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Using density-functional theory, we have analyzed the phase behavior of binary mixtures of hard
rods of different lengths and diameters. Previous studies have shown a strong tendency of smectic
phases of these mixtures to segregate and, in some circumstances, to form microsegregated phases.
Our focus in the present work is on the formation of columnar phases which some studies, under
some approximations, have shown to become thermodynamically stable prior to crystallization.
Specifically we focus on the relative stability between smectic and columnar phases, a question
not fully addressed in previous work. Our analysis is based on two complementary perspectives:
on the one hand, an extended Onsager theory, which includes the full orientational degrees of
freedom but with spatial and orientational correlations being treated in an approximate manner;
on the other hand, we formulate a Zwanzig approximation of fundamental-measure theory on hard
parallelepipeds, whereby orientations are restricted to be only along three mutually orthogonal
axes, but correlations are faithfully represented. In the latter case novel, complete phase diagrams
containing regions of stability of liquid-crystalline phases are calculated. Our findings indicate
that the restricted-orientation approximation enhances the stability of columnar phases so as to
preempt smectic order completely while, in the framework of the extended Onsager model, with full
orientational degrees of freedom taken into account, columnar phases may preempt a large region
of smectic stability in some mixtures, but some smectic order still persists.

PACS numbers: 64.70.Md,64.75.+g,61.20.Gy

I. INTRODUCTION

Recent work has shown that strong segregation effects
arise in smectic (S) phases of hard rods of equal diam-
eter but different lengths when the two components are
mixed in varying proportions. In seminal work Koda and
Kimura1 analyzed a binary mixture of parallel hard cylin-
ders using Onsager approximation, and applied a stabil-
ity analysis. They found two types of S phases: one in
which layers are identical and contain a mixture of both
types of particles, and another, microsegregated phase,
which consists of alternating layers of different compo-
sitions. More recent work has focused on more general
mixtures. For example, van Roij and Mulder2 studied a
mixture of parallel cylinders of different diameters using
Onsager theory and a more complete bifurcation anal-
ysis. They observed that, for length ratios higher than
1:5, N-N segregation (where N stands for nematic phase)
preempts the N-S and N-C phase transitions (C stands
for columnar phase). More recent work by Cinacchi et
al.3,4 used an extended Onsager theory (EOT) on sys-
tems of hard spherocylinders (HSPCs), but lifting the
restriction on orientations, and complete phase diagrams
were obtained containing I (isotropic), N, and S, phases.
As was expected, a strong tendency toward segregation

was observed, and microsegregated phases did also arise
in the model, consisting of layers made up of the compo-
nent in larger proportion –the shorter rods– alternating
with weakly populated and highly interpenetrated layers
of the longer rods.

In the work by Cinacchi et al. the only spatially or-
dered phase considered was the S phase. C phases are
very common in nature, even in systems composed of
prolate molecules. A simple, one-component model is
known not to exhibit C ordering, which is preempted
by the smectic phase. However, the C phase can be
stabilized prior to crystallization in mixtures of HSPC
particles with orientations restricted to be parallel, as
shown by Stroobants et al.5 using computer simulation.
Bohle et al.,6 using a density functional based on the
weighted-density approximation, considered the effect of
polydispersity on the stabilization of ordered phases in
systems of parallel hard rods. Their conclusion is similar
to that obtained previously by Bates and Frenkel,7 viz.,
increasing the degree of polydispersity stabilizes the C
phase with respect to the S phase. An identical behavior
was observed in mixtures with perfectly bimodal length
distributions6 (i.e., two-component mixtures).

It is intuitively clear that orientational fluctuations,
not taken into account in all of these studies, will tend
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to destroy columnar order, but the extent to which this
statement is true in mixtures of hard rods is still un-
known. As a consequence, a general concern is the ques-
tion of whether phases of lower symmetry, C and crystal,
may preempt all the structures observed in preliminary
studies; in particular, all previous studies have shown the
C phase to be stable for systems of perfectly parallel rods,
preempting the occurrence of the smectic phase for suffi-
ciently large length ratios. Also, in connection with the
work by Cinacchi et al.,3 a number of questions remain
unanswered, particularly in relation with the theoretical
model (EOT), its particular implementation, and the ap-
proximations used (parametrization of the distribution
functions, etc.). These are the aims of the present pa-
per. In this paper we have not considered the occurrence
of crystal phases, largely for two reasons: one is that
in mixtures the crystal phase will certainly tend to ap-
pear at relatively high packing fractions, due to packing
constraints, which will leave a large region where other
spatially ordered phases may appear. Another reason is
that the EOT is not well suited to study crystallization.
Therefore we will limit ourselves to studying the insta-
bility against general spatial fluctuations of the N phase.

In the present paper we address the above questions
from two perspectives. One is the calculation, within
EOT, of the line where the nematic phase of the mix-
ture gets unstable with respect to columnar-phase fluc-
tuations. This line sets an approximate upper limit for
the region where smectic phases should be stable. The
other is the numerical minimization of a fundamental-
measure functional as applied to systems of hard rods of
square transversal section [hard parallelepipeds (HPs)]
in the Zwanzig approximation, i.e., considering that the
rods can assume only three possible orientations, namely,
along the Cartesian axes xyz. In this way, by using a
completely different approach which possesses some ad-
vantages (better treatment of hard-core correlations and
exact formulation of excluded-volume effects) and some
disadvantages (restricted orientations), we may verify
whether the predictions of Onsager theory are artifacts
of the theory or of its particular implementation. We will
see that some of the predictions of the two models agree,
which gives us some confidence as to the realistic nature
of the results. On the other hand, the results from the
fundamental-measure theory (FMT) predict new struc-
tures, not observed in the Onsager theory, which poses
interesting new questions and opens up new avenues of
research –of course the extent to which these structures
are artifacts of the Zwanzig approximation or peculiari-
ties of the particle’s shape is as yet unknown.

In Sec. II we briefly remind the reader the ingredi-
ents of the two theoretical approaches. It is also devoted
to present the methodology used to locate the spinodal
line for C ordering in the context of the above density-
functional theories. In Sec. III we present a few results
pertaining to the EOT used previously3 to analyze phase
behavior in HSPC mixtures, summarizing relevant fea-
tures that appear in the phase diagrams of a few selected

mixtures. Complete phase diagrams, containing I, N,
and S phases, are presented. Our purpose is to compare
the corresponding results with those obtained using the
Zwanzig approximation of FMT as applied to HP par-
ticles and for equivalent mixtures. Density and order-
parameter profiles are shown to better demonstrate the
structure of the spatially ordered S phases. Also, spin-
odal lines signaling the instability against C-type fluctu-
ations are shown. The location of this line in connection
with the stability of the S phases is discussed. We end
in Sec. IV with a summary of the results and some fi-
nal conclusions drawn from the comparison of the results
obtained with the two theoretical approaches.

II. THEORETICAL APPROACHES

In this section we use two versions of the density-
functional theory, a modified Onsager theory and
fundamental-measure theory in the Zwanzig approxima-
tion, to obtain phase diagrams of a few selected mix-
tures of hard rods. Attention is restricted to spatially
disordered phases [isotropic (I) and nematic (N)] and also
to smectic (S) phases. The more ordered columnar (C)
phase will be considered in Sec. II C.

A. Extended Onsager theory for mixtures of hard

spherocylinders

We analyze the phase behavior of binary mixtures of
hard spherocylinders (HSPs) of length Ls (s = 1, 2) and
the same diameter σ. The one-particle distribution func-
tions of each component will be denoted by ρs(r, Ω̂). The
density functional for the Helmholtz free energyF is writ-
ten, as usual, as a sum of ideal Fid and excess Fex terms:

F [{ρs}] = Fid[{ρs}] + Fex[{ρs}], (1)

with the ideal part given by

βFid[{ρs}] =
2

∑

s=1

∫ ∫

drdΩ̂ρs(r, Ω̂)
{

ln ρs(r, Ω̂)− 1
}

,

(2)
where β = 1/kT . The excess part is given by

βFex[{ρs}] =

∫

V

drΦex(r; {ρs}), (3)

where the excess free-energy density per unit thermal en-
ergy, Φex(r; {ρs}), is written, in the EOT, as

Φex(r; {ρs}) = Ψ(η)

2
∑

s=1

2
∑

t=1

∫

V

dr′
∫∫

dΩ̂dΩ̂′

× ρs(r, Ω̂)ρt(r
′, Ω̂′)fst(r− r′, Ω̂, Ω̂′).(4)

fst are overlap functions for the three different interac-
tions (unity if particles overlap and zero otherwise), and
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Ψ(η) is a prefactor that depends on the mean packing
fraction η and that is chosen to make the theory recover
the second virial coefficient exactly and approximate the
remaining virial coefficients in terms of the second coeffi-
cient, in the manner proposed by Parsons8 and Lee.9 Our
implementation of the present theory (see details in3,4)
involves first using the decoupling approximation,

ρs(r, Ω̂) ≈ ρs(r)hs(Ω̂) (5)

(i.e., particle positions and orientations, characterized,
respectively, by the distribution functions ρs and hs, are
assumed to be decoupled at the level of the one-particle
distribution functions), and then parametrizing the two
distribution functions in terms of suitably normalized ex-
ponential functions:

ρs(r, Ω̂) ≈ ρs(r)hs(Ω̂) = xsρ

[

eλs cos qz

I0(λs)

]

×











eΛsP2(cos θ)

2π

∫ 1

−1

dxeΛsP2(x)











,(6)

where q = 2π/d is the wave number of the smectic un-
dulation with period d, Λs are variational parameters
describing the orientational order (Λs = 0 in the I phase
and Λs 6= 0 in the N and S phases), {λs} are variational
parameters describing the positional order (λs = 0 in the
N phase), xs the molar fractions of species s, ρ the mean
density, and I0(x) is the modified Bessel function of or-
der 0. Equation (1) should be minimized with respect
to the variational parameters {λs}, {Λs}, and d to find
the equilibrium density profiles and the free energy for
particular values of ρ and x. The Gibbs free energy per
particle g is obtained from

g =
F

N
+

P

ρ
, P =

(

ρ
∂

∂ρ
− 1

)

F

V
, (7)

where P is the pressure and F is the equilibrium
Helmholtz free energy, or directly from an appropriate
derivate of the free-energy density functional evaluated
at the equilibrium profiles. Applying a Maxwell double-
tangent construction on g(x) for fixed P allows us to find
the coexistence values of the different phases in the usual
way and to obtain the phase diagrams in the pressure–
composition plane.

B. Fundamental-measure theory for mixtures of

hard parallelepipeds in the Zwanzig approximation

The FMT used here has been described in detail in
Ref. 10, so that only a brief sketch is provided here in
order to show how it can be numerically implemented
to calculate phase diagrams of mixtures. We consider a
system of HPs, i.e., hard rods of rectangular shape. We

continue to use the notation introduced in Sec. II A for
the dimensions of the particles; in this case we denote
by Ls the length of a parallelepiped of species s, with
σs being the breadth of the particles (assumed to have a
square section).

We have used the fundamental-measure functional
for HP in the approximation that orientations are re-
stricted to lie along three mutually orthogonal direc-
tions (Zwanzig approximation), taken to be the xyz axes.

Since the unit vector Ω̂ only has three possible orienta-
tions, one can think of the one-particle distribution func-
tions ρs(r, Ω̂) as being expressed in terms of a set of
Dirac-delta functions along the three axes:

ρs(r, Ω̂) =
∑

µ

ρsµ(r)δ(Ω̂− êµ), (8)

where êµ, µ = 1, 2, 3, are unit vectors along the three
perpendicular directions xyz, respectively. Note that this
expression does not assume a decoupling approximation
since it implies a strong mixing of spatial and orienta-
tional degrees of freedom. The coefficients of these expan-
sions, ρsµ(r), are the local density of species s parallel to
the µ-axe and represent quantitatively the orientational
order in the system in the Zwanzig approximation. The
free-energy functional will be given by Eqs. (1)–(3) and
(8), where the excess part of the free-energy density in
reduced thermal units, obtained in Ref. 10, has the form

Φex(r; {ρs}) = −n0 ln(1− n3) +
n1 · n2

1− n3
+

n2xn2yn2z

(1 − n3)2
,

(9)

with the functions {nα} (α = {0, 1x, 1y, 1z, 2x, 2y, 2z, 3})
being weighted densities obtained as

nα(r) =

2
∑

s=1

3
∑

µ=1

∫

V

dr′ρsµ(r′)ω(α)
sµ (r− r′), (10)

where ω
(α)
sµ are characteristic functions whose spatial in-

tegrals give the fundamental measures of the particles
(edge length, surface, and volume). In this case, instead
of the parametrization Eq. (6), used in the EOT, we use
a Fourier expansion to represent smectic order:

ρsµ(r) = xsρ

[

K
∑

k=0

α(k)
sµ cos qkz

]

γsµ, (11)

(this expression is obviously also valid for the N phase),

where {α
(k)
sµ } are Fourier amplitudes (we impose α

(0)
sµ = 1

and uniaxial symmetry, reflected in the condition α
(k)
sx =

α
(k)
sy ). The coefficients {γsµ} (which play the role of fs(Ω̂)

in the Onsager theory) are the spatially average proba-
bilities to find a particle of species s parallel to the µ
axis (again uniaxial symmetry implies γsx = γsy). The
number of terms in the expansion, K + 1, is chosen so

that α
(K)
sµ < 10−7.
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In the nematic limit ρs(r, Ω̂) = ρshs(Ω̂), and the co-
efficients γsµ are easily obtained in terms of the nematic
order parameters {Qs} (with −1/2 ≤ Qs ≤ 1) by impos-
ing the conditions

1 =

∫

dΩ̂hs(Ω̂), Qs =

∫

dΩ̂hs(Ω̂)P2(Ω̂ · ez), (12)

[P2(x) is the second-order Legendre polynomial] which
lead to

γsµ =
1

3
[1 + (3δµz − 1)Qs] , (13)

with δµν the Kronecker delta. We have selected the ne-
matic director to be parallel to the z axis.

With these definitions the weighted densities can be
easily calculated from Eqs. (10) and (11) as

nα(z) = ρ
∑

sµ

xsγsµ

K
∑

k=0

α(k)
sµ ω̂(α)

sµ (qk) cos(qkz), (14)

where the functions ω̂
(α)
sµ are the Fourier transforms of

effective one-dimensional weights resulting from partial
integration over x and y:

ω̂(0)
sµ (qk) = j0

(q

2
kσs

µz

)

,

ω̂(1ν)
sµ (qk) = σs

µνjδνz

(q

2
kσs

µz

)

,

ω̂(2ν)
sµ (qk) =

vs

σs
µν

j1−δνz

(q

2
kσs

µz

)

,

ω̂(3)
sµ (qk) = vsj1

(q

2
kσs

µz

)

, (15)

with vs = Lsσ
2
s the particle volumes, σs

µν = σs +
(Ls − σs) δµν , j0(x) = cosx, and j1(x) = sin x/x.

The ideal part of the free energy density in reduced
thermal units for this model is

Φid(z) =
∑

sµ

ρsµ(z) [ln ρsµ(z)− 1] . (16)

Thus the total free energy per unit volume can be calcu-
lated as

βF

V
=

1

d

∫ d

0

dz [Φid(z) + Φex(z)] . (17)

Now Eq. (17) is minimized with respect to the parame-

ters γsµ, α
(k)
sµ , and d to find the equilibrium density pro-

files for fixed ρ and x. The pressure can be evaluated
from

βP =
1

d

∫ d

0

dz

{

n0(z)

1− n3(z)
+

n1(z) · n2(z)

[1− n3(z)]2

+ 2
n2x(z)n2y(z)n2z(z)

[1− n3(z)]
3

}

, (18)

and the phase diagram is obtained as indicated in Sec.
II A. The results for phase diagrams of different mixtures
(including the one-component limit) pertaining to this
theory, and also to the EOT approach outlined in Sec. II
B, will be presented in Sec. III. Also, density and order-
parameter profiles for the smectic phases will be shown
in order to better grasp the structure of these phases.
These profiles are defined as follows. The total density
profile is

ρs(z) =
∑

µ

ρsµ(z), (19)

while the nematic order-parameter profile is defined by

Qs(z) =
1

2

[

3ρsz(z)

ρs(z)
− 1

]

. (20)

C. Instability against spatial fluctuations

In this section we present the formalism used to ana-
lyze the instabilities against spatial fluctuations. We first
describe the bifurcation analysis that we have used to lo-
cate the instability points of the N phase against spatial
ordering. Our aim is to see whether the phase behav-
ior of the above HSPC mixtures is strongly modified by
the presence of spatially ordered phases with a symmetry
lower than that of the S phase. In the present paper we
are interested in locating the spinodal line corresponding
to C ordering, since this is the phase that, following pre-
vious work on parallel hard rods, might become stable
prior to crystallization.

Instabilities against both S and C fluctuations can be
explored at the same time by examining the response
function of the N phase against general spatial fluctu-
ations of a wave vector q. The free-energy change δF
associated with fluctuations δρs in the one-particle dis-
tribution functions of the two components of the mixture
can be expressed, up to second order in the fluctuations,
in terms of the second functional derivative of the free-
energy functional evaluated at the nematic phase:

δF =
1

2

2
∑

s=1

2
∑

t=1

∫

V

dr

∫

dΩ̂

∫

V

dr′
∫

dΩ̂′

×
δ2F

δρs(r, Ω̂)δρt(r′, Ω̂′)

∣

∣

∣

∣

∣

N

δρs(r, Ω̂)δρt(r
′, Ω̂′),

(21)

The instability is signaled by the equation δF = 0. Two
different approaches can be followed here. In one, we
assume that fluctuations are realized at constant mean
density ρ, so that the minimization of F is performed via
a Lagrange multiplier or, equivalently, by choosing fluc-
tuations δρs that conserve the mean density. This is the
approach to be followed in the canonical ensemble where
the composition x and the mean density ρ are fixed. In
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the other approach, general fluctuations, not necessarily
mean density-conserving, are considered, and the second
functional derivative is most conveniently expressed in
terms of the direct correlation function Cst evaluated at
the nematic phase,

δ2[βF ]

δρs(r, Ω̂)δρt(r′, Ω̂′)

∣

∣

∣

∣

∣

N

=
δ(r− r′)δ(Ω̂− Ω̂′)δst

ρ
(N)
s (Ω̂)

− Cst(r − r′, Ω̂, Ω̂′), (22)

where Cst is the direct correlation function evaluated at
the nematic phase,

Cst(r− r′, Ω̂, Ω̂′) = −
δ2 [βFex]

δρs(r, Ω̂)δρt(r′, Ω̂′)

∣

∣

∣

∣

∣

ρs(r,Ω̂)=ρ
(N)
s (Ω̂)

.

(23)

This route is followed in the calculations using the iso-
baric ensemble where the quantities to be fixed are the
composition x and the pressure P . Depending on the
ensemble used the fluctuation has to be chosen accord-
ingly. For the Onsager model we have chosen to use the
canonical ensemble; in the spirit of the decoupling ap-
proximation, we take

δρs(r, Ω̂) = ǫse
iq·rρ(N)

s (Ω̂) = ǫsρse
iq·rh(N)

s (Ω̂), (24)

where h
(N)
s is the orientational distribution function of

the nematic phase, q an arbitrary wave vector, and ǫs

an amplitude giving the strength of the fluctuation. The
above fluctuation conserves the value of the order param-
eters {Qs} as the mean density is fixed. The increase in
free energy can be written in matrix form as

δ[βF ]

V
=

1

2

2
∑

s=1

2
∑

t=1

ǫsρsTstǫtρt =
1

2
aT · T · a (25)

with aT = (a1, a2), and as = ǫsρs the components of
a two-dimensional perturbation vector. The stability of
the nematic phase against spatial fluctuations can be as-
sessed by examining the signs of the eigenvectors of the
2× 2− T matrix, with

Tst = Tst(x;q, ρ) ≡
δst

ρs
−

〈〈

Ĉst(q, Ω̂, Ω̂′)
〉〉

f
(N)
s ,f

(N)
t

.

(26)

Here Ĉst are Fourier transforms of the direct correlation
function. In practice we proceed as follows. Instability is
signaled by one of the eigenvalues of T or, equivalently,
the determinant of T , becoming negative. Then, at fixed
composition x, we look for the value of ρ for which the
four equations

detT = 0,
∂

∂qµ
detT = 0, µ = 1, 2, 3 (27)

2 3 4 5 6 7 8 9 10

S

NI

κ HSPC

0.3

0.35

0.4

0.45

0.5

0.55

0.6

η

FIG. 1: Phase diagram of a pure system of hard spherocylin-
ders in the packing fraction (η)–aspect ratio (κHSPC) plane,
as obtained from the EOT approach. Labels are N, nematic;
S, smectic; and I, isotropic.

are satisfied simultaneously (qµ = qx, qy, qz for µ = 1, 2, 3,
respectively). In the case of the HSPC model, the C
phase consists of columns of particles arranged into a
two-dimensional triangular lattice perpendicular to the
nematic director, and the two-dimensional (xy plane)
perturbing wave that makes the fluid unstable will have a
q vector with non-zero x and y components. An instabil-
ity associated with wave vectors q = (0, 0, q), i.e., a wave
along the z direction (parallel to the nematic director),
will signal instability against smectic fluctuations. For
the system of HP the underlying lattice of the C phase is
square, so that instability will be signaled by wave vec-
tors q = (q, 0, 0) or (0, q, 0).

In the case of the FMT approximation the problem can
be cast in matrix form by introducing the fluctuation

δρs(r, Ω̂) = ρs

3
∑

µ=1

ǫsµeiq·rδ
(

Ω̂− êµ

)

. (28)

We remark that in this case the decoupling approxima-
tion is not invoked, so the coupling between positional
and orientational degrees of freedom, assumed in the im-
plementation of the theory, is maintained. The parame-
ters {ǫsµ} are taken to be arbitrary, as it corresponds to a
general fluctuation. In particular, they are all taken to be
independent, which is equivalent to saying that the val-
ues of the order parameters {Qs} are allowed to vary as
the perturbation is applied, in contrast with the method
used in the Onsager model. This is done for the sake of
convenience, and has no practical importance given that
the condition for instability is searched for in the space
(ρ,q), and the order parameters depend on the mean
density ρ. The T matrix now has six dimensions:

Tsµ,tν =
δstδµν

ρsµ
− Ĉsµ,tν(q), (29)
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1 2 3 4 5 6 7 8 9 10
κ HP

0.2

0.25

0.3

0.35

0.4

0.45

0.5

η
S

N

OS

I

PS C

DS

2
1

3

FIG. 2: Phase diagram in the packing fraction (η)–aspect
ratio (κ) for a pure component system of hard parallelepipeds,
as obtained from the FMT approach. Labels are N, nematic;
S, smectic; OS, orientationally ordered solid; C, columnar; PS,
plastic solid; and DS, discotic smectic. The symbols indicate
the points corresponding to calculated phase coexistence. The
numbers indicate that the phase transitions are of first order
but that the scale is too small to be seen by the eye.

with

Csµ,tν(r− r′) = −
δ2 [βFex]

δρsµ(r)δρtν(r′)

∣

∣

∣

∣

∣

ρsµ(r)=ρsµ

(30)

being the relevant direct correlation function and
Ĉsµ,tν(q) its Fourier transform. Explicit expressions for
this function will be presented in the Appendix.

III. RESULTS

Although the HSP and HP models are geometrically
different (HSP particles have a semispherical cap which
is absent in HP particles, and their sections are circular
and square, respectively), and their theoretical treatment
is quite different, the corresponding phase diagrams will
be compared in this section, in the hope that we can
extract some useful information about their actual phase
behavior. This comparison can be made provided we use
comparable aspect ratios κs; we should take into account
the relation

κHSPC

s ≡

(

Ls + σ

σ

)

HSPC

←→ κHP

s ≡

(

Ls

σ

)

HP

. (31)

A. Phase diagrams for pure components

Before showing the results for mixtures, and in order
to have a feeling as to how the two theoretical models can

I
N

S

S2

x

P
σ

β
3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

2.0

3.0

4.0

FIG. 3: Phase diagram in the pressure P−composition x
plane for a mixture of HSPC with the same diameter σ and
aspect ratios κ1 = 4.5 and κ2 = 8.0, as obtained from the
EOT approach. Reduced units are used for length (σ) and
energy (kT , the thermal energy). The continuous lines in-
dicate first-order phase transitions. The shaded regions are
the two-phase regions of phase coexistence. The regions of
stability are labeled by S (standard smectic formed by lay-
ers identical in composition), N (nematic), I (isotropic), and
S2 (microsegregated smectic phase with long particles located
in the interlayer space). The dotted line is the spinodal line
corresponding to the instability of the nematic phase with
respect to columnar-type fluctuations.

be compared and how definite predictions can be drawn
from this comparison, it is convenient to recall the results
obtained for the corresponding one-component systems
using the same theoretical models that will be used later
for mixtures. The phase diagrams for the pure systems
are shown in Figs. 1 and 2, both in the packing fraction-
aspect ratio plane (we should remind the definitions of
the corresponding aspect ratios, κHSPC and κHP, respec-
tively). A quick comparison of the two phase diagrams
indicates that the IN phase transition is qualitatively sim-
ilar: it is of first order and, for decreasing aspect ratio,
ends at some value of κ, below which the N phase ceases
to be stable and is superseded by the spatially ordered
S phase or other more ordered phases. For HP particles
the phase diagram has been analyzed in some detail using
the FMT approach11 (see Fig. 2); it is relatively com-
plex, with the C phase becoming stable in a narrow range
of aspect ratios, a discotic smectic (DS) phase and also a
plastic solid (PS). At high packing fractions and κHP >

∼ 5
the stable phase is an orientationally ordered solid (OS).
The prediction of a DS phase has been confirmed by simu-
lations of this particular model.12 The phase diagram for
HSPC obtained with the EOT has not been analyzed in
such great detail (see Fig. 1). It contains an IN transi-
tion ending at some value of κ which is very close to that
predicted by the FMT approach for HP particles. The



7

0 0.1 0.2 0.3 0.4 0.5
x

-0.5

0

0.5

1

1.5
β 

g

FIG. 4: Gibbs free energy per unit volume and unit ther-
mal energy βg as a function of composition x for the nematic
phase (continuous line) and the smectic phase (dashed line)
for a mixture of HSPC with aspect ratios (L1 + σ)/σ = 4.5
and (L2 + σ)/σ = 8.0. A linear term 34.35− 12.52x has been
subtracted so as to better see the curvature of the curves.
The circle is the bifurcation point where the nematic phase
becomes metastable with respect to columnar-type fluctua-
tions. The dotted lines are two possible free-energy branches
for the columnar phase that could result from a full minimiza-
tion of the free-energy functional.

NS transition shows a negative slope, compared with the
positive slope obtained in the FMT (at least in the range
5 < κ < 10), and it is of first order up to some value of κ,
above which it becomes second order. By contrast, the
NS transition in the FMT approach is always of second
order. Since neither the crystalline nor the plastic-solid
phases have been explored in the EOT model (mainly due
to the fact that this model is not expected, by construc-
tion, to provide good results for phases with full spatial
order) the comparison of the phase diagrams cannot be
extended beyond the liquid-crystalline phases. This is
not a limitation for our present purposes, since we would
like to focus our investigation on these phases. However,
simulations on HSPC indicate that at high packing frac-
tions there appears a solid phase with full order, which
becomes a plastic solid when the aspect ratio is low. A
more elaborate theory (such as that due to Somoza and
Tarazona13) should be used to address this question.

B. Phase diagrams for mixtures

We have first investigated the phase behavior of a mix-
ture of particles with (κ1, κ2) = (4.5, 8.0) and σ2/σ1 = 1.
The results are contained in Figs. 3–6. Throughout this
section phase diagrams will be presented in the pressure
p–composition x plane (by convention, we take the com-
position of the mixture to be given by the variable x ≡ x1,
where species 1 is chosen to correspond to the shortest
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P
σ

β
3

S 2
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S S

DS

FIG. 5: Phase diagram of the HP mixture in the FMT ap-
proach, represented in the pressure-composition plane (re-
duced units are used for the pressure). All particles have
the same cross section σ2, and its aspect ratios are κ1 = 4.5
and κ2 = 8. The continuous lines indicate the first-order
phase transitions. The shaded areas are the regions of two-
phase coexistence. The dashed lines indicate the continuous
transitions between the nematic (N) and smectic (S) phases,
or between different S phases. The dotted line is the spin-
odal line signaling instability of the N phase against spatial
fluctuations (abrupt change in slope is associated with rapid
variation of nematic order parameter). S phase is a standard
smectic phase. S2 phase consists of alternating layers of dif-
ferent composition. DS is a discotic smectic phase.

particles). Figure 3 shows the results as obtained from
the Onsager theory (this phase diagram has already been
presented in Ref. 4). The most representative feature
of this phase diagram is the strong segregation of the S
phase, which largely preempts the I-N transition. Two
S phases appear: the standard S phase, with identical
smectic layers, and the S2 phase, where layers of dif-
ferent compositions alternate: this is a microsegregated
phase. This phase is characterized by the two variational
parameters {λs} having different signs, which implies the
density distributions of the two species being shifted one
with respect to the other by half a smectic period. Be-
low a reduced pressure βPσ3 = 2.9 there is direct coexis-
tence between the S and I phases, which ends in a S-N-I
triple point. Above this pressure the S phase coexists
with the S2 phase. The Zwanzig model for a comparable
mixture is shown in Figs. 5 and 6. Note that the pres-
sure scale is very much reduced with respect to that from
the Onsager theory, so that a good reference to compare
the two phase diagrams is the location of the I-N transi-
tion, which is qualitatively similar to the previous case.
In the Zwanzig model S segregation appears at a much
higher pressure, and does not preempt the I-N transition.
There is no direct S-I transition, which is superseded by
continuous S-N transitions, and at high pressure there
appears a first-order transition between the standard S
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FIG. 6: A zoom of a particular region of the phase diagram
represented in Fig. 5 around the DS phase. For a key to lines
and labels see caption of Fig. 5.
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FIG. 7: Density profiles of short (solid line) and long (dashed
line) particles of coexisting (a) S and (b) S2 phases at pressure
βPσ3 = 0.5. The values of coexistence parameters are x =
0.276, η = 0.4768, and d/L2 = 1.1642 for S phase, and x =
0.693, η = 0.4185, and d/L1 = 1.1498 for S2 phase.

phase and the two-layer smectic phase S2, the latter ap-
pearing when the short-particle component is more abun-
dant; this is in agreement with the predictions based on
the Onsager model. However, an important difference
is that the S and S2 phases undergo continuous phase

transitions to the N phase, a feature that is absent in
the Onsager model. This is to be expected since in the
one-component HP fluid the N-S transition is always of
second order. Also, in a model with restricted orienta-
tions the S phase is largely destabilized with respect to
the N phase, so that the region where the N phase is
stable is considerably larger in the Zwanzig model than
predicted by the EOT. In addition, the FMT approach
predicts also a continuous transition between the S and
S2 phases in the region where most of the particles corre-
spond to the shorter component. This feature is absent
in the EOT approximation.

In order to understand the structure of the S phases
in more detail, it is interesting to examine the density
and order-parameter profiles along one smectic period d
(some of these profiles were shown in Ref. 4 for the EOT
model, so here we will only show the profiles correspond-
ing to the FMT approach). This is done in Figs. 7–9. In
Fig. 7 the profiles at a state point with reduced pressure
βPσ3 = 0.5 on the S-S2 coexistence line are shown. As
can be seen the S phase [Fig. 7(a)] is composed of iden-
tical layers, with maxima in the density distribution of
both species coinciding at the center of each layer. An
interesting point to mention is that the position of the
short particles is delocalized over the length of the long
particles as can be seen from Fig. 7(a). By contrast,
in the S2 phase, these maxima are shifted by half a pe-
riod (an amount equal to d/2), so that the layers with
different compositions alternate. Figure 8 shows profiles
at some particular state point on the S-S2 second-order
transition line. In this point most of the particles in the
system are short, and the few long particles present are
evenly distributed among the layers and the interstitials.

This corresponds to the second-Fourier coefficient α
(1)
21 of

the density distribution of the long particles becoming
zero at this state point. As x is reduced long particles
tend to predominantly populate the insterstitials, defin-
ing a bilayer structure. On the contrary, as x is increased,
the long particles tend to arrange into the layers formed
by the particles of the other component. This behavior
is at variance with the predictions of the EOT approach,
which imply that long particles added to a smectic phase
made up of the short particles tend to populate the inter-
stitials, regardless of their concentration. In Fig. 8 the
density profiles of each species along a direction parallel
to the director are also plotted with dotted lines. These
profiles indicate that particles in the layers are mostly
directed along the layer normal, whereas short particles
tend to align in-plane in the interstitials, and a small
amount of long particles also adopt this orientation. As
can readily be seen, the order-parameter profile also sup-
ports this conclusion.

An interesting feature of the phase diagram in Fig. 5
is that, for a large concentration of short particles, there
is a small region where a discotic-smectic (DS) phase is
stable (see Fig. 6, which is an enlargement of Fig. 5 in
the region where the DS phase appears). The DS phase
was found in a one-component system of HP (Ref. 11)
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FIG. 8: Density (solid line) and order-parameter (dashed line)
profiles of the species with (a) short and (b) long particles.
Densities are scaled with the corresponding particle volume
vs. Density profiles of each species along a direction parallel
to the director are plotted with dotted lines. This smectic
phase corresponds to a state point in the phase diagram with
βPσ3 = 0.442 and x = 0.9858. The smectic period in units
of the small species length is d/L1 = 1.3717, and the mean
total packing fraction η = 0.3934.

(see Fig. 2, which indicates that for a one-component
system with κ = 4.5 there appears a DS phase at pack-
ing fractions η ≈ 0.3) and confirmed by simulation.12

The structure of the DS phase can be understood by ex-
amining Fig. 9. We see that the phase consists of a suc-
cession of identical layers but, in contrast with the usual
smectic phases, particles in the layers are almost exclu-
sively oriented in plane, with nematic order parameter
large and negative. The interstitials contain a consider-
able amount of particles, slightly oriented along the layer
normal. The long-particle component tends to follow
the majority component and populate the layers. The
present result for the mixture indicates that as soon as a
small amount of long rods is added to the pure fluid, the
DS phase becomes very rapidly unstable.

As an example of another mixture showing strong
smectic segregation, but with one species composed on
nonmesogenic particles, we discuss the cases κ1 = 1,
κ2 = 8, and σ2/σ1 = 1, i.e., mixtures of HSPC with hard
spheres or HP with hard cubes (see Figs. 10 and 11).
Here again the two models give the same phase behav-
ior: at high volume fractions of the nonmesogenic com-
ponent we find an isotropic phase, and a relatively small
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FIG. 9: Density (solid line) and order-parameter (dashed line)
profiles corresponding to the species with (a) short and (b)
long particles for the discotic-smectic phase. Densities are
scaled with the corresponding particle volume vs. The pro-
jection of the density distribution of each species along the
direction of the director is plotted using dotted lines (note
that these distributions have maxima at z/d = 0.5). The
discotic smectic phase corresponds to the I-N-DS triple point
with βPσ3 = 0.302 and x = 0.9715. The smectic period in
units of the cross-section length is d/σ = 1.2850, and the
mean total packing fraction η = 0.2915.

addition of this component to a fluid composed mainly of
long particles destabilizes both liquid-crystalline phases.
Again the N-S phase is of first order in the Onsager model
but of second order in the Zwanzig theory. Apart from
that, the two phase diagrams are qualitatively similar.
The structure of the smectic phase is interesting, as it is
again a clear example of a microsegregated phase: lay-
ers rich in long particles alternate with layers made up
of (almost exclusively) hard spheres (or hard cubes, as
the case may be). Figures 12 and 13, containing density
profiles, show this feature for the Zwanzig model (in the
case of the EOT the segregation into well-defined layers
is even more pronounced4). Both models predict that
the smectic phase is destabilized with respect to the ne-
matic phase as the nonmesogenic component is added14

(the slope of the N–S2 phase boundary in the pressure–
composition plane is positive).

As a final mixture we have studied, using only
the Zwanzig approximation, the case where the paral-
lelepipeds and the cubes have the same volumes but dif-
ferent breadths, i.e., different cross sections. The phase



10

I
N

S 2

x

P
3

σ
β

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

2.0

3.0

4.0

FIG. 10: Phase diagram in the pressure P−composition x
plane for a mixture of HSPC with the same diameter σ and
aspect ratios κ1 = 6.0 and κ2 = 8.0, as obtained from the
EOT approach. See caption of Fig. 1 for key to labels and
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FIG. 11: Phase diagram of a binary mixture of hard paral-
lelepipeds (κ1 = 1) and cubes (κ2 = 8) as obtained from the
FMT approach. See caption of Fig. 5 for key to labels and
lines.

diagram corresponding to the case L1/σ1 = 8, L2/σ2 = 1,
σ2/σ1 = 2 is shown in Fig. 14. Due to the different
cross-sectional areas of the particles the smectic phases
strongly segregate at high pressures. The IN segregation
region is also greatly enhanced. A remarkable feature of
the phase diagram is the existence of demixing in the re-
gion where the S2 phase is stable at low compositions;
this phase transition ends in a lower critical point and,
at some higher pressure, transforms into a triple point
where the two bilayer smectic phases with moderate con-

tent of cubes coexist with a third one which is mainly
formed by cubes. The density profiles in Figs. 15 and 16
are useful to understand the structure of these phases.
In Fig. 15 the density distribution of the first two S2

phases is shown. Figure 15(a) shows that there is a very
strong microphase separation between the two compo-
nents which therefore arrange in layers of almost pure
composition. The origin of this isostructural phase sep-
aration into two bilayer structures can be understood in
terms of the so-called depletion effect, which has an en-
tropic origin: the cubes added to a pure mixture of rods
in a smectic configuration arrange themselves in the in-
terstitials between the smectic layers, and this arrange-
ment creates an effective attraction between the layers,
giving rise to a first-order “condensation” phase transi-
tion.

The structure of the bilayer smectic phase at high pres-
sure and with a high content of cubes is also very in-
teresting as it illustrates another effect of the depletion
interactions; this is shown in Fig. 16. The thermody-
namic state corresponds to the phase that coexists at
the triple point, with x ≈ 0.98. From Fig. 16(a) we can
see that the cubes arrange themselves into well-defined
layers; however, the rods adopt a very different configu-
ration since they do not occupy the instertitials between
layers in a uniform manner: an excess density of rods
develops right at the edges of the main distribution of
cubes. This is represented in Fig. 16(b) by the solid line,
which in turn has been split into parallel and perpendic-
ular components to the director (layer normal) to show
that the rods in the excess regions are oriented approx-
imately with equal probability with respect to the three
mutual perpendicular directions. We can conclude that
the cubes act as a soft wall against which rods are piledup
as if adsorbed.

C. Spinodal lines for columnar order

The discussion thus far has been focused on the phase
diagrams containing I, N, and S phases. As discussed in
the introduction, there are strong arguments that sug-
gest that the columnar phase might play a role in the
phase stability of the mixtures of hard rods. Using the
methodology outlined in Sec. II C, we have calculated
the spinodal line where the nematic phase becomes un-
stable with respect to fluctuations involving local spatial
order. As implicit in the presentation of the method, our
approach does restrict the search for instability to any
particular structure; usually, however, the first instabil-
ity (at the lowest mean density) is found for fluctuations
against columnar-type fluctuations (this is signaled by a
wave vector with nonvanishing x or y component), except
in a few cases to be discussed below.

The spinodal line is represented in the phase diagram
of Fig. 3, corresponding to the mixture with κ1 = 4.5,
and κ2 = 8, σ2/σ1 = 1, as analyzed in the context of the
EOT approach. As can be seen from the figure, the insta-
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FIG. 12: (a) Density profiles of cubes (solid line) and rods
(dashed line) for the coexisting S2 phase (βPσ3 = 0.37, x =
0.543, η = 0.3579, and d/L2 = 1.6422) at the I-N-S2 triple
point shown in Fig. 11. (b) Order-parameter profile of rods
for the same thermodynamic state.

bility occurs at relatively high pressure, which means that
there is a relatively wide region of stability for the smec-
tic phase and consequently, the predictions on smectic
demixing in mixtures of HSPC are plausible. However,
our results indicate that the presence of smectic segrega-
tion should be taken with some caution, since it could be
preempted by direct coexistence between the C and S2

phases. Without a full calculation of the free energy of
the C phase this question cannot be settled completely.
In order to discuss this point, we plot in Fig. 4 the free-
energy branches g(x) of the N and S phases for a mixture
with fixed pressure βPσ2 = 2.43. The bifurcation point
is indicated by a circle. Starting at the bifurcation point
at x = 0.1 two possible free-energy branches for the C
phase have been represented (the C-phase branch will ex-
ist for values x ≤ 0.1, see Fig. 3). One possibility is that
the curve does not cross the smectic-phase branch: in this
case the C phase exists as a metastable phase and the S
phase is always more stable. The alternative situation is
the one corresponding to the other curve, which crosses
the smectic branch: now the C phase becomes more sta-
ble and coexists with the S phase. This demonstrates
that the bifurcation analysis can only provide trends as
to the possible stabilization of the phases and that, once
a bifurcation point is shown to exist, one cannot rule out
any scenario.
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FIG. 13: (a) Density profiles of cubes (solid line) and rods
(dashed line) of the S2 phase which coexists with the I phase
at βPσ3 = 0.5, x = 0.455, η = 0.4414, and d/L2 = 1.5139
(see Fig. 11). (b) Order-parameter profile of rods for the
same thermodynamic state.

The FMT theory on the HP mixture shown in Fig. 5
predicts a spinodal line at low pressure, below the corre-
sponding line associated with smectic ordering (there is a
small region, for small values of x, where the smectic line
is slightly above the columnar line which leaves a small
region of smectic stability; see Figs. 5 and 11). Clearly,
the rich smectic phase behavior predicted by the theory
is completely preempted by columnar ordering. At high
composition x the spinodal line ends in the region of DS
stability; this means that the DS phase preempts the in-
stability of the I phase against columnar or plastic-solid
fluctuations.

Now we come to show the results for the mixture with
κ1 = 1, κ2 = 8, and σ2/σ1 = 1. The results from the
EOT for the HSPC model are shown in Fig. 11. We
can see that the spinodal line shows the same trend: it
increases with composition, and is located at relatively
high pressure so that a wide region of smectic stabil-
ity is found. By contrast, the FMT approach (Fig. 12)
again predicts a spinodal line against columnar-type fluc-
tuations below the region of smectic stability, save for a
small interval in composition at low values of x.

Finally, we have also calculated the spinodal line
associated with columnar fluctuations for the mixture
with equal particle volumes but different cross sections,
L1/σ1 = 8, L2/σ2 = 1, and σ2/σ1 = 2. The results
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and rods, κ2 = 8, with σ1/σ2 = 2 (i.e., with equal particle
volumes), as obtained from the FMT approach. The pressure
at which the three smectic phases coexist at a triple point is
indicated by a horizontal line. See caption of Fig. 5 for key
to labels and lines.

are in the same line as in the previous cases: the smec-
tic phases are completely preempted by the instability
against columnar fluctuations. Note that the slope of
the spinodal line changes sign at x ≈ 0.7 and then
becomes a spinodal line for instability of the I phase
(0.75 <

∼ x ≤ 1) against spatial fluctuations; in this
case the divergence of the structure factor occurs at the
same density ρ, independent of the orientation of the
wave vector, q = (0, 0, q), (0, q, 0), or (q, 0, 0), which
means that the instability could in principle be associated
with the appearance of columnar, smectic, or solid order.
This result is analogous to the behavior observed in one-
component hard cubes11 for which it turns out that the
smectic, columnar, and solid free-energy branches start
at the same bifurcation point, the solid phase being the
most stable phase. Only a complete density-functional
minimization could elucidate the relative stability be-
tween all these phases in the mixture.

IV. CONCLUSIONS

In this paper we have analyzed the phase behavior of
binary mixtures of hard particles having different geome-
tries, with a view to locating the conditions under which
spatially ordered phases are formed. Two different theo-
retical, somehow complementary, approaches have been
used: one based on the standard Onsager theory for hard
particles, the other being a fundamental-measure theory
for hard parallelepipeds in the Zwanzig approximation,
i.e. with restricted particle orientations. It is known
that the tendency of the two species to macroscopically
segregate is enhanced when the aspect ratio of the parti-

0

0.1

0.2

0.3

0.4

ρ s

0 0.2 0.4 0.6 0.8 1
z/d

0

0.05

0.1

0.15

0.2

0.25

ρ s

(a)

(b)

FIG. 15: Density profiles for two of the S2 phases that coexist
at the triple point with βPσ3

2 ≈ 0.388 (see Fig. 14). (a)
Density profiles of cubes (solid line) and rods (dashed line)
corresponding to the coexisting S2 phase with x ≈ 0.148 (η ≈

0.4816, d/L1 ≈ 1.4384). (b) Density profile for the coexisting
S2 phase with x1 ≈ 0.0007 (η ≈ 0.4902, d/L1 ≈ 1.1934).

cles is more dissimilar. For the more extreme cases this
creates large demixing regions where smectic phases of
different compositions coexist, even preempting part of
the isotropic-nematic transition. Even more significant,
in some mixtures the smectic phase exhibits microphase
segregation, where the species demix at the level of the
one-dimensional smectic unit cell. Microphases may un-
dergo transitions to smectic phases with the usual homo-
geneous layer composition.

We have demonstrated that these mixtures tend to
form columnar phases, even when the cross-sectional
length of the particles is unequal, regardless of their rel-
ative length. The extent to which columnar order is
more or less stable than smectic order has been ana-
lyzed using bifurcation theory. In general, the bifurca-
tion analysis of the EOT model predicts that columnar
order may appear; whether or not this order preempts
direct smectic-phase segregation cannot be ascertained
with the present methodology. However, it is clear that
large regions of smectic stability still persist in the phase
diagram. By contrast, the FMT approach in the Zwanzig
approximation predicts that smectic order is almost com-
pletely suppressed. The difference in behavior predicted
can be traced back to the different treatments of orien-
tational fluctuations (in the latter case orientations are
restricted to lie along three orthogonal directions, which
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FIG. 16: (a) Density profile of cubes corresponding to the
coexisting S2 phase at the triple point of Fig. 14 with com-
position x ≈ 0.98 (η ≈ 0.4860, d/L2 ≈ 1.1839). (b) Density
profile of rods at the same thermodynamic conditions; the
dotted line represents the density profile corresponding to the
rods that lie perpendicular to the director, whereas the dashed
line refers to the particles lying parallel to the director. The
total density profile is represented by the solid line.

enhances columnar order since the order parameter is
usually very high). The results obtained with the two
approaches probably set the limits of what should be ex-
pected in the real mixtures. In this respect, given the
lack of more reliable theoretical treatments that can give
more quantitative answers and the tremendous difficul-
ties involved in making theoretical progress, one should
rely on computer simulations, an approach that is feasi-
ble but unfortunately not pursued so far.
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APPENDIX: DIRECT CORRELATION

FUNCTION IN THE FMT APPROACH.

In this section we present explicit expressions for the
direct correlation function of the mixtures. In the FMT
approach we have, in the nematic phase,

− Csµ,tν(r− r′)

≡
δ2 [βFex]

δρsµ(r)δρtν(r′)

∣

∣

∣

∣

∣

ρsµ(r)=ρsµ=ρxs[1+(3δµz−1)Qs]/3

=
〈ω

(0)
sµ ∗ ω

(3)
tν 〉+ 〈ω

(1)
sµ ∗ ω

(2)
tν 〉

1− ξ3

+
ξ2

[

〈ω
(1)
sµ ∗ ω

(3)
tν 〉+ Ω

(2)
sµ,tν

]

(1− ξ3)2

+

[

ξ1

(1− ξ3)2
+

2ζ2

(1− ξ3)3

]

〈ω(2)
sµ ∗ ω

(3)
tν 〉

+

[

ξ0

(1− ξ3)2
+

2ξ1ξ2

(1− ξ3)3
+

6ξ2xξ2yξ2z

(1 − ξ3)4

]

ω(3)
sµ ∗ ω

(3)
tν ,

(A.1)

The symbol ∗ stands for convolution: f ∗ g =
∫

dr′f(r′)g(r − r′) and it is introduced as a shorthand
notation. All expressions inside the angular brackets are
understood to be symmetrized with respect to their in-
dices sµ, tν. For example,

〈ω(0)
sµ ∗ ω

(3)
tν 〉 = ω(0)

sµ ∗ ω
(3)
tν + ω

(0)
tν ∗ ω(3)

sµ . (A.2)

Also, all boldface variables are three-dimensional vectors

ξα = (ξαx, ξαy , ξαz), ω(α)
sµ =

(

ω(αx)
sµ , ω(αy)

sµ , ω(αz)
sµ

)

,

(A.3)

with α = 1, 2 and the products between any two of them
are to be taken as scalar products. The expression for

Ω
(2)
sµ,tν is

Ω
(2)
sµ,tν =

(

〈ω(2z)
sµ ∗ ω

(2y)
tν 〉, 〈ω

(2x)
sµ ∗ ω

(2z)
tν 〉, 〈ω

(2y)
sµ ∗ ω

(2z)
tν 〉

)

.

(A.4)

The expressions for ξ0 and ξ3 and for the components of
ξα and ζ2 are

ξ0 = ρ, ξ3 = ρ
∑

s

xsvs,

ξ1β =
ρ

3

∑

s

xs [2σs + Ls + Qs (Ls − σs) (3δβz − 1)] ,

ξ2β =
ρ

3

∑

s

xsvs

[

2

σs
+

1

Ls
+ Qs

(

1

Ls
−

1

σs

)

(3δβz − 1)

]

,

ζ2 = (ξ2yξ2z, ξ2zξ2x, ξ2xξ2y) , (A.5)

with β = x, y, z.
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The Fourier transform Ĉsµ,tν(q) of the direct corre-
lation function has the same explicit expression as Eq.
(A.1), except that the convolutions between different

weights ω
(α)
sµ are to be substituted by the products of

their corresponding Fourier transforms ω̂
(α)
sµ . These are

ω̂(0)
sµ (q) =

3
∏

ν=1

[

cos
(

qνσ(s)
µν /2

)]

,

ω̂(3)
sµ (q) =

3
∏

ν=1

[

2 sin
(

qνσ(s)
µν /2

)

/qν

]

ω̂(1α)
sµ (q) =

2

qα
tan

(

qασ(s)
µα/2

)

ω̂(0)
sµ (q),

ω̂(2α)
sµ (q) =

qα

2
cot

(

qασ(s)
µα/2

)

ω̂(3)
sµ (q), (A.6)

where q = (q1, q2, q3) is the weight vector, and σ
(s)
µν =

σs + (Ls − σs) δµν .
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