 
32 1 5 29.45 6.609 2.2959836 
33 7 12 46.00 7.268 2.3115433 
34 1 12 44.54 7.606 2.3739805 
35 6 7 57.67 7.665 2.3877217 
36 1 6 40.89 7.985 2.4469345 
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Table 4: Maxmin Portfolios among bonds� 
BI shocks. Set oí bonds Q1.� 

A ~ lth bond 12th bond I %(lth) I A~ I %value I duration I 
0.001 l:¿ 1J JtUJ774 -0.0005 4.l:H~JJ
 
0.002 12 13 36.8506 -0.0010 §§:~~~~ 4.9806� 
0.004 12 13 36.5985 -0.0021 99.6786 4.9754� 
0.006 12 13 36.3484 -0.0031 99.5195 4.9702� 
0.008 12 13 36.1004 -0.0042 99.3615 4.9651� 
0.010 12 13 35.8544 -0.0052 99.2045 4.9599� 
0.012 12 13 35.6103 -0.0063 99.0485 4.9549� 
0.014 12 13 35.3683 -0.0074 98.8935 4.9498� 
0.016 12 13 35.1281 -0.0084 98.7395 4.9448� 
0.018 12 13 34.8900 -0.0095 98.5866 4.9399� 
0.020 12 13 34.6537 -0.0105 98.4346 4.9350� 
0.022 12 13 34.4193 -0.0116 98.2836 4.9301� 
0.024 12 13 34.1868 -0.0126 98.1336 4.9253� 
0.026 12 13 33.9561 -0.0137 97.9845 4.9205� 
0.028 12 13 33.7273 -0.0148 97.8365 4.9157� 
0.030 12 13 33.5004 -0.0158 97.6894 4.9110� 
0.032 12 13 33.2752 -0.0169 97.5432 4.9063� 
0.034 12 13 33.0518 -0.0179 97.3980 4.9017� 
0.036 12 13 32.8302 -0.0190 97.2537 4.8971� 
0.038 12 13 32.6103 -0.0200 97.1103 4.8925� 
0.040 12 13 32.3922 -0.0211 96.9679 4.8880� 
0.042 12 13 32.1758 -0.0221 96.8264 4.8835� 
0.044 12 13 31.9611 -0.0232 96.6858 4.8790� 
0.046 12 13 31.7481 -0.0242 96.5461 4.8746� 
0.048 12 13 31.5368 -0.0253 96.4072 4.8702� 
0.050 12 13 31.3272 -0.0263 96.2693 4.8659� 
U.UbU 1:¿ 1J JU.JUJJ -U.UJ1b ~,).b!::ms 4.M4b 
0.070 12 13 29.3186 -0.0368 94.9375 4.8241� 
0.080 12 13 28.3716 -0.0421 94.3027 4.8045� 
0.090 12 13 27.4603 -0.0473 93.6877 4.7855� 
0.100 12 13 26.5834 -0.0525 93.0917 4.7673� 
0.110 12 13 25.7392 -0.0577 92.5140 4.7498� 
0.120 12 13 24.9264 -0.0629 91.9541 4.7329� 
0.130 12 13 24.1437 -0.0681 91.4113 4.7166� 
0.140 12 13 23.3897 -0.0733 90.8849 4.7009� 
0.150 12 13 22.6632 -0.0785 90.3745 4.6858� 
0.160 12 13 21.9631 -0.0837 89.8795 4.6713� 
0.170 12 13 21.2883 -0.0889 89.3992 4.6573� 
0.180 12 13 20.6377 -0.0940 88.9334 4.6438� 
0.190 12 13 20.0103 -0.0992 88.4813 4.6307� 
0.200 12 13 19.4052 -0.1044 88.0426 4.6181� 
U.¿,)U 1:¿ 1J 1b.b~J~ -U.1JU1 ~b.UJ41 4.bb1(j 
0.300 12 13 14.4005 -0.1557 84.2983 4.5141� 
0.350 12 13 12.4765 -0.1813 82.7930 4.4742� 
0.400 12 13 10.8490 -0.2067 81.4833 4.4404� 
0.450 12 13 9.46736 -0.2322 80.3400 4.4116� 
0.500 12 13 8.29019 -0.2575 79.3388 4.3872� 
0.550 12 13 7.28392 -0.2828 78.4593 4.3663� 
0.600 12 13 6.42096 -0.3081 77.6842 4.3483� 
0.650 12 13 5.67854 -0.3334 76.9990 4.3329� 
0.700 12 13 5.03784 -0.3586 76.3914 4.3196� 
0.750 12 13 4.48324 -0.3838 75.8510 4.3081� 
0.800 12 13 4.00172 -0.4089 75.3690 4.2981� 
0.850 12 13 3.58240 -0.4341 74.9379 4.2894� 
0.900 12 13 3.21617 -0.4592 74.5511 4.2817� 
0.950 12 13 2.89539 -0.4844 74.2031 4.2751� 

1.0 12 13 2.61358 -0.5095 73.8893 4.2692� 
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Table 5: Maxmin Portíolios among bonds� 
BI shocks. Set oí bonds Q2'� 

,\ ~ lth bond 12th bond I % (lth) I ,\~ I %value I duration I 
U.UUl 10 !:J J!:J.~:n:l -U.UUU5 !:J!:J.!:J15!:J 
0.002 10 9 39.3521 -0.0010 99.8320 t§§M�
0.004 10 9 38.4190 -0.0020 99.6651 4.9899� 
0.006 10 9 37.4922 -0.0030 99.4993 4.9847� 
0.008 10 9 36.5718 -0.0040 99.3344 4.9796� 
0.010 10 9 35.6577 -0.0050 99.1706 4.9745� 
0.012 10 9 34.7498 -0.0060 99.0079 4.9694� 
0.014 10 9 33.8482 -0.0070 98.8461 4.9644� 
0.016 10 9 32.9528 -0.0080 98.6853 4.9594� 
0.018 10 9 32.0635 -0.0090 98.5255 4.9545� 
0.020 10 9 31.1803 -0.0100 98.3667 4.9496� 
0.022 10 9 30.3031 -0.0110 98.2089 4.9447� 
0.024 10 9 29.4319 -0.0120 98.0521 4.9398� 
0.026 10 9 28.5667 -0.0130 97.8962 4.9350� 
0.028 10 9 27.7074 -0.0141 97.7413 4.9302� 
0.030 10 9 26.8540 -0.0151 97.5874 4.9255� 
0.032 10 9 26.0064 -0.0161 97.4344 4.9207� 
0.034 10 9 25.1646 -0.0171 97.2823 4.9161� 
0.036 10 9 24.3285 -0.0181 97.1312 4.9114� 
0.038 10 9 23.4981 -0.0191 96.9810 4.9068� 
0.040 10 9 22.6734 -0.0201 96.8317 4.9022� 
0.042 10 9 21.8542 -0.0211 96.6834 4.8976� 
0.044 10 9 21.0407 -0.0221 96.5359 4.8931� 
0.046 10 9 20.2327 -0.0231 96.3894 4.8886� 
0.048 10 9 19.4302 -0.0241 96.2438 4.8841� 
0.050 10 9 18.6331 -0.0251 96.0990 4.8797� 
U.uoU 10 !:J 14.n~4 -U.UJU:l !:Jb.J~~b 4.~57!:J
 

0.070 10 9 10.9541 -0.0352 94.6993 4.8369� 
0.080 10 9 73.0585 -0.0402 94.0308 4.8166� 
0.090 10 9 37.7896 -0.0453 93.3824 4.7970� 
0.100 10 9 36.9186 -0.0503 92.7533 4.7780� 
0.110 9 8 97.3620 -0.0553 92.1429 4.7597� 
0.120 9 8 94.4887 -0.0603 91.5505 4.7420� 
0.130 9 8 91.7097 -0.0654 90.9757 4.7249� 
0.140 9 8 89.0219 -0.0704 90.4177 4.7084� 
0.150 9 8 86.4220 -0.0754 89.8761 4.6924� 
0.160 9 8 83.9070 -0.0805 89.3503 4.6770� 
0.170 9 8 81.4739 -0.0855 88.8398 4.6620� 
0.180 9 8 79.1198 -0.0905 88.3442 4.6475� 
0.190 9 8 76.8420 -0.0955 87.8628 4.6335� 
0.200 9 8 74.6378 -0.1005 87.3953 4.6200� 
U.:laU !:J ~ 04.oJ55 -U.l::!bo ~b.:¿bUJ 4.bbM 
0.300 9 8 56.1283 -0.1507 83.3907 4.5061� 
0.350 9 8 48.8776 -0.1758 81.7738 4.4615� 
0.400 9 8 42.6846 -0.2009 80.3640 4.4235� 
0.450 9 8 37.3831 -0.2259 79.1312 4.3909� 
0.500 9 8 32.8347 -0.2510 78.0502 4.3629� 
0.550 9 8 28.9233 -0.2760 77.0994 4.3388� 
0.600 9 8 25.5517 -0.3011 76.2607 4.3181� 
0.650 9 8 22.6384 -0.3261 75.5188 4.3002� 
0.700 9 8 20.1148 -0.3511 74.8605 4.2847� 
0.750 9 8 17.9233 -0.3762 74.2749 4.2712� 
0.800 9 8 16.0153 -0.4012 73.7524 4.2595� 
0.850 9 8 14.3499 -0.4262 73.2848 4.2492� 
0.900 9 8 12.8925 -0.4512 72.8654 4.2403� 
0.950 9 8 11.6136 -0.4762 72.4880 4.2324� 

1.0 9 8 10.4886 -0.5013 72.1477 4.2255� 
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Table 6: Maxmin Portíolios among duration-matching portíolios. 
BI shocks. Set oí portfolios Qi. 

.-\ ~ lth partí 12th partí I %(lth) I .-\~ 
O.UU.l 1 1 lUU. -.00UU4 
0.002 1 1 100. -.00009 
0.004 1 1 100. -.00019 
0.006 1 1 100. -.00029 
0.008 1 1 100. -.00038 
0.010 1 1 100. -.00048 
0.012 1 1 100. -.00058 
0.014 1 1 100. -.00068 
0.016 1 1 100. -.00077 
0.018 1 1 100. -.00087 
0.020 1 1 100. -.00097 
0.022 1 1 100. -.00107 
0.024 1 1 100. -.00116 
0.026 1 1 100. -.00126 
0.028 1 1 100. -.00136 
0.030 1 1 100. -.00146 
0.032 1 1 100. -.00156 
0.034 1 1 100. -.00166 
0.036 1 1 100. -.00175 
0.038 1 1 100. -.00185 
0.040 1 1 100. -.00195 
0.042 1 1 100. -.00205 
0.044 1 1 100. -.00215 
0.046 1 1 100. -.00225 
0.048 1 1 100. -.00235 
0.050 1 1 100. -.00245 
U.ooO 1 1 100. -.00:l!:J5 
0.070 1 1 100. -.00345 
0.080 1 1 100. -.00396 
0.090 1 1 100. -.00446 
0.100 1 1 100. -.00498 
0.110 1 1 100. -.00549 
0.120 1 1 100. -.00601 
0.130 1 1 100. -.00653 
0.140 1 1 100. -.00705 
0.150 1 1 100. -.00757 
0.160 1 1 100. -.00810 
0.170 1 1 100. -.00864 
0.180 1 1 100. -.00917 
0.190 1 1 100. -.00971 
0.200 1 1 100. -.01025 
O.:¿jO 1 1 lUU. -.OlJUU 
0.300 1 1 100. -.01583 
0.350 1 1 100. -.01874 
0.400 1 1 100. -.02173 
0.450 1 1 100. -.02481 
0.500 1 1 100. -.02797 
0.550 1 1 100. -.03122 
0.600 1 1 100. -.03455 
0.650 1 1 100. -.03797 
0.700 1 1 100. -.04148 
0.750 1 1 100. -.04508 
0.800 1 1 100. -.04878 
0.850 1 1 100. -.05256 
0.900 1 1 100. -.05644 
0.950 1 1 100. -.06042 

1.0 1 1 100. -.06448 

3D� 

I %value I 
!J!:L!:WJ:l 
99.8385 
99.6776 
99.5172 
99.3574 
99.1982 
99.0394 
98.8812 
98.7236 
98.5664 
98.4098 
98.2538 
98.0982 
97.9432 
97.7887 
97.6348 
97.4813 
97.3284 
97.1760 
97.0241 
96.8727 
96.7218 
96.5715 
96.4216 
96.2723 
96.1234 
!:J5.;j~07 

94.6623 
93.9499 
93.2495 
92.5607 
91.8834 
91.2174 
90.5624 
89.9182 
89.2848 
88.6618 
88.0491 
87.4465 
86.8539 
86.2709 
I:SJ.4l:;ltll:S 
80.9418 
78.5873 
76.4164 
74.4136 
72.5647 
70.8568 
69.2782 
67.8182 
66.4669 
65.2154 
64.0556 
62.9800 
61.9818 
61.0547 
60.1930 



Table 7: Maxmin Portfolios among duration-matching portfolios. 
BI shocks. Set of portfolios Q;. 

,\ ~ lth portf 12th portf I %(lth) I ,\~ 
O.UUl tí ti lUU. -.UUUU4 
0.002 6 6 100. -.00009 
0.004 6 6 100. -.00019 
0.006 6 6 100. -.00029 
0.008 6 6 100. -.00038 
0.010 6 6 100. -.00048 
0.012 6 6 100. -.00058 
0.014 6 6 100. -.00068 
0.016 6 6 100. -.00077 
0.018 6 6 100. -.00087 
0.020 6 6 100. -.00097 
0.022 6 6 100. -.00107 
0.024 6 6 100. -.00116 
0.026 6 6 100. -.00126 
0.028 6 6 100. -.00136 
0.030 6 6 100. -.00146 
0.032 6 6 100. -.00156 
0.034 6 6 100. -.00166 
0.036 6 6 100. -.00175 
0.038 6 6 100. -.00185 
0.040 6 6 100. -.00195 
0.042 6 6 100. -.00205 
0.044 6 6 100. -.00215 
0.046 6 6 100. -.00225 
0.048 6 6 100. -.00235 
0.050 6 6 100. -.00245 
U.UtiU ti ti lUU. -.UU:W() 
0.070 6 6 100. -.00345 
0.080 6 6 100. -.00396 
0.090 6 6 100. -.00446 
0.100 6 6 100. -.00498 
0.110 6 6 100. -.00549 
0.120 6 6 100. -.00601 
0.130 6 6 100. -.00653 
0.140 6 6 100. -.00705 
0.150 6 6 100. -.00757 
0.160 6 6 100. -.00810 
0.170 6 6 100. -.00864 
0.180 6 6 100. -.00917 
0.190 6 6 100. -.00971 
0.200 6 6 100. -.01025 
U.~()U o o lUU. -.Ul;5UU 
0.300 6 6 100. -.01583 
0.350 6 6 100. -.01874 
0.400 6 6 100. -.02173 
0.450 6 6 100. -.02481 
0.500 6 6 100. -.02797 
0.550 6 6 100. -.03122 
0.600 6 6 100. -.03455 
0.650 6 6 100. -.03797 
0.700 6 6 100. -.04148 
0.750 6 6 100. -.04508 
0.800 6 6 100. -.04878 
0.850 6 6 100. -.05256 
0.900 6 6 100. -.05644 
0.950 6 6 100. -.06042 

1.0 6 6 100. -.06448 
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I %value I 
!J!J.!:Hb~ 

99.8318 
99.6642 
99.4971 
99.3306 
99.1647 
98.9994 
98.8346 
98.6704 
98.5067 
98.3436 
98.1810 
98.0190 
97.8575 
97.6966 
97.5362 
97.3764 
97.2171 
97.0583 
96.9001 
96.7424 
96.5852 
96.4286 
96.2725 
96.1169 
95.9619 
!J5.1!J44 
94.4398 
93.6978 
92.9682 
92.2507 
91.5451 
90.8513 
90.1690 
89.4981 
88.8382 
88.1893 
87.5510 
86.9233 
86.3060 
85.6988 
~vm!Ju 

80.1475 
77.6949 
75.4335 
73.3472 
71.4213 
69.6422 
67.9978 
66.4769 
65.0693 
63.7657 
62.5576 
61.4371 
60.3973 
59.4316 
58.5340 
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Table 8: Maxmin Portfolios among bonds� 
FV shocks. Set oí bonds Ql'� 

A ~ lth bond 12th bond I %(lth) I :x~ I %value I duration I 
U.UUl lU !J J~.041o -.UU151 !J!J.~UOJ 
0.002 10 9 37.0122 -.00302 99.6154 ::~~~6
 
0.004 10 9 33.8142 -.00605 99.2417 4.9642� 
0.006 10 9 30.6958 -.00908 98.8787 4.9469� 
0.008 10 9 27.6548 -.01210 98.5262 4.9299� 
0.010 10 9 24.6890 -.01513 98.1838 4.9134� 
0.012 10 9 21.7965 -.01815 97.8514 4.8973� 
0.014 10 9 18.9753 -.02118 97.5287 4.8816� 
0.016 10 9 16.2235 -.02420 97.2155 4.8663� 
0.018 10 9 13.5392 -.02722 96.9115 4.8513� 
0.020 10 9 10.9206 -.03025 96.6166 4.8367� 
0.022 10 9 8.36603 -.03327 96.3306 4.8225� 
0.024 10 9 5.87367 -.03629 96.0532 4.8086� 
0.026 10 9 3.44193 -.03931 95.7843 4.7951� 
0.028 10 9 1.06918 -.04233 95.5237 4.7819� 
0.030 9 9 100. -.04251 95.2701 4.7759� 
0.032 9 9 100. -.04028 95.0182 4.7759� 
0.034 9 9 100. -.03806 94.7674 4.7759� 
0.036 9 9 100. -.03584 94.5175 4.7759� 
0.038 9 9 100. -.03362 94.2687 4.7759� 
0.040 9 9 100. -.03140 94.0209 4.7759� 
0.042 9 9 100. -.02919 93.7740 4.7759� 
0.044 9 13 98.9017 -.02949 93.5290 4.7698� 
0.046 9 13 97.4048 -.03077 93.2877 4.7614� 
0.048 9 13 95.9394 -.03205 93.0503 4.7531� 
0.050 9 13 94.5048 -.03332 92.8167 4.7451� 
U.uoU !:J lJ ~{ .{04~ -.UJ!:Jou !:J l.{u:¿o 4.{U{J 
0.070 9 13 81.6788 -.04579 90.6722 4.6731� 
0.080 9 13 76.1695 -.05189 89.7176 4.6422� 
0.090 9 13 71.1687 -.05790 88.8319 4.6142� 
0.100 9 13 66.6184 -.06385 88.0087 4.5887� 
0.110 9 13 62.4687 -.06973 87.2425 4.5654� 
0.120 9 13 58.6763 -.07555 86.5284 4.5441� 
0.130 9 13 55.2033 -.08131 85.8618 4.5246� 
0.140 9 13 52.0169 -.08702 85.2387 4.5067� 
0.150 9 13 49.0880 -.09269 84.6555 4.4903� 
0.160 9 13 46.3911 -.09831 84.1090 4.4752� 
0.170 9 13 43.9038 -.10390 83.5961 4.4612� 
0.180 9 13 41.6060 -.10945 83.1141 4.4483� 
0.190 9 13 39.4801 -.11497 82.6608 4.4364� 
0.200 9 13 37.5103 -.12045 82.2337 4.4254� 
U.~oU !:J lJ ~!:J.b5O!:J -.14{51 ~U.4~!:Jl 

0.300 9 13 23.9067 -.17408 79.0458 ::~~~6
 
0.350 9 13 19.7715 -.20031 77.9581 4.3258� 
0.400 9 13 16.6626 -.22631 77.0830 4.3084� 
0.450 9 13 14.2682 -.25212 76.3648 4.2950� 
0.500 9 13 12.3832 -.27780 75.7647 4.2844� 
0.550 9 13 10.8700 -.30337 75.2555 4.2759� 
0.600 9 13 9.63413 -.32887 74.8179 4.2690� 
0.650 9 13 8.60899 -.35430 74.4373 4.2632� 
0.700 9 13 7.74710 -.37968 74.1030 4.2584� 
0.750 9 13 7.01377 -.40501 73.8070 4.2543� 
0.800 9 13 6.38321 -.43031 73.5428 4.2507� 
0.850 9 13 5.83594 -.45558 73.3055 4.2477� 
0.900 9 13 5.35702 -.48082 73.0912 4.2450� 
0.950 9 13 4.93482 -.50604 72.8966 4.2426� 

1.0 9 13 4.56015 -.53124 72.7191 4.2405� 
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Table 9: Maxmin Portfolios among bonds� 
FV shocks. Set of bonds Q2.� 

A ~ 1th bond 12th bond I %(1th) I A~ I %value I duration I 
0.001 10 9 38.6416 -.00151 99.8063 4.~~1l
 
0.002 10 9 37.0122 -.00302 99.6154 4.9820� 
0.004 10 9 33.8142 -.00605 99.2417 4.9642� 
0.006 10 9 30.6958 -.00908 98.8787 4.9469� 
0.008 10 9 27.6548 -.01210 98.5262 4.9299� 
0.010 10 9 24.6890 -.01513 98.1838 4.9134� 
0.012 10 9 21.7965 -.01815 97.8514 4.8973� 
0.014 10 9 18.9753 -.02118 97.5287 4.8816� 
0.016 10 9 16~2235 -.02420 97.2155 4.8663� 
0.018 10 9 13.5392 -.02722 96.9115 4.8513� 
0.020 10 9 10.9206 -.03025 96.6166 4.8367� 
0.022 10 9 8.36603 -.03327 96.3306 4.8225� 
0.024 10 9 5.87367 -.03629 96.0532 4.8086� 
0.026 10 9 3.44193 -.03931 95.7843 4.7951� 
0.028 10 9 1.06918 -.04233 95.5237 4.7819� 
0.030 9 9 100. -.04251 95.2701 4.7759� 
0.032 9 9 100. -.04028 95.0182 4.7759� 
0.034 9 9 100. -.03806 94.7674 4.7759� 
0.036 9 9 100. -.03584 94.5175 4.7759� 
0.038 9 9 100. -.03362 94.2687 4.7759� 
0.040 9 9 100. -.03140 94.0209 4.7759� 
0.042 9 9 100. -.02919 93.7740 4.7759� 
0.044 9 9 100. -.02698 93.5282 4.7759� 
0.046 9 9 100. -.02477 93.2833 4.7759� 
0.048 9 8 99.3094 -.02432 93.0398 4.7717� 
0.050 9 8 98.0602 -.02533 92.7995 4.7640� 
U.uoU !J ~ 92.1040 -.03039 !J l.o4~1 4.(:¿H� 
0.070 9 8 86.6030 -.03544 90.5751 4.6935� 
0.080 9 8 81.5172 -.04048 89.5742 4.6623� 
0.090 9 8 76.8121 -.04553 88.6398 4.6333� 
0.100 9 8 72.4560 -.05057 87.7665 4.6065� 
0.110 9 8 68.4197 -.05561 86.9495 4.5817� 
0.120 9 8 64.6767 -.06064 86.1845 4.5587� 
0.130 9 8 61.2031 -.06568 85.4674 4.5373� 
0.140 9 8 57.9766 -.07071 84.7945 4.5175� 
0.150 9 8 54.9774 -.07574 84.1626 4.4991� 
0.160 9 8 52.1870 -.08077 83.5685 4.4819� 
0.170 9 8 49.5887 -.08579 83.0094 4.4659� 
0.180 9 8 47.1673 -.09082 82.4827 4.4510� 
0.190 9 8 44.9086 -.09584 81.9860 4.4371� 
0.200 9 8 42.8001 -.10086 81.5172 4.4242� 
U.:¿oU !:l 8 34.LH8 -.1:¿5!:lo (!:l.5:¿M 4.J(U~ 

0.300 9 8 27.8234 -.15103 77.9913 4.3321� 
0.350 9 8 23.1291 -.17609 76.7803 4.3032� 
0.400 9 8 19.5591 -.20113 75.8044 4.2812� 
0.450 9 8 16.7871 -.22617 75.0028 4.2642� 
0.500 9 8 14.5924 -.25120 74.3330 4.2507� 
0.550 9 8 12.8233 -.27623 73.7649 4.2398� 
0.600 9 8 11.3740 -.30125 73.2768 4.2309� 
0.650 9 8 10.1692 -.32627 72.8526 4.2235� 
0.700 9 8 9.15476 -.35129 72.4803 4.2173� 
0.750 9 8 8.29052 -.37630 72.1507 4.2120� 
0.800 9 8 7.54673 -.40132 71.8568 4.2074� 
0.850 9 8 6.90076 -.42633 71.5930 4.2034� 
0.900 9 8 6.33517 -.45134 71.3549 4.1999� 
0.950 9 8 5.83637 -.47635 71.1388 4.1969� 

1.0 9 8 5.39360 -.50136 70.9418 4.1941� 
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Table 10: Maxmin Portfolios among duration-matching portfolios. 
FV shocks. Set of portfolios Qí. 

>. ~ 1th partí. 12th partí. I %(l th) I >.~ I %value I 
g:gg~ 4 

4 
4 
4 

lUU. 
100. 

.UUU~5 

.00170 ~~:~~r6 
0.004 4 4 100. .00341 99.2245 
0.006 4 4 100. .00512 98.8404 
0.008 4 4 100. .00682 98.4587 
0.010 4 4 100. .00852 98.0793 
0.012 4 4 100. .01022 97.7023 
0.014 4 4 100. .01192 97.3276 
0.016 4 4 100. .01362 96.9553 
0.018 4 4 100. .01531 96.5852 
0.020 4 4 100. .01700 96.2174 
0.022 4 4 100. .01869 95.8519 
0.024 4 4 100. .02038 95.4887 
0.026 4 4 100. .02207 95.1277 
0.028 4 4 100. .02375 94.7689 
0.030 4 4 100. .02544 94.4123 
0.032 4 4 100. .02712 94.0579 
0.034 4 4 100. .02880 93.7056 
0.036 4 4 100. .03047 93.3556 
0.038 4 4 100. .03215 93.0076 
0.040 4 4 100. .03382 92.6618 
0.042 4 4 100. .03549 92.3181 
0.044 4 4 100. .03716 91.9765 
0.046 4 4 100. .03883 91.6370 
0.048 4 4 100. .04049 91.2995 
0.050 4 4 100. .04216 90.9641 
0.060 
0.070 

4 
4 

4 
4 

lUU. 
100. 

.UbU44 

.05867 ~~:~g~ 
0.080 4 4 100. .06685 86.1694 
0.090 4 4 100. .07497 84.6649 
0.100 4 4 100. .08305 83.2046 
0.110 4 7 74.9576 .08372 81.7944 
0.120 4 7 27.3614 .07632 80.4794 
0.130 7 7 100. .07403 79.2619 
0.140 7 7 100. .08100 78.0996 
0.150 7 7 100. .08812 76.9793 
0.160 7 7 100. .09537 75.8983 
0.170 7 7 100. .10273 74.8540 
0.180 7 7 100. .11020 73.8442 
0.190 7 7 100. .11776 72.8666 
0.200 7 1 97.3069 .12100 71.9211 
O.~.::iO 7 1 71.4077 .10388 67.8691 
0.300 7 1 54.0713 .08447 64.7538 
0.350 7 1 42.0529 .06355 62.3297 
0.400 7 1 33.4502 .04158 60.4157 
0.450 7 1 27.1071 .01886 58.8805 
0.500 7 1 22.3003 -.00439 57.6298 
0.550 7 1 18.5660 -.02805 56.5955 
0.600 7 1 15.5995 -.05200 55.7283 
0.650 7 1 13.1966 -.07617 54.9917 
0.700 7 1 11.2170 -.10050 54.3588 
0.750 7 1 9.56230 -.12496 53.8094 
0.800 7 1 8.16191 -.14952 53.3278 
0.850 7 1 6.96415 -.17414 52.9023 
0.900 7 1 5.93036 -.19882 52.5234 
0.950 7 1 5.03104 -.22355 52.1839 

1.0 7 1 4.24330 -.24830 51.8778 
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Table 11: Maxmin Portfolios among duration-matching portíolios. 
FV shocks. Set oí portfolios Q2' 

1th bond 12th bond I %(1th) I A~A ~ 
0.001 
0.002 
0.004 
0.006 
0.008 
0.010 
0.012 
0.014 
0.016 
0.018 
0.020 
0.022 
0.024 
0.026 
0.028 
0.030 
0.032 
0.034 
0.036 
0.038 
0.040 
0.042 
0.044 
0.046 
0.048 
0.050 
0.000 
0.070 
0.080 
0.090 
0.100 
0.110 
0.120 
0.130 
0.140 
0.150 
0.160 
0.170 
0.180 
0.190 
0.200 
0.2jO 
0.300 
0.350 
0.400 
0.450 
0.500 
0.550 
0.600 
0.650 
0.700 
0.750 
0.800 
0.850 
0.900 
0.950 

1.0 

I %value I 
\:J\:J.~Ub:¿ 

99.6110 
99.2245 
98.8404 
98.4587 
98.0793 
97.7023 
97.3276 
96.9553 
96.5852 
96.2174 
95.8519 
95.4887 
95.1277 
94.7689 
94.4123 
94.0579 
93.7056 
93.3556 
93.0076 
92.6618 
92.3181 
91.9765 
91.6370 
91.2995 
90.9641 
~Y.;.H 7:i 
87.7197 
86.1694 
84.6649 
83.2046 
81.7944 
80.4794 
79.2619 
78.0996 
76.9793 
75.8983 
74.8540 
73.8442 
72.8666 
71.9193 
bi.bl14 
64.2043 
61.5334 
59.4181 
57.7192 
56.3346 
55.1898 
54.2303 
53.4158 
52.7165 
52.1098 
51.5785 
51.1094 
50.6921 
50.3185 
49.9819 

1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 4 
1 4 
4 4 
4 4 
4 4 
4 4 
4 4 
4 4 
4 4 
4 4 
4 b 
4 6 
4 6 
4 6 
4 6 
4 6 
4 6 
4 6 
4 6 
4 6 
4 6 
4 6 
4 6 
4 6 
4 6 
4 6 
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100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 

74.5761 
27.6143 

100. 
100. 
100. 
100. 
100. 
100. 
100. 
100. 

~\:J.~ll:¿ 

69.5939 
54.9612 
44.1790 
36.0764 
29.8635 
25.0046 
21.1332 
17.9957 
15.4137 
13.2599 
11.4416 
9.89074 
8.55564 
7.39708 
6.38452 

.UUU~b 

.00170 

.00341 

.00512 

.00682 

.00852 

.01022 

.01192 

.01362 

.01531 

.01700 

.01869 

.02038 

.02207 

.02375 

.02544 

.02712 

.02880 

.03047 

.03215 

.03382 

.03549 

.03716 

.03883 

.04049 

.04216 

.05044 

.05867 

.06685 

.07497 

.08305 

.08372 

.07632 

.07403 

.08100 

.08812 

.09537 

.10273 

.11020 

.11776 

.12541 
•14:¿\:Jb 
.12617 
.10725 
.08684 
.06538 
.04315 
.02035 
-.00286 
-.02640 
-.05018 
-.07416 
-.09828 
-.12252 
-.14686 
-.17127 
-.19575 




