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Abstract

We obtain a fundamental measure density functional for mixtures of parallel hard cylinders. To this
purpose we first generalize to multicomponent mixtures the fundamental measure functional proposed by
Tarazona and Rosenfeld for a one-component hard disk fluid, through a method alternative to the cavity
formalism of these authors. We show the equivalence of both methods when applied to two-dimensional
fluids. The density functional so obtained reduces to the exact density functional for one-dimensional
mixtures of hard rods when applied to one-dimensional profiles. In a second step we apply an idea put
forward some time ago by two of us, based again on a dimensional reduction of the system, and derive a
density functional for mixtures of parallel hard cylinders. We explore some features of this functional by
determining the fluid-fluid demixing spinodals for a binary mixture of cylinders with the same volume, and

by calculating the direct correlation functions.
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. INTRODUCTION

The fundamental measure density functional originally derived by Rosenfeld for a fluid of hard
spheres (HS) [1, 2, 3, 4, 5] can be considered as the most sophisticated density functional (DF)
that has been successfully applied to the study of the highly confined HS!fluid [6, 7] and to the
HS freezing|[8]. The theoretical formalism initially developed by Rosenfeld to obtain the HS fun-
damental measure functional (FME) [1, 2, 3] was later complemented with the concept of dimen-
sional crossover to zero dimension to obtain a DF that adequately describes the HS freezing [9, 10].
By dimensional crossover it is understood that when reducing the dimensioR-afimensional
system to that of &’-dimensional one (e.g. by confining), thedimensional DF crosses over to
the D’-dimensional one. This zero-dimensional (OD) crossover was later employed by Tarazona
and Rosenfeld to introduce a new cavity formalism which showed how this unique property, to-
gether with the exact expressions for the zero- and one-dimensional (1D) HS functionals, are the
only requirements needed to derive their final versions of the FMFs for the hard disk (HD) and the
HS fluids [11]. These versions which, as it is standard in all FMFs, assume that the density profile
dependence enters in the functional only through a finite set of weighted densities, leave little free-
dom for improvements without destroying the important dimensional crossover property. Recent
efforts have been made to derive a HS functional with an imposed equation of state (EOS) as its
uniform limit [12,/13]. This imposed EOS (for instance the Carnahan-Starling EOS ) describes the
fluid better than the scaled particle result [14] (the uniform limit of all the FMF derived from first
principles) in the description of the HS liquid. However, all these modifications can be done at the
expense of losing some, or all, of the dimensional crossovers —a crucial property if one wants to
study highly confined fluids.

Thus, we can say that the fundamental measure theory (FMT) is close to its edge in the sense
that it is questionable that any improvement can be achieved without rendering it intractable [15].
For instance, it has been argued that the inclusion of an infinite set of weighted densities can
remove some defects of the HS FMF, because this is what happens —with the addition of a few
more weighted densities— for the FMF for parallel hard hexagons [16] (which is constructed from
the corresponding functional for parallel hard cubes [17] 18, 19]). After all, a circle is a polygon
with infinitely many sides. Similar conclusions are reached when FMFs for lattice models are
constructed [20, 21, 22]. In fact, the concept of cavity can be generalized in those models so as to

account for higher orders of accuracy in the correlation functions [23, 24].



The first extension of the FMF to general anisotropic pasicl&s carried out by Rosen-
feld [25]. However this extension only works for isotropic fluids (with particle axes randomly
oriented), because the Mayer function is not recovered from the low-density expansion of the
proposed FMF when particles have a preferred alignment [26]. In recent works the definition
of the one-particle weights necessary to calculate the weighted densities has been extended in
such a way as to include an effective dependence on the orientations of both interacting particles
[27,128, 29, 30]. This way the Mayer function can be exactly decomposed as a sum of convolu-
tions between those extended weights. Different FMFs for freely rotating particles: for a mixture
of HS and hard needles [27,/28], and for a mixture of hard needles and infinitely thin hard plates
[29,130] have been proposed using these extended weights, and the resulting FMFs have some of
the desired dimensional crossovers. However, the requirement of taking the breadth of the particles
vanishing small seems to be indispensable to construct such functionals.

The parallel particle alignment (or the restricted orientation approximation) is a fundamental
restriction that has to be taken if we want to derive a FMF from first principles, without any
approximation about the particle characteristic lengths. The FMF for parallel hard cubes [17] and
its later extension to hard parallelepipeds with orientation restricted to three perpendicular axes
(Zwanzig model)|[18, 19] were the first examples of FMFs for anisotropic particles derived form
first principles using the original Rosenfeld’s formalism and adding the dimensional cross-over
constraint. The FMF for the Zwanzig model was applied to the calculation of phase diagrams
of the one-component fluids made of hard rods and hard plates [31], and of phase diagrams of
polydisperse rod-plate mixture [32, 33]. Also, it was applied to the study of interfacial phenomena
in liquid crystals in three [34] and two [35] dimensions. Reference [36] summarizes most of the
works done on the study of wall-liquid crystal fluid interfaces using the Zwanzig model.

In this article we want to derive a FMF for another particle geometry with the parallel alignment
restriction. In this case the fluid is composed of a mixture of parallel hard cylinders (PHCL) with
different radii R; and lengthsl;. To achieve this we will first of all extend the FMF obtained
by Tarazona and Rosenfeld [11] for a one-component HD fluid to a multicomponent mixture,
using an alternative approach to the cavity formalism used by these authors. We prove that the
resulting functional conforms all the dimensional crossovers and thus we show that both methods
are completely equivalent. In a second step we derive a functional for a mixture of parallel hard
cylinders starting from the already obtained HD functional by applying a differential operator, as

explained in Ref..[18]. This procedure guarantees the dimensional crossover from 30 to 2D [18].



The parallel alignment restriction is, of course, a hard train#t that prevents the use of the
derived functional in the study of those phenomena governed by changes in the orientational or-
dering of the constituent particles, as it often occurs in liquid-crystals. However, as the spatial
correlations are accurately treated, those phases with a high degree of orientation, such as the
smectic, columnar or crystalline phases at high pressures, should be well described by the present
functional. Also, the study of non-uniform polydisperse liquid-crystalline phases, which are fre-
guently present in experiments on colloidal mixtures [37, 38], is such a difficult task that the
parallel alignment simplification seems to be the only way to take some steps forward in that
direction.

The article is organized as follows. In SEe¢. Il we derive the FMF for mixtures of HD. If.Skc. Il
we use this result to construct a FMF for mixtures of PHCL. Secfidn IV discusses the uniform
mixture of PHCL and in Se€.lV we derive the direct correlation functions for this mixture. After a
section summarizing the results of the paper, we include two appendices. In Appéndix A we proof
that the FMF for a mixture of HD has an exact200D crossover. This is, of course, inherited
by the FMF for PHCL. In Appendix B the expressions for the geometric terms defining the direct

correlation functions are explicitly displayed.

[I. FUNDAMENTAL MEASURE DENSITY FUNCTIONAL FORA MIXTURE OF HARD DISKS

In this section we will derive a density functional for mixtures of HD based upon Tarazona and
Rosenfeld’s proposal for a one-component HD fluid obtained by using the OD cavity formalism of
FMT [11]. We will maintain the functional structure of the excess part of the free energy density,
®P)(r), and extend it to a multicomponent mixture by calculating the kelkiglr) (i and; label
disk species) which enters the definition of the two-particle weighted deNsity (see below).

This functional structure is

N(r)
(D) (p) — _ _
7 (r) = —no(r) In[1 —na(r)] + 17— SNESE 1)
and its extension to mixtures amounts to writing
N(r) = Z / dry /dr2pi(rl)pj(r2)ﬂij(r — Iy, — Iy), (2)
irj
Qij(r1, 1) = w0 (1) (12) Ky (712). (3)



The one-particle weighted densitieg(r) and ny(r) [no(r) being the local packing fraction] are

those of Rosenfeld’s for a FMF for HD mixtures [1, 2, 3], i.e.

Z/drpz r—r) (4)
Z/drpz r—r) (5)

with p;(r) the density profile of speciesandwi(a)(r) the one-particle weights defined as

),  O(Ri—r) @)
W (I') - 27TRZ ) w;

(r) =O(R; — ), (6)

R, (i = 1,2,---,¢, with ¢ the number of components of the mixture) being the particle radii,
ando(x) and©(x) the Dirac delta and Heaviside step functions respectively. Equéaiion (2) is the
natural extension to multicomponent mixtures of the two-particle weighted dekisityinitially
introduced for a one-component fluid in Ref.][11]. The authors of this work found the expression
for the kernelK (r15) through the requirement that inserting OD density profiles in the excess part

of free energy

S p(w)] = [ draPm ™
should recover the interaction part of the free energy of a 0D c@yy = N'+(1—-N) In(1-N),
with A/ < 1 the mean occupation of the cavity. As usual, the OD cavity is understood as a cavity
of arbitrary geometry which can accommodate one particle at the most.

To determinek’;;(r) we will follow another procedure: we will impose that the low density

limit of the second functional derivative ¢fl(7) with respect to the density prafiles) andp;(r2)
coincides with the overlap function of two HD of radt; and R;, which turns out to be the exact

low density limit of minus the direct correlation function, i.e.

@(REJ—F) - 7"12) = /dr’ <wl-(0) (I' ) ](2) (1'12 —Tr )> + 2K¢j(7"12) /dr’w(o) (I' ) ](0) (1'12 s ) (8)

where(f;;) = fi; + f; has been introduced to denote symmetrizatiorf; pivith respect to its

indices, anng;r) = R, + R;. The calculation of the integrals involved in EQl (8) leads to

Kz'j(rlg) = 7T7’12<Sin_1 tij(T12)>RZ‘ 1-— tl'j(Tm)Q @ (7’12 — RZ(]_)> @ <R£]+) — 7’12) i (9)
iy + R — R}

tij(riz) = ool

(10)

WhereR(._) = |R;, — R;|. The kernel[(B) is symmetric with respect to the exchange of indices

andj due to the equality;; = R;+/1 — t;;(r12)? = R;4/1 — t;i(r12)?, which is easily visualized

5



FIG. 1: Sketch of the triangular geometry defined by the length R; andr».

in Fig.[d: this figure shows a sketch of a typical configuration of two HD with different radii for
which theK;(r12) is different from zero; in it the heiglit;; of the triangle formed by the lengths
r12, R; and R; can be calculated either @ sin ¢, or asR; sin ¢;, thus proving the symmetry
K;j(r12) = Kji(r12). Also, from Eq.[(9) and the triangular geometry the kernel can be rewritten as
Kij(r2) = mA;ij(r12) 45 (r12), With A;; = r12h,; the sum of the areas of both triangles (the shaded
region of Fig[1), and;; = (sin™' ¢;;), the angle formed by the sidés and ;.

For one componentfy,;(r) recovers the expression

K(r) = 4rR? (%{) sin~! (%{) 1- (é)Q (11)
reported in Ref.[[11]. It is interesting to note that, because of the presence of wejgfmts)
(proportional to Dirac delta functions) in the definition 8f(r), its expression can be greatly
simplified. After insertion of<;;(r) into Eq. [2) and integration over the radial variabtesindr

we find
1 21 27
N(r) = . Z R;R; /0 d¢1/0 dopi(r + Riug)p;(r + Rjuz) T (d12), (12)
i.j
whereg s = ¢1 — ¢o, u; = (cos ¢;, sin ¢;), and the functio¥’(¢) is defined as

T(¢) = ¢ — 2mnl|sin ], (13)

with n the integral part of the fractiofy + 7)/(27). The first factor on the right hand side of
(13) is the2r-periodic function shown in Fid.l2 with a dashed line. The funcfigm) is plotted
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FIG. 2: The functioril’(¢) in the intervall0, 47 (solid line). Also is shown with dashed line the triangular

wave function.

in the same figure. From the new form &f(r) given by Eq. [(IR) we can conclude that, despite
the presence of a two-particle weight in its definition, the numerical cost required to evaluate it is
the same as that required to calculate the local packing fraatiaf), because both quantities are
defined through a double integral.

Taking into account the resuftdg, [ d¢T(¢12) = 4> we find that the uniform limit ofb ")
[cf. Eq. ()] coincides with the scaled particle theory (SPT) result for a mixture of HD [1) 2, 3, 14]

L&
47’(1—627

O = —& (1 - &) + (14)

where§y = 37, pi, &1 = >0, pi(27R;), andé, = 37, p; (7 R3).

Because the derivation df;;(r) has not followed the requirement of exact reduction to 0D
cavities, as in Refl [11], the question arises as to whether this nice property holds for this new func-
tional. In AppendiX_A we proof a stronger property: the functional (1) fulfills an exact-2D
crossover; in other words, by inserting the profiler) = p;(z)d(y) into (@) and[(¥) we recover the
exact functional for 1D hard rod mixtures [39], cf. Eds. (A16) dnd (A18). With this we have also

proven that the present method and the cavity formalism of Ref. [11] are two equivalent methods

to obtain a FMF for mixtures of HD.



[11. DENSITY FUNCTIONAL FOR A MIXTURE OF PARALLEL HARD CYLINDERS

In this Section we will construct a FMF for a mixture of PHCL starting from two different
density functionals for HD mixtures: the first one is calculated through[Eg. (1), while the second

one is Rosenfeld’s proposal [3]

2D 1 0?2 —v?
o ):—noln(l—n2)+ﬂ T (15)
wherev = ). p; * w;(r) andv = ), p; * w;(r), with the new weights
wir) = 21RwO(r),  wy(r) = wi-. (16)

r

Note that the weighted densityr) is not the absolute value af(r). Rosenfeld obtained this
expression by approximating the Mayer function of two HD by the sum of convolutions between
single-particle weightg;; () = (w® « w](.z)) (r) + (2m) Hw; * w;(r) — w; * w;(r)] and requiring

also that the scaled particle resultl(14) was recovered in the uniformilimit [3]. The expréssion (15),
however, does not conform with any dimensional crossover to lower dimensions.

The FMF for PHCL is obtained by resorting to the dimensional crossoves3D which any
functional 375" [{ p;}] fulfill. In Ref. [18] it was argued that having a FMF for a mixture of two-
dimensional particle€”)[{p;}] one can construct an explicit expression for a FMF for a mixture
of parallel anisotropic three-dimensional (3D) bodies whose constant section perpendicular to their
main axes is that of the 2D patrticles. In the same reference it is shown that the resulting functional
fulfills by construction the 3B-2D dimensional crossover when the original fluid is confined such
that the centers of mass of the particles are confined on a plane perpendicular to their axes. We
will apply this method to obtain a FMF for a mixture of parallel cylinders as follows. First of
all we need to redefine the functional in such a way as to include-ttumrdinate dependence of
the density profiles and correspondingly of the weighted densities. The new weights are obtained

multiplying the old ones by the facto€(L;/2 — |z]), i.e.
(1) = WP (rO(Li/2 — []). w0 (0) = 0P (@)O(Li/2 ~ |2, (17)

Q) (ry, 1) = Oy (r,13)O(Li/2 — |21 )O(Ly/2 — | 2]). (18)

The resulting free energy density, which we dendt®), is the same as that given by EQl (1),
but with the substitutions,(r) — ni(r), na(r) — n3(r) andN(r) — Ny(r). The new weighted

densities are obtained through the same expressions given for the 2D case but using the new
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weights [17),[(I8). Note that the vector positiois now defined as = (rt, z). The dimensional
crossover 3B-2D holds if the 3D excess free-energy density is obtained by the following formula
[18,119]

®CP)(r) = Z %&)@m(r). (19)

In our case this leads to

nino + N1 i n2N2

dBP) = _ngyln(1 —
no Il( 713) + 1 — ns (1 _ n3)27

(20)

where the one-particle weighted densitiegr) are calculated as usualas(r) = 3, pi ¥ w™ (r)

[+ stands for the convolutiofix g(r) = [ dr’f(r')g(r —1')]. The one-particle weights are defined
jointly by Eq. (17) and

wO() = O DNL/2 — |2l), w0 = WP/~ ). (D)

2

The two-particle weighted densities are calculated as
No(r) = Z/drl /dr2pi(rl)pj(r2)gz(']a'() (r—ry,r—ry), (22)
ij
with Q2 (r1, r2) given by Eq. [(ZB) whilé2 (r, r») is

Q) (x4, 72) = Qy(x1 3) <§@<Li/2 — [a1)3(L;/2 - |zQ\>> . (23)

As mentioned above, the free-energy functiofat™ has a correct dimensional reduction
to 7P, the free energy for a HD mixture, when the density profiles are taken(as =
pZ@D) (rt)é(z) vt = (x,y)]. i.e. projecting the cylinders on the plane perpendicular to their
axes. It is easy to show that the dimensional cross-over-3D, where the projection is now
in a plane parallel to the cylinder axes, also holds. To show this we take the density profiles as
pi(r) = pi(rNd(x) [l = (y,2)], with p;(xll) = p*P)(y, 2). Inserting thesg;(r) into D) (r)
and using the already shown dimensional cross-over2D of a FMF for a mixture of HD (see
Appendix8), we obtain, from EqL(19),
n14(r)ny (1)

) (1) — B (r) = —mo(r) In[L — ma(r)] + = HE

(24)

the free-energy density of a mixture of parallel hard rectangles (the section of the cylinders along

their axes)[18, 19]. The weighted densities for such particles are now defineg(igs =

9



(©)

FIG. 3: Sketch of all dimensional crossovers fulfilled by thadamental-measure functional for a mixture
of parallel hard cylinders: (a) from cylinders (3D) to rectangles (2D), (b) from cylinders (3D) to disks (2D)
and (c) from disks (2D) to rods (1D).

3 07 5 00, ()01, (2)], ma(r) = 3 o7 5 05, ()01, (2)), maa(r) = 30, 7 5 [65, ()01, ()],
andn,, (r) = 3, p™ % [0,.(y)61.(2)], where the shorthand notatiofs(s) = 1(u;/2 —|s|) and
0., (s) = O(u;/2 — |s|), with s = y, z ando; = 2R;, have been used.

Thus the FMF for PHCL that we have just obtained conforms with all dimensional crossovers
to lower dimensions, which we have sketched if Eig. 3. Nevertheless, this functional is not perfect
because it shares with that of HD the defect caused by the existence of “lost cases’ [11, 15]. There
are three-point 0D cavities such that particles sited at those points have pairwise overlap but no
triple overlap. For those cavities the FMF of a HD mixture does not reduce adequabét¢the
lost cases for the one-component fluid were already pointed out in/Ref. [11]). As a consequence
of that the FMF for a mixture of PHCL suffers from the same illness.

The excess free-energy density of PHCL obtained from its HD counterpart Using (19) and

Rosenfeld’ approximatio@gD) [cf. Eq. (15)] results in

NNy + V1Vy — V1Va 1 No (U% — V%)

q)gD) = —TNy ln(l — 77/3) + 1 . 47{W7 (25)
wherev, (r) = 3, p; % w'®(r), vo(r) = 32, pi * w'” (r), and
0 0 0 (1) T
w; ' (r) = Riw; ' (r), w, ' (r) = w; (r)ﬁa (26)
1
w? (r) = 2w Ryl () wi? (1) = w (r) 7 (27)

where thev* (r) are those defined by Eq5.{17) ahd) (21).
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IV. UNIFORM MIXTURES

In this section we give the explicit expression for the uniform limit of the FMF for a mixture of
PHCL, which coincides with the SPT result.

Itis easy to show thaf dr; [ dr.(;;(r1, rs) = 7R; R;. Taking into account this result, the uni-
form limit p;(r) = p; of both free-energy densitie®*”) from Eq. [20) antﬂ)ﬁD) from Eq. [25),
yield the result

£ -6 18(8)

PGP = _¢ 1n(1 — 4+ ——= 4 — , 28
u 60 ( 53) 1 — 53 {7 (1 63)2 ( )
where we have defined the vectgrs= < + 5}') (: = 1,2), with components
L;
33 :ZpiRia |1| :Zpigj (29)
& = Z,OiQWRiLu g = ZPZQWR?, (30)

while §, = ", p; and&; = Y, p;mRZL; are the total density and total packing fraction of the
mixture, respectively. From Eqd. (28)=[30) we can see that the excess part of free-energy density
is a function of certain weighted densiti@@, which can be calculated as the sum of products
between the particle densitipsand their fundamental measurds?;, L;/2}, the principal radii
in the directions perpendicular and parallel to the cylinder akesR; L;, 2w R?}, the areas of the
surfaces oriented along the perpendicular and parallel directions;,&hd the particle volume.

Within the SPT formalism, the excess part of the free-energy density of any mixture of convex
particles should fulfill the following differential equation [3,/19]

_<1>+Z§Za& & = a? (31)

This equation holds fof (28), thus showing that of our functional gives the SPT result. Finally, the

P,
eqguation of state within SPT can be calculated &s—= ?‘95 resulting in
3

& &6 188
6P_1—53+(1—§3) +47T(1—f3)

This equation of state can be used to study the possible demixing scenarios that a mixture of PHCL

(32)

has.
In order to show the existence of demixing in a binary mixture of PHCL we first specialize the

mixture to the case in which both particle volumes are unityui.e= v, = 1. This assumption
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allows us to calculate the particle lengths and diameters; as cx>/* ando; = cx; /%, where
k; = L;/o; are the cylinders aspect ratios ang- (4/7)'/2. It is easy to show that the expression

(28) for this particular mixture gives us the following expression for the free-energy per particle
Y= <(I)id + ‘b(ugD)> /p (With @iq = >, p; [In(vip;) — 1])

o=Iny—1+xnz+ (1 -2)In(l —z)+yS(x;r) +y°T(z;7), (33)
while the expression for the fluid pressure is
BPv; =y +y°S(x;7) + 29°T(w;7), (34)

wherey = n/(1 —n), x = x5 is the molar fraction of species 2 and= «,/x; is the ratio between

the particles aspect ratios. Note that for this particular mixture we have. Also,

S(x;r) = 3+ (r'/? - 1)2 (L+ 45 402 2(1 - a), (35)
T(eir) = 1+ (=) 77 2407 9) 4 (1= ) a2l —2).  (36)

Note that while the functio§'(z; r) = S(1 — ;) is symmetric with respect to the value= 1/2,
T(z;7) is not. Thus the spinodal instability curve with respect to the phase separation is not
symmetric with respect te = 1/2. Besides we have the obvious symmeffiyr;r) = S(1 —
ryr ) andT (x;r) = T(1 — z;rt).

The lost of mixture stability with respect to phase segregation can be calculated as usual as
a2<1>£f”D)>

=0, (37)

det <P2‘_15ij + W
L)

which is equivalent to the following condition, expressed in the variapkasdz,

0 [ ,0p] 0% 0 \*
dy [y 6y} Ox? yayax =0. (38)

Inserting [(38) into[(3B) we calculate the demixing spinodals for different values of the asymmetry
parameter in the planer — 1. Figurel4 shows these demixing spinodals for values20, 10, 5
and2.

Of course this analysis does not prove that a thermodynamically stable fluid-fluid demixing

occurs, as inhomogeneous phases are not being accounted for.
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FIG. 4: Demixing spinodals for the phase separation betw&emematic phases of different composition

calculated for values of the asymmetry parametas labeled in the figure .

V. DIRECT CORRELATION FUNCTION

The second functional derivative 75" = [ dr ®(D)(r) with respect to the density profiles
pi(r) andp;(r) evaluated at the uniform densitigsgives us, after a long and tedious calculation,

the following expression for the direct correlation function

cij(riz) = [Xo + X1 - ARyj(r12) + X2 - ASyj(r12) + x3AVi;(r12)] fij(112), (39)
_o(BP)
wherey; = 9, and
fij(’f’lg) = -0 <Rz(]+) - 7“12) © <L§;_)/2 - ‘212‘) s (40)
ARZ'j(I'lg) = [ALJ— 7’12 ) LH (212)/2:| (41)
ASij(rlg) = [ASL I'12 AS” (7’12):| y (42)
1
AVij(rip) = QASH (1 )ALyj(le), (43)
with ng.[) = |L; =+ L;|, are the Mayer functiori_(40) and the geometrical measures of the body

defined by the overlap between two cylindéend; whose centers of mass are separated by the
vectorr,;. These measures are characteristic radii along the perpendicular and parallel directions
(47), the oriented surfacels {42) and the total overlap volimie (43). The radii in turn are defined

13



through the total Iengthl(.j) of the arches and the heigbg.') of the overlap body. The expressions
for these quantities as well as fms§;“> (v =L, ]|) are given in AppendikB.

The form of the direct correlation functioh (39) as a function of the geometric measures of the
overlap body is exactly the same as that obtained from the Percus-Yevick approximation for a HS
mixture, as it was first shown by Rosenfeld [2, 3]. The same formal expression is also obtained

for a mixture of parallel hard cubes [18, 19].

VI. CONCLUSIONS

We have derived a FMF for a mixture of HD, and further used it to construct another one
for a mixture of PHCL. The resulting functional fulfills all dimensional crossovers, a feature that
makes the obtained functional very useful in the study of fluid mixtures of perfectly aligned hard
rods confined by external potentials. These external potentials may have planar or cylindrical
geometry. Some interfacial phase transitions, such as wetting, layering and capillary ordering, can
be studied as well using this functional.

Of course, the parallel alignment constraint limits the use of the PHCL functional to the study
of highly oriented phases, such as nematic, smectic or crystal phases at very high pressures. A
particularly interesting application of this functional is the determination of the phase behavior of
polydisperse hard rod mixtures. The inclusion of smectic and columnar phases in the study makes
the constraint of perfect particle alignment indispensable to achieve the numerical minimization
of the functional. Some experimental works|[37, 38] as well as simulations [40] predict that
polydispersity enhances the columnar phase stability with respect to the smectic phase. It will be

interesting to check these conclusions with the reported functional.

ACKNOWLEDGMENTS

Y. Martinez-Ratén is supported by a Ramon y Cajal research contract. J. A. Capitan acknowl-
edges financial support through a contract from Consejeria de Educacion of Comunidad de Madrid
and Fondo Social Europeo. This work is part of research projects MOSAICO of the Ministerio de
Educacion y Ciencia (Spain), and MOSSNOHO of Comunidad Autbnoma de Madrid (Spain).

14



APPENDIX A: 2D—1D LIMIT OF THE FMF FOR A MIXTURE OF HARD DISKS

We begin with the calculation of the one-dimensional limit for the two-particle weighted density
N(r) defined in Eq.[(R). Substituting the expressipns) = p;(x)d(y) (Wherep;(z) is the one-
dimensional density of speciésand integrating over the coordinatgqi = 1, 2) we obtain

1 1 o0 o0
N(z,y) =12 > R.R, / d5171/ dzs pi(z1)pj(22)0 (Ri —V(z—m)?+ ?/2)
hj TR e

X(s(R m—@) +y) m<|x1—x2\

(AL)
Amr? = uuj (@)
X 6(u; — |v — x1])0(uy — [ — 2|) Ky (|21 — w2]),
whereu; = \/R? — y? and we have used the identity
2 2\ _ I
6 (Ri— v =7 +7) = O(R: = y) —20(u; — | — 1)) (A2)

7

Because of the deltas in the integfal {Al), it can be readily performed and yields

Neyy) =3 QWO Z WD) 1y 4 5) + e — s (& — )V (s — )

i 47T2UZ'U]'
7]

+pi(x 4+ wi)pj(x — ug) + pi(r — wi) pj(z + ;) Kij(ui + uj) } -

(A3)
From Egs.[(B) and_(10) fak’;(r) we obtain
Kij(lui £ wj]) = 7lyl|ui + usl| A £ A, (A4)
where we have defined
i = sin(u;/R;) = cos™H|y|/Ri). (A5)

In order to proceed let us assume for a while tRat> R;. Thenwu; > u; and\; > A; and

therefore

Ny =3 O — [y)O(R; — [yl

7 47
ot + )+ nte = wllpe )+l -w)l (F+2) 69
- I+ ) = e = st ) =yt =] (5 + 2 )
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In order to get the equivalent expression wiign< R; we should just exchange the indicesnd
j inthe above expression. But this expression is invariant under this exchange of indices, therefore
it holds for anyR; and ;.

Let us now obtain the densities(r) andn,(r) given by Eqgs.[(4) and{5). When inserting the

one-dimensional density profile one gets

T+u;

m(eg) =Y miey). ) =0l [ pdr (A7)

T—u;

O(R; — |yl)

2y, [pi(® + u;) + pi(z —w;)].  (A8)

no(x,y) = ZnOi(x>y)> nOi(x>y) -

Notice that, as;; = R; wheny = 0, thenny(z, 0) = ny(z) andng;(z, 0) = ng;(z)/7R;, with

z+R;
() =Y /Mi plt) e, o) = 3 nale) = Sl + R +pla— R, (A9)

the two weighted densities of the exact DF for a mixture of 1D hard rods [39].

For the sake of notational clarity, in what follows we will omit the argumentsq0t, ) and
ns(z,y). Equations[(AF) and_(A8) help us to rewrife (A6) as

ly| Ong; Ong; (Ni A,
N(z,y) = Z {W‘y\nomm(ui)\i + ujAj) ~ ur Ow 8xj u_z u_j
b (A10)

|y| 8712 )‘z 8%22'
=2 iNiNoi — 5 —
W\y\no;u o 21 Ox Z u; Ox

(for notational simplicity we have omitted theandy dependence of the weighted densities).
Now we can integrat@®P)(z, y), as given by Eq[{1), with respect 4do obtain
N(z,y)

cf)(lD)(x) _ /_Oo H(2D) (z,y)dy = /_oo dy {—no($>y) [l —no(z,y)] + m} (A11)

OO ) Y

11— ng(.T,y)

— 2/000 dy {—no(as,y) In[1 —ny(z,y)] +

because the integrand is an even functiop.dDn the other hand, whan> 0

%_n; = —2myny, (A12)
. Aiy g
a_y(ui)\inOi) = —Noi — R Ox2 (A13)

therefore

Y X

0 i

In(1 — ng)a;;i] } . (AL4)

2mu;
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The first term in this equation can readily integrated. Simee,f= 0 we haveu,;(0) = R; and
Ai(0) = w/2 and fory = R; we haveu;(R;) = \;(R;) = 0, it follows that

B9 (1) = 200 (2) + 2 (1), (A15)

where
®UP) () = —ng(z) In[1 — ny(2)] (A16)

is the exact DF for a 1D hard rod mixture [39] in terms of the weighted densitiés (A9), and

U(z) = /OOO iy m In(1 - nz)ﬁgﬂ | (A17)

Assuming proper boundary conditions for the density wher +oo, the free-energy functional

for the system is given by
FPp = [ B @)de = [ 80(a), (A18)

This completes the proof of the exact 201D dimensional crossover of the DF for HO (1).

APPENDIX B: GEOMETRIC MEASURES OF THE OVERLAP BETWEEN TWO CYLIN-
DERS

In this appendix we provide explicit expressions for the geometrical measures of the body
formed by overlapping two cylinders with radi; and lengthsl;. To begin with, the formal

definition of all these measures is

fij(riz) = =Open (r2)0, o (212), (B1)
AL} (ryy) = +>(7“12) [OL, % Or,(212)] , (B2)
ALj(r12) = (O, * g, (r1; >@L<+) (212), (B3)
AS)(r12) = 2 [Og, * Op,(15)] O, (212), (B4)

where®, (r+) = O(u — 1), 0,(2) = O(u/2 — 2), andd,(r+) = 6(u — rt). It is rather easy to
evaluate these expressions appealing to their geometrical meaning. Hence, the total arch lengths

of the cross-section of the overlap body is

AL () = 2 {(Ricos™ 1) © (vt = RS) + 5 (R = BS) 0 (RS =1 ) |, (89)
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while its height is

n Ly’ Ly’ )
ALl (22) = =5 = zal — | =2 = |zl | © (L5 /2 = 212l ) (86)

Similarly, the expression for twice the area of the base of the overlap body is given by
_ TJ‘ _
ASZ“j(rﬁ) = 2{ <RZ2 [cos ! tij — 2;% 1— tfj] > S (rﬁ — jo ))

3 (r = r) 0 (R 1) } (87)

while its lateral area is readily obtained as

ASE(r12) = ALE(riy) AL (210). (B8)
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