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Abstract

We obtain a fundamental measure density functional for mixtures of parallel hard cylinders. To this

purpose we first generalize to multicomponent mixtures the fundamental measure functional proposed by

Tarazona and Rosenfeld for a one-component hard disk fluid, through a method alternative to the cavity

formalism of these authors. We show the equivalence of both methods when applied to two-dimensional

fluids. The density functional so obtained reduces to the exact density functional for one-dimensional

mixtures of hard rods when applied to one-dimensional profiles. In a second step we apply an idea put

forward some time ago by two of us, based again on a dimensional reduction of the system, and derive a

density functional for mixtures of parallel hard cylinders. We explore some features of this functional by

determining the fluid-fluid demixing spinodals for a binary mixture of cylinders with the same volume, and

by calculating the direct correlation functions.
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I. INTRODUCTION

The fundamental measure density functional originally derived by Rosenfeld for a fluid of hard

spheres (HS) [1, 2, 3, 4, 5] can be considered as the most sophisticated density functional (DF)

that has been successfully applied to the study of the highly confined HS fluid [6, 7] and to the

HS freezing [8]. The theoretical formalism initially developed by Rosenfeld to obtain the HS fun-

damental measure functional (FMF) [1, 2, 3] was later complemented with the concept of dimen-

sional crossover to zero dimension to obtain a DF that adequately describes the HS freezing [9, 10].

By dimensional crossover it is understood that when reducing the dimension of aD-dimensional

system to that of aD′-dimensional one (e.g. by confining), theD-dimensional DF crosses over to

theD′-dimensional one. This zero-dimensional (0D) crossover was later employed by Tarazona

and Rosenfeld to introduce a new cavity formalism which showed how this unique property, to-

gether with the exact expressions for the zero- and one-dimensional (1D) HS functionals, are the

only requirements needed to derive their final versions of the FMFs for the hard disk (HD) and the

HS fluids [11]. These versions which, as it is standard in all FMFs, assume that the density profile

dependence enters in the functional only through a finite set of weighted densities, leave little free-

dom for improvements without destroying the important dimensional crossover property. Recent

efforts have been made to derive a HS functional with an imposed equation of state (EOS) as its

uniform limit [12, 13]. This imposed EOS (for instance the Carnahan-Starling EOS ) describes the

fluid better than the scaled particle result [14] (the uniform limit of all the FMF derived from first

principles) in the description of the HS liquid. However, all these modifications can be done at the

expense of losing some, or all, of the dimensional crossovers —a crucial property if one wants to

study highly confined fluids.

Thus, we can say that the fundamental measure theory (FMT) is close to its edge in the sense

that it is questionable that any improvement can be achieved without rendering it intractable [15].

For instance, it has been argued that the inclusion of an infinite set of weighted densities can

remove some defects of the HS FMF, because this is what happens —with the addition of a few

more weighted densities— for the FMF for parallel hard hexagons [16] (which is constructed from

the corresponding functional for parallel hard cubes [17, 18, 19]). After all, a circle is a polygon

with infinitely many sides. Similar conclusions are reached when FMFs for lattice models are

constructed [20, 21, 22]. In fact, the concept of cavity can be generalized in those models so as to

account for higher orders of accuracy in the correlation functions [23, 24].
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The first extension of the FMF to general anisotropic particles was carried out by Rosen-

feld [25]. However this extension only works for isotropic fluids (with particle axes randomly

oriented), because the Mayer function is not recovered from the low-density expansion of the

proposed FMF when particles have a preferred alignment [26]. In recent works the definition

of the one-particle weights necessary to calculate the weighted densities has been extended in

such a way as to include an effective dependence on the orientations of both interacting particles

[27, 28, 29, 30]. This way the Mayer function can be exactly decomposed as a sum of convolu-

tions between those extended weights. Different FMFs for freely rotating particles: for a mixture

of HS and hard needles [27, 28], and for a mixture of hard needles and infinitely thin hard plates

[29, 30] have been proposed using these extended weights, and the resulting FMFs have some of

the desired dimensional crossovers. However, the requirement of taking the breadth of the particles

vanishing small seems to be indispensable to construct such functionals.

The parallel particle alignment (or the restricted orientation approximation) is a fundamental

restriction that has to be taken if we want to derive a FMF from first principles, without any

approximation about the particle characteristic lengths. The FMF for parallel hard cubes [17] and

its later extension to hard parallelepipeds with orientation restricted to three perpendicular axes

(Zwanzig model) [18, 19] were the first examples of FMFs for anisotropic particles derived form

first principles using the original Rosenfeld’s formalism and adding the dimensional cross-over

constraint. The FMF for the Zwanzig model was applied to the calculation of phase diagrams

of the one-component fluids made of hard rods and hard plates [31], and of phase diagrams of

polydisperse rod-plate mixture [32, 33]. Also, it was applied to the study of interfacial phenomena

in liquid crystals in three [34] and two [35] dimensions. Reference [36] summarizes most of the

works done on the study of wall-liquid crystal fluid interfaces using the Zwanzig model.

In this article we want to derive a FMF for another particle geometry with the parallel alignment

restriction. In this case the fluid is composed of a mixture of parallel hard cylinders (PHCL) with

different radiiRi and lengthsLi. To achieve this we will first of all extend the FMF obtained

by Tarazona and Rosenfeld [11] for a one-component HD fluid to a multicomponent mixture,

using an alternative approach to the cavity formalism used by these authors. We prove that the

resulting functional conforms all the dimensional crossovers and thus we show that both methods

are completely equivalent. In a second step we derive a functional for a mixture of parallel hard

cylinders starting from the already obtained HD functional by applying a differential operator, as

explained in Ref. [18]. This procedure guarantees the dimensional crossover from 3D to 2D [18].
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The parallel alignment restriction is, of course, a hard constraint that prevents the use of the

derived functional in the study of those phenomena governed by changes in the orientational or-

dering of the constituent particles, as it often occurs in liquid-crystals. However, as the spatial

correlations are accurately treated, those phases with a high degree of orientation, such as the

smectic, columnar or crystalline phases at high pressures, should be well described by the present

functional. Also, the study of non-uniform polydisperse liquid-crystalline phases, which are fre-

quently present in experiments on colloidal mixtures [37, 38], is such a difficult task that the

parallel alignment simplification seems to be the only way to take some steps forward in that

direction.

The article is organized as follows. In Sec. II we derive the FMF for mixtures of HD. In Sec. III

we use this result to construct a FMF for mixtures of PHCL. Section IV discusses the uniform

mixture of PHCL and in Sec. V we derive the direct correlation functions for this mixture. After a

section summarizing the results of the paper, we include two appendices. In Appendix A we proof

that the FMF for a mixture of HD has an exact 2D→1D crossover. This is, of course, inherited

by the FMF for PHCL. In Appendix B the expressions for the geometric terms defining the direct

correlation functions are explicitly displayed.

II. FUNDAMENTAL MEASURE DENSITY FUNCTIONAL FOR A MIXTURE OF HARD DISKS

In this section we will derive a density functional for mixtures of HD based upon Tarazona and

Rosenfeld’s proposal for a one-component HD fluid obtained by using the 0D cavity formalism of

FMT [11]. We will maintain the functional structure of the excess part of the free energy density,

Φ(2D)(r), and extend it to a multicomponent mixture by calculating the kernelKij(r) (i andj label

disk species) which enters the definition of the two-particle weighted densityN(r) (see below).

This functional structure is

Φ(2D)(r) = −n0(r) ln [1 − n2(r)] +
N(r)

1 − n2(r)
, (1)

and its extension to mixtures amounts to writing

N(r) =
∑

i,j

∫

dr1

∫

dr2ρi(r1)ρj(r2)Ωij(r − r1, r − r2), (2)

Ωij(r1, r2) = ω
(0)
i (r1)ω

(0)
j (r2)Kij(r12). (3)
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The one-particle weighted densitiesn0(r) and n2(r) [n2(r) being the local packing fraction] are

those of Rosenfeld’s for a FMF for HD mixtures [1, 2, 3], i.e.

n0(r) =
∑

i

∫

dr′ρi(r
′)ω

(0)
i (r − r

′), (4)

n2(r) =
∑

i

∫

dr′ρi(r
′)ω

(2)
i (r − r

′), (5)

with ρi(r) the density profile of speciesi andω
(α)
i (r) the one-particle weights defined as

ω
(0)
i (r) =

δ(Ri − r)

2πRi
, ω

(2)
i (r) = Θ(Ri − r), (6)

Ri (i = 1, 2, · · · , c, with c the number of components of the mixture) being the particle radii,

andδ(x) andΘ(x) the Dirac delta and Heaviside step functions respectively. Equation (2) is the

natural extension to multicomponent mixtures of the two-particle weighted densityN(r) initially

introduced for a one-component fluid in Ref. [11]. The authors of this work found the expression

for the kernelK(r12) through the requirement that inserting 0D density profiles in the excess part

of free energy

βF (2D)
ex [ρ(r)] =

∫

drΦ(2D)(r) (7)

should recover the interaction part of the free energy of a 0D cavityΦ(0D) = N+(1−N ) ln(1−N ),

with N < 1 the mean occupation of the cavity. As usual, the 0D cavity is understood as a cavity

of arbitrary geometry which can accommodate one particle at the most.

To determineKij(r) we will follow another procedure: we will impose that the low density

limit of the second functional derivative of (7) with respect to the density profilesρi(r1) andρj(r2)

coincides with the overlap function of two HD of radiiRi andRj , which turns out to be the exact

low density limit of minus the direct correlation function, i.e.

Θ(R
(+)
ij − r12) =

∫

dr′
〈

ω
(0)
i (r′)ω

(2)
j (r12 − r

′)
〉

+ 2Kij(r12)

∫

dr′ω
(0)
i (r′)ω

(0)
j (r12 − r

′), (8)

where〈fij〉 = fij + fji has been introduced to denote symmetrization offij with respect to its

indices, andR(+)
ij = Ri + Rj. The calculation of the integrals involved in Eq. (8) leads to

Kij(r12) = πr12〈sin
−1 tij(r12)〉Ri

√

1 − tij(r12)2 Θ
(

r12 − R
(−)
ij

)

Θ
(

R
(+)
ij − r12

)

, (9)

tij(r12) =
r2
12 + R2

i − R2
j

2r12Ri
, (10)

whereR
(−)
ij = |Ri − Rj|. The kernel (9) is symmetric with respect to the exchange of indicesi

andj due to the equalityhij ≡ Ri

√

1 − tij(r12)2 = Rj

√

1 − tji(r12)2, which is easily visualized
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FIG. 1: Sketch of the triangular geometry defined by the lengths Ri, Rj andr12.

in Fig. 1: this figure shows a sketch of a typical configuration of two HD with different radii for

which theKij(r12) is different from zero; in it the heighthij of the triangle formed by the lengths

r12, Ri andRj can be calculated either asRi sin φi or asRj sin φj, thus proving the symmetry

Kij(r12) = Kji(r12). Also, from Eq. (9) and the triangular geometry the kernel can be rewritten as

Kij(r12) = πAij(r12)φij(r12), with Aij = r12hij the sum of the areas of both triangles (the shaded

region of Fig. 1), andφij = 〈sin−1 tij〉, the angle formed by the sidesRi andRj .

For one component,Kij(r) recovers the expression

K(r) = 4πR2
( r

2R

)

sin−1
( r

2R

)

√

1 −
( r

2R

)2

(11)

reported in Ref. [11]. It is interesting to note that, because of the presence of weightsω
(0)
i (r)

(proportional to Dirac delta functions) in the definition ofN(r), its expression can be greatly

simplified. After insertion ofKij(r) into Eq. (2) and integration over the radial variablesr1 andr2

we find

N(r) =
1

4π

∑

i,j

RiRj

∫ 2π

0

dφ1

∫ 2π

0

dφ2ρi(r + Riu1)ρj(r + Rju2)T (φ12), (12)

whereφ12 = φ1 − φ2, ui = (cos φi, sin φi), and the functionT (φ) is defined as

T (φ) = |φ − 2πn|| sinφ|, (13)

with n the integral part of the fraction(φ + π)/(2π). The first factor on the right hand side of

(13) is the2π-periodic function shown in Fig. 2 with a dashed line. The functionT (φ) is plotted
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FIG. 2: The functionT (φ) in the interval[0, 4π] (solid line). Also is shown with dashed line the triangular

wave function.

in the same figure. From the new form ofN(r) given by Eq. (12) we can conclude that, despite

the presence of a two-particle weight in its definition, the numerical cost required to evaluate it is

the same as that required to calculate the local packing fractionn2(r), because both quantities are

defined through a double integral.

Taking into account the result
∫

dφ1

∫

dφ2T (φ12) = 4π2 we find that the uniform limit ofΦ(2D)

[cf. Eq. (1)] coincides with the scaled particle theory (SPT) result for a mixture of HD [1, 2, 3, 14]

Φ(2D) = −ξ0 ln(1 − ξ2) +
1

4π

ξ2
1

1 − ξ2

, (14)

whereξ0 =
∑

i ρi, ξ1 =
∑

i ρi(2πRi), andξ2 =
∑

i ρi (πR2
i ).

Because the derivation ofKij(r) has not followed the requirement of exact reduction to 0D

cavities, as in Ref. [11], the question arises as to whether this nice property holds for this new func-

tional. In Appendix A we proof a stronger property: the functional (1) fulfills an exact 2D→1D

crossover; in other words, by inserting the profileρi(r) = ρi(x)δ(y) into (1) and (7) we recover the

exact functional for 1D hard rod mixtures [39], cf. Eqs. (A16) and (A18). With this we have also

proven that the present method and the cavity formalism of Ref. [11] are two equivalent methods

to obtain a FMF for mixtures of HD.
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III. DENSITY FUNCTIONAL FOR A MIXTURE OF PARALLEL HARD CYLINDERS

In this Section we will construct a FMF for a mixture of PHCL starting from two different

density functionals for HD mixtures: the first one is calculated through Eq. (1), while the second

one is Rosenfeld’s proposal [3]

Φ
(2D)
R = −n0 ln(1 − n2) +

1

4π

v2 − v
2

1 − n2
, (15)

wherev =
∑

i ρi ∗ wi(r) andv =
∑

i ρi ∗wi(r), with the new weights

wi(r) = 2πRiω
(0)
i (r), wi(r) = wi

r

r
. (16)

Note that the weighted densityv(r) is not the absolute value ofv(r). Rosenfeld obtained this

expression by approximating the Mayer function of two HD by the sum of convolutions between

single-particle weightsfij(r) = 〈ω(0)
i ∗ ω

(2)
j 〉(r) + (2π)−1[wi ∗ wj(r)−wi ∗wj(r)] and requiring

also that the scaled particle result (14) was recovered in the uniform limit [3]. The expression (15),

however, does not conform with any dimensional crossover to lower dimensions.

The FMF for PHCL is obtained by resorting to the dimensional crossover 3D→2D which any

functionalβF (3D)
ex [{ρi}] fulfill. In Ref. [18] it was argued that having a FMF for a mixture of two-

dimensional particlesF (2D)
ex [{ρi}] one can construct an explicit expression for a FMF for a mixture

of parallel anisotropic three-dimensional (3D) bodies whose constant section perpendicular to their

main axes is that of the 2D particles. In the same reference it is shown that the resulting functional

fulfills by construction the 3D→2D dimensional crossover when the original fluid is confined such

that the centers of mass of the particles are confined on a plane perpendicular to their axes. We

will apply this method to obtain a FMF for a mixture of parallel cylinders as follows. First of

all we need to redefine the functional in such a way as to include thez-coordinate dependence of

the density profiles and correspondingly of the weighted densities. The new weights are obtained

multiplying the old ones by the factorsΘ(Li/2 − |z|), i.e.

ω
(1)
i (r) = ω

(0)
i (r⊥)Θ(Li/2 − |z|), ω

(3)
i (r) = ω

(2)
i (r⊥)Θ(Li/2 − |z|), (17)

Ω
(2)
ij (r1, r2) = Ωij(r

⊥
1 , r⊥2 )Θ(Li/2 − |z1|)Θ(Lj/2 − |z2|). (18)

The resulting free energy density, which we denoteΦ̃(2D), is the same as that given by Eq. (1),

but with the substitutionsn0(r) → n1(r), n2(r) → n3(r) andN(r) → N2(r). The new weighted

densities are obtained through the same expressions given for the 2D case but using the new
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weights (17), (18). Note that the vector positionr is now defined asr = (r⊥, z). The dimensional

crossover 3D→2D holds if the 3D excess free-energy density is obtained by the following formula

[18, 19]

Φ(3D)(r) =
∑

i

∂

∂Li
Φ̃(2D)(r). (19)

In our case this leads to

Φ(3D) = −n0 ln(1 − n3) +
n1n2 + N1

1 − n3
+

n2N2

(1 − n3)2
, (20)

where the one-particle weighted densitiesnα(r) are calculated as usual asnα(r) =
∑

i ρi ∗ω
(α)
i (r)

[∗ stands for the convolutionf ∗ g(r) ≡
∫

dr′f(r′)g(r−r
′)]. The one-particle weights are defined

jointly by Eq. (17) and

ω
(0)
i (r) =

1

2
ω

(0)
i (r⊥)δ(Li/2 − |z|), ω

(2)
i (r) =

1

2
ω

(2)
i (r⊥)δ(Li/2 − |z|). (21)

The two-particle weighted densities are calculated as

Nα(r) =
∑

ij

∫

dr1

∫

dr2ρi(r1)ρj(r2)Ω
(α)
ij (r − r1, r− r2), (22)

with Ω
(2)
ij (r1, r2) given by Eq. (18) whileΩ(1)

ij (r1, r2) is

Ω
(1)
ij (r1, r2) = Ωij(r

⊥
1 , r⊥2 )

〈

1

2
Θ(Li/2 − |z1|)δ(Lj/2 − |z2|)

〉

. (23)

As mentioned above, the free-energy functionalF (3D) has a correct dimensional reduction

to F (2D), the free energy for a HD mixture, when the density profiles are taken asρi(r) =

ρ
(2D)
i

(

r
⊥
)

δ(z) [r⊥ = (x, y)], i.e. projecting the cylinders on the plane perpendicular to their

axes. It is easy to show that the dimensional cross-over 3D→2D, where the projection is now

in a plane parallel to the cylinder axes, also holds. To show this we take the density profiles as

ρi(r) = ρi(r
‖)δ(x) [r‖ = (y, z)], with ρi(r

‖) = ρ
(2D)
i (y, z). Inserting theseρi(r) into Φ̃(2D)(r)

and using the already shown dimensional cross-over 2D→1D of a FMF for a mixture of HD (see

Appendix A), we obtain, from Eq. (19),

Φ(3D)(r) → Φ
(2D)
PHR(r) = −n0(r) ln [1 − n2(r)] +

n1x(r)n1y(r)

1 − n2(r)
, (24)

the free-energy density of a mixture of parallel hard rectangles (the section of the cylinders along

their axes) [18, 19]. The weighted densities for such particles are now defined asn0(r) =

9



2D−1D

3D−2D

3D−2D

(a) (b) (c)

FIG. 3: Sketch of all dimensional crossovers fulfilled by the fundamental-measure functional for a mixture

of parallel hard cylinders: (a) from cylinders (3D) to rectangles (2D), (b) from cylinders (3D) to disks (2D)

and (c) from disks (2D) to rods (1D).

∑

i ρ
(2D)
i ∗ [δσi

(y)δLi
(z)], n2(r) =

∑

i ρ
(2D)
i ∗ [θσi

(y)θLi
(z)], n1x(r) =

∑

i ρ
(2D)
i ∗ [δσi

(y)θLi
(z)],

andn1y(r) =
∑

i ρ
(2D)
i ∗ [θσi

(y)θLi
(z)], where the shorthand notationsδui

(s) = 1
2
δ(ui/2−|s|) and

θui
(s) = Θ(ui/2 − |s|), with s = y, z andσi = 2Ri, have been used.

Thus the FMF for PHCL that we have just obtained conforms with all dimensional crossovers

to lower dimensions, which we have sketched if Fig. 3. Nevertheless, this functional is not perfect

because it shares with that of HD the defect caused by the existence of “lost cases” [11, 15]. There

are three-point 0D cavities such that particles sited at those points have pairwise overlap but no

triple overlap. For those cavities the FMF of a HD mixture does not reduce adequately toΦ(0D) (the

lost cases for the one-component fluid were already pointed out in Ref. [11]). As a consequence

of that the FMF for a mixture of PHCL suffers from the same illness.

The excess free-energy density of PHCL obtained from its HD counterpart using (19) and

Rosenfeld’ approximationΦ(2D)
R [cf. Eq. (15)] results in

Φ
(3D)
R = −n0 ln(1 − n3) +

n1n2 + v1v2 − v1v2

1 − n3
+

1

4π

n2 (v2
2 − v

2
2)

(1 − n3)2
, (25)

wherevα(r) =
∑

i ρi ∗ w
(α)
i (r), vα(r) =

∑

i ρi ∗ w
(α)
i (r), and

w
(1)
i (r) = Riω

(0)
i (r), w

(1)
i (r) = w

(1)
i (r)

r
⊥

Ri
, (26)

w
(2)
i (r) = 2πRiω

(1)
i (r), w

(2)
i (r) = w

(2)
i (r)

r
⊥

Ri

, (27)

where theω(α)
i (r) are those defined by Eqs. (17) and (21).
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IV. UNIFORM MIXTURES

In this section we give the explicit expression for the uniform limit of the FMF for a mixture of

PHCL, which coincides with the SPT result.

It is easy to show that
∫

dr1

∫

dr2Ωij(r1, r2) = πRiRj. Taking into account this result, the uni-

form limit ρi(r) = ρi of both free-energy densities,Φ(3D) from Eq. (20) andΦ(3D)
R from Eq. (25),

yield the result

Φ(3D)
u = −ξ0 ln(1 − ξ3) +

ξ1 · ξ2

1 − ξ3
+

1

8π

ξ
‖
2

(

ξ⊥2
)2

(1 − ξ3)2
, (28)

where we have defined the vectorsξi ≡
(

ξ⊥i , ξ
‖
i

)

(i = 1, 2), with components

ξ⊥1 =
∑

i

ρiRi, ξ
‖
1 =

∑

i

ρi
Li

2
, (29)

ξ⊥2 =
∑

i

ρi2πRiLi, ξ
‖
2 =

∑

i

ρi2πR2
i , (30)

while ξ0 =
∑

i ρi andξ3 =
∑

i ρiπR2
i Li are the total density and total packing fraction of the

mixture, respectively. From Eqs. (28)–(30) we can see that the excess part of free-energy density

is a function of certain weighted densitiesξ
(α)
i , which can be calculated as the sum of products

between the particle densitiesρi and their fundamental measures:{Ri, Li/2}, the principal radii

in the directions perpendicular and parallel to the cylinder axes,{2πRiLi, 2πR2
i }, the areas of the

surfaces oriented along the perpendicular and parallel directions, andπR2
i Li the particle volume.

Within the SPT formalism, the excess part of the free-energy density of any mixture of convex

particles should fulfill the following differential equation [3, 19]

− Φ +
∑

i

ξi
∂Φ

∂ξi

+ ξ0 =
∂Φ

∂ξ3

. (31)

This equation holds for (28), thus showing that of our functional gives the SPT result. Finally, the

equation of state within SPT can be calculated asβP =
∂Φu

∂ξ3
, resulting in

βP =
ξ0

1 − ξ3
+

ξ1 · ξ2

(1 − ξ3)2
+

1

4π

ξ
‖
2

(

ξ⊥2
)2

(1 − ξ3)3
. (32)

This equation of state can be used to study the possible demixing scenarios that a mixture of PHCL

has.

In order to show the existence of demixing in a binary mixture of PHCL we first specialize the

mixture to the case in which both particle volumes are unity, i.e.v1 = v2 = 1. This assumption

11



allows us to calculate the particle lengths and diameters asLi = cκ
2/3
i andσi = cκ

−1/3
i , where

κi = Li/σi are the cylinders aspect ratios andc = (4/π)1/3. It is easy to show that the expression

(28) for this particular mixture gives us the following expression for the free-energy per particle

ϕ =
(

Φid + Φ
(3D)
u

)

/ρ (with Φid =
∑

i ρi [ln(viρi) − 1])

ϕ = ln y − 1 + x ln x + (1 − x) ln(1 − x) + yS(x; r) + y2T (x; r), (33)

while the expression for the fluid pressure is

βPvi = y + y2S(x; r) + 2y3T (x; r), (34)

wherey ≡ η/(1− η), x ≡ x2 is the molar fraction of species 2 andr ≡ κ2/κ1 is the ratio between

the particles aspect ratios. Note that for this particular mixture we haveη = ρ. Also,

S(x; r) = 3 +
(

r1/3 − 1
)2 (

1 + 4r−1/3 + r−2/3
)

x(1 − x), (35)

T (x; r) = 1 +
(

r1/3 − 1
)2 [

r−1/3
(

2 + r−1/3
)

+
(

1 − r−2/3
)

x
]

x(1 − x). (36)

Note that while the functionS(x; r) = S(1−x; r) is symmetric with respect to the valuex = 1/2,

T (x; r) is not. Thus the spinodal instability curve with respect to the phase separation is not

symmetric with respect tox = 1/2. Besides we have the obvious symmetryS(x; r) = S(1 −

x; r−1) andT (x; r) = T (1 − x; r−1).

The lost of mixture stability with respect to phase segregation can be calculated as usual as

det

(

ρ−1
i δij +

∂2Φ
(3D)
u

∂ρi∂ρj

)

= 0, (37)

which is equivalent to the following condition, expressed in the variablesy andx,

∂

∂y

[

y2∂ϕ

∂y

]

∂2ϕ

∂x2
−

(

y
∂2ϕ

∂y∂x

)2

= 0. (38)

Inserting (33) into (38) we calculate the demixing spinodals for different values of the asymmetry

parameterr in the planex − η. Figure 4 shows these demixing spinodals for valuesr = 20, 10, 5

and2.

Of course this analysis does not prove that a thermodynamically stable fluid-fluid demixing

occurs, as inhomogeneous phases are not being accounted for.
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FIG. 4: Demixing spinodals for the phase separation between two nematic phases of different composition

calculated for values of the asymmetry parameterr as labeled in the figure .

V. DIRECT CORRELATION FUNCTION

The second functional derivative ofβF (3D)
ex =

∫

drΦ(3D)(r) with respect to the density profiles

ρi(r) andρj(r) evaluated at the uniform densitiesρi gives us, after a long and tedious calculation,

the following expression for the direct correlation function

cij(r12) = [χ0 + χ1 · ∆Rij(r12) + χ2 · ∆Sij(r12) + χ3∆Vij(r12)] fij(r12), (39)

whereχi =
∂(βP )

∂ξi
and

fij(r12) = −Θ
(

R
(+)
ij − r12

)

Θ
(

L
(+)
ij /2 − |z12|

)

, (40)

∆Rij(r12) =
[

∆L⊥
ij(r

⊥
12)/(2π), ∆L

‖
ij(z12)/2

]

, (41)

∆Sij(r12) =
[

∆S⊥
ij (r12), ∆S

‖
ij(r

⊥
12)
]

, (42)

∆Vij(r12) =
1

2
∆S

‖
ij(r

⊥
12)∆L

‖
ij(z12), (43)

with L
(±)
ij ≡ |Li ± Lj |, are the Mayer function (40) and the geometrical measures of the body

defined by the overlap between two cylindersi andj whose centers of mass are separated by the

vectorr12. These measures are characteristic radii along the perpendicular and parallel directions

(41), the oriented surfaces (42) and the total overlap volume (43). The radii in turn are defined
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through the total lengthL(⊥)
ij of the arches and the heightL

(‖)
ij of the overlap body. The expressions

for these quantities as well as for∆S
(α)
ij (α =⊥, ‖) are given in Appendix B.

The form of the direct correlation function (39) as a function of the geometric measures of the

overlap body is exactly the same as that obtained from the Percus-Yevick approximation for a HS

mixture, as it was first shown by Rosenfeld [2, 3]. The same formal expression is also obtained

for a mixture of parallel hard cubes [18, 19].

VI. CONCLUSIONS

We have derived a FMF for a mixture of HD, and further used it to construct another one

for a mixture of PHCL. The resulting functional fulfills all dimensional crossovers, a feature that

makes the obtained functional very useful in the study of fluid mixtures of perfectly aligned hard

rods confined by external potentials. These external potentials may have planar or cylindrical

geometry. Some interfacial phase transitions, such as wetting, layering and capillary ordering, can

be studied as well using this functional.

Of course, the parallel alignment constraint limits the use of the PHCL functional to the study

of highly oriented phases, such as nematic, smectic or crystal phases at very high pressures. A

particularly interesting application of this functional is the determination of the phase behavior of

polydisperse hard rod mixtures. The inclusion of smectic and columnar phases in the study makes

the constraint of perfect particle alignment indispensable to achieve the numerical minimization

of the functional. Some experimental works [37, 38] as well as simulations [40] predict that

polydispersity enhances the columnar phase stability with respect to the smectic phase. It will be

interesting to check these conclusions with the reported functional.
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APPENDIX A: 2D→1D LIMIT OF THE FMF FOR A MIXTURE OF HARD DISKS

We begin with the calculation of the one-dimensional limit for the two-particle weighted density

N(r) defined in Eq. (2). Substituting the expressionsρi(r) = ρi(x)δ(y) (whereρi(x) is the one-

dimensional density of speciesi) and integrating over the coordinatesyi (i = 1, 2) we obtain

N(x, y) =
1

4π2

∑

i,j

1

RiRj

∫ ∞

−∞

dx1

∫ ∞

−∞

dx2 ρi(x1)ρj(x2)δ
(

Ri −
√

(x − x1)2 + y2
)

× δ
(

Rj −
√

(x − x2)2 + y2
)

Kij(|x1 − x2|)

=
1

4π2

∑

i,j

Θ(Ri − |y|)Θ(Rj − |y|)

uiuj

∫ ∞

−∞

dx1

∫ ∞

−∞

dx2 ρi(x1)ρj(x2)

× δ(ui − |x − x1|)δ(uj − |x − x2|)Kij(|x1 − x2|),

(A1)

whereui ≡
√

R2
i − y2 and we have used the identity

δ
(

Ri −
√

(x − x1)2 + y2
)

= Θ(Ri − |y|)
Ri

ui
δ(ui − |x − x1|). (A2)

Because of the deltas in the integral (A1), it can be readily performed and yields

N(x, y) =
∑

i,j

Θ(Ri − |y|)Θ(Rj − |y|)

4π2uiuj
{[ρi(x + ui)ρj(x + uj) + ρi(x − ui)ρj(x − uj)]Kij(|ui − uj|)

+[ρi(x + ui)ρj(x − uj) + ρi(x − ui)ρj(x + uj)]Kij(ui + uj)} .

(A3)

From Eqs. (9) and (10) forKij(r) we obtain

Kij(|ui ± uj|) = π|y||ui ± uj||λi ± λj|, (A4)

where we have defined

λi ≡ sin−1(ui/Ri) = cos−1(|y|/Ri). (A5)

In order to proceed let us assume for a while thatRi ≥ Rj. Thenui ≥ uj andλi ≥ λj and

therefore

N(x, y) =
∑

i,j

Θ(Ri − |y|)Θ(Rj − |y|)|y|

4π

×

{

[ρi(x + ui) + ρi(x − ui)][ρj(x + uj) + ρj(x − uj)]

(

λi

uj

+
λj

ui

)

− [ρi(x + ui) − ρi(x − ui)][ρj(x + uj) − ρj(x − uj)]

(

λi

ui
+

λj

uj

)}

.

(A6)
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In order to get the equivalent expression whenRi < Rj we should just exchange the indicesi and

j in the above expression. But this expression is invariant under this exchange of indices, therefore

it holds for anyRi andRj.

Let us now obtain the densitiesn0(r) andn2(r) given by Eqs. (4) and (5). When inserting the

one-dimensional density profile one gets

n2(x, y) =
∑

i

n2i(x, y), n2i(x, y) = Θ(Ri − |y|)

∫ x+ui

x−ui

ρi(t) dt, (A7)

n0(x, y) =
∑

i

n0i(x, y), n0i(x, y) =
Θ(Ri − |y|)

2πui
[ρi(x + ui) + ρi(x − ui)]. (A8)

Notice that, asui = Ri wheny = 0, thenn2(x, 0) = n1(x) andn0i(x, 0) = n0i(x)/πRi, with

n1(x) =
∑

i

∫ x+Ri

x−Ri

ρi(t) dt, n0(x) =
∑

i

n0i(x) =
1

2

∑

i

[ρi(x + Ri) + ρi(x − Ri)], (A9)

the two weighted densities of the exact DF for a mixture of 1D hard rods [39].

For the sake of notational clarity, in what follows we will omit the arguments ofn0(x, y) and

n2(x, y). Equations (A7) and (A8) help us to rewrite (A6) as

N(x, y) =
∑

i,j

{

π|y|n0in0j(uiλi + ujλj) −
|y|

4π

∂n2i

∂x

∂n2j

∂x

(

λi

ui
+

λj

uj

)}

= 2π|y|n0

∑

i

uiλin0i −
|y|

2π

∂n2

∂x

∑

i

λi

ui

∂n2i

∂x

(A10)

(for notational simplicity we have omitted thex andy dependence of the weighted densities).

Now we can integrateΦ(2D)(x, y), as given by Eq. (1), with respect toy to obtain

Φ̃(1D)(x) =

∫ ∞

−∞

Φ(2D)(x, y) dy =

∫ ∞

−∞

dy

{

−n0(x, y) ln[1 − n2(x, y)] +
N(x, y)

1 − n2(x, y)

}

= 2

∫ ∞

0

dy

{

−n0(x, y) ln[1 − n2(x, y)] +
N(x, y)

1 − n2(x, y)

}

,

(A11)

because the integrand is an even function ofy. On the other hand, wheny ≥ 0

∂n2

∂y
= −2πyn0, (A12)

∂

∂y
(uiλin0i) = −n0i −

λiy

2πui

∂2n2i

∂x2
, (A13)

therefore

Φ̃(1D)(x) = 2

∫ ∞

0

dy
∑

i

{

∂

∂y
[uiλin0i ln(1 − n2)] +

∂

∂x

[

λiy

2πui
ln(1 − n2)

∂n2i

∂x

]}

. (A14)
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The first term in this equation can readily integrated. Since for y = 0 we haveui(0) = Ri and

λi(0) = π/2 and fory = Ri we haveui(Ri) = λi(Ri) = 0, it follows that

Φ̃(1D)(x) = Φ(1D)(x) +
∂Ψ

∂x
(x), (A15)

where

Φ(1D)(x) = −n0(x) ln[1 − n1(x)] (A16)

is the exact DF for a 1D hard rod mixture [39] in terms of the weighted densities (A9), and

Ψ(x) =

∫ ∞

0

dy
∑

i

[

λiy

πui
ln(1 − n2)

∂n2i

∂x

]

. (A17)

Assuming proper boundary conditions for the density whenx → ±∞, the free-energy functional

for the system is given by

βF (2D)
ex [{ρi}] =

∫ ∞

−∞

Φ̃(1D)(x) dx =

∫ ∞

−∞

Φ(1D)(x). (A18)

This completes the proof of the exact 2D→1D dimensional crossover of the DF for HD (1).

APPENDIX B: GEOMETRIC MEASURES OF THE OVERLAP BETWEEN TWO CYLIN-

DERS

In this appendix we provide explicit expressions for the geometrical measures of the body

formed by overlapping two cylinders with radiiRi and lengthsLi. To begin with, the formal

definition of all these measures is

fij(r12) = −Θ
R

(+)
ij

(r⊥12)ΘL
(+)
ij

(z12), (B1)

∆L
‖
ij(r12) = Θ

R
(+)
ij

(r⊥12)
[

ΘLi
∗ ΘLj

(z12)
]

, (B2)

∆L⊥
ij(r12) =

〈

ΘRi
∗ δRj

(r⊥12)
〉

Θ
L

(+)
ij

(z12), (B3)

∆S
‖
ij(r12) = 2

[

ΘRi
∗ ΘRj

(r⊥12)
]

Θ
L

(+)
ij

(z12), (B4)

whereΘu(r
⊥) = Θ(u − r⊥), Θu(z) = Θ(u/2 − z), andδu(r

⊥) = δ(u − r⊥). It is rather easy to

evaluate these expressions appealing to their geometrical meaning. Hence, the total arch lengths

of the cross-section of the overlap body is

∆L⊥
ij(r

⊥
12) = 2

{

〈

Ri cos−1 tij
〉

Θ
(

r⊥12 − R
(−)
ij

)

+
π

2

(

R
(+)
ij − R

(−)
ij

)

Θ
(

R
(−)
ij − r⊥12

)}

, (B5)
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while its height is

∆L
‖
ij(z12) =

L
(+)
ij

2
− |z12| −

(

L
(−)
ij

2
− |z12|

)

Θ
(

L
(−)
ij /2 − |z12|

)

. (B6)

Similarly, the expression for twice the area of the base of the overlap body is given by

∆S
‖
ij(r

⊥
12) = 2

{

〈

R2
i

[

cos−1 tij −
r⊥12
2Ri

√

1 − t2ij

]〉

Θ
(

r⊥12 − R
(−)
ij

)

+
π

4

(

R
(+)
ij − R

(−)
ij

)2

Θ
(

R
(−)
ij − r⊥12

)

}

, (B7)

while its lateral area is readily obtained as

∆S⊥
ij (r12) = ∆L⊥

ij(r
⊥
12)∆L

‖
ij(z12). (B8)
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