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Surface and smectic layering transitions in binary mixtures of parallel hard rods
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The surface phase behavior of binary mixtures of colloidal hard rods in contact with a solid
substrate (hard wall) is studied, with special emphasis on the region of the phase diagram that
includes the smectic A phase. The colloidal rods are modelled as hard cylinders of the same diameter
and different lengths, in the approximation of perfect alignment. A fundamental–measure density
functional is used to obtain equilibrium density profiles and thermodynamic properties such as
surface tensions and adsorption coefficients. The bulk phase diagram exhibits nematic-smectic and
smectic-smectic demixing, with smectic phases having different compositions; in some cases they are
microfractionated. The calculated surface phase diagram of the wall-nematic interface shows a very
rich phase behavior, including layering transitions and complete wetting at high pressures, whereby
an infinitely thick smectic film grows at the wall via an infinite sequence of stepwise first–order
layering transitions. For lower pressures complete wetting also obtains, but here the smectic film
grows in a continuous fashion. Finally, at very low pressures, the wall-nematic interface exhibits
critical adsorption by the smectic phase, due to the second-order character of the bulk nematic-
smectic transition.

PACS numbers: 64.70.M-,61.30.Hn,61.20.Gy

I. INTRODUCTION

The wetting behavior of molecular smectic (S) liquid
crystals in contact with a solid substrate [1–5] or at their
vapor-liquid crystal interfaces [6–10] has been an active
research area since the 80’s. Partial or complete wet-
ting behaviors of the S phase have been found when the
isotropic (I) or nematic (N) phases are stable at bulk.
Some liquid crystals exhibit a sequence of first-order lay-
ering transitions on decreasing the temperature slightly
above the IS or NS bulk transition temperatures [1–10],
indicating that the partial and complete wetting régimes
can be mediated by a finite (or infinite) sequence of step-
wise layer-adsorption transitions.

Usually the wetting behavior depends on specific in-
teractions between the surface and the liquid crystal
molecules, and molecular characteristics such as dipoles
or length of alkyl chains. Depending on the strength of
the interactions, solid substrates inducing orientational
ordering of molecules may favor partial or complete wet-
ting of the substrate by the N or S phases when the I
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phase is stable at bulk, while those substrates promoting
orientational disorder favor partial wetting behavior.

Freely-suspended smectic films, consisting of a few
smectic layers surrounded by vapor (V), are formed by
some liquid crystals and constitute another example of
phase transitions induced by the presence of a surface.
These films exhibit the so-called thinning transitions
whereby the film thickness decreases stepwise as one or
several layers (depending on the film heating rate) melt
[11–13].

As usual in statistical mechanics, lattice models were
the first to be applied to the study of the surface phase
behavior of smectic liquid crystals. For example, a ver-
sion of the Lebwohl-Lasher model, extended to include
the smectic phase, was used to study the systematics of
layering phenomena [14].

Density-functional theory (DFT) has been also suc-
cessfully applied to the study of the surface phase be-
havior in liquid crystals adsorbed on solid substrates.
The extension of the MacMillan theory to non-uniform
phases with the inclusion of surface interaction potentials
accounted for layering and thinning transitions [15, 16].
However, DFT models that incorporate repulsive inter-
actions (reflecting molecular volume and shape) using ei-
ther the Local- (LDA) [17] of Weighted-Density Approx-
imation (WDA) [18], plus anisotropic attractive interac-
tions via a mean-field approximation, turned out to be
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more realistic models for the calculation of surface phase
diagrams. This is due to the fact that (i) the liquid crys-
tal bulk phase behavior (e.g. values of coexistence den-
sities and orientational order parameters) is better cal-
culated from DFT, and (ii) interfacial properties, such
as the width of the interface or the oscillatory behavior
of the density profiles, are much better accounted for,
due to the proper inclusion of pair correlations between
particles.

For example, the wetting behavior of a smectic film
in contact with an attractive wall has been successfully
studied in Ref. [19], where the authors found complete or
partial wetting by smectic depending on the strength of
the external potential. A infinite (complete wetting) or
finite (partial wetting) sequence of layering transitions
was found, some of them ending in a prewetting line.
Layering transitions at the V-I interface near the V-I-S
triple point, and thinning transitions in freely-suspended
smectic films, have been successfully studied using similar
versions of DFT based on WDA and perturbation theory
[20].

Finally, recent theoretical works have applied related
models for hard rods in contact with a wall and/or con-
fined between two walls. These studies were based on
different approximations: Onsager with restricted orien-
tations [21, 22], Onsager with Parsons-Lee rescaling and
free orientations [23, 24] and also a WDA functional ap-
proximation [25, 26]. The surface phase diagram of a fluid
of hard spherocylinders in contact with a single wall pro-
moting different surface anchoring was analysed in Ref.
[23]. In Refs. [25, 26] the surface phase diagram obtained
for the confined fluid includes capillary nematization and
smectization of the fluid, and a sequence of layering tran-
sitions of the confined smectic as the width of the slit pore
is changed.

Practically all the experimental work on the wetting
behavior of liquid crystals has been focused on one-
component systems, the extension to mixtures being a
pending issue. Adsorption phenomena in liquid crystal
mixtures have a fundamental interest since bulk demix-
ing transitions between two phases, at least one of them
being smectic, would add much more complexity to the
surface phase behavior. A recent theoretical work, based
on Onsager theory, has analysed the phase behavior of
the I-N interface of binary mixtures of hard spherocylin-
ders [27]. Also, the substrate-isotropic interface of a
mixture of hard parallelepipeds has been studied within
the Zwanzig approximation [28]. However, it would be
interesting to extend these studies to the high-pressure
régime, where the smectic phase is stable.

One of the aims of the present work is to elucidate
the role of the smectic phase in the interfacial phase be-
havior of binary mixtures. Recent theoretical models of
mixtures of colloids (spherical or rod-like) and polymers
[29–32] (based on the model proposed in Ref. [33] or
on the recent fundamental-measure functional for hard-
sphere/hard-needle mixtures [34]) have shown that the
entropic character of particle interactions, together with

the coupling between species generated by the external
surface potential, results in a rich phase behavior. For
high polymer fugacities, partial wetting of the interface
between the substrate and the fluid poor in colloidal par-
ticles by the fluid rich in colloidal particles was obtained.
In the partial wetting régime, a sequence of up to four
layering transitions was found. At lower fugacities com-
plete wetting is reached via a first-order wetting transi-
tion (located below the critical point). These results were
confirmed by Monte Carlo (MC) simulations [35].

Colloidal rod-like fluids and their mixtures are paradig-
matic systems exhibiting liquid-crystal textures similar
to those of molecular fluids, but the interaction between
their components have an entropic origin due to short-
ranged repulsive forces. Intense experimental work on
pure and mixed suspensions has been done in the last
two decades, demonstrating this analogy [36]. Also, re-
cent work has shown the importance of smectic layering
in the kinetics of the NS phase transition in colloidal
rods [37], confirming the analogy between molecular and
colloidal fluids as regards the surface-enhanced smectic
ordering near a bulk phase transition.

The aim of the present article is to theoretically anal-
yse the surface phase diagram of a colloidal binary mix-
ture of rods with the same breath but different lengths
Li (i = 1, 2); in the following we use a length ratio
s = L2/L1 = 3, with short species being labelled as 1
and the long species as 2. Particles interact through a
hard repulsive potential and are constrained to be per-
fectly aligned along a nematic director, with their main
axes perpendicular to a hard wall (W), thus simulating
perfect homeotropic anchoring. This restriction, which
considerably simplifies the model, is valid as long as one
is only interested in the surface phase behavior of parti-
cles exhibiting a high degree of orientational order. The
study concerns the wetting properties of these mixtures
when a smectic film partially or completely wets the
WN interface. Our theoretical tool is based on density-
functional theory, more specifically on a recently pro-
posed Fundamental-Measure Functional (FMF) for bi-
nary mixtures of parallel hard cylinders [38].

The impact of restricted orientations was analysed by
Shundyak and van Roij in the context of the Onsager
theory [39], using the Zwanzig model (discrete orienta-
tions). It was found to lead to spurious nematic phases
with very high orientational order. Smectic phases were
not analysed by Shundyak and van Roij but spurious
smectic phases might well exist in Onsager theory. The
parallel particle approximation implicit in the FMF ap-
proach is not expected to lead to any such anomalous
phases, since the FMF theory contains a much better
treatment of correlations, hence of the ordered phases.

As we will see later, the surface phase diagram of the
model exhibits three different wetting behaviors depend-
ing on the value of pressure: (i) At high pressure p we
find complete wetting by smectic via an infinite sequence
of layering transitions as the nematic binodal of the bulk
NS transition is approached. These layering transitions
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end in corresponding surface critical points characterised

by values of critical pressure p
(n)
c , n = 1, 2, .... (ii) For

sufficiently low pressure such that p < p
(n)
c , ∀n, wetting

by the smectic film becomes continuous, with adsorption
coefficients diverging logarithmically. And (iii) for pres-
sures below the tricritical point, where the bulk NS tran-
sition changes from first to second order, we find critical
adsorption by smectic. In this case a modified adsorp-
tion coefficient diverges logarithmically on approaching
the second-order bulk NS transition. This divergence is
a direct consequence of the NS bulk correlation length
diverging at the transition.

The article is organized as follows. Sec. II is devoted
to the presentation of the theoretical model and the nu-
merical details relevant for the calculation of the bulk
(Sec. II A) and surface phase diagrams (Sec. II B). In
Sec. III we present the results obtained from numerical
functional minimization. This section is divided into Sec.
III A, where the phase behavior of this particular mixture
is described, Sec. III B, which contains a description of
the layering transitions, and Sec. III C, devoted to the
study of the wetting behavior. Finally some conclusions
are drawn in Sec. IV. Two appendices are included which
contain mathematical details on the bifurcation analy-
sis (Appendix A) and the derivation of the interfacial
Gibbs-Duhem relation with composition and pressure as
independent variables (Appendix B).

II. THEORETICAL MODEL

Our particle model consists of a binary mixture of par-
allel hard cylinders, with both species having the same
diameter, D1 = D2 = D, chosen so as to set the ratio
of transverse particle area and cylinder length squared
of the short species to unity, i.e. πD2/4L2

1 = 1. This
implies a particle aspect ratio of L1/D1 = 0.89. Since
we choose a length ratio s ≡ L2/L1 = 3, the aspect
ratio of the other particle is L2/D2 = 2.66. As density-
functional theory and simulations show, a one-component
fluid of parallel hard cylinders presents a phase sequence
nematic-smectic-crystal, which is independent of the as-
pect ratio. The smectic phase of freely rotating hard
spherocylinders is known to begin for aspect ratios >∼ 4.1,
and we should expect a similar behavior for freely rotat-
ing hard cylinders. Since the phase behavior of a binary
mixture of parallel particles with identical diameters but
different lengths depends only on the ratio L2/L1, our
model might describe a freely rotating binary mixture of
cylinders with aspect ratios L1/D1 > 4.1 and L2/L1 = 3,
both of which would have a smectic phase. Therefore,
our choice guarantees that, in the one-component limits,
the mixture would possess stable smectic phases at high
enough pressure in the freely-rotating case.

A. Bulk smectic phase

A fundamental-measure density-functional theory for
binary mixtures, in the version proposed in [38] and
tested against MC simulations in [40], will be used in all
calculations. We will consider a mixture which presents a
non-uniform structure along the z direction. The excess
free-energy density reads

ΦL3
1 = n

{

− ln (1− η) +
3η

1− η
+

η2

(1− η)2

}

, (1)

where we drop the z-dependence for the sake of conve-
nience and have defined the weighted densities

n(z) =
1

2

∑

i

[ρ∗i (z − κi/2) + ρ∗i (z + κi/2)] , (2)

η(z) =
∑

i

∫ z+κi/2

z−κi/2

ρ∗i (z
′)dz′, (3)

with η(z) the local packing fraction of the mixture. In-
dex i in all sums is assumed to run for i = 1, 2. We have
defined the dimensionless densities ρ∗i (z) = ρi(z)L

3
1, and

z coordinates are also in units of L1. The κi parame-
ter is the particle length of species i in the same units.
Our choice for Li gives κ1 = 1 and κ2 = s = 3. The
free-energy functional per unit area can be calculated as
βF/A =

∫

dz [Φid(z) + Φ(z)], with β−1 = kBT the in-
verse thermal energy and

Φid(z) =
∑

i

ρi(z) [lnViρi(z)− 1] , (4)

the ideal part of the free-energy density, where Vi is the
thermal volume of species i. Now we specify for the smec-
tic phase, which is the lowest symmetry phase considered
in this work and has the property ρi(z + kd) = ρi(z)
(with d the smectic period and k ∈ Z). The pressure of
the mixture can be calculated as

βpL3
1 = d−1

∫ d

0

{

n(z)

1− η(z)
+

3n(z)η(z)

[1− η(z)]2

+
2n(z)η(z)2

[1− η(z)]
3

}

dz. (5)

During the numerical minimization we have used the fol-
lowing constraints: (i) the value of the pressure p is fixed,
and (ii) the composition of the mixture, x ≡ x1 = ρ1/ρ,
is also set in advance. Here ρ = ρ1 + ρ2 is the total
mean density (calculated from the constant-pressure con-

straint), while ρi = d−1
∫ d

0
ρi(z)dz is the mean density of

the i-th species. The Gibbs free-energy functional per
particle, defined as

βg[ρ1, ρ2] = ρ−1

{

d−1

∫ d

0

[Φid(z) + Φ(z)] dz + βp

}

, (6)
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has been minimized with respect to the densities ρi(z).
We do this numerically by first discretising the densi-
ties, defining a grid with points zk = z0 + k∆ (k =
0, ..., N), and then minimising the function g(ρ1,ρ2)
with respect to the components of the vectors ρi =
[ρi(z0), · · · , ρi(zN )], and also with respect to d, using a
conjugate-gradient algorithm. N is the number of grid
intervals. The width of the intervals was taken to be
∆/L1 = 0.01, and N∆ = md, where m is the number
of smectic periods within the minimization box. Varying
x between 0 and 1 and using the common-tangent con-
struction for the function βg(x), we have calculated the
coexistence values for x and ρ. Repeating the above pro-
cedure for different pressures, we obtained the demixing
binodals.

When the NS transition is of the second order, one can
use a bifurcation analysis to find the total packing frac-
tion η =

∑

i ρ
∗
i κi and the smectic period d at bifurcation

(the local and total packing fractions are equal in the
nematic phase. In the smectic phase the average of the
local fraction η(z) over one period gives the total packing
fraction η). Also, with the aim to check the relative sta-
bility of the S with respect to the columnar (C) phase, we
extended the bifurcation analysis to include the colum-
nar symmetry. For this purpose we need to solve the
following set of equations:

H(q, η) = 0, ∇H(q, η) = 0, (7)

where the wave vectors q = (0, q) and q = (q⊥, 0) are ap-
propriate for the S and C symmetries, respectively. These
equations have to be solved for the absolute minimum of
H(q, η) ≡ det[H(q, η)] as a function of q, with H(q, η) a
2× 2 matrix defined by the elements

H(q, η) =





1− ρ1ĉ11(q, η) −ρ1ĉ12(q, η)

−ρ2ĉ12(q, η) 1− ρ2ĉ22(q, η)



 , (8)

with ĉij(q, η) the Fourier transforms of the direct cor-
relation functions calculated from the second functional
derivatives of the free energy functional βF [{ρi}] with re-
spect to ρi(r) and ρj(r

′). Expressions for these functions
and explicit results for the NS and NC spinodals can be
found in Appendix A.

B. Wall-fluid interface

The aim is to calculate the equilibrium density profiles
of the two species in the presence of a hard wall. The
wall is located at z = 0 and the long axes of cylinders
are perpendicular to the wall. Thus, perfect homeotropic
alignment of the nematic director is assumed. This model
may apply to experimental systems where homeotropic
anchoring is forced by surface treatment [41–44] or by the
application of an external field (see [45] for an example
on colloidal discs).

The values of the chemical potentials of the two compo-
nents, µi, will be fixed, which means that the conditions
of the bulk fluid, far from the wall, will be specified in ad-
vance and maintained fixed during the minimisation. We
minimise the grand potential functional per unit area,

Ω[{ρi}]

A
=

F [{ρi}]

A
+
∑

i

∫

[vi(z)− µi] ρi(z)dz, (9)

with respect to the density profiles ρi(z). The external
potentials are defined by

βvi(z) =







∞, z ≤ Li/2,

0, z > Li/2,
i = 1, 2. (10)

To numerically implement the minimization we proceed
by first choosing values for the pressure p and the com-
position of the mixture at bulk, x, and from here calcu-
lating the chemical potentials µi and the dimensionless
total density ρ∗ = ρL3

1 at an infinite distance from the
wall, using the following expressions, which apply to the
bulk nematic phase:

βpL3
1 =

ρ∗(1 + η)

(1 − η)3
, (11)

and

βµi = lnxi + ln

(

ρ∗

1− η

)

+
η(3− 2η)

(1− η)2

+
ρ∗(4− 3η + η2)

(1− η)3
κi, i = 1, 2. (12)

The implicit Eqn. (11) has to be solved iteratively to
obtain ρ∗. In the minimisation the usual boundary con-
ditions at a large distance H from the wall, ρi(H) = xiρ,
have to be imposed. H , the width of the minimiza-
tion box, is chosen in such a way as to guarantee that
the structure of the WN interface can be accommodated
within the box and at the same time the boundary con-
ditions are satisfied. Finally, the surface tension of the

interface is calculated as γWN = Ω[{ρ
(e)
i }]/A + pH , with

ρ
(e)
i the equilibrium density profiles.

One of our aims is to obtain the wetting behaviour of
the mixture when nematic conditions are fixed at bulk
and the NS demixing transition is approached. This
means that we need to calculate the surface tension of
the WS interface for values of the chemical potentials µi

corresponding to NS coexistence. Therefore µi can be
calculated from Eqn. (12). However, if the bulk phase is
a smectic, and consequently the density profiles are not
uniform in bulk, the boundary conditions depend on the
particular value of H chosen, which considerably compli-
cates the numerical minimization. To avoid this problem,
we choose to define a symmetric box by using the follow-
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ing external potentials:

βvi(z) =



















∞, z ≤ Li/2,

0, Li/2 < z < H − Li/2,

∞, z ≥ H − Li/2.

(13)

We minimize Ω[{ρi}] with respect to ρi(z) by choosing H
large enough to accommodate two WS interfaces. How-
ever, due to long-ranged commensuration effects gener-
ated by the confinement of a layered phase with period
d in a slit of width H , the minimized grand potential
exhibits an oscillatory behavior as a function of H , with
an asymptotically decaying amplitude. To overcome this
problem, we defined the curve obtained from the local

minima of Ω[{ρ
(e)
i }]/A and extrapolated to H → ∞ to

obtain the value of 2γWS (i.e. two times the surface ten-
sion of the WS interface).

To find the surface tension of the NS interface we fol-
lowed a similar procedure: we defined a box of width H

with boundary conditions ρi(0) = ρi(H) = ρ
(N)
i (the den-

sities of the bulk nematic phase coexisting with smectic)
at both ends of the box. Choosing an initial guess for
ρi(z), 0 < z < H (close to the profiles of the coexisting
bulk smectic phase), we minimized the grand potential to
obtain 2γNS (i.e. two times the surface tension of the NS
interface). Again the value of H has to be large enough
to accommodate two NS interfaces. Having the surface
tensions of all the three different interfaces, one can study
the wetting behavior of the system, which is discussed in
Sec. III C.

Adsorption coefficients will also be used as a convenient
measure of the wetting and adsorption properties of the
WN interface. The adsorption coefficients of both species
are defined as

Γi =

∫ H

0

[

ρi(z)− ρ
(N)
i

]

dz, i = 1, 2. (14)

In Appendix B a derivation is presented of the interfacial
Gibbs-Duhem relation expressed in terms of the indepen-
dent variables x and p. Using this equation, a relation
between the derivative of γWN with respect to the com-
position variable x and the adsorption coefficients can be
obtained:

β
dγWN

dx
= U(x, p)

(

Γ2

1− x
−

Γ1

x

)

, (15)

where U(x, p), a function of bulk composition and pres-
sure, is always positive if the binary mixture is stable
against NN demixing. This relation has been tested (see
Appendix B) to check for consistency of our numerical
minimization procedure. Also, the sum rule relating the
bulk pressure with the densities at the wall (contact the-
orem), βp = ρ1(L1/2)+ρ2(L2/2), which is automatically
satisfied by the functional, provides another check for nu-
merical accuracy. For example, for a mixture with bulk

pressure βpL3
1 = 1 and composition x = 0.82, we obtain

(ρ1(L1/2) + ρ2(L2/2))L
3
1 = 0.994, 0.997 and 0.999 for

values of the discretisation interval along the z axis of
∆L−1

1 = 0.0100, 0.0050 and 0.0025, respectively (obvi-
ously, in the limit where ∆z → 0, the sum rule becomes
exact).

III. RESULTS

This section is devoted to the presentation of the re-
sults obtained from our theoretical model. It is divided
into three different sections. In Sec. III A we present
and describe the main features of the bulk phase dia-
gram. Secs. III B and III C are devoted to the layering
transitions and to the wetting behavior, respectively.

A. Bulk phase diagram

The bulk phase diagram of the binary mixture, shown
in Fig. 1, has been calculated using bifurcation analy-
sis and density-functional minimization, as described in
Sec. II A. Two NS spinodals (dashed curves in Fig. 1),
calculated from the bifurcation analysis, depart from the
one-component limits x = 0 and x = 1 (where, as defined
above, x is the composition of the mixture as given by
the fraction of short particles). The values of pressure in
both spinodals increase as the composition of the mix-
ture becomes farther from these limits, indicating that
the two species cannot be easily accommodated into a
smectic arrangement. The spinodal lines end in a tri-
critical point (filled circle) and a critical end point (filled
square), respectively. Functional minimization indicates
that the Gibbs free energy of the smectic phase is al-
ways a convex function of composition x in the neigh-
bourhood of (and above) these lines, which proves that
the NS transition is of second order, with the smectic
order parameter increasing from zero at the bifurcation.
For pressures above the tricritical point but below the
critical end point, the mixture segregates into a smectic
phase rich in the long species and a nematic phase rich
in the short species.

Two different smectic phases occur in the region of
smectic stability. These phases are distinguished by the
relative location of the density peaks of the two species.
In the smectic phase labelled as S1 the profiles are in
phase, with density peaks of the two species located at
the same positions, which define the location of the smec-
tic layers. In the phase called S2 the density profiles
are out of phase, forming alternating smectic layers: this
phase exhibits microfractionation [46–48]. The smectic
mixtures with a higher fraction of species 1 (the short
component) are denoted with a prime in Fig. 1. Exam-
ples of density profiles corresponding to these two smec-
tic phases are shown in Figs. 2(a)-(d). Several regions
of smectic coexistence exist in the mixture: S1-S2 in a
narrow pressure interval between a critical and a triple
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x

0

0.5

1

1.5

2

βp
L

13 S1
S2

S1’

S2’

N

FIG. 1: (Colour online). Bulk phase diagram of the binary
mixture of parallel hard cylinders in the reduced pressure
βpL3

1–composition x plane (with x = x1, the fraction of short
particles). Dashed curves represent second-order NS tran-
sitions, while solid lines are the binodals of the NS or SS
demixing transitions. The shaded area is the region of in-
stability. Stability regions of nematic and different smectic
phases are denoted by letters (see text). Colour lines indicate
the conjectured wetting behaviour along the NS lines: critical
adsorption (red), complete wetting by S2 smectic phase with-
out layering transitions (blue), and complete wetting by S1

phase mediated by layering transitions (green). Circles: crit-
ical points. Square: critical end-point. Triangle: tricritical
point.

point, S′
1-S

′
2 in a corresponding interval between critical

and triple points, and S1-S
′
1 and S1-S

′
2 coexistences at

high pressure (triple points have been indicated by hori-
zontal dashed lines in the figure).

We now comment on the possible stability of the
columnar phase. A complete calculation of the stabil-
ity of the columnar phase by free-energy minimisation is,
at present, a highly difficult task. The difficulties stem
from the computation of two-particle weighted densities
[38]. Therefore, we have implemented a bifurcation anal-
ysis, which gives the conditions under which the nematic
phase becomes unstable with respect to columnar-like
fluctuations. As shown in Appendix A, the NC spinodal,
signalling the instability of the nematic phase against
columnar-like fluctuations, is always located above the
NS spinodal for all values of composition. This is an in-
dication that at least part of the phases depicted in the
phase diagram of Fig. 1 could be stable, and that the sur-
face behaviour to be described below could represent the
real surface behaviour of the model. However, one has to
be cautious, since a first-order nematic-columnar and/or
smectic-columnar phase transition could be greatly dis-
placed with respect to the spinodal lines. Experimen-
tally, rod-like colloidal particles always have some degree
of polydispersity. Diameter polydispersity would tend to
destabilise the columnar phase against the smectic phase,
while breadth polydispersity would have the opposite ef-
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FIG. 2: Density profiles of (a) S1, (b) S2, (c) S′
2 (c), and (d)

S′
1 phases in one smectic period. Values of smectic period

are: (a) d/L1 = 3.495, (b) 3.835, (c) 1.433, and (d) 1.237.
In all figures solid and dashed curves correspond to species
2 and 1, respectively. Values of reduced pressure and com-
position, (βpL3

1, x), are: (a) (1.20, 0.06), (b) (1.04, 0.28), (c)
(1.75, 0.83), and (d) (1.75, 0.88).

fect [49]. The final balance may depend on several effects
in a delicate manner. Therefore, one has to be cautious
until the following aspects are considered: (i) particle
polydispersity in length and breadth, and (ii) full mini-
mization of the density functional with respect to density
profiles having columnar symmetry. We do not pursue
this analysis here, which is left for future work.

B. Layering transitions

In this section, which constitutes the cornerstone of the
present work, we present a detailed study of the layering
transitions in the mixture. The stable bulk phase (in
the region infinitely away from the wall) will be chosen
to be a nematic phase, characterised by particular val-
ues of pressure and composition. We first consider the
case where the pressure is given a value βpL3

1 = 1.30 and
the bulk composition x is decreased from a high value
close to unity. As the nematic branch of the NS1 bin-
odal is approached, a sequence of layering transitions is
found. At each of these transitions a new smectic layer,
mostly composed of particles of the long species, appears
through a first-order (interfacial) phase transition. This
is illustrated in Fig. 3, where four equilibrium WN in-
terfaces containing 0, 1, 2 and 3 smectic layers composed
(essentially) of particles of species 2 are shown. These
structures will be denoted by WNi, with i the number of
adsorbed layers.

The structure of the WN0 interface is interesting.
Right at the wall there is a mixture of highly localised
long and short particles with similar densities. For in-
creasing distance from the wall the density structure be-
comes much weaker [see Fig. 3(a)]. At the first (WN0-
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FIG. 3: Density profiles of species 1 (dashed line) and 2 (solid
line) for βpL3

1 = 1.30 and (a) x = 0.6800, (b) 0.6400, (c)
0.61400 and (d) 0.6120 (coexistence value of composition is
xcoex = 0.6115). The symbol WNi (i = 1, 2, 3...) denotes the
interfacial structure containing i adsorbed layers.

WN1) layering transition, the wall becomes fully covered
by long particles and a single very high density peak ap-
pears [Fig. 3(b)]. On further decreasing x, the system ex-
hibits a sequence of phase transitions, WNi-WNi+1, each
involving the addition of a further highly localised peak
of the long particles. At x = xcoex = 0.6115 (the com-
position of the bulk nematic phase coexisting with the
S1 phase at bulk), the wall is completely wet by the S1

phase, which means that a macroscopically thick smec-
tic film (consisting of an essentially infinite number of
smectic layers) is interposed between the wall and the
nematic phase. We have found up to 12 layering transi-
tions as x → xcoex with x > xcoex. Access to higher-order
layering transitions was not possible within the accuracy
of our numerical procedure.

In Fig. 4 the behavior of the WN surface tension
γ = γWN, as a function of composition, is shown. The
location of the WNi−1–WNi layering transition is ob-
tained from the intersection of the surface tensions cor-
responding to the two structures. The surface tension
of the WN0 structure, shown in the inset, is somewhat
peculiar: just before the WN0–WN1 layering transition,
the surface tension exhibits a maximum. This behavior
can be explained by resorting to Eqn. (15) and not-
ing that the surface tension slope is exactly zero at x∗ =

Γ1/(Γ1+Γ2) = ρ1/(ρ1+ρ2), where ρi = H−1
∫ H

0
ρi(z)dz,

i.e. when the composition of the mixture at bulk coin-
cides with its interfacial value. If x > x∗, i.e. when the
interfacial composition is lower than the bulk value, the
slope of the surface tension is positive, while the opposite
occurs for x < x∗.

The adsorption coefficients Γi, defined in (14), are plot-
ted in Fig. 5 as a function of x. As can be seen, Γ2

abruptly increases at the layering transitions while Γ1

abruptly decreases, i.e. the WN interface exhibits ad-
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FIG. 4: Surface tension of the wall-nematic interface versus
composition x−xcoex for reduced pressure βpL3

1 = 1.3. Sym-
bols WNi denote the different branches corresponding to wall-
nematic interfaces containing i adsorbed smectic layers. The
inset shows the surface tensions for the WN0-WN1 surface
phase transition.

sorption of the long species and desorption of the small
species. This is the natural interfacial path that con-
nects a nematic phase located far from the wall, and rich
in short particles, with a smectic film located next to the
wall, and rich in long species, as x → xcoex.

Repeating the same calculations, but at a lower value
of pressure, βpL3

1 = 1.15, we find that the first two layer-
ing transitions disappear, while the higher-order transi-
tions WNi−1–WNi, with i > 2, remain. Fig. 6(b) shows
that, although the WN0–WN1 and WN1–WN2 transi-
tions are absent, the adsorption coefficients significantly
increase in the neighborhood of the transition points cor-
responding to a higher pressure. This behavior is consis-
tent with the occurrence of critical points for the WN0–
WN1 and WN1–WN2 transitions at critical pressures in
the interval 1.15 < βpL3

1 < 1.30. Fig. 6(a) shows a par-
tial sequence of layering transitions involving up to 12
surface layers (the maximum number that our numerical
scheme can deal with). It is reasonable to think that the
layering transitions will continue up to the bulk transi-
tion in infinite number (complete wetting scenario).

A surface phase diagram that includes the first four
layering transitions is shown in Fig. 7. The following
trends can be extracted from the figure: (i) all layering
transition curves approach the nematic binodal as the
pressure is increased (for a number of layers > 5 the
curves are too close to the nematic binodal and are not
visible in the figure); (ii) the critical points, where layer-
ing transitions terminate, move to lower pressures as the
number of layers increases for i ≥ 2. It is interesting to
note that the critical point of the WN0–WN1 transition is
located below that of the WN1–WN2 transition; this fea-
ture is related to the strong ordering of the WN interface
just before the WN0–WN1 transition. In any case, lay-
ering transitions terminate at pressures where the bulk
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meant to be complete). (b) A zoom showing the first two
layering transitions (in this case adsorption of the first two
layers does not proceed via surface phase transitions). The
pressure is fixed at βpL3

1 = 1.15. Labels indicate the number
of layers of the structures involved in each layering transition.

NS demixing transition becomes weak or disappears, i.e.
when βpL2

1 ≃ 1.

We note that, depending on the wetting scenario for
the WS′

2 interface, the layering transition curves could
or could not continue above the NS′

2 spinodal; for exam-
ple, the wetting régime could change to a partial wetting
régime, similar to that found in Ref. [19]. Since interfa-
cial calculations with a bulk smectic phase are difficult,
we have not carried out this programme in the present
work.

Next we briefly discuss the transition strength along
the layering transition curves. In Fig. 8 the gap in the
adsorption coefficient of species 2 at coexistence of the

WNi−1 and WNi structures, ∆Γ
(i)
2 = Γ

(WNi)
2 − Γ

(WNi−1)
2 ,

is plotted as a function of composition along the layering
transition curves and for various indices i. The general
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FIG. 7: Layering transitions (solid curves) between WNi−1

and WNi interfacial structures (with i the number of adsorbed
layers) in the reduced pressure–composition plane. The crit-
ical points of the transitions are shown with open circles.
Dashed line is the NS′

2 second order transition.
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FIG. 8: Coexistence gap of the adsorption coefficient of the

second species, ∆Γ
(i)
2 , at the WNi−1–WNi layering transitions

as a function of composition and for various indices i. Symbols
refer to layering transitions WN0–WN1 (circles), WN1–WN2

(stars), WN2–WN3 (squares) and WN3–WN4 (triangles).

trend observed is that, as more layers get involved, the
transition becomes stronger (i.e. the gap at coexistence is
larger). As the index i of the layering transition increases,

the gap ∆Γ
(i)
2 tends to saturate, corresponding to the fact

that the additional layers adsorbed do not feel the effect
of the wall and therefore contribute to the adsorption
coefficient with a constant quantity.

We end this section with a comment on the origin of the
layering transitions. As shown in [50], two-dimensional
one-component hard-rod fluids in contact with a hard
wall do not exhibit layering transitions even though the
bulk transition is of first order [40]. This is also probably
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the case in the corresponding three-dimensional fluid, al-
though we have not performed explicit calculations for
the current model. Therefore, one tentative explanation
for the phenomenology found in the mixture is that layer-
ing transitions are due to the entropic coupling between
the two species mediated by the hard wall: next to the
wall, where particle densities are high, both species com-
pete for the gain in entropic volume. Just above the lay-
ering transition, a mixed layer packs less efficiently, and
short particles are abruptly depleted from that region,
with the subsequent abrupt increase in long particles.
This conclusion would not be affected by the discovery
of layering transitions in the calculations of Somoza et al.
[19], who use particles with additional soft, temperature-
driven interactions; in this fluid the mechanism behind
the layering transitions would be completely different.

A look at the structure of the density profiles of the
WN0 interface [Fig. 3(a)] can help us understand this
effect from a different perspective. The density maxima
of the two species are clearly separated, due to the dif-
ferent lengths of the particles (density is maximum ex-
actly at contact with the wall). However, the maxima
of the bulk smectic phase are in phase (S1 smectic). It
is only because a sharp change in the interfacial struc-
ture occurs, via a first-order layering transition, that the
interface can relax to a structure compatible with that
in the bulk, i.e. with the correct relative phase. This
mechanism operates even for structures WNi with large
i, when the effect of the wall is not crucial, because the
density maxima of the two species, in the region between
the already-formed smectic layers and the nematic, are
always displaced one with respect to the other. At lower
pressures, such that the bulk smectic phase is S2, there is
no such incompatibility between the bulk structure and
the structure imposed by the wall, and the layering tran-
sitions vanish.

C. Wetting behavior

To obtain a global picture of the wetting behavior of
the mixture, we have concentrated on four different val-
ues of reduced pressure: βpL3

1 = 1.25 and 1.30 (located
above the bulk triple point, see Fig. 1), 1.00 (below the
triple point and above the tricritical point), and 0.495
(below the tricritical point). In the first two cases we have
found the phenomenology described in Sec. III B, i.e. an
infinite sequence of layering transitions leading to com-
plete wetting of the WN interface by the S1 phase. Using
the procedures described in Sec. II B, we have calculated
the surface tensions of the WN, WS1 and NS1 interfaces
for x = xcoex, which are necessary to discuss the wetting
behaviour. Their values are collected in Table I. As cor-
responds to complete wetting by the S1 phase, the surface
tensions fulfill Young’s law γWS1

= γWN + γNS1
(the value

of γWN at x = xcoex can be computed by extrapolation of
γWNi

with i → ∞. In practice i = 32 already gives enough
accuracy to assess the wetting behaviour. Note that, in

βpL3
1 xcoex γ∗

WSj
γ∗
NSj

γ∗
WN γ∗

WSj
+ γ∗

NSj

1.300 0.61150 0.121166 0.061370 0.182535 0.182536

1.250 0.58231 0.122408 0.055451 0.177859 0.177859

1.000 0.43815 0.155570 0.001243 0.156822 0.156813

0.495 0.10000∗ 0.181061 – 0.181061 –

TABLE I: Reduced surface tensions γ∗ = βγL2
1 of the WSj ,

WN and NSj interfaces for different values of the reduced
pressure. Here j = 1, 2 depending on the nature of the smectic
phase. ∗ indicates value at spinodal.
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FIG. 9: Density profiles of species 1 (solid line) and 2 (dashed
line) of the WN interface at bulk pressure βpL3

1 = 1.00 and
values of composition (a) ∆x = x − xcoex = 3.2 × 10−2, (b)
1.3× 10−3, (c) 3.2× 10−4 and (d) 6.4× 10−5. The first and,
except in (a), the second density peaks are truncated due to
the small scale of the vertical axis.

these cases, all the WNi structures are metastable and
can be stabilised, even at coexistence, under conditions
of complete wetting, i.e. when the absolute free-energy
minimum actually corresponds to i = ∞).

The wetting behavior for βpL3
1 = 1.00 is similar to

that found in [26] and [50] for one-component hard-rod
systems: the thickness of the smectic film adsorbed at
the WN interface grows continuously as x → xcoex and
diverges at the bulk transition. This behavior is illus-
trated in Fig. 9, where four density profiles for values of
composition very close to the bulk transition are shown.
In this case layering transitions are completely absent;
adsorption coefficients Γi as a function of x do not ex-
hibit any discontinuity (Fig. 10), but diverge logarithmi-
cally as x → xcoex. Young’s law for complete wetting is
also fulfilled within the numerical accuracy that could be
achieved in this case (see Table I). In this case the surface
tension γNS1

is very small and is subject to higher uncer-
tainties (the value of γWN was obtained by extrapolation
to coexistence, x → xcoex).

Next we discuss the equilibrium density profiles of the
WN interface at a pressure βpL3

1 = 0.495 (i.e. below
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the tricritical point) and, more specifically, the behavior
of the adsorption coefficients as the bulk NS spinodal is
approached. Let x∗ be the composition of the spinodal
at a given pressure. Since the NS transition is of second
order, we should find critical adsorption, similar to that
occurring at the liquid-vapour critical point where the
adsorption diverges logarithmically as dictated by mean-
field theory. Far from the wall and close to the bulk spin-
odal, the WN interface exhibits oscillations with a period
d∗ (the smectic period at bifurcation). Thus, the devi-
ation of density profiles from their bulk values is better
accounted for by the quantity |ρi(z) − ρi| (the analogue
of the order parameter in the anti-ferromagnetic Ising
model), and it is convenient to define modified adsorp-
tion coefficients as

Γ∗
i =

∫ H

0

|ρi(z)− ρi|dz. (16)

The behaviors of Γ2 and Γ∗
2 as a function of x − x∗ are

illustrated in Fig. 11. It can be seen from the figure that,
while Γ2 seems to reach a plateau as x → x∗, the modi-
fied coefficient Γ∗

2 diverges logarithmically as predicted by
mean-field theory for a critical adsorption phenomenon
[51]. The value of the plateau is difficult to determine
due to the huge values of H required to accommodate
the weakly damped interfacial oscillations that extend
very far from the wall when x ∼ x∗. The range of these
oscillations is of the order of the smectic bulk correla-
tion length, which diverges at x = x∗. Finally, we have
checked that the system also exhibits critical adsorption
in the neighbourhood of the NS′ spinodal curve (at higher
pressure and composition).

We end this section with a discussion on the impact
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FIG. 11: The original (a) and modified (b) adsorption coef-
ficients of second species as a function of bulk composition
near the NS second order transition at βpL3

1 = 0.495. In (a)
the curve is a guide to the eye. In (b) the line is a logarithmic
fit.

of the parallel-particle approximation on the wetting be-
haviour. Complete wetting (either continuous or via a se-
quence of layering transitions) of a hard wall by a binary
mixture of hard particles is governed by two factors: (i)
the effective entropic interactions between particles and
the wall, and (ii) the distance of the bulk state point from
the demixing binodal. Since both the free- and restricted-
orientations models contain these two features, we only
expect quantitative deviations between the two as far
as the wetting behaviour is concerned. The situation
with respect to the critical adsorption phenomenon is
different, because this is due to the second-order charac-
ter of the nematic-smectic transition, which may become
weakly first order for small perturbations of particle ori-
entations with respect to perfect alignment. In a model
with free orientations the critical adsorption behaviour
could be superseded by complete (continuous) wetting.

IV. CONCLUSIONS

In this work we have studied the surface adsorption
phenomena of a liquid-crystal colloidal mixture that has a
stable smectic phase at moderate pressures. The mixture
is described by means of a very simple model consisting
of perfectly aligned hard particles, while the substrate
is a hard wall inducing perfect homeotropic anchoring
and nematic boundary conditions far from the wall are
chosen. Even with these simple assumptions, the bulk
and surface phase diagrams are so rich that we have con-
centrated only on the analysis of a single mixture with
length ratio s = L2/L1 = 3. The theoretical tool used is
a recently developed fundamental-measure density func-
tional for mixtures of parallel cylinders [38].

We have found a bulk phase diagram with second
order NS transitions at low pressures, followed by NS
demixing above a tricritical point. In the low and high
composition regions of the phase diagram two critical
points exist, above which two smectic phases, one of
them micro-fractionated, coexist. Coexistence is ended
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by corresponding triple points at higher pressures. At
the highest pressures investigated smectic demixing is
found, with each smectic rich in one of the species. A
bifurcation analysis corroborates that the NC spinodal is
always above the NS spinodal, but does not completely
clarify the question about the absolute stability of the
smectic against the columnar phases. In any case, we do
not expect the NS, and possibly also the SS, demixing
transitions to be preempted by the columnar phase at
low pressures.

The surface phase diagram has three different wetting
régimes. The first one, located below the tricritical point,
exhibits critical adsorption as the composition of the bulk
nematic phase approaches the NS spinodal. In the second
régime, located approximately above the tricritical point
and below the triple point (the exact boundaries would
require further analysis), there exists complete wetting
of the substrate by a smectic film whose thickness di-
verges logarithmically as x → xcoex. Finally, the third
régime is located above the triple point and is charac-
terized by the presence of layering transitions that ulti-
mately lead to complete wetting. A previous theoretical
study of one-component hard-rod fluids using a density
functional model [19] found layering phenomena in the
semi-infinite system due to strong attractive interactions
between the wall and the fluid particles. By contrast,
layering transitions in hard-rod liquid-crystal mixtures
adsorbed on a hard wall, as shown in the present study,
is a direct consequence of the wall-mediated entropic in-
teraction between the two species.

We expect that the present work serves as a start-
ing point to initiate experimental studies on the surface
phase behavior of liquid-crystal colloidal mixtures con-
sisting of particles that interact through short-ranged re-
pulsive forces, and having a stable bulk smectic phase.
These experiments could be guided by the phenomenol-
ogy found in the present study. Our future theoreti-
cal studies will analyse the adsorption phenomenology
of films in the neighbourhood of the bulk triple point, a
challenging problem that could provide further interest-
ing phenomena.
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Appendix A: Bifurcation analysis

To implement the bifurcation analysis, we use the fol-
lowing expressions for the Fourier transforms of the direct

correlation functions [38, 52]:

ρiĉij(q, η) = xi

{

2lijΨ0(q⊥)χ
(

q‖lij
)

+liljΨ1(q⊥)χ
(

q‖li/2
)

χ
(

q‖lj/2
)}

, (A1)

where li = Li/〈L〉, lij = (li + lj)/2, 〈L〉 =
∑

i xiLi, with
q‖ and q⊥ in units of 〈L〉 and D/2, respectively. We have
defined χ(x) ≡ sin(x)/x and

Ψ0(q) = 4y

{

J1(2q)

q
+ 2yJ0(q)

J1(q)

q

+y(1 + 2y)

[

J1(q)

q

]2
}

, (A2)

Ψ1(q) = 4y2
{

J1(2q)

q
+ 2(1 + 2y)J0(q)

J1(q)

q

+(1 + 6y + 6y2)

[

J1(q)

q

]2
}

, (A3)

with y = η/(1− η) and Jn(x) the n-th order Bessel func-
tion of first kind. The NS spinodal can be obtained by
solving Eqs. (7) with q⊥ = 0, q‖ = q, and

H(q, η) = 1 +
∑

i

xi {2Ψ0(0)liχ(qli)

+ Ψ1(0)l
2
iχ

2(qli/2)
}

− [∆Ψ0(0)χ(q∆l/2)]
2
, (A4)

where ∆l = l1 − l2, ∆2 = 〈l2〉 − 1 being the the poly-
dispersity coefficient, with 〈l2〉 =

∑

i xil
2
i . For columnar

symmetry q‖ = 0, |q⊥| = q, and we find

H(q, η) = 1 + 2Ψ0(q) + Ψ1(q) + ∆2
[

Ψ1(q)−Ψ2
0(q)

]

.

(A5)

To search for a possible NN demixing scenarios, we need
to solve H(0, η) = 0 for ∆ as a function of η, which
provides the NN spinodal:

∆2 =
1 + 2Ψ0(0) + Ψ1(0)

Ψ2
0(0)−Ψ1(0)

=

(

1

η
− 1

)2
1 + 4η + η2

7− 2η − η2
.

(A6)

For our particular mixture (L2 = 3L1), the pressure of
the NN critical point is βpL3

1 ≈ 10. This result shows
the metastable character of the NN demixing against NS
demixing (see Sec. III A).

In Fig. 12 the NS and NC spinodals, in the pressure–
composition plane, are shown. They never intersect and
the former is always below the latter. This fact indicates
that in the low-pressure region of the phase diagram, cal-
culated in Sec. III A, the nematic and smectic phases
could actually be stable against the columnar phase.

Appendix B: Interfacial Gibbs-Duhem relation

In this section we obtain the thermodynamic relation
(15) involving the derivative of the WN surface tension
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FIG. 12: NS (solid) and NC (dashed) spinodals in the reduced
pressure–composition plane.

with respect to composition and the adsorption coeffi-
cients Γi. Starting from the interfacial Gibbs-Duhem re-
lation dγ = −

∑

i Γidµi, we have

dγ

dx
= −

∑

i

Γi
dµi

dx
. (B1)

For fixed pressure p0 the chemical potentials µi(x, ρ(x))
are only functions of x because ρ(x) is defined implicitly
through the constraint p(x, ρ(x)) = p0. Then:

dρ

dx
= −

∂p/∂x

∂p/∂ρ
. (B2)

Taking into account that

dµi

dx
=

∂µi

∂x
+

∂µi

∂ρ

dρ

dx
, (B3)

and using Eqs. (12), (11) and (B2), we finally find

β
dµi

dx
=

(−1)i−1

xi
−

∆lη2(7− 2η − η2)(1 − li)

(1 + 4η + η2)(1 − η)2
(B4)

which, after insertion in (B1), gives the final result (15),
with

U(x, p) = 1−
η2(7− 2η − η2)∆2

(1 + 4η + η2)(1 − η)2
. (B5)

The function η(x) in Eq. (B5) can be found from the
constant-pressure constraint. Comparing Eqs. (A6) and
(B5), which contain the same and only density factor
that can change sign, we conclude that U(x, P ) ≥ 0 only
when the mixture is stable against NN bulk demixing. To
check for consistency of our numerical minimization pro-
cedure, we compare dγ/dx, as calculated from Eq. (15)
[i.e. using the adsorption coefficients Γi obtained from

0.7 0.75 0.8
x

-0.2

-0.1

0

0.1

0.2

dγ
∗ /d

x

0.7 0.75 0.8
x

0

2

4

6

∆
dγ

∗ /d
x

(x
10

-4
)

FIG. 13: Derivative of the reduced surface tension of the WN
interface, γ∗ = βγWNL

2
1, with respect to composition x, ob-

tained from numerical differentiation of the function γ(x). In
the inset the difference between this derivative and that ob-
tained from Eqn. (15) is plotted (wiggles are due to noise in
the numerical derivative). The value of the reduced pressure
is βpL3

1 = 1.3.

the equilibrium density profiles ρ
(e)
i ] with the numerical

derivative with respect to x of the surface tension γ ob-
tained after minimization. Both results are plotted in
Fig. 13 (for the WN interface) for βpL3

1 = 1.3. As can
be seen, both methods reproduce the same function with
high accuracy, which demonstrates that our calculations
are fully consistent. Note that the slope of the surface
tension is equal to zero (and consequently γ has a max-
imum as a function of x) for x = Γ1/(Γ1 + Γ2) [see Eq.
(15)], i.e. when the bulk composition is identical to the
relative fraction of adsorption coefficient of species 1.
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