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Abstract

We analyze the situation of a local quantum field theory with constraints, both indexed by
the same set of space–time regions. In particular we find “weak” Haag–Kastler axioms which
will ensure that the final constrained theory satisfies the usual Haag–Kastler axioms. Gupta–
Bleuler electromagnetism is developed in detail as an example of a theory which satisfies the
“weak” Haag–Kastler axioms but not the usual ones. This analysis is done by pure C*–
algebraic means without employing any indefinite metric representations, and we obtain the
same physical algebra and positive energy representation for it than by the usual means. The
price for avoiding the indefinite metric, is the use of nonregular representations and complex
valued test functions. We also exhibit the precise connection with the usual indefinite metric
representation.

We conclude the analysis by comparing the final physical algebra produced by a system of
local constrainings with the one obtained from a single global constraining and also consider
the issue of reduction by stages. For the usual spectral condition on the generators of the
translation group, we also find a “weak” version, and show that the Gupta–Bleuler example
satisfies it.

1 Introduction

In many quantum field theories there are constraints consisting of local expressions of the quantum
fields, generally written as a selection condition for the physical subspace H(p). In the physics
literature the selection condition usually takes the form:

H(p) := {ψ | χ(x)ψ = 0 ∀x ∈ R
4}

where χ is some operator–valued distribution (so more accurately χ(x)ψ = 0 should be writ-
ten as χ(f)ψ = 0 for all test functions f). Since the constraints χ are constructed from the
smeared quantum fields, one expects them to have the same net structure in space–time as the
smeared quantum fields. The question then arises as to how locality properties and constraining
intertwines. This question will be at the focus of our interest in this paper.

To properly study locality questions, we shall use algebraic quantum field theory, a well–
developed theory built on a net of C*–algebras satisfying the Haag–Kastler axioms [1, 2], but we
shall assume in addition a local net of constraints (to be defined in Section 3). To impose these
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constraints at the algebraic level, we use the method developed by Grundling and Hurst [3], and
this can be done either in each local algebra separately or globally in the full field algebra. We will
compare the results of these two different routes, and will find conditions on the local net of con-
straints to ensure that the net of algebras obtained after constraining satisfies the Haag–Kastler
axioms. In fact one can weaken the Haag–Kastler axioms on the original system, providing that
after constraining the final net obtained satisfies these axioms. We characterise precisely what
these “weak” Haag–Kastler axioms are. In our subsequent example (Gupta–Bleuler electromag-
netism) we find that this weakening is crucial, since the original constraints violate the causality
axiom. In our example we will avoid the usual indefinite metric representations, but will ob-
tain by C*–algebraic means both the correct physical algebra, and the same (positive energy)
representation than the one produced via the indefinite metric. Thus we show that a gauge
quantum field can be completely described by C*–algebraic means, in a framework of Algebraic
QFT, without the use of indefinite metric representations. There is however a cost for avoiding
the indefinite metric, and this consists of the use of nonregular representations, and the use of
complex valued test functions (this is related to causality violation). Fortunately, both of these
pathologies only involve nonphysical parts of the theory which are eliminated after constraining,
thus the final theory is again well–behaved.

Since local constraints are usually generators of gauge transformations of the second kind,
the theory developed here can be considered as complementing the deep Doplicher–Haag–Roberts
analysis of systems with gauge transformations of the first kind [4]. Our axioms will be slightly
different (weakened Haag–Kastler axioms), and we will work with an abstract net of C*–algebras,
whereas the DHR analysis is done concretely in a positive energy representation.

We need to remark that there is a range of reduction algorithms for quantum constraints
available in the literature, cf. [5] at different degrees of rigour. These involve either more structure
and choices, or are representation dependent, or the maps involved have pathologies from the
point of view of C*–algebras. That is why we chose the method of [3]. Furthermore, the Haag–
Kastler axioms have not previously been included in any of the reduction techniques in [5].
Locality has been examined in specific constrained theories in the literature (cf. [6], [7]) but not
in the general terms we do here.

The architecture of the paper is as follows. In Section 2 we collect general facts of the
constraint procedure of [3] which we will need in the subsequent sections. There is some new
material in this section, since we need to extend the previous method to cover the current
situation. In Section 3 we introduce our basic object, a “system of local quantum constraints”
as well as the “weak Haag–Kastler axioms” and prove that after local constraining of such a
system, we obtain a system satisfying the Haag–Kastler axioms. Section 4 consists of some
preliminary material necessary for the development of our example in Section 5, Gupta–Bleuler
electromagnetism, (C*–algebra version adapted from [8]) and we verify all the weak Haag–Kastler
axioms for it. We concretely characterize the net of constrained algebras, but it turns out that in
order to obtain a simple global algebra we need to do a second stage of constraining (traditionally
thought of as imposing the Maxwell equations, but here it is slightly stronger than that). We
also verify the weak Haag–Kastler axioms for this second stage of constraints, and we work out
in detail the connection of the C*–theory with the usual indefinite metric representation. In
Section 6 we consider miscellaneous topics raised by the previous Sections. First, for a system
of local constraints, we consider the relation between the algebras obtained from a single global
constraining, and the inductive limit of the algebras found from local constrainings. We show that
for the Gupta–Bleuler example these two algebras are the same. Secondly, we develop the theory
of constraint reduction by stages (i.e. impose the constraints sequentially along an increasing
chain of subsets instead of all at once). We then show that the two–step reduction procedure of
the Gupta–Bleuler example satisfies this criterion. Thirdly, we consider the spectral condition
(on the generators of translations) which occur in Haag–Kastler theory, and find a “weak” version
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of it which will guarantee that the final constrained theory satisfies the usual spectral condition.
We show that the Gupta–Bleuler example satisfies it, by demonstrating that from the indefinite
metric in the heuristic theory we can define a (positive metric) representation of the constrained
algebra which satisfies the spectral condition. There are two appendices containing additional
constraining facts needed in proofs, and one long proof which would have interrupted the flow of
the paper.

2 Kinematics for Quantum Constraints.

In this section we present the minimum preliminary material necessary to define our primary
problem. The reader whose main interest is quantum constraints will find this section interesting
in its own right, as well as many general constraint results scattered throughout the paper. Here
we present a small generalisation of the T–procedure of Grundling and Hurst [3, 8]. All new
results will be proven here and for other proofs we refer to the literature.

In heuristic physics a set of constraints is a set {Ai | i ∈ I} (with I an index set) of operators
on some Hilbert space together with a selection condition for the subspace of physical vectors:

H(p) :=
{
ψ | Aiψ = 0 ∀ i ∈ I

}
.

The set of traditional observables is then the commutant {Ai | i ∈ I}′ which one can enlarge to
the set of all observables which preserve H(p). The final constrained system is the restriction of
this algebra to the subspace H(p). On abstraction of such a system into C*–algebra terms, one
starts with a unital C*–algebra F (the field algebra) containing all physical relevant observables.
This is an abstract C*–algebra, i.e. we ignore the initial representation in which the system may
be defined. We need to decide in what form the constraints should appear in F as a subset C.
We have the following possibilities:

• If all Ai are bounded we can identify C directly with {Ai | i ∈ I} ⊂ F .

• If the Ai are unbounded but essentially selfadjoint, we can take C := {U − 1l | U ∈ U} =:
U − 1l , where the set of unitaries U ⊂ F is identified with {exp(itĀj) | t ∈ R, j ∈ I}. This
is the form in which constraints were analyzed in [3], and also the form which we will use
here in the following sections.

• If the Ai are unbounded and normal, we can identify C with {f(Aj) | j ∈ I} where f is a
bounded real valued Borel function with f−1(0) = {0}.

• If the Ai are unbounded, closable and not normal, then we can replace each Ai by the
essentially selfadjoint operator A∗

iAi which is justified because for any closed operator A we
have KerA = KerA∗A, reducing this case to the one for essentially selfadjoint constraints.

Finally, notice that we can replace any constraint set C as above, by one which satisfies C∗ = C
as a set and which selects the same physical subspace, using the fact that KerA = KerA∗A.

Motivated from above, our starting point is:

2.1 Definition A quantum system with constraints is a pair (F , C) where the field algebra

F is a unital C*–algebra containing the constraint set C = C∗. A constraint condition on
(F , C) consists of the selection of the physical state space by:

SD :=
{
ω ∈ S(F) | πω(C)Ωω = 0 ∀C ∈ C

}
,

where S(F) denotes the state space of F , and (πω,Hω,Ωω) denotes the GNS–data of ω. The
elements of SD are called Dirac states. The case of unitary constraints means that C = U−1l ,
U ⊂ Fu, and for this we will also use the notation (F , U).
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Thus in the GNS-representation of each Dirac state, the GNS cyclic vector Ωω satisfies the
physical selection condition above. The assumption is that all physical information is contained
in the pair (F ,SD).

For the case of unitary constraints we have the following equivalent characterizations of the
Dirac states (cf. [3, Theorem 2.19 (ii)]):

SD =
{
ω ∈ S(F) | ω(U) = 1 ∀U ∈ U

}
(1)

=
{
ω ∈ S(F) | ω(FU) = ω(F ) = ω(UF ) ∀F ∈ F , U ∈ U

}
. (2)

Moreover, the set {αU := Ad(U) | U ∈ U} of automorphisms of F leaves every Dirac state
invariant, i.e. we have ω ◦ αU = ω for all ω ∈ SD, U ∈ U .

For a general constraint set C, observe that we have:

SD =
{
ω ∈ S(F) | ω(C∗C) = 0 ∀C ∈ C

}

=
{
ω ∈ S(F) | C ⊆ Nω

}
= N⊥ ∩ S(F) .

Here Nω := {F ∈ F | ω(F ∗F ) = 0} is the left kernel of ω and N := ∩ {Nω | ω ∈ SD}, and
the superscript ⊥ denotes the annihilator of the corresponding subset in the dual of F . The
equality N = [FC] (where we use the notation [·] for the closed linear space generated by its
argument), follows from the fact that every closed left ideal is the intersection of the left kernels
which contains it (cf. 3.13.5 in [9]). Thus N is the left ideal generated by C. Since C is selfadjoint
and contained in N we conclude C ⊂ C∗(C) ⊂ N ∩ N ∗ = [FC] ∩ [CF ], where C∗(·) denotes the
C*–algebra in F generated by its argument.

2.2 Theorem Now for the Dirac states we have:

(i) SD 6= ∅ iff 1l 6∈ C∗(C) iff 1l 6∈ N ∩ N ∗ =: D.

(ii) ω ∈ SD iff πω(D)Ωω = 0.

(iii) An extreme Dirac state is pure.

Proof: (i) The first equivalence is proven in Theorem 2.7 of [3]. If 1l ∈ D ⊂ N , then ω(N ) 6= 0
for all states ω, i.e. SD = ∅. If 1l 6∈ D, then 1l 6∈ N so N is a proper closed left ideal and hence
by 3.10.7 in [9] SD 6= ∅.

(ii) If ω ∈ SD, then D ⊂ N ⊂ Nω, hence πω(D)Ωω = 0. Conversely, since C ⊂ D = [FC]∩[CF ]
we have that πω(D)Ωω = 0 implies πω(C)Ωω = 0 hence ω ∈ SD.

(iii) Denote the quasi-state space of F by Q [9]. We can write the set of Dirac states as

SD = S(F) ∩ {φ ∈ Q | φ(L) = 0 ∀ L ∈ N} .

Since N is a left ideal, if it is in Ker ω, it must be in Nω. By Theorem 3.10.7 in [9] the set
Q0 := {φ ∈ Q | φ(L) = 0 ∀ L ∈ N} is a weak* closed face in Q. Now if we can decompose
a Dirac state ω, since it is in Q0, so are its components by the facial property of Q0. These
components are multiples of Dirac states, dominated by ω so ω cannot be extreme. Thus extreme
Dirac states must be pure.

We will call a constraint set C first class if 1l 6∈ C∗(C), and this is the nontriviality assumption
which we henceforth make [10, Section 3].

Now define
O := {F ∈ F | [F, D] := FD −DF ∈ D ∀D ∈ D}.

Then O is the C∗–algebraic analogue of Dirac’s observables (the weak commutant of the con-
straints) [11].
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2.3 Theorem With the preceding notation we have:

(i) D = N ∩ N ∗ is the unique maximal C∗–algebra in ∩ {Kerω | ω ∈ SD}. Moreover D is a
hereditary C∗–subalgebra of F .

(ii) O = MF (D) := {F ∈ F | FD ∈ D ∋ DF ∀D ∈ D}, i.e. it is the relative multiplier
algebra of D in F .

(iii) O = {F ∈ F | [F, C] ⊂ D}.

(iv) D = [OC] = [CO].

(v) For the case of unitary constraints, i.e. C = U − 1l , we have U ⊂ O and O =
{F ∈ F | αU (F ) − F ∈ D ∀ U ∈ U} where αU := AdU .

Proof: (i) The proof of Theorem 2.13 in [3] is still valid for the current more general constraints.
To see that D is hereditary, use Theorem 3.2.1 in [12] and the fact that N = [FC] is a closed left
ideal of F .

(ii) Since D is a two–sided ideal for MF (D) it is obvious that MF (D) ⊂ O. Conversely,
consider B ∈ O, then for any D ∈ D, we have BD = DB + D′ ∈ N with D′ some element
of D, where we used FD = F(N ∩ N ∗) ⊂ N . Similarly we see that DB ∈ N ∗. But then
N ∋ BD = DB +D′ ∈ N ∗, so BD ∈ N ∩N ∗ = D. Likewise DB ∈ D and so B ∈MF (D).

(iii) Since C ⊂ D we see from the definition of O that F ∈ O implies that [F, C] ⊂ D.
Conversely, let [F, C] ⊂ D for some F ∈ F . Now F [FC] ⊂ [FC] and F [CF ] = [FCF ] ⊂ [(CF +
D)F ] ⊂ [CF ] because CF+D ⊂ CF+[CF ] ⊂ [CF ]. Thus FD = F ([FC]∩[CF ]) ⊂ [FC]∩[CF ] = D.
Similarly DF ⊂ D, and thus by (ii) we see F ∈ O.

(iv) D ⊂ O so by (i) it is the unique maximal C*–algebra annihilated by all the states ω ∈
SD(O) = SD O (since C ⊂ O). Thus D = [OC] ∩ [CO]. But C ⊂ D, so by (ii) [OC] ⊂ D ⊂ [OC]
and so D = [OC] = [CO].

(v) U ⊂ O because U − 1l ⊂ D ⊂ O ∋ 1l , and so [F, C] ⊂ D implies [U − 1l , F ]U−1 =
αU (F ) − F ∈ D for U ∈ U . The converse is similar.

Thus D is a closed two-sided ideal of O and it is proper when SD 6= ∅ (which we assume
here by 1l 6∈ C∗(C)). From (iii) above, we see that the traditional observables C′ ⊂ O, where C′

denotes the relative commutant of C in F .
Define the maximal C∗–algebra of physical observables as

R := O/D.
The factoring procedure is the actual step of imposing constraints. This method of constructing
R from (F , C) is called the T–procedure in [13]. We require that after the T–procedure all
physical information is contained in the pair (R ,S(R)), where S(R) denotes the set of states
on R. Now, it is possible that R may not be simple [13, Section 2], and this would not be
acceptable for a physical algebra. So, using physical arguments, one would in practice choose a
C∗–subalgebra Oc ⊂ O containing the traditional observables C′ such that

Rc := Oc/(D ∩Oc) ⊂ R ,

is simple. The following result justifies the choice of R as the algebra of physical observables (cf.
Theorem 2.20 in [3]):

2.4 Theorem There exists a w∗–continuous isometric bijection between the Dirac states on O
and the states on R.

The hereditary property of D can be further analyzed, and we do this in Appendix 1 (it will
be useful occasionally in proofs).
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3 Local Quantum Constraints

In this section we will introduce our main object of study, viz a system of local quantum con-
straints. In practice, a large class of constraint systems occur in quantum field theory (henceforth
denoted by QFT), for instance gauge theories. A prominent property of a QFT, is space–time
locality, and usually when constraints occur, they also have this property. Heuristically such
constraints are written as

χ(x)ψ = 0 for ψ ∈ H(p) , x ∈M4 ,

where Minkowski space is M4 = (R4, η) with metric η := diag(+,−,−,−), and this makes the
locality explicit. Since χ is actually an operator–valued distribution, the correct expression should
be of the form

χ(f)ψ = 0 for ψ ∈ H(p) , f ∈ C∞
c (R4) .

In this section we now want to analyze how locality intertwines with the T–procedure of constraint
reduction. To make this precise, recall that the Haag–Kastler axioms [1, 2] express locality for a
QFT as follows:

3.1 Definition A Haag–Kastler QFT (or HK–QFT for short) consists of the following.

• A directed set Γ ⊆ {Θ ⊂ M4 | Θ open and bounded } partially ordered by set inclusion,
such that R

4 = ∪{Θ | Θ ∈ Γ} and under the action of the orthochronous Poincaré group

P↑
+ on M4 we have gΘ ∈ Γ for all Θ ∈ Γ, g ∈ P↑

+.

• A directed set Γ̃ of C*–algebras with a common identity 1l , ordered by inclusion, with an
inductive limit C*–algebra F0 (over Γ̃). We will call the elements of Γ̃ the local field

algebras and F0 the quasi–local algebra.

• A surjection F : Γ → Γ̃, satisfying:

(1) (Isotony) F is order preserving, i.e. F(Θ1) ⊆ F(Θ2) if Θ1 ⊆ Θ2.

(2) (Causality) If Θ1, Θ2 ∈ Γ are spacelike separated, (henceforth denoted Θ1 ⊥ Θ2), then
[F(Θ1), F(Θ2)] = 0 in F0.

(3) (Covariance) There is an action α: P↑
+ → AutF0 such that αg(F(Θ)) = F(gΘ),

g ∈ P↑
+, Θ ∈ Γ.

3.2 Remark (i) In the usual algebraic approach to QFT (cf. [2]), there are additional axioms,
e.g. that F0 must be primitive, that there is a vacuum state with GNS–representation in
which the generators of the translations in the covariant representation of P↑

+ have spectra
in the forward light cone, that there is a compact gauge group, local definiteness, local
normality etc. We will return to some of these axioms later, but for now, we restrict our
analysis to those listed in Definition 3.1. The net Γ is usually taken to be the set of double
cones in M4, but here we will keep it more general. There is some redundancy in this
definition e.g. for the results in this Section, we will not need the assumption that Θ ∈ Γ
is bounded.

(ii) In the literature, sometimes “local” is used synonymously with “causal.” Since we want to
weaken the Haag–Kastler axioms below, we will make a distinction between these terms,
in particular, we will call an algebra F(Θ) in an isotone net as above local, (as well as its
elements). If such an isotone net also satisfies causality, it is called causal.
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In the context of the Haag–Kastler axioms, we would like to define a system of “local quantum
constraints” in such a way that it includes the major examples from QFT.

3.3 Definition A system of local quantum constraints consists of a surjection F : Γ → Γ̃ as
in Definition 3.1 satisfying isotony as well as

(4) (Local Constraints) There is a map U from Γ to the set of first class subsets of the unitaries
in the local field algebras such that

U(Θ) ⊂ F(Θ)u for all Θ ∈ Γ, and

if Θ1 ⊆ Θ2, then U(Θ1) = U(Θ2) ∩ F(Θ1).

3.4 Remark In this definition we have made the minimum assumptions to start the analysis.
We have omitted causality and covariance because these are physical requirements which one
should demand for the final physical theory, not the initial (unconstrained) theory which contains
nonphysical objects. There are examples of constrained QFTs satisfying these conditions, e.g. [14,
Remark 4.3], [15, Chapter 4] and see also below in Section 5 our example of Gupta–Bleuler
electromagnetism.

Given a system of local quantum constraints, Θ → (F(Θ), U(Θ)), we can apply the T–
procedure to each local system (F(Θ), U(Θ)), to obtain the “local” objects:

SΘ
D :=

{
ω ∈ S(F(Θ)) | ω(U) = 1 ∀U ∈ U(Θ)

}
= SD(F(Θ)) ,

D(Θ) := [F(Θ) C(Θ)] ∩ [C(Θ)F(Θ)] ,

O(Θ) := {F ∈ F(Θ) | FD −DF ∈ D(Θ) ∀D ∈ D(Θ)} = MF(Θ)(D(Θ)) ,

R(Θ) := O(Θ)/D(Θ) .

We can be now more precise about what our task is in this section:

Problem: For a system of local quantum constraints Θ → (F(Θ), U(Θ)), find minimal
conditions such that the net of local physical observables Θ → R(Θ) becomes a HK–QFT.

Now, to analyze the isotony property, we need to determine what the inclusions in Defini-
tion 3.3 imply for the associated objects (SΘi

D , D(Θi), O(Θi),F(Θi)), and this is the task of the
next subsection.

3.1 Inclusion structures

For this subsection we assume unitary first class constraints C = U − 1l , indicated by a pair
(F , U). Motivated by Definition 3.3, we define:

3.5 Definition A first class constrained system (F , U) is said to be included in another one
(Fe, Ue), if the C*–algebras F ⊂ Fe have a common identity and U = Ue ∩F . We denote this by
(F , U) ⊆ (Fe, Ue).

For the rest of this subsection we will assume that (F , U) ⊆ (Fe, Ue). From the T–procedure
sketched above we obtain the corresponding quadruples

(SD, D, O, R) and (SDe, De, Oe, Re) .
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3.6 Lemma Suppose that D = De ∩ O and O ⊂ Oe, then there is a *–isomorphism from R to a
C∗–subalgebra of Re, which maps the identity of R to the identity of Re.

Proof: From

Re = Oe/De =
(
O/De

)
∪
(
(Oe \ O)/De

)
,

it is enough to show that O/De
∼= R = O/D. Now, a De–equivalence class consists of A,B ∈ O

such that A − B ∈ De and therefore A − B ∈ De ∩ O = D. This implies O/De
∼= O/D = R.

Moreover, since 1l ∈ O ⊂ Oe, and the D–equivalence class of 1l is contained in the De–equivalence
class of 1l , it follows that the identity maps to the identity.

3.7 Remark (i) By a simple finite dimensional example one can verify that the condition
D = De ∩ O does not imply O ⊂ Oe.

(ii) Instead of the conditions in Lemma 3.6 another natural set of restriction conditions one
can also choose is D = De ∩ F and O = Oe ∩ F , but below we will see that these imply
those in Lemma 3.6.

The next result gives sufficient conditions for the equation D = De ∩ O to hold.

3.8 Lemma D = De ∩ F if either

(i) SD = SDe F or

(ii) [F C∗(U − 1l )] = [Fe C∗(Ue − 1l )] ∩ F .

Proof: Take ω ∈ SDe and recall the definition for the left kernel Nω given in the preceding
subsection. Then Nω ∩ F = Nω↾F and from (i) we get

N = ∩ {Nω | ω ∈ SD} = ∩ {Nω | ω ∈ SDe F}
= ∩ {Nω ∩ F | ω ∈ SDe}
= ∩ {Nω | ω ∈ SDe} ∩ F = Ne ∩ F .

This produces
N = [F C∗(U − 1l )] = [Fe C∗(Ue − 1l )] ∩ F

as well as

D = [F C∗(U − 1l )] ∩ [C∗(U − 1l ) F ]

= [Fe C∗(Ue − 1l )] ∩ [C∗(Ue − 1l ) Fe] ∩ F
= De ∩ F

and the proof is concluded.

3.9 Lemma We have

O ⊂ Oe iff O ⊂ {F ∈ F | UFU−1 − F ∈ De ∀U ∈ (Ue \ U)} .
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Proof: By Theorem 2.3 (v) we have

Oe ∩ F = {F ∈ F | UFU−1 − F ∈ De ∀U ∈ Ue}

= {F ∈ F | UFU−1 − F ∈ De ∩ F ∀U ∈ U}
∩ {F ∈ F | UFU−1 − F ∈ De ∀U ∈ (Ue \ U)}

=
(
O ∪ {F ∈ F | UFU−1 − F ∈ (De ∩ F \ D) ∀U ∈ U}

)

∩ {F ∈ F | UFU−1 − F ∈ De ∀U ∈ (Ue \ U)}

=
(
O ∩ {F ∈ F | UFU−1 − F ∈ De ∀U ∈ (Ue \ U)}

)

∪
{
F ∈ F | UFU−1 − F ∈ (De ∩ F \ D) ∀U ∈ U

and UFU−1 − F ∈ De ∀U ∈ (Ue \ U)
}
. (3)

Now if O ⊂ {F ∈ F | UFU−1 − F ∈ De ∀U ∈ (Ue \ U)}, then it is clear from the above
equations that O ⊂ Oe ∩ F ⊂ Oe.

To prove the other implication note that the second set in the union of Eqn. (3) is contained
in F \ O and therefore from O ⊂ Oe we obtain

O = O ∩Oe ∩ F = O ∩ {F ∈ F | UFU−1 − F ∈ De ∀U ∈ (Ue \ U)} ,

which implies the desired inclusion.

3.10 Theorem Given an included pair of first class constrained systems (F , U) ⊆ (Fe, Ue) and
notation as above, the following statements are in the relation (iv) ⇒ (iii) ⇒ (ii) ⇒ (i) where:

(i) SD O = SDe O.

(ii) D = De ∩ O and O ⊆ Oe.

(iii) D = De ∩ F and O = Oe ∩ F .

(iv) SD = SDe F and O ⊆ Oe.

Proof: We first prove the implication (ii) ⇒ (i), so assume (ii). It suffices to show that all Dirac
states on O extend to Dirac states on Oe. Denote by S(R) and SD(O) respectively the set of
states on R and the set of Dirac states on O (assume also corresponding notation for Re and
Oe). Then from Theorem 2.4 there exist w∗–continuous, isometric bijections θ and θe:

θ: SD(O) → S(R) and θe: SDe(Oe) → S(Re) .

Now take ω ∈ SD(O), so that θ(ω) ∈ S(R). From Lemma 3.6, R ⊂ Re so we can extend θ(ω)

to θ̃(ω) ∈ S(Re). Finally, θ−1
e

(
θ̃(ω)

)
∈ SDe(Oe) is an extension of ω, since for any A ∈ O we

have
θ−1
e

(
θ̃(ω)

)
(A) = θ̃(ω)(ξe(A)) = θ(ω)(ξ(A)) = ω(A) ,

where ξ:O → R and ξe: Oe → Re are the canonical factorization maps. This proves (i).
Next we prove (iii) ⇒ (ii). Obviously O = Oe ∩ F implies that O ⊆ Oe. Since D ⊂ O ⊂ F

we have D = De ∩ F ⊂ O and so D = (De ∩ F) ∩O = De ∩O.
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Finally we prove (iv) ⇒ (iii). By Lemma 3.8(i), SD = SDe F implies that D = De ∩F . By
Theorem 2.3(iii) and the fact that O is a C*–algebra (hence the span of its selfadjoint elements),
we have

O = [{F ∈ Fsa | [F, U ] ⊂ D}]

= [{F ∈ Fsa | ω([F, U∗] · [F, U ]) = 0 ∀ ω ∈ SD, U ∈ U}]

where the last equality follows from D = N ∩ N ∗, [F, U ]∗ = −[F, U∗] for F = F ∗, and U = U∗.

Since SD = SDe F we have

O = [{F ∈ Fsa | ω([F, U∗] · [F, U ]) = 0 ∀ ω ∈ SDe, U ∈ U}]

⊇ [{F ∈ Fsa | ω([F, U∗] · [F, U ]) = 0 ∀ ω ∈ SDe, U ∈ Ue}]

= Oe ∩ F .

Thus since O ⊆ Oe we conclude that O = Oe ∩ F .

3.11 Remark SD O = SDe O does not seem to imply that SD = SDe F since for a state in
SD, if one restricts it to O and then extends to a state in SDe, it seems nontrivial whether this
extension can coincide with the original state on F .

3.2 Isotony and causality weakened.

Return now to the previous analysis of a system of local quantum constraints, and define:

3.12 Definition Fix a system of local quantum constraints Θ → (F(Θ), U(Θ)) (cf. Def. 3.3),
then we say that it satisfies:

(5) reduction isotony if Θ1 ⊆ Θ2 implies O(Θ1) ⊆ O(Θ2) and D(Θ1) = D(Θ2) ∩ O(Θ1)
(cf. Lemma 3.6 for motivation).

(6) weak causality if for Θ1 ⊥ Θ2 there is some Θ0 ⊃ Θ1 ∪ Θ2, Θ0 ∈ Γ such that

[
O(Θ1) , O(Θ2)

]
⊂ D(Θ0) .

3.13 Remark (i) Given a system with reduction isotony, we have by Lemma 3.6 that when
Θ1 ⊆ Θ2, then R(Θ1) is isomorphic to a C*–subalgebra of R(Θ2), which we will denote as
ι12: R(Θ1) → R(Θ2).

(ii) The weak causality condition is considerably weaker than requiring causality (cf. (2) in
Definition 3.1) for the field algebra, and this will be crucial below for Gupta–Bleuler elec-
tromagnetism.

Now we state our first major claim.

3.14 Theorem Let Γ ∋ Θ → (F(Θ),U(Θ)) be a system of local quantum constraints.

(i) If it satisfies reduction isotony, then Θ → R(Θ) has isotony, i.e. Θ1 ⊂ Θ2 , implies
R(Θ1) ⊂ R(Θ2) . In this case, the net Θ → R(Θ) has an inductive limit, which we denote
by R0 := lim

−→
R(Θ), and call it the quasi–local physical algebra.
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(ii) If it satisfies weak causality and reduction isotony, then Θ → R(Θ) has causality, i.e.
Θ1 ⊥ Θ2 , implies [R(Θ1), R(Θ2)] = 0.

Proof: (i) By reduction isotony we obtain from Lemma 3.6 for Θ1 ⊂ Θ2 a unital monomorphism
ι12: R(Θ1) → R(Θ2). To get isotony from these monomorphisms, we have to verify that they
satisfy Takeda’s criterion: ι13 = ι23 ◦ ι12 (cf. [16]), which will ensure the existence of the inductive
limit R0, and in which case we can write simply inclusion R(Θ1) ⊂ R(Θ2) for ι12. Recall that
ι12(A + D(Θ1)) = A + D(Θ2) for A ∈ O(Θ1). Let Θ1 ⊂ Θ2 ⊂ Θ3, then by reduction isotony,
O(Θ1) ⊂ O(Θ2) ⊂ O(Θ3), and so for A ∈ O(Θ1), ι23(ι12(A + D(Θ1))) = ι23(A + D(Θ2)) =
A+ D(Θ3) = ι13(A+ D(Θ1)). This establishes Takeda’s criterion.

(ii) Let Θ1 ⊥ Θ2 with Θ0 ⊃ Θ1 ∪ Θ2 such that [O(Θ1),O(Θ2)] ⊂ D(Θ0) as in Defini-
tion 3.12 (6), then since O(Θ1) ∪ O(Θ2) ⊂ O(Θ0) (by reduction isotony), the commutation
relation is in O(Θ0), so when we factor out by D(Θ0), the right hand side vanishes and since
factoring is a homomorphism, we get [R(Θ1), R(Θ2)] = 0 in R(Θ0) and therefore in R0.

Next we would like to analyze the covariance requirement for the net, but here too, we need a
preliminary subsection on equivalence of constraints (i.e. when they select the same set of Dirac
states), since it will only be necessary for the constraint set to be covariant up to equivalence to
ensure that the net of physical algebras is covariant.

3.3 Equivalent constraints.

3.15 Definition Two first class constraint sets C1, C2 for the field algebra F are called equivalent

if they select the same Dirac states, i.e. if for any state ω ∈ S(F) we have

C1 ⊆ Nω iff C2 ⊆ Nω.

In this case we denote C1 ∼ C2, and for unitary constraints situation Ci = Ui − 1l , i = 1, 2, we
also write U1 ∼ U2.

3.16 Remark (i) It is clear that the preceding definition introduces an equivalence relation
on the family of first class constraint sets for F . Denote by Di = [FCi] ∩ [CiF ], i = 1, 2,
the C∗–algebras of Theorem 2.2 (i). Now C1 ∼ C2 iff D1 = D2 by Theorems 2.3 (i) and
2.2 (ii), therefore the corresponding observables Oi and physical observables Ri given by
the T–procedure will also coincide. This justifies calling these constraint sets equivalent –
the replacement of C1 by C2 leaves the physics unchanged. Also note that C ∼ [C] ∼ C∗(C).
If C1 ∼ C2, one can have that C′

1 6= C′
2, i.e. the traditional observables is more sensitive to

the choice of constraints than O.

(ii) Whilst the definition of equivalence C1 ∼ C2 as stated, depends on F , it depends in fact only
on the subalgebra C∗(C1 ∪C2 ∪{1l}) =: A. This is because the extension (resp. restriction)
of a Dirac state from (resp. to) a unital C*–subalgebra containing the constraints, is again
a Dirac state. Explicitly, the condition: ω(C∗C) = 0 for all C ∈ C1 iff ω(C∗C) = 0 for all
C ∈ C2, clearly depends only on the behaviour of ω on A.

Next we give an algebraic characterization of equivalent constraints, and introduce a maxi-
mal constraint set associated to an equivalence class of constraint sets. In the case of unitary
constraints, Ci = Ui − 1l , we obtain a unitary group in F .

3.17 Theorem Let Ci, i = 1, 2, be two first class constraint sets for F , with associated algebras
Di as above. Then

11



(i) C1 ∼ C2 iff C1 − C2 ⊂ D1 ∩ D2.
In the case when Ci = Ui − 1l , we have U1 ∼ U2 iff U1 − U2 ⊂ D1 ∩ D2.

(ii) The maximal constraint set which is equivalent to C1 is D1. In the case when C1 = U1 − 1l ,
the set of unitaries

Um :=
⋃

U ∼U1

U ⊂ Fu ,

is the maximal set of unitaries equivalent to U1, and it is a group with respect to multipli-
cation in F .

Proof: (i) Suppose that C1 ∼ C2 so that by the Remark 3.16 (i), D1 = D2. Then, we have that
C1 ⊂ D1 = D2 ⊃ C2, and hence C1 − C2 ⊂ D1 = D1 ∩D2.

Conversely, assume C1 − C2 ⊂ D1 ∩ D2. If ω ∈ S(F) satisfies πω(C1)Ωω = 0, then by
assumption, πω(C1)Ωω − πω(C2)Ωω ⊆ πω(D1 ∩ D2)Ωω ⊂ πω(D1)Ωω = 0 using Theorem 2.2 (ii).
Thus πω(C2)Ωω = 0, i.e. C1 ⊂ Nω implies that C2 ⊂ Nω. Interchanging the roles of C1 and C2, we
conclude that C1 ∼ C2. The second claim for Ci = Ui − 1l follows from C1 − C2 = U1 − U2.

(ii) That D1 ∼ C1 is just the content of Theorem 2.2 (ii). That it is maximal follows from the
implication C2 ∼ C1 ⇒ C2 ⊆ D2 = D1.

For unitary constraints, since Um :=
⋃

U ∼U1

U it follows from part (i) that U1 − Um ⊂ D1.

Further U1 ⊂ Um implies also D1 ⊂ Dm, so that U1 − Um ⊂ D1 ∩ Dm = D1 and Um ∼ U1. By
construction it is also clear that Um is the maximal unitary constraint set in F equivalent to
U1. We only have to prove that Um is a group. Let U0 be the group generated in F by Um.
If ω ∈ S(F) satisfies ω(Um) = 1, we have 1 = ω(U) = ω(U∗) = ω(U−1), U ∈ Um, and also
ω(UV ) = ω(U) = 1, U, V ∈ Um, i.e. ω(U0) = 1. Thus U0 ∼ Um ∼ U and maximality implies
U0 = Um. Hence Um is a group.

3.18 Remark Observe that for a given unitary constraint system (F , U) we have that

Um = {U ∈ Fu | ω(U) = 1 ∀ ω ∈ SD} = {U ∈ Ou | ω(U) = 1 ∀ ω ∈ SD}

since Um ⊂ O, cf. Theorem 2.3 (v).

Next we show that for a large class of first class constraint systems (F , C) we can find a single
constraint in F which is equivalent to C, and hence can replace it.

3.19 Theorem If [C] is separable, there exists a positive element C ∈ D+ such that {C} ∼ C.

Proof: Let {Cn}∞n=1 be a denumerable basis of [C] such that ‖Cn‖ < 1, n ∈ N. Then

SD =
{
ω ∈ S(F) | ω(C∗

nCn) = 0 ∀n ∈ N

}
.

Define

C :=
∞∑

n=1

C∗
nCn

2n
∈ D+ .

Then ω(C) = 0 iff ω(C∗
nCn) = 0 for all n ∈ N, which proves that SD = {ω ∈ S(F) | ω(C) = 0}.

Thus C
1
2 ∈ N , but since for any positive operator A we have KerA = KerAn, for all n ∈ N, we

conclude SD = {ω ∈ S(F) | ω(C2) = 0}, so {C} ∼ C.

3.20 Remark Note that from [12, p. 85] the preceding statement is not true if the separability
condition is relaxed. From Remark 8.4(i) we see that if we are willing to enlarge F to C∗(F ∪
{P}) for a certain projection P , then {P} ∼ C so that for this larger algebra, the separability
assumption can be omitted.
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3.21 Theorem Let (F , C) be a first class constraint system, then there is a set of unitaries
U ⊂ Fu such that C ∼ U − 1l and U = U∗.

Proof: Define the unitaries U := {exp(itD) | t ∈ R, D ∈ D+}. Then for ω ∈ S(F) we have that

1 = ω(exp itD) = 1 +
∞∑

k=1
(it)kω(Dk)/k! for all t ∈ R, D ∈ D+ iff ω(D) = 0 for all D ∈ D+ iff

ω(D) = 0 iff ω ∈ SD. Thus U − 1l ∼ C. It is obvious that U = U∗.

Hence no constraint system is excluded by the assumption of unitary constraints. Moreover, by
Theorem 3.17 there is a canonical unitary group Um associated with each first class constraint
system, and hence a group of inner automorphisms AdUm, which one can take as a gauge group
in the absence of any further physical restrictions.

3.4 Weak covariance.

We define:

3.22 Definition Fix a system of local quantum constraints Θ → (F(Θ), U(Θ)), then we say that
it satisfies:

(7) weak covariance if there is an action α: P↑
+ → AutF0 such that αg(O(Θ)) = O(gΘ) and

αg(U(Θ)) ∼ U(gΘ), for all g ∈ P↑
+, Θ ∈ Γ (cf. Definition 3.15).

3.23 Remark (i) For the weak covariance condition, we do not need to state in which algebra
the equivalence of constraints holds, since this only depends on the unital C*–algebra
generated by the two constraint sets involved (cf. Remark 3.16 (ii)). Note that if the net
Θ → F(Θ) is already covariant, then weak covariance follows from the covariance condition

αg(F(Θ)) = F(gΘ) and αg(U(Θ)) ∼ U(gΘ), for all g ∈ P↑
+, using the fact that equivalent

constraint sets produce the same observable algebra.

(ii) It is instructive to compare the conditions in Definitions 3.12 and 3.22 with those of the
Doplicher-Haag–Roberts analysis (DHR for short [4]), given that both are intended for
application to gauge QFTs. First, in DHR analysis one assumes that the actions of the
gauge group and the Poincaré group commute, which limits the analysis to gauge trans-
formations of the first kind (and hence excludes quantum electromagnetism). In contrast,
we assume weak covariance, hence include gauge transformations of the second kind (and
also QEM). The DHR analysis also assumes field algebra covariance, which we omit. Sec-
ond, the DHR analysis is done concretely in a positive energy representation, whereas we
assume an abstract C*–system, hence we can avoid the usual clash between regularity and
constraints, which appears as continuous spectrum problems for the constraints (cf. Sub-
section 4.2) and which generally leads to indefinite metric representations. At the concrete
level this problem manifests itself in the inability of constructing the vector potential sat-
isfying Maxwell’s equations as a covariant or causal quantum field on a space with an
invariant vacuum, cf. [17, 18, 19] and [20, Eq. 8.1.2].

(iii) In the next sections we will construct an example (Gupta–Bleuler electromagnetism) which
satisfies the conditions 3.12 and 3.22.

Now we show that the conditions in Definition 3.12 and 3.22 are sufficient to guarantee that
the net of local physical observables Θ → R(Θ) is a HK–QFT. This is a central result for this
paper.
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3.24 Theorem Let Γ ∋ Θ → (F(Θ),U(Θ)) be a system of local quantum constraints. If it satisfies

weak covariance, then for each Θ we have α̃g(R(Θ)) = R(gΘ), g ∈ P↑
+, where α̃g is the factoring

through of αg (cf. (7) in Definition 3.22) to the local factor algebra R(Θ). If the system of
constraints in addition satisfies reduction isotony, then the isomorphisms α̃g: R(Θ) → R(gΘ),

Θ ∈ Γ, are the restrictions of an automorphism α̃g ∈ AutR0, and moreover, α̃: P↑
+ → AutR0

is an action, i.e. the net Θ → R(Θ) satisfies covariance.

Proof: Let α: P↑
+ → AutF0 be the action introduced by the weak covariance assumption in Defi-

nition 3.22 (7). Now αg(O(Θ)) are the observables of the constraint system (αg(F(Θ)), αg(U(Θ)))
with maximal constraint algebra αg(D(Θ)) ⊂ αg(O(Θ)) = O(gΘ) ⊃ D(gΘ). Since αg(U(Θ)) ∼
U(gΘ), they have the same Dirac states and so on O(gΘ) the same maximal C*–algebra con-
tained in the kernels of all Dirac states. Thus αg(D(Θ)) = D(gΘ). Denote the factoring map
ξΘ: O(Θ) → R(Θ), i.e. ξΘ(A) = A + D(Θ) for all A ∈ O(Θ). Then we factor through
αg: O(Θ) → O(gΘ) to a map α̃g: R(Θ) → R(gΘ) by

α̃g(ξΘ(A)) := αg(A) + αg(D(Θ)) = αg(A) + D(gΘ) = ξgΘ(αg(A)) ,

and this is obviously an isomorphism.
Next assume in addition reduction isotony, then we show that the isomorphisms α̃g defined

on the net Θ → R(Θ) are the restrictions of an automorphism α̃g ∈ AutR0. Indeed, for Θ1 ⊂ Θ2

and any A ∈ O(Θ1) we have using equation D(gΘ1) = D(gΘ2)∩O(gΘ1) and the monomorphisms
ι12: R(Θ1) → R(Θ2), ι

g
12: R(gΘ1) → R(gΘ2) that

ιg12

(
α̃g(ξΘ1(A))

)
= ιg12

(
αg(A) + D(gΘ1)

)
= αg(A) + D(gΘ2)

= α̃g

(
ξΘ2(A)

)
= α̃g(ι12(ξΘ1(A))) .

This shows that the diagram

R(Θ1)
ι12−→ R(Θ2)

y α̃g

y α̃g

R(gΘ1)
ιg12−→ R(gΘ2)

commutes. Therefore by the uniqueness property of the inductive limit [21, Section 11.4] the
isomorphisms α̃g of the local observable algebras characterize an automorphism of R0 which

we also denote by α̃g. Since α: P↑
+ → AutF is a group homomorphism, we see for the local

isomorphisms that the composition of α̃g: R(Θ) → R(gΘ) with α̃h: R(gΘ) → R(hgΘ) is

α̃h ◦ α̃g = α̃hg: R(Θ) → R(hgΘ). From this it follows that α̃: P↑
+ → AutR0 is a group

homomorphism.

So combining Theorems 3.14 and 3.24 we obtain our main claim:

3.25 Theorem If the system of local constraints satisfies all three conditions in Definitions 3.12
and 3.22, then Θ → R(Θ) is a HK–QFT.

In the following sections we will construct field theory examples of local systems of quantum
constraints which satisfy the weak conditions of Definition 3.12 and 3.22, hence define HK–QFTs
for their net of physical algebras.
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3.26 Proposition Given a system of local quantum constraints, Θ → (F(Θ), U(Θ)), which sat-
isfies reduction isotony and weak covariance, then the net Θ → (F(Θ), Um(Θ)) (where Um(Θ)
is the maximal constraint group of U(Θ) in F(Θ), cf. Theorem 3.17 (ii)) is a system of local
quantum constraints satisfying reduction isotony and covariance, i.e.

αg(O(Θ)) = O(gΘ) and αg(Um(Θ)) = Um(gΘ) , g ∈ P↑
+ , Θ ∈ Γ .

The system Θ → (F(Θ), Um(Θ)) is clearly locally equivalent to Θ → (F(Θ), U(Θ)), in the sense
that Um(Θ) ∼ U(Θ) for all Θ ∈ Γ, from which it follows that if one of these two systems has weak
causality, so has the other one.

Proof: Let Θ1 ⊆ Θ2, then by (F(Θ1), U(Θ1)) ⊆ (F(Θ2), U(Θ2)) and reduction isotony, we
conclude from Theorem 3.10 that all Dirac states on O(Θ1) ⊂ O(Θ2) extend to Dirac states on
O(Θ2). Thus by Remark 3.18,

Um(Θ2) ∩ F(Θ1) = {U ∈ Ou(Θ2) | ω(U) = 1 ∀ ω ∈ SΘ2
D } ∩ F(Θ1)

= {U ∈ Fu(Θ1) ∩ O(Θ2) | ω(U) = 1 ∀ ω ∈ SΘ1
D }

= {U ∈ Ou(Θ1) | ω(U) = 1 ∀ ω ∈ SΘ1
D }

= Um(Θ1) ,

where we used the fact that if for a unitary U we have ω(U) = 1 for all Dirac states ω, then
U ∈ O. Thus (F(Θ1), Um(Θ1)) ⊆ (F(Θ2), Um(Θ2)) and so the system Θ → (F(Θ), Um(Θ)) is a
system of local quantum constraints. Reduction isotony follows from that of the original system
and the equivalences Um(Θ) ∼ U(Θ) for all Θ ∈ Γ.

To prove the covariance property of Um(Θ) recall that from weak covariance we have
αg(U(Θ)) ∼ U(gΘ) for all Θ. We show first that if U1(Θ) ∼ U(Θ), then αg(U1(Θ)) ⊂ Um(gΘ).
We have

αg

(
U1(Θ)

)
− U(gΘ) = αg

(
U1(Θ) − 1l

)
+ 1l − U(gΘ)

⊂ αg

(
D(Θ)

)
+ D(gΘ)

= D(gΘ) = αg(D(Θ)) ,

where the last equality follows from the proof of the previous theorem, and we used also that
D1(Θ) = D(Θ). Since αg(D(Θ)) is the D–algebra of αg(U1(Θ)) in αg(O(Θ)) = O(gΘ), this
implies by Theorem 3.17 (i) that αg(U1(Θ)) ∼ U(gΘ) and therefore it must be contained in
Um(gΘ). Thus αg(Um(Θ)) ⊂ Um(gΘ), g ∈ P, and finally the inclusion αg−1(Um(gΘ)) ⊂ Um(Θ)
proves covariance for Θ → Um(Θ).

4 Preliminaries for the Example.

In this section we collect the relevant material we need to develop our Gupta–Bleuler example
in the next section.

4.1 Outer constraints.

We will need the following variant where the constraints are defined through a group action which
is not necessarily inner. One assumes, following [8] that:
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• There is a distinguished group action β: G → AutF on the field algebra F , and all physical
information is contained in F and its set of invariant states:

SG(F) := {ω ∈ S(F) | ω(βg(A)) = ω(A) ∀ g ∈ G, A ∈ F} .

If G is locally compact, we can construct the (abstract) multiplier algebra of the crossed product
Fe = M(G ×

β
F) and otherwise we will just take the discrete crossed product. In either case

we obtain a C*–algebra Fe ⊃ F which contains unitaries Ug for all g ∈ G that implement
β: G → AutF . Then this situation is reduced to the previous one by the following theorem [8,
Section 3]:

4.1 Theorem SG(F) is precisely the restriction to F of the Dirac states on Fe with respect to

C = UG − 1l , i.e. SG(F) = SD(Fe) F where

SD(Fe) := {ω ∈ S(Fe) | ω(Ug) = 1 ∀ g ∈ G} .

Hence we can apply the T–procedure to UG − 1l in Fe, and intersect the resulting algebraic
structures with F . This is called the outer constraint situation.

4.2 Bosonic constraints.

For free bosons, one takes for F the C*–algebra of the CCRs, which we now define following
Manuceau [22, 23]. Let X be a linear space and B a (possibly degenerate) symplectic form on
it. Denote by ∆(X, B) the linear space of complex–valued functions on X with finite support. It
has as linear basis the set {δf | f ∈ X}, where

δf (h) :=

{
1 if f = h
0 if f 6= h.

Make ∆(X, B) into a *–algebra, by defining the product δf · δh := e
i
2
B(f, h) δf+h and involution

(δf )∗ := δ−f , where f, h ∈ S and the identity is δ0. Let ∆1(X, B) be the closure of ∆(X, B)

w.r.t. the norm
∥∥∥

m∑
i=1

αiδfi

∥∥∥
1

:=
m∑

i=1
|αi|, αi ∈ C, then the CCR–algebra ∆(X, B) is defined as

the enveloping C*–algebra of the the Banach *-algebra ∆1(X, B). That is, it is the closure with
respect to the enveloping C*-norm:

‖A‖ := sup
ω∈S(∆1(X, B))

√
ω(A∗A) .

It is well–known (cf. [23]) that:

4.2 Theorem ∆(X, B) is simple iff B is nondegenerate.

An important state on ∆(X, B) is the central state defined by

ω0

(
δf
)

:=

{
1 if f = 0
0 otherwise .

(4)

Using it, we make the following useful observations. The relation between the norms on ∆(X, B)
is

‖F‖2 :=
( n∑

i=1

|λi|2
)1/2

= ω0(F
∗F )1/2 ≤ ‖F‖ ≤ ‖F‖1 for F =

n∑

i=1

λiδfi
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and hence ∆1(X, B) ⊂ ∆(X, B) ⊂ ℓ2(X), so we can write an A ∈ ∆(X, B) as A =
∞∑
i=1

λiδfi
where

{λi} ∈ ℓ2 and fi = fj iff i = j. Let An :=
Mn∑
i=1

γ
(n)
i δ

f
(n)
i

⊂ ∆(X, B) converge to A ∈ ∆(X, B) in

C*–norm then since the family of f
(n)
i is denumerable we can arrange it into a single sequence fi

and thus write An :=
Nn∑
i=1

λ
(n)
i δfi

. We shall frequently use this way of writing a Cauchy sequence

in ∆(X, B).
Now to define a constrained system corresponding to linear selfadjoint constraints in F =

∆(X, B), we choose a set C = U − 1l where U = {δf | f ∈ s} and s ⊂ X is a subspace
corresponding to the “test functions” of the heuristic constraints.

4.3 Theorem Define the symplectic commutant s′ := {f ∈ X | B(f, s) = 0}, then C = U − 1l is
first class iff s ⊆ s′.

For the proof, see Lemma 6.1 in [10].
We saw after Theorem 2.3 that for the observable algebra we sometimes need to choose a

smaller algebra Oc ⊂ O in order to ensure that the physical algebra Rc is simple. For bosonic
constraints with nondegenerate B, such an algebra is Oc = C∗(δs′) = C′ (in which case D ∩Oc =
C∗(δs′) · C∗(δs − 1l )), which is what was chosen in [3, 10]. However, we now show that with
this choice we have in fact Rc = R, i.e. we obtain the same physical algebra than with the full
T–procedure, so nothing was lost by this choice of Oc.

4.4 Theorem Given nondegenerate (X, B) and s ⊂ X as above, where s ⊂ s′ and s = s′′, then

O = C∗(δs′ ∪ D) =
[
C∗(δs′) ∪D

]
.

Proof: The proof of this is new but long, so we put it in Appendix 2.

4.5 Theorem Consider a nondegenerate symplectic space (X, B) and a first class set s ⊂ X.
Denote by B̃ the factoring through of B to the factor space s′/s. Then we have the following
isomorphism:

C∗(δs′) / C∗(δs − 1l )C∗(δs′) ∼= ∆(s′/s , B̃) .

In particular, if s = s′′, then (s′/s , B̃) is nondegenerate, so the above CCR–algebra is simple,
and using Theorem 4.4 we have

R ∼= ∆(s′/s , B̃) .

For proofs and further details see [8, Theorem 5.2 and 5.3, as well as Corollary 5.4 and 5.5].
The surprise is that for linear bosonic constrained systems, the choice of traditional observables
Oc = C′ produces the same physical algebra R than the T–procedure, which is not true in general.

A typical pathology which occurs for bosonic constraints, is that the Dirac states are not
regular, i.e. the one parameter groups R ∋ t 7→ πω(δtf ) for ω ∈ SD will not be strong operator
continuous for all f ∈ X, and so the corresponding generators (which are the smeared quantum
fields in many models of bosonic fields), will not exist for some f ∈ X, cf. [24]. The resolution
of this, is that the pathology only occurs on nonphysical elements, i.e. on δf 6∈ O, with the
result that a Dirac state when restricted to O and factored to R (i.e. taken through the bijection
in Theorem 2.4) can be regular again on the physical algebra R. This is also obvious from
Theorem 4.5, since a nontrivial R clearly has regular states. Thus for the physical algebra,
quantum fields can exist.
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5 Example: Gupta–Bleuler electromagnetism

Quantum electromagnetism, in the heuristic Gupta–Bleuler formulation, has a number of special
features, cf. [25, 26]. First, it is represented on an indefinite inner product space, second, gauge
invariance is imposed by the noncausal constraint

χ(x) :=
(
∂µAµ

)(+)

(x) ,

and third, Maxwell’s equations (in terms of the vector potential) are imposed as state conditions
instead of as operator identities. This is necessary, because from the work of Strocchi (e.g. [27, 7]),
we know that Maxwell’s equations are incompatible with the Lorentz covariance of the vector
potential. Gupta–Bleuler electromagnetism has been rigorously reconstructed in a C*–algebra
context [8], in a way which allows one to avoid indefinite inner product representations (using
instead representations which are nonregular on nonphysical objects). Here we will refine that
approach in order to include the local constraint structure and to make contact with Haag–Kastler
QFT. Our aim is to define Gupta–Bleuler electromagnetism as a local system of constraints as
in Definition 3.3 and subsequently to show that it has reduction isotony, weak causality and
covariance. Our starting point for defining this system, is [8, Sections 4 and 5] where motivation
and further results can be found.

5.1 Gupta–Bleuler electromagnetism – the heuristic theory.

Heuristically the field is
Fµν(x) := Aν, µ(x) −Aµ, ν(x)

where the vector potential, constructed on a Fock–Krein space H is:

Aµ(x) = (2(2π)3)−
1
2

∫

C+

(
aµ(p) e−ip·x + a†µ(p) eip·x

)d3p

p0

where C+ := {p ∈ R
4 | pµp

µ = 0, p0 ≥ 0} is the mantle of the positive light cone: V+ := {p ∈
R

4 | pµp
µ ≥ 0, p0 ≥ 0}. Note that the adjoints a† are w.r.t. the indefinite inner product, and

that the latter comes from the indefinite inner product on the one particle space:

K(f, h) := −2π

∫

C+

d3p

p0
fµ(p)hµ(p).

Then the CCR’s are

[Aµ(x), Aν(x
′)] = −iηµνD(x− x′) , D(x) := −(2π)−3

∫

C+

eip·x sin(p0x0)
d3p

p0

using [aµ(p), a†ν(p
′)] = −ηµν‖p‖ δ3(p − p′) and the other commutators involving a are zero. At

this point Aµ(x) does not yet satisfy the field equations Fµν
,ν(x) = 0. On smearing we obtain:

A(f̂) :=

∫
d4xAµ(x) fµ(x) (5)

=
√
π

∫

C+

(
aµ(p) f̂µ(p) + a†µ(p) f̂µ(p)

)d3p

p0
(6)

= (a(f) + a(f)†)
/√

2

with a(f) :=
√

2π

∫

C+

aµ(p) f̂µ(p)
d3p

p0
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where f ∈ S(R4, R
4) and f̂µ(p) := (2π)−2

∫
d4x e−ip·xfµ(x) ∈ Ŝ and the latter means

Ŝ := {f̂ | f ∈ S(R4,R4)} = {f ∈ S(R4,C4) | f(p) = f(−p)}

and as usual S denotes Schwartz functions. The operators A(f̂) are Krein symmetric, but not
selfadjoint. Then the smeared CCRs are

[A(f), A(h)] = iD(f, h) := −π
∫

C+

(
fµ(p)hµ(p) − fµ(p)hµ(p)

)d3p

p0
. (7)

Note that the distribution D is actually the Fourier transform of the usual Pauli–Jordan distri-
bution, i.e.

D̂(f, h) := D(f̂ , ĥ) =

∫ ∫
fµ(x)hµ(y)D(x− y) d4x d4y

in heuristic form. The supplementary condition

χ(x) := ∂µA(+)
µ (x) = −i(2(2π)3)−

1
2

∫

C+

pµaµ(p) e−ip·x d
3p

p0

selects the physical subspace H′ :=
{
ψ ∈ H | χ(h)ψ = 0, h ∈ S(R4,R)

}
(to make this well–

defined, we need to specify the domain of χ(h),- this will be done in Subsection 5.6). The
Poincaré transformations are defined in the natural way: (Λ, a)f(p) = eia·pΛf(Λ−1p), and the
given Krein inner product on H is invariant w.r.t. the Poincaré transformations, but not the
Hilbert inner product. Moreover H′ is positive semidefinite w.r.t. the Krein inner product
〈·, ·〉, so the heuristic theory constructs the physical Hilbert space Hphys as the closure of H′/H′′

equipped with inner product 〈·, ·〉 where H′′ is the zero norm part of it. At the one particle level,
H′ consists of functions satisfying pµf

µ(p) = 0, and H′′ consists of gradients fµ(p) = ipµh(p). The
physical observables consist of operators which can factor to Hphys, and in particular contains
the field operators Fµν . These satisfy the Maxwell equations on Hphys, because Fµν

,µ maps H′ to
H′′.

Note that since the Krein inner product becomes the Hilbert inner product on Hphys, the
Krein adjoint becomes the Hilbert space adjoint for physical observables. With this in mind, we
will below do a reconstruction in C*–algebraic terms where the C*–involution corresponds to the
Krein involution.

5.2 Gupta–Bleuler electromagnetism as a local constraint system.

To model this in rigorous field theory, we start with the CCR algebra A := ∆(X, B) where
the symplectic space (X, B) is constructed as follows. Consider the real linear space Ŝ from
above, and equip it with the presymplectic form D obtained from the CCRs before. Now define
X := Ŝ/Ker(D) which is a symplectic space with symplectic form B defined as the factoring of
D to the factor space X.

Now since the constraints χ(x) are not (Krein) selfadjoint, there is no space of test functions
in X which represent them, so we want to define them as outer constraints through the gauge
transformations which they generate. A heuristic calculation (cf. [8]) produces:

Ad
(
exp(−it χ(h)†χ(h))

)
exp(iA(f)) = exp(iA(T t

hf)) ,

where formally χ(h) :=
∫
χ(x)h(x) d4x, h ∈ S(R4,R) and

(T t
hf)µ(p) = fµ(p) − itπ pµĥ(p)

∫

C+

f ν(p′) p′ν ĥ(p
′)
d3p′

p′0
, (8)
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and we used the smearing formula Eqn (6). (Note that since the operatorsA(f) are not selfadjoint,
the operators exp(iA(f)) can be unbounded). At this point a problem occurs (pointed out to us
by Prof. D. Buchholz) 1. Whilst the function ipµĥ(p) is the Fourier transformation of the gradient

of h, hence in the allowed class of functions, the coefficient c(f, h) :=
∫
C+

f ν(p′) p′ν ĥ(p
′) d3p′

p′0
need

not be real, so T t
h will not preserve X. The reason for this difficulty, is because χ(h)†χ(h) is a

product of noncausal operator–valued distributions, and so its commutator with the causal A(f)
is unlikely to be causal. So, since the gauge transformations can take an f ∈ X out of X, we
enlarge the space X by including complex valued Schwartz functions, i.e. we set

Y := S(R4,C4)̂/Ker(D) = S(R4,C4)/Ker(D)

where D is given by the same formula (7) than before;– it is still real on Y because it is the
imaginary part of K. We will discuss in Remark 5.4(ii) below what this enlargement of symplectic
space corresponds to in terms of the original heuristic smearing formulii. (Note however, that the
symplectic form D given by Eqn (7) for arbitrary complex Schwartz functions, does not satisfy

causality.) Since Ker(D Ŝ) = Ŝ ∩ Ker(D S(R4,C4)), we have that X ⊂ Y. Thus ∆(X, B) ⊂
∆(Y, B), and moreover the gauge transformations T t

h are well defined on Y. The transformations
T t

h are symplectic, in fact, if we define Gh(f) := T 1
h (f) − f, then

(i) B(Gh(f), k) = −B(f, Gh(k)),

(ii) Gg ◦Gh = 0,

(iii) T t
h(T s

k (f)) = f + tGh(f) + sGk(f).

For each h ∈ S(R4,R) we have a one–parameter group of gauge transformations T t
h : S(R4,C4) →

S(R4,C4) (cf. [8]) and {T t
h | t ∈ R, h ∈ S(R4,R)} is a commutative set of symplectic transfor-

mations, hence preserve Ker(D) and so factor to the space Y. Each T t
h is a one–parameter group

in t, but due to the nonlinearity in h, the map h → T 1
h =: Th is not a group homomorphism of

S(R4,R).
We let our group of gauge transformations G, be the discrete group generated in Sp(Y, B) by

all T t
h, and define as usual the action β : G → Aut

(
∆(Y, B)

)
by βγ(δf ) = δγ(f), γ ∈ G, f ∈ Y.

Our field algebra will be the discrete crossed product Fe := G ×
β

∆(Y, B). As a C*–algebra

Fe is generated by ∆(Y, B) and a set of commuting unitaries UG := {Uγ | γ ∈ G} such that
γ(F ) = Uγ F U

∗
γ , F ∈ A, Uγ−1 = U∗

γ and Uγγ′ = UγUγ′ , γ, γ′ ∈ G.

5.1 Remark (i) Sometimes we need a more concrete characterization of the space X.
Now X = Ŝ/Ker(D) and Ŝ = {f ∈ S(R4, C

4) | f(p) = f(−p)} = S+ + iS− where
S± := {u ∈ S(R4, R

4) | u(p) = ±u(−p)}. From Eqn. (7) we see that Ker(D) =

{f ∈ Ŝ | f C+ = 0}, and hence factoring by Ker(D) is the same as restriction to C+, i.e.

X = Ŝ C+, and since f(p) C+ = f(‖p‖, p) we can identify these functions with a subspace
of C(R3, C

4). Since we are restricting Schwartz functions, we note that these functions on
R

3 are smooth except at the origin, and Schwartz on the complement of any open neighbour-
hood of the origin. The conditions u(p) = ±u(−p) for u ∈ S± involve points outside C+, so

through smoothness they will influence the behaviour of u C+ near the origin. Specifically
if u ∈ S+ (resp. u ∈ S−), then on each line through the origin in C+, {ta | t ∈ R}, a ∈ C+\0,
the function ua(t) := u(ta) is smooth and even (resp. odd), hence all its derivatives of odd
degree must be odd (resp. even) and its derivatives of even degree must be even (resp.
odd). Thus the derivatives of ua of odd (resp. even) degree are zero at the origin. This is

1This was also an error in [8].

20



a property which does restrict to C+, and distinguishes between S+ C+ and S− C+. Note

from the above discussion, that X = Ŝ C+ contains all smooth functions with compact
support away from zero.

(ii) The space to which we will next restrict our constructions, is the real span of the orbit of
X under the gauge group G, i.e. Z := SpanR(G(X)). Denote the real space of gradients by

G :=
{
f ∈ Ŝ | fµ(p) = ipµĥ(p), h ∈ S(R4,R)

}

(which is not in Ker(D)). Now we want to show that Z = X + C ·G where we use the same
symbol for G and its image in Y under factoring by Ker(D), and C · G is a shorthand for
the complex span SpanC(G). Note that a general element of Z is of the form

N∑

n=1

λn

(
f (n)

µ (p) − itnπ pµĥ
(n)(p) · c(h(n), f (n))

)

=
N∑

n=1

λnf
(n)
µ (p) − ipµ

N∑

n=1

πtnλnc(h
(n), f (n)) · ĥ(n)(p)

where λn, tn ∈ R, f (n) ∈ X, h(n) ∈ S(R4,R) and c(h, f) ∈ C as in Eqn. (8). Clearly this
shows that Z ⊆ X + C · G. For the reverse inclusion, we have that X is in Z and to see
that C · G is in Z, note that it contains π−1(T t

hf − T t+1
h f)(p) = ipµĥ(p) · c(f, h) for all f

and h. From the discussion in the previous remark, it is clear that we may choose the real
and imaginary parts of f and ĥ independently, and so c(f, h) can be any complex number.
Thus Z = X+C ·G. From a physical point of view, one can justify the inclusion of complex
smearing functions in Z by the fact that the constraints χ(f) are already noncausal, and
that below for the final physical theory we will eliminate these, retaining only the real
valued smearing functions.

To construct the net of local field algebras F : Γ → Γ̃ as in Definition 3.1, let Θ be any open
set in R

4 and define

S(Θ) := {f ∈ S(R4,C4) | supp(f) ⊂ Θ}
X(Θ) := (Ŝ(Θ) ∩ Ŝ)/Ker(D)

Z(Θ) := (Ŝ(Θ)/Ker(D)) ∩ Z

U(Θ) := {UTh
| h ∈ S(R4,R), supp(h) ⊂ Θ}

F(Θ) := C∗
(
δX(Θ) ∪ U(Θ)

)
⊂ Fe.

Note that if Θ is bounded, then S(Θ) = C∞
c (Θ, C

4). Moreover ThZ(Θ) ⊂ Z(Θ) when supp(h) ⊂
Θ. Thus if we let G(Θ) be the discrete group generated in Sp(Y, B) by {T t

h | supp(h) ⊂ Θ , t ∈
R}, then it preserves C∗(δZ(Θ)) so that it makes sense to define G(Θ) ×

β
C∗(δZ(Θ)).

5.2 Lemma We have:

F(Θ) = G(Θ) ×
β

C∗(δZ(Θ)) = [UG(Θ) δZ(Θ)] = [δZ(Θ) UG(Θ)] .

Proof: We start with the proof of the first equality. From δX(Θ) and U(Θ) we can produce

δG(Θ)(X(Θ)) in F(Θ). Let g = T t1
h1

· · · T tn
hn

∈ G(Θ), then g(f) = f +
∑n

i tiGhi
(f) ∈ Z(Θ) where

f ∈ X(Θ), supp(hi) ⊂ Θ, and Gh(f) := Th(f) − f ∈ C · G ∩ Ŝ(Θ). By varying the hi we can

get all possible complex multiples of the gradients in G∩ Ŝ(Θ), hence G(Θ)(X(Θ)) = Z(Θ). Thus
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F(Θ) = C∗
(
δZ(Θ) ∪ U(Θ)

)
. Now recall the fact that the crossed product G(Θ) ×

β
C∗(δZ(Θ)) is

constructed from the twisted (by β) convolution algebra of functions f : G(Θ) → C∗(δZ(Θ)) of
finite support, and these form a subalgebra of Fe. The enveloping C*–norm on this convolution
algebra coincides with the C*–norm of Fe, and now the equality follows from the fact that the
*–algebra A(Θ) generated by {δZ(Θ) ∪ U(Θ)} is dense in this convolution algebra. For the next
two equalities note that A(Θ) consists of linear combinations of products of unitaries in δZ(Θ)

and unitaries in U(Θ). Each such a product of unitaries can be written as a constant times a
product of the form Uγ · δf , γ ∈ G, f ∈ Z(Θ) as well as a product of the form δf ′ · Uγ′ , using the
Weyl relation together with the implementing relation Uγδf = δγ(f)Uγ to rearrange the order of
the products. Clearly now the last two relations follow from this.

By setting Θ = R
4, the global objects are included in this lemma. Also observe that whilst UG(Θ)

is clearly an equivalent set of constraints to U(Θ), in general it is strictly larger as a set. Now
to define a system of local quantum constraints (cf. Def. 3.3) let Γ be any directed set of open
bounded sets of R

4 which covers R
4, and such that orthochronous Poincaré transformations map

elements of Γ to elements of Γ. Then the map F from Γ to subalgebras of Fe by Θ → F(Θ)
satisfies isotony. The main result of this subsection is:

5.3 Theorem The map Γ ∋ Θ → (F(Θ), U(Θ)) defines a system of local quantum constraints.

Proof: The net Θ → F(Θ) is isotone and by construction of the cross product we also have
U(Θ1) = U(Θ2) ∩F(Θ1) if Θ1 ⊆ Θ2. It remains to show that U(Θ) is first class in F(Θ), Θ ∈ Γ.
Consider the central state ω0 on C∗(δZ) (cf. Eqn. (4)). This is G–invariant, and its restriction
to C∗(δZ(Θ)) is clearly G(Θ)–invariant. By Theorem 4.1 it extends to a nontrivial Dirac state on
F(Θ), hence U(Θ) is first–class.

5.4 Remark (i) Observe that as Γ is preserved by translations (cf. Definition 3.1), we can cover
each compact set in R4 by a finite number of elements in Γ. Hence, since Γ is a directed
set, each compact set in R

4 is contained in an element of Γ. Thus ∪{S(Θ) | Θ ∈ Γ} =
C∞

c (R4, C
4) and so

F0 = lim
−→

F(Θ) = C∗
(
δZ(0)

∪ U(0)

)
⊂ Fe

where Z(0) := Z ∩ C∞
c (R4, C

4)̂/KerD and U(0) :=
{
UTh

| h ∈ C∞
c (R4, R)

}
.

(ii) Having now constructed the proposed algebraic framework for Gupta–Bleuler electromag-
netism, we still need to justify the extension of our symplectic space by complex test
functions. From the heuristic smearing formulii, it seems that there are two inequivalent
ways of extending the smearing to complex functions, depending on whether one generalises
Eqn (5) or Eqn (6). Specifically, for a complex–valued test function f, one has the choice
of

A1(f̂) :=

∫
d4xAµ(x) fµ(x) = (a(f) + a(f)†)

/√
2

or: A2(f̂) :=
√
π

∫

C+

(
aµ(p) f̂µ(p) + a†µ(p) f̂µ(p)

)d3p

p0

= (a(f) + a(f)†)
/√

2

with a(f) :=
√

2π

∫

C+

aµ(p) f̂µ(p)
d3p

p0
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Now A1(f) is complex linear in f, hence is not Krein–symmetric if f is not real, and it
produces a complex–valued symplectic form:

[A1(f̂), A1(ĥ)] = i

∫ ∫
fµ(x)hµ(y)D(x− y) d4x d4y

hence it is not possible to define a CCR–algebra with this form. It is causal though.

The choice which we use in this paper, is A2(f), and the reason for this is that it is the
smearing which was necessary to define our gauge transformations Eqn (8). Furthermore,
A2(f) is always Krein symmetric (and real linear), and it defines a real valued symplectic
form

[A2(f̂), A2(ĥ)] = iD(f̂ , ĥ) = i ImK(f̂ , ĥ)

which we can (and did) use to define a CCR–algebra. D is not causal for complex–valued
functions, but we have compensated for this by only extending the real space X by complex
multiples of gradients G. These gradients will be eliminated by the subsequent constrainings
below. Their purpose is to select the physical subalgebras.

5.3 Reduction isotony and weak causality.

In this subsection we establish reduction isotony and weak causality for our example in Theo-
rems 5.6 and 5.7. We first enforce the T–procedure locally as in Section 3, to obtain the objects:

SΘ
D := {ω ∈ S(F(Θ)) | ω(UTh

) = 1 ∀h ∈ S(R4,R), supp(h) ⊂ Θ}

D(Θ) := [F(Θ)(U(Θ) − 1l )] ∩ [(U(Θ) − 1l )F(Θ)] ,

O(Θ) := {F ∈ F(Θ) | FD −DF ∈ D(Θ) ∀D ∈ D(Θ)} = MF(Θ)(D(Θ)) ,

R(Θ) := O(Θ)/D(Θ) where Θ is any open set in R
4.

For reduction isotony we need to prove that if Θ1 ⊆ Θ2 then D(Θ1) = D(Θ2) ∩ O(Θ1) and
O(Θ1) ⊆ O(Θ2), and this requires more explicit characterization of the local algebras involved.

5.5 Theorem We have:

O(Θ) = C∗(δp(Θ) ∪ D(Θ)) = [δp(Θ) ∪D(Θ)] = C∗(δp(Θ)) + D(Θ) where

p(Θ) := {f ∈ Z(Θ) | Th(f) = f ∀h ∈ S(R4,R), supp(h) ⊂ Θ}

= {f ∈ Z(Θ) | B(f, Gh(f)) = 0 ∀h ∈ S(R4,R), supp(h) ⊂ Θ}

= {f ∈ Z(Θ) | pµf
µ C+ = 0}

with Gh(f) := Th(f) − f . Moreover R(Θ) ∼= C∗(δp(Θ)).

Proof: For any f ∈ p(Θ) one has δf = βTh
(δf ) = UTh

δf U
∗
Th

, supp(h) ⊂ Θ, so that δp(Θ) ⊂
U(Θ)′ and Theorem 2.3 (v) implies δp(Θ) ⊂ O(Θ). Further D(Θ) ⊂ O(Θ) proves the inclusion
C∗(δp(Θ) ∪ D(Θ)) ⊆ O(Θ). To show the reverse inclusion take A ∈ O(Θ) ⊂ F(Θ) and from
Lemma 5.2 there is a sequence {An}n∈N ⊂ span{δZ(Θ)UG(Θ)} converging in the C*–norm to A. Put

An :=
∑kn

i=1 λ
n
i δfn

i
Uγn

i
, λn

i ∈ C, fn
i ∈ Z(Θ), γn

i ∈ G(Θ), and since {fn
i | i = 1, . . . , kn , n ∈ N}

is a denumerable set we can rearrange it into a single sequence {fi}i∈N, where fi 6= fj if i 6= j.
Thus we can rewrite

An =
Nn∑

i=1

δfi

Ln∑

j=1

λ
(n)
ij U

γ
(n)
ij

. (9)
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Observe that for ω ∈ SΘ
D we have πω(An)Ωω =

∑
i ζ

(n)
i πω(δfi

)Ωω where ζ
(n)
i :=

∑
j λ

(n)
ij . Now

A ∈ O(Θ) and therefore we have for any ω ∈ SΘ
D,

0 = πω((UTh
− 1l ) ·A)Ωω = lim

n→∞
πω((UTh

− 1l ) · An)Ωω

= lim
n→∞

πω(βTh
(An) −An)Ωω = lim

n→∞

Nn∑

i=1

ζ
(n)
i πω(δTh(fi) − δfi

)Ωω

for h ∈ S(R4,R), supp(h) ⊂ Θ, where we made use of (U(Θ) − 1l )O(Θ) ⊂ D(Θ) ⊂ Nω at the
start. In particular let ω be an extension of the central state ω0 defined in Eq. (4) (which has
Dirac state extensions by Theorem 4.1). Then for all h:

0 = ω(A∗(UTh
− 1l )∗(UTh

− 1l )A)

= lim
n→∞

{
2ω(A∗

nAn)

−2Re
( Nn∑

i,j

ζ
(n)
i ζ

(n)
j exp[iB(fj, Th(fi))/2] ω(δfj−Th(fi))

)}

= 2 lim
n→∞

{ Nn∑

i

|ζ(n)
i |2 − Re

( ∑

(i,j)∈Ph(n)

ζ
(n)
i ζ

(n)
j

)}
(10)

where Ph(n) := {(i, j) ∈ {1, . . . , Nn}2 | fj = Th(fi)} ⊂ Ph(n +m). Observe that if fi ∈ p(Θ),
then (i, i) ∈ Ph(n) for all h, and that these terms cancel in Eqn. (10), i.e. we may assume that
fi 6∈ p(Θ) in (10). Furthermore by the Cauchy–Schwarz inequality

∣∣∣
∑

(i,j)∈Ph(n)

ζ
(n)
i ζ

(n)
j

∣∣∣ ≤
( ∑

i∈Dh(n)

|ζ(n)
i |2

) 1
2
( ∑

j∈Rh(n)

|ζ(n)
j |2

) 1
2 ≤

Nn∑

i=1

|ζ(n)
i |2 (11)

where Dh(n) := {i | (i, j) ∈ Ph(n)} and Rh(n) := {j | (i, j) ∈ Ph(n)} i.e. the domain and
range of the relation defined by Ph(n). If Dh(n) or Rh(n) is not {1, 2, . . . , Nn}, then the last

inequality is strict and Eqn. (10) cannot hold unless lim
n→∞

ζ
(n)
i = 0 for all i ≤ Nn not in Dh(n) or

Rh(n). Given that fi 6∈ p(Θ) in the surviving terms of the sum, for each i, choose an h such that
fi 6= Th(fi), then by Eqn. (8) Tth(fi) = fi + t2(Th(fi) − fi) for t ∈ R+, and so {Tth(fi) | t ∈ R+}
is a continuous family of distinct elements of Z(Θ). Since {fj | j ∈ N} is denumerable, there
exists a t0 such that Tt0h(fi) 6= fj for all j ∈ N, i.e. i 6∈ Dt0h(n) for all n, and so Eqn. (10) can

only hold if lim
n→∞

ζ
(n)
i = 0. We conclude that in the original expression for An, if fi 6∈ p(Θ), then

lim
n→∞

ζ
(n)
i = 0.

Recall by Remark 8.4 in Appendix 1 that the factorization map O(Θ) → R(Θ) is precisely

the restriction of O(Θ) in the universal representation πu to the subspace H(p)
u := {ψ ∈ Hu |

πu(U(Θ))ψ = ψ}, so if we can show that πu(O(Θ)) H(p)
u = πu(C∗(δp(Θ))) H(p)

u , that suffices to

prove that O(Θ) = C∗(δp(Θ)) + D(Θ). Let ψ ∈ H(p)
u , and fj 6∈ p(Θ):

πu(A)ψ = lim
n→∞

πu(An)ψ = lim
n→∞

Nn∑

i=1

ζ
(n)
i πu(δfi

)ψ

= lim
n→∞

( Nn∑

i6=j

ζ
(n)
i πu(δfi

) + ζ
(n)
j πu(δfj

)
)
ψ

= lim
n→∞

Nn∑

i6=j

ζ
(n)
i πu(δfi

)ψ (12)
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so we can omit all contributions where fj 6∈ p(Θ) from the sum:

πu(A)ψ = lim
n→∞

Nn∑

fi∈p(Θ)

ζ
(n)
i πu(δfi

)ψ ∀ ψ ∈ H(p)
u .

The latter will be in πu

(
C∗(δp(Θ))

)
ψ, providing we can show that limn→∞

∑Nn

fi∈p(Θ) ζ
(n)
i δfi

con-

verges in the C*–norm. This is easy to see, because from the convergence of An in Eqn. (9), we
get the convergence of the subseries

Nn∑

fi∈p(Θ)

δfi

Ln∑

j=1

λ
(n)
ij U

γ
(n)
ij

∈ C∗(δp(Θ) ∪ U(Θ))

and since δp(Θ) commutes with U(Θ) there is a *–homomorphism ϕ : C∗(δp(Θ) ∪ U(Θ)) →
C∗(δp(Θ)) by ϕ(U(Θ)) = 1l (just apply the T–procedure), hence the image of the preceding

sequence converges, i.e. limn→∞
∑Nn

fi∈p(Θ) ζ
(n)
i δfi

converges in the C*–norm. Thus πu(O(Θ))ψ ⊆
πu

(
C∗(δp(Θ))

)
ψ for all ψ ∈ H(p)

u . Hence O(Θ) = C∗(δp(Θ)) +D(Θ), using δp(Θ) ⊂ O(Θ), (cf. [8]).

For the last two equivalent characterisations of p(Θ), observe first that if Th(f) = f , then
B(f, Gh(f)) = B(f, Th(f) − f) = 0 and conversely

0 = B(f, Gh(f)) = −2π
∣∣∣
∫

C+

d3p

p0
pµ f

µ(p) ĥ(p)
∣∣∣
2

which by Eqn. (8) implies that Gh(f) = 0. Choose ĥ = ipµf
µ (which is in the allowed class of

functions) to see the equivalence with pµf
µ C+ = 0.

Finally, to prove that R(Θ) = (C∗(δp(Θ)) +D(Θ))/D(Θ) ∼= C∗(δp(Θ)), it suffices to show that
the ideal C∗(δp(Θ)) ∩ D(Θ) = {0}. Consider a sequence

An =
Nn∑

i=1

λ
(n)
i δfi

∈ ∆(p(Θ), B), λ
(n)
i ∈ C, converging to A ∈ D(Θ)

then we show that it converges to zero. Now δfj
∈ O(Θ) for fj ∈ p(Θ), so for Nn > j we have

δ−fj
· An =

Nn∑

i6=j

λ
(n)
i δfi−fj

exp (iB(fi, fj)/2) + λ
(n)
j 1l −→ δ−fj

·A ∈ D(Θ) .

Since the central state ω0 (cf. Eqn. (4)) extends to a Dirac state we have

0 = ω0(δ−fj
·A) = lim

n→∞
ω0(δ−fj

An) = lim
n→∞

λ
(n)
j ∀ j .

This implies that A = 0, because we can realize A as an ℓ2–sequence over p(Θ) (recall discussion
in Section 4.1), and the evaluation map at a point in p(Θ) is ℓ2–continuous, hence C*–continuous
so by the previous equation evaluation of A at each point is zero.

One can now set Θ = R
4 to get the global version of this theorem. An important physical

observation, is that p = ∪p(Θ) contains the functions corresponding to the field operators Fµν .
To see this, smear Fµν(p) with an antisymmetric tensor function fµν to obtain F (f), and note
that the latter corresponds to the smearing of Aµ with 2pνf

µν ∈ p.

5.6 Theorem The system of local constraints defined here satisfies reduction isotony.
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Proof: Let Θ1 ⊆ Θ2, then we start by showing that O(Θ1) ⊆ O(Θ2), i.e. by Theorem 5.5 we
show that C∗(δp(Θ1)) + D(Θ1) ⊆ C∗(δp(Θ2)) + D(Θ2). This follows directly from D(Θ1) ⊆ D(Θ2)
and p(Θ1) ⊆ p(Θ2) where the last inclusion comes from the last characterisation of p(Θ) in
Theorem 5.5.

It only remains to show that D(Θ1) = D(Θ2) ∩ O(Θ1). Recall that D(Θ) ⊂ O(Θ), and that
D(Θ) is the largest C*–algebra in F(Θ) (hence in O(Θ)) which is annihilated by all ω ∈ SΘ

D.
Since O(Θ1) ⊆ O(Θ2), it suffices to show by Lemma 3.8 that every Dirac state on O(Θ1) extends
to a Dirac state on O(Θ2).

Recall that O(Θ1) = C∗(δp(Θ1))+D(Θ1), so a Dirac state on O(Θ1) is uniquely determined by

its values on δp(Θ1). Moreover, from the fact that f ∈ p(Θ1) implies pµf
µ C+ = 0 and Eqn. (8),

we see that U(Θ2) commutes with C∗(δp(Θ1)):

UTh
δfU

−1
Th

= δThf = δf since

(Thf)µ(p) = fµ(p) − iπ pµĥ(p)

∫

C+

f ν(p′) p′ν ĥ(p
′)
d3p′

p′0
= fµ(p)

for f ∈ p(Θ1). Next define Õ := C∗(δp(Θ1) ∪ U(Θ2)) ⊂ O(Θ2). Now Õ is generated by the two
mutually commuting C*–algebras C∗(δp(Θ1)) and C∗(U(Θ2)) ∼= C∗(G(Θ2)) where the latter is
Abelian. If AB = 0 for A ∈ C∗(δp(Θ1)) and B ∈ C∗(U(Θ2)), then either A = 0 or B = 0. This we
can see from the realisation of C∗(U(Θ2)) as scalar valued functions of denumerable support in
G(Θ2), so (pointwise) multiplication by a nonzero A ∈ C∗(δp(Θ1)) cannot change support. Then by
an application of the result in [28, Exercise 2, p. 220], we conclude that the map ϕ(A⊗B) := AB,
A ∈ C∗(δp(Θ1)), B ∈ C∗(U(Θ2)) extends to an isomorphism ϕ : C∗(δp(Θ1)) ⊗ C∗(U(Θ2)) → Õ.
(Note that since C∗(U(Θ2)) is commutative it is nuclear, hence the tensor norm is unique).

Let ω ∈ SΘ1
D O(Θ1) and define a product state ω̃ on Õ by ω̃ := ω ⊗ ω̂, where ω̂ is the state

ω̂(Uθ) = 1 for all θ ∈ G(Θ2). Now extend ω̃ arbitrarily to O(Θ2), then since it coincides with ω

on δp(Θ1) and ω̃(U(Θ2)) = 1, it is a Dirac state on O(Θ2) which extends ω O(Θ1).

5.7 Theorem The system of local quantum constraints (F(Θ), U(Θ)) satisfies weak causality,
i.e. if Θ1 ⊥ Θ2 then [O(Θ1) , O(Θ2) ] ⊂ D(Θ0) for some Θ0 ⊃ Θ1 ∪ Θ2, Θi ∈ Γ.

Proof: Since O(Θ) = C∗(δp(Θ)) + D(Θ) it is sufficient to consider commutants of Ai ∈ O(Θi)
being generating elements: Ai = δfi

+Di for fi ∈ p(Θi), Di ∈ D(Θi), i = 1, 2. Now

[A1, A2] = [δf1 , δf2 ] + [δf1 ,D2] + [D1, δf2 ] + [D1,D2]

=
(
e

i
2
B(f1, f2) − e−

i
2
B(f1, f2)

)
δf1+f2

+[δf1 , D2] + [D1, δf2 ] + [D1, D2] .

The first term vanishes because Θ1 ⊥ Θ2 implies the supports of f1 and f2 are spacelike separated,
so

B(f̂1, f̂2) =

∫
dx dx′D(x− x′) fµ

1 (x) f2µ(x′) = 0

because the Pauli–Jordan distributionD has support inside the closed forward and backward light
cones [29, p. 214]. Further for any Θ0 ⊃ Θ1 ∪ Θ2 reduction isotony implies D(Θ1) ⊂ D(Θ0) ⊃
D(Θ2) and O(Θ1) ⊂ O(Θ0) ⊃ O(Θ2). But D(Θ0) is a closed 2–sided ideal in O(Θ0) and therefore
the last 3 terms of the sum above are contained in D(Θ0) and the proof is concluded.

5.8 Remark Note that the net Θ → F(Θ) does not satisfy the causality property, as we expect
from the choice of noncausal constraints (∂µAµ)(+)(x). To see this, let Θ1 ⊥ Θ2, and let δf ∈
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F(Θ1) and UTh
∈ F(Θ2), then the commutator [δf , UTh

] need not vanish because in Eqn. (8) we
can have that

c(f, h) =

∫

C+

f̂ ν(p) pν ĥ(p)
d3p

p0
6= 0

for supp(f) ⊂ Θ1 and supp(h) ⊂ Θ2.

5.4 Covariance.

In order to examine weak covariance for this system of local constraints, we first need to define
the action of P↑

+ on Fe. We start with the usual action of P↑
+ on S(R4,C4). Define

(Vgf)(p) := e−ipa Λ f(Λ−1p) ∀ f ∈ S(R4,C4), g = (Λ, a) ∈ P↑
+. (13)

Then Vg is symplectic, hence factors through to a symplectic transformation on Y, and this

defines an action α : P↑
+ → Aut(∆(Y, B)) by αg(δf ) := δVgf , f ∈ Y.

5.9 Lemma Define αg(UTh
) := UTWgh

, where (Ŵgh)(p) := e−ia·pĥ(Λ−1p), and we chose g =

(Λ, a) ∈ P↑
+. Then this extends αg from ∆(Y, B) to Fe, producing a consistent action α : P↑

+ →
Aut(Fe).

Proof: We need to show that if we extend αg from the set ∆(Y, B) ∪ {UTh
| h} to the *-algebra

generated by it using the homomorphism property of αg, then this is consistent with all relations
of the UTh

amongst themselves, and between them and ∆(Y, B). First we need to establish how
Vg and Th intertwines.

(
TWghVgf

)
µ
(p) = (Vgf)µ(p) − iπ pµŴgh(p)

∫

C+

d3p′

p′0
(Vgf)ν(p′)p′νŴgh(p′)

= (Vgf)µ(p) − iπ pµe
−ip·aĥ(Λ−1p)

∫

C+

d3p′

p′0
(Λf)ν(Λ−1p′)p′ν ĥ(p

′)

= (VgThf)µ(p) .

Thus VgTh = TWghVg. Now the basic relation between ∆(Y, B) and {UTh
| h} is the implementing

relation, so

αg(UTh
δfU

∗
Th

) = αg(δThf ) = δVgThf = δTWghVgf

= UTWgh
δVgfU

∗
TWgh

= αg(UTh
)αg(δf )αg(UTh

)∗

thus αg is consistent with this. Finally we need to show that αg respects any group identities in
β(G) ⊂ Aut∆(Y, B). Recalling that G consists of finite products of Th, let γ = Th1 . . . Thn

∈ G,
then γ → TWgh1 . . . TWghn

defines a consistent group homomorphism because

αg(βγ(δf )) = αg(δTh1
···Thnf ) = δVgTh1

...Thnf

= δTWgh1
...TWghnVgf = β(TWgh1 · · · TWghn

)αg(δf )

i.e. β(TWgh1 · · · TWghn
) = αg ◦ βγ ◦ α−1

g . Thus αg(UTh
) = UTWgh

extends consistently to UG .

Observe that the action Vg preserves the reality condition f(p) = f(−p) which defines X, hence
it preserves X and in fact VgX(Θ) = X(gΘ).

5.10 Theorem Consider the action α: P↑
+ → AutFe defined above. Then the system of local

quantum constraints Γ ∋ Θ → (F(Θ), U(Θ)) satisfies αg(U(Θ)) = U(gΘ) and the net Γ ∋ Θ →
F(Θ) transforms covariantly, i.e. αg(F(Θ)) = F(gΘ), Θ ∈ Γ. Therefore the local observables
define a covariant net, i.e. αg(O(Θ)) = O(gΘ).
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Proof: We have:

αg(U(Θ)) = αg({UTh
| supp(h) ⊂ Θ}) = {UTVgh

| supp(h) ⊂ Θ}
⊆ {UTh

| supp(h) ⊂ gΘ} = U(gΘ)

and replacing g by g−1 gives the reverse inclusion.
For covariance of the net F(Θ), recall that each F(Θ) is generated by U(Θ) and δX(Θ), so

since
αg(δX(Θ)) = δVgX(Θ) = δX(gΘ) ,

it follows that αg(F(Θ)) = F(gΘ). The covariance property for the net of local observables
follows from Remark 3.23 (i)

Finally putting together Theorems 5.6, 5.7, 5.10, 3.25 we have proved for the Gupta–Bleuler
model a major claim:

5.11 Theorem The system of local quantum constraints Γ ∋ Θ → (F(Θ), U(Θ)) satisfies reduc-
tion isotony, weak causality and covariance and therefore the corresponding net of local physical
observables Γ ∋ Θ → R(Θ) is a HK–QFT.

5.5 A simple physical observable algebra

The net Θ → R(Θ) = C∗(δp(Θ)) produces a quasi–local physical algebra

R0 = lim
−→

R(Θ) = lim
−→

C∗(δp(Θ)) = C∗(δp) = ∆(p, B) ,

where p := Span{p(Θ) | Θ ∈ Γ} = ∪
Θ∈Γ

p(Θ) since Γ is a directed set. Since B is degenerate on p

(see below), R0 is not simple and thus cannot be the final physical algebra. This is also evident
from the fact that p contains complex multiples of gradients, so p is not in X. Moreover since we
have not enforced Maxwell’s equations, from a physical point of view R0 cannot be considered
as representing the observables of an electromagnetic field as yet. To solve these problems, we
now do a second stage of constraining where we choose for our constraint system (R0, Ũ) where

Ũ := δp0 and p0 is the kernel of B p. The T–procedure applied to this pair will result in a simple
algebra via Corollary 5.4 in [8]. For the connection with the Maxwell equations, we need the
following proposition:

5.12 Proposition We have:

p0 := {f ∈ p | B(f, k) = 0 ∀ k ∈ p}
= {f ∈ p | fµ(p) = pµ h(p) for p ∈ C+, where h : C+ → C

is any function such that p→ pµh(p) is in Z(0) }

where Z(0) = Z ∩ C∞
c (R4,C4)̂/Ker(D).

Proof: Recall that Z = X + C · G, then it is easy to see from Theorem 5.5 that the gradients
C · G ∩ Z(0) are in p. Moreover, we have in fact that C · G ∩ Z(0) ⊂ Ker(B p) since if we take
hµ = pµk ∈ C · G and f ∈ p (hence pµf

µ = 0), then

B(h, f) = iπ

∫

C+

(
fµ(p) pµk(p) − fµ(p) pµk(p)

) d3p

p0
= 0 .

Thus p0 = C·G∩Z(0)+Ker(B (p∩X)). Now, to examine Ker(B (p∩X)) we first want to extend to
a larger class of functions, since p consists of Fourier transforms of functions of compact support,

28



hence cannot have compact support, which we will want to use below. Now p ∩ X ⊂ X(0) =

ρ(C∞
c (R4,R4)) where ρ(f) := f̂ C+ and by definition D(f̂ , k̂) =: B(ρ(f), ρ(k)). Moreover,

by Theorem 5.5, p ∩ X = ρ(P) where P := {f ∈ C∞
c (R4, R

4) | ∂µfµ = 0}. Since the smooth
functions of compact support are dense with respect to the Schwartz topology in the Schwartz
space, and the divergence operator is continuous for the Schwartz topology, the closure of P in the
Schwartz topology is P̃ := {f ∈ S(R4, R

4) | ∂µfµ = 0}. It is well–known that D̂ is a tempered
distribution (it is the two–point function for the free electromagnetic field), hence it is continuous
with respect to the Schwartz topology on S(R4, R

4) in each entry. Thus D̂(f, k) = 0 for all k ∈ P

iff D̂(f, k) = 0 for all k ∈ P̃ and hence Ker(B p∩X) = {f ∈ p ∩ X | B(f, k) = 0 ∀ k ∈ p̃} where
p̃ := ρ(P̃). We will need this below.

Let f ∈ p ∩ X, so pµf
µ(p) = 0 for p ∈ C+, i.e. p · f(p) = ‖p‖ f0(p), so for p ∈ C+\0, we have

f0(p) = p · f(p)/‖p‖ = e(p) · f(p) where e(p) := p/‖p‖. Now in terms of real and imaginary parts

f = u+ iv ∈ Ker(B p ∩ X) iff for all k = w + ir ∈ p̃ we have that

0 = D(f, k) = 2i

∫

R3\0

(
vµw

µ − uµr
µ
) d3p

‖p‖ (using Eqn. (7))

= 2i

∫

R3\0

(
u · r− v ·w + (e(p) · v)(e(p) ·w) − (e(p) · u)(e(p) · r)

) d3p

‖p‖ .

Choose w = 0 (which is possible in p̃) to get that for all r ∈ p̃ ∩ (S− C+) (recall Remark 5.1):

0 = D(f, k) = 2i

∫

R3\0

(
u · r − (e(p) · u)(e(p) · r)

) d3p

‖p‖

= 2i

∫

R3\0
r ·
(
u− e(p)(e(p) · u)

) d3p

‖p‖ . (14)

Now let m : C+ → R+ be a smooth bump function with compact support away from zero, then
we know that that the function s given by

s(p) := (u(p) − e(p)(e(p) · u(p)))m(p) and s0(p) := e(p) · s(p)
is in X by the characterisation of X given in Remark 5.1(i), that it contains all smooth functions
with compact support away from zero. Moreover, since pµs

µ = 0, we conclude s ∈ p̃. (Note that
s 6∈ p, hence the extension to p̃ in the first part of the proof). So we can choose r = s above in
Eqn. (14), then by continuity, positivity and by ranging over all m, we conclude that

u(p) − e(p)(e(p) · u(p)) = 0 ∀ p ∈ C+

and as the second term is just the projection of u(p) in the direction of p, this means u(p) must
be proportional to p for all p ∈ C+\0, i.e. u(p) = p q(p), for some suitable scalar function q.
Since u0(p) = e(p) · u(p) = ‖p‖ q(p) = p0 q(p), p ∈ C+, this means uµ(p) = pµ q(p), p ∈ C+. By
setting r = 0, we obtain a similar result for v, and hence fµ(p) = pµ h(p), p ∈ C+. The only
restriction on h is that f ∈ Z(0), since f is automatically in p by its form. Thus by the first part
of the proof, p0 consists of these functions, together with complex multiples of gradients, and this
establishes the theorem.

5.13 Remark (i) In the proof above, the fact that f ∈ X means that h must be smooth away
from the origin. Since h is undefined at the origin in the proof, consider the behaviour of
f ∈ p0 at zero. Let a ∈ C+\0, then by continuity of f :

f(0) = lim
t→0+

f(ta) = a lim
t→0+

t h(ta) = a lim
t→0+

a · f(ta)
‖a‖2

= e(a)(e(a) · f(0))
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which can only be true for all a if f(0) = 0.

(ii) Now recall Maxwell’s equations Fµν
,ν(x) = 0. In the heuristic version of Gupta–Bleuler

QEM, these need to be imposed as state conditions to define the physical field. Using the
smearing formula for A(f), Fµν

,ν(x) corresponds to the space

f :=
{
f ∈ X | fµ(p) = pµp

νkν(p), p ∈ C+, k ∈ X
}
.

By Proposition 5.12 we observe that f ⊂ p0, and thus enforcing the second stage of con-
straints Ũ = δp0 will also impose the Maxwell equations. Note however that the inclusion
f ⊂ p0 is proper, which we see as follows. Consider a line t → ta, a ∈ C+\0 and let
f ∈ f and g ∈ p0, then lim

t→0+

d
dtfµ(ta) = 0, but lim

t→0+

d
dtgµ(ta) = aµ lim

t→0+
(h(ta) + t d

dth(ta)) if

gµ(p) = pµ h(p), and we can easily choose an h ∈ S(R4, C) which makes the latter nonzero.
Thus merely imposing the Maxwell equations does not appear to be sufficient to make the
physical algebra simple (contrary to a claim in [8]).

(iii) In the next step below, we will factor out p0 from p. Since p0 ⊃ C · G ∩ Z(0), at this point
we factor out the noncausal fields, and regain the reality condition of X.

(iv) From the characterisations of the spaces p0 and p above, we notice that the triple of spaces
p0 ⊂ p ⊂ Y corresponds with the one particle spaces of the triple of spaces in the heuristic
theory H′′ ⊂ H′ ⊂ H hence a Fock–Krein construction on Y (equipped with the right
indefinite inner product) will reproduce the heuristic spaces. This is done explicitly in
Subsection 5.6

For completeness we would also like to consider the local structure of the constraint system
(R0, Ũ). Define Ũ(Θ) := Ũ ∩ R(Θ) = δs(Θ), Θ ∈ Γ, where s(Θ) := p0 ∩ p(Θ), then it is clear

that Θ → (R(Θ), Ũ(Θ)) is a system of local quantum constraints. Since Ũ ⊂ Z(R0), a local
T–procedure produces:

D̃(Θ) = [R(Θ)(1l − Ũ(Θ))]

Õ(Θ) = R(Θ)

R̃(Θ) = R(Θ)/[R(Θ)(1l − Ũ(Θ))] .

The main result of this section is:

5.14 Theorem The system of local constraints Θ → (R(Θ), Ũ(Θ)) satisfies reduction isotony,
causality and weak covariance, hence Θ → R̃(Θ) is a HK–QFT. Moreover

R̃(Θ) ∼= ∆(p(Θ)/s(Θ), B̃) ∼= ∆(c(Θ), B)

where c(Θ) := {f ∈ p(Θ) ∩ X | p · f(p) = 0, p ∈ C+} is the “Coulomb space”, and

R̃0
∼= ∆(p/p0, B̃) ∼= ∆(c, B) ⊂ ∆(X, B)

where B̃ is B factored to p/p0, and c := {f ∈ p ∩ X | p · f(p) = 0, p ∈ C+}.

Proof: For reduction isotony, since it is obvious that if Θ1 ⊆ Θ2 then Õ(Θ1) = R(Θ1) ⊆ R(Θ2) =
Õ(Θ2), we only need to show that D̃(Θ1) = D̃(Θ2)∩R(Θ1), which by Lemma 3.8 will be the case
if every Dirac state on R(Θ1) extends to a Dirac state on R(Θ2). We first prove that p(Θ) =
c(Θ) ⊕ s(Θ) where c(Θ) is the “Coulomb space” above, and s(Θ) := p0 ∩ p(Θ). Let m ∈ p(Θ),
so 0 = pµm

µ(p), p ∈ C+ and m = f + n where f ∈ X(Θ) ∩ p(Θ) and n ∈ C · G ∩ Z(Θ) ⊂ s(Θ).

30



Now write fµ = gµ + pµh where h(p) := f0(p)/‖p‖ = p · f/‖p‖2 and gµ(p) := fµ(p) − pµh(p).
Then obviously pµh is in s(Θ) and p · g(p) = p · f(p) − ‖p‖2h(p) = 0, so g ∈ c(Θ). Thus we
have a decomposition mµ = gµ + (nµ + pµh) where g ∈ c(Θ) and the function in the bracket is in
s(Θ). To see that the decomposition is unique, let g, k ∈ c(Θ) such that gµ − kµ = pµh. Then
0 = p · (g − k) = ‖p‖2h, i.e. h = 0.

Since for Θ1 ⊆ Θ2 we have s(Θ1) = s(Θ2) ∩ p(Θ1) and thus Span(p(Θ1) ∪ s(Θ2)) =
c(Θ1) ⊕ s(Θ2), so A := C∗(δSpan(p(Θ1)∪s(Θ2))) is generated by two mutually commuting C*–
algebras C∗(δc(Θ1)) and C∗(δs(Θ2)) where the last one is commutative. Now let A ∈ C∗(δc(Θ1))
and B ∈ C∗(δs(Θ2)) such that AB = 0. Then we want to show that A = 0 or B = 0. Let

An :=
Nn∑

i=1

α
(n)
i δfi

−→ A =
∞∑

i=1

αiδfi
where fi ∈ c(Θ1), and

Bn :=
Mn∑

j=1

β
(n)
j δkj

−→ B =
∞∑

j=1

βjδkj
with kj ∈ s(Θ2) .

Then 0 = AB = lim
n→∞

Nn, Mn∑
i, j

α
(n)
i β

(n)
j δfi+kj

. However fi + kj 6= fi′ + kj′ for i 6= i′ and j 6= j′

since c(Θ1) and s(Θ2) are linear independent spaces intersecting only in {0}. Thus the set

{δfi+kj
| i ∈ N, j ∈ N} is linearly independent and so 0 = lim

n→∞
α

(n)
i β

(n)
j = αiβj . Since this holds

for all possible pairs i, j, there is no pair αi, βj such that αiβj 6= 0 and so either all αi = 0 or all
βj = 0, i.e. A = 0 or B = 0. Thus from Takesaki [28, Exercise 2, p. 220] we conclude that A is
isomorphic to C∗(δc(Θ1)) ⊗ C∗(δs(Θ2)) by the map ϕ(A ⊗B) := AB.

Let ω be a Dirac state on R(Θ1), i.e. ω(δs(Θ1)) = 1, and then define a state ω̃ on A by
ω̃ := (ω ⊗ ω̂) ◦ ϕ−1 where ω̂ is the state on C∗(δs(Θ2)) satisfying ω̂(δs(Θ2)) = 1. Now extend ω̃
arbitrarily to R(Θ2) ⊃ A, then it coincides with ω on R(Θ1) and satisfies ω̂(δs(Θ2)) = 1 hence is
a Dirac state on R(Θ2). This establishes reduction isotony.

For causality, the fact that Θ → R(Θ) is a HK–QFT already implies that [R(Θ1), R(Θ2)] = 0
when Θ1 ⊥ Θ2, so [Õ(Θ1), Õ(Θ2)] = 0.

For covariance, we already have that αg(Õ(Θ)) = αg(R(Θ)) = R(gΘ) = Õ(gΘ) for g ∈ P↑
+,

Θ ∈ Γ. Now
αg(Ũ(Θ)) = αg(δs(Θ)) = δVgs(Θ) and Ũ(gΘ) = δs(gΘ) .

To see that these are equal, note that Vgs(Θ) = Vg(p0 ∩ p(Θ)), Vg is symplectic, and Vgp(Θ) ⊆
p(gΘ) by

pµ(Vgf)µ(p) = pµ(Λf(Λ−1p))µe
−ip·a = (Λ−1p)µfµ(Λ−1p)e−ip·a = 0

for p ∈ C+ and f ∈ p(Θ). Thus Vg(p0 ∩ p(Θ)) ⊆ p0 ∩ p(gΘ). For the reverse inclusion:
Vg−1(p0 ∩ p(gΘ)) ⊆ p0 ∩ p(Θ) implies that p0 ∩ p(gΘ) ⊆ Vg(p0 ∩ p(Θ)). Thus αg(Ũ(Θ)) = Ũ(gΘ).

Finally, for the last two isomorphism claims, recall that R(Θ) = C∗(δp(Θ)) = ∆(p(Θ), B) and

so since R̃(Θ) = R(Θ)/[R(Θ)(1l − Ũ(Θ))] and Ũ(Θ) = δs(Θ) where s(Θ) is the degenerate part of

p(Θ), we conclude from Theorem 4.5 that R̃(Θ) ∼= ∆(p(Θ)/s(Θ), B̃) (providing the symplectic
commutant of s(Θ) in p(Θ), s(Θ)′ = p(Θ), and this is obvious since s(Θ) = p0 ∩ p(Θ) and
p(Θ) ⊂ p). Since p(Θ) = c(Θ) ⊕ s(Θ), this is isomorphic to ∆(c(Θ), B). Since for Θ1 ⊆ Θ2

the inclusion R̃(Θ1) ⊆ R̃(Θ2) comes from p(Θ1) ⊆ p(Θ2), and this inclusion factors through to
produce p(Θ1) ⊆ p(Θ2), hence c(Θ1) ⊆ c(Θ2), so the last isomorphism is clear.

Thus the quasi–local algebra R̃0 is simple. Below we will show that for double cones Θ the
local algebras are also simple. For a more general net Γ it is not clear whether the local algebras
are simple.
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5.15 Remark An apparent puzzle raised by the isomorphisms R̃(Θ) ∼= ∆(c(Θ), B) here, is the

noncovariance of the spaces c(Θ) under Vg, g ∈ P↑
+, given that the net R̃(Θ) is covariant under

the isomorphisms derived from Vg. The resolution is that Vg maps an equivalence class f + s(Θ)
in p(Θ) to the equivalence class Vgf + s(gΘ) in p(gΘ), and these equivalence classes correspond
to elements h ∈ c(Θ) and k ∈ c(gΘ) repectively, but it is not true that k = Vgh.

5.16 Theorem If the sets Θ ∈ Γ consist of double cones, then the local algebras

R̃0(Θ) ∼= ∆(p(Θ)/s(Θ), B̃) ∼= ∆(c(Θ), B)

are simple.

Proof: By Theorems 4.2 and 5.14 it suffices to prove that (c(Θ), B) is a nondegenerate symplectic
space for each double cone Θ, where we consider

c(Θ) :=
{
f ∈ p(Θ) ∩ X | p · f(p) = 0, p ∈ C+

}

C(Θ) :=
{
f ∈ C∞

c (R4, R
4) | f0 = 0 ,

∑
∂ℓfℓ = 0 , and supp f ⊂ Θ

}

C :=
{
f ∈ C∞

c (R4, R
4) | f0 = 0 and

∑
∂ℓfℓ = 0

}
.

Observe that if we define the map ρ: S(R4, R
4) → X = S(R4, R

4)̂/Ker(D) by ρ(f) = f̂+Ker(D),
then c(Θ) = ρ(C(Θ)).

We adapt the arguments in Dimock [30]. (Note though that from Proposition 5.12 we do not
need the assumption that the Cauchy surface is compact, used in [30, Proposition 5]). For test
functions in S(R4,R4) we have

D̂(f, h) := D(f̂ , ĥ) =

∫ ∫
fµ(x)hµ(y)D(x− y) d4x d4y

=

∫
fµ(x)(Dh)µ(x)d4(x)

where (Dh)µ(x) :=

∫
hµ(y)D(x− y) d4y

= −iπ
∫

C+

d3p

p0

(
eip·xĥµ(p) − e−ip·xĥµ(p)

)
.

Note that D is the difference of the retarded and advanced fundamental solutions of the wave
operator 2, hence Df is a solution of the wave equation (cf. [32, 31]). Henceforth we will only
consider test functions in C. We want to express D(f̂ , ĥ) in terms of the corresponding real
Cauchy data. Given f ∈ C, we define these by:

Qf
ℓ (x) :=

−1

π
(Df)ℓ(0,x) ∈ C∞

c (R3,R)

Rf
ℓ (x) :=

1

π
(∂0(Df)ℓ)(0,x) ∈ C∞

c (R3,R) , ℓ = 1, 2, 3 .

Then their Fourier transforms are, using the conventions f̂(p) =
∫
R4 e−ip·xf(x)d4x and ĥ(p) =

(2π)−3/2
∫
R3 eip·xh(x)d3x for four and three dimensional Fourier transforms:

Q̂f
ℓ (p) =

i(2π)3/2

‖p‖
(
f̂ℓ(‖p‖,p) − f̂ ℓ(‖p‖,−p)

)

R̂f
ℓ (p) = (2π)3/2

(
f̂ℓ(‖p‖,p) + f̂ ℓ(‖p‖,−p)

)
.
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If we substitute these into the rhs of the equation
∫

R3
(Qf

ℓR
h
ℓ −Rf

ℓQ
h
ℓ )(x) d3x =

∫

R3

(
Q̂f

ℓ (−p)R̂h
ℓ (p) − R̂f

ℓ (−p)Q̂h
ℓ (p)

)
d3p

(summation over ℓ), then we find with some algebraic work that

D̂(f, h) =
−1

16π2

∫

R3
(Qf

ℓR
h
ℓ −Rf

ℓQ
h
ℓ )(x) d3x . (15)

Now let Θ be a double cone, by covariance we can assume it to be centered at the origin. Let Σ
be its intersection with the Cauchy surface t = 0. Then if f ∈ C(Θ) we have by the properties

of D that suppQf
ℓ ⊂ Σ ⊃ suppRf

ℓ (cf. [32, 31]). Further from the arguments in the proof of
Proposition 2 in [30] we know that for any pair (Q,R) ∈ C∞

c (R3,R3) × C∞
c (R3,R3) satisfying

∂ℓQℓ = 0 = ∂ℓRℓ, there exists a unique solution of the wave equation ϕ ∈ C∞(R4,R4) with these
data and satisfying ∂ℓϕℓ = 0 = ϕ0. Even more by [30, Proposition 4(c)] we can always find an
f ∈ C(Θ) such that Df = ϕ.

Now take a test function h ∈ C(Θ) such that ρ(h) ∈ Ker(B c(Θ)), i.e.

0 =

∫

Σ
(Qf

ℓR
h
ℓ −Rf

ℓQ
h
ℓ )(x) d3x =

∫

R3
(Qf

ℓR
h
ℓ −Rf

ℓQ
h
ℓ )(x) d3x

for all f ∈ C(Θ). By the arguments above we can choose (Qf , Rf ) = (Rh, 0) and (Qf ′

, Rf ′

) =
(0,−Qh) to conclude that (Qh, Rh) = (0, 0). Then by uniqueness this implies that Dh = 0,
i.e. ρ(h) = 0.

In this example we have done our constraint reduction in two stages, and the question arises
as to whether we would have obtained the same physical algebra from a single reduction by the
full set of constraints. This will be examined in the next main section.

5.6 Connecting with the indefinite inner product

In this subsection we want to connect the C*–algebraic version above of Gupta–Bleuler electro-
magnetism with the usual one on indefinite inner product space (henceforth abbreviated to IIP–
space), sketched in Subsect. 5.1. We will freely use the Fock–Krein construction of Mintchev [34].
Start with the space

Y = S(R4, C
4)/Ker(D)

with IIP: K(f, h) := −2π

∫

C+

fµ(p)hµ(p)
d3p

p0
, ∀ f, h ∈ Y,

which is well–defined on Y because Ker(D) = Ker(K). Note that B = ImK. Define now
on Y the operator J by (Jf)0 = f0, (Jf)ℓ = −fℓ, ℓ = 1, 2, 3, then obviously J2 = 1l and
(f, h) := K(f, Jh) defines a positive definite inner product on Y. Let N be the Hilbert space
completion w.r.t. this inner product (so in fact, it is just L2(C+,C

4, µ0) with dµ0 = d3p/p0)
and let F(N ) be the symmetric Fock space constructed on N . Below we will use the notation
F0(L) for the finite particle space with entries taken from a given space L ⊂ N , and as usual
F0 := F0(N ). We make F(N ) into a Krein space with the IIP 〈ψ, ϕ〉 := (ψ, Γ(J)ϕ) where Γ(J)
is the second quantization of J and the round brackets indicate the usual Hilbert space inner
product. We define creation and annihilation operators as usual, except for the replacement of
the inner product by the IIP, i.e. on the n–particle space H(n) they are

a†(f)Snh1 ⊗ · · · ⊗ hn =
√
n+ 1Sn+1f ⊗ h1 ⊗ · · · ⊗ hn

a(f)Snh1 ⊗ · · · ⊗ hn =
1√
n

n∑

i=1

〈f, hi〉Sn−1h1 ⊗ · · · h̃i · · · ⊗ hn
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where the tilde means omission and Sn is the symmetrisation operator for H(n). Note that a†(f)
is the 〈·, ·〉–adjoint of a(f), not the Hilbert space adjoint. The connection with the heuristic
creation and annihilation operators in Subsect. 5.1 comes from the smearing formula

a(f) =
√

2π

∫

C+

aµ(p) fµ(p)
d3p

p0

and the Krein adjoint formula for a†(f) (which produces a complex conjugation on the smearing
function). Then the constructed operators have the correct commutation relations, so that if we
define the field operator by

A(f) :=
1√
2
(a†(f) + a(f))

then: [A(f), A(h)] = iB(f, h) .

We only need to restrict to f ∈ X to make the connection with the field operators of before. (Note
that since Y is the complex span of X, the complex span of the set {A(f)Ω | f ∈ X} is dense
in F(N ).) Following Mintchev [34] we now define on the finite particle space F0 the unbounded
〈·, ·〉–unitary operators

W (f)ψ := lim
N→∞

N∑

k=0

[iA(f)]k

k!
ψ

which satisfy the Weyl relations, and hence constitute a Krein representation γ by γ(δf ) := W (f),
of the dense *–algebra generated by δY in ∆(Y, B), usually denoted by ∆(Y, B). Note that
γ : ∆(Y, B) → Op(F0) takes the C*–involution to the Krein involution. Moreover, for the con-
straints we see from the heuristic formula: χ(h) := a(ipµĥ

√
π), so the set

{
χ(h) | h ∈ S(R4,R)

}

corresponds to { a(f) | f ∈ G }. By the commutation relations, we still have

[χ(h)†χ(h), A(f)] = iA(Gh(f)) .

We want to extend γ so that it also represents the constraint unitaries UG .

5.17 Proposition T t
h : Y → Y is K–unitary, i.e. K(f, g) = K(T t

hf, T
t
hg) for all f, g, h, t.

Proof:

K(T t
hf, T

t
hg) = −2π

∫

C+

d3p

p0

{
(fµ + itπpµĥ c(f, h)) · (gµ − itπpµĥ c(g, h))

}

= K(f, g) − 2π2it

∫

C+

d3p

p0
pµ(gµ ĥ c(f, h) − fµ ĥ c(g, h))

and the last integral is:
( ∫

C+

d3p

p0
pµg

µĥ(p)
)( ∫

C+

d3p′

p′0
p′νf

ν ĥ(p′)
)

−
( ∫

C+

d3p

p0
pµfµ ĥ(p)

)( ∫

C+

d3p′

p′0
p′νg

ν ĥ(p′)
)

= 0 .

Thus we know from Mintchev [34] the second quantized operator Γ(T t
h) is well-defined on F0(Y),

it is 〈·, ·〉–unitary, and it implements T t
h on A(f). By the definition of Γ(T t

h) it is also clear that
the set of these commute, and thus we can extend γ to UG by defining γ(UT t

h
) := Γ(T t

h). For

the heuristic theory, we would like to identify this with exp(itχ(h)†χ(h)), and this is done in the
next proposition.
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5.18 Proposition

d

dt
Γ(T t

h)ψ
∣∣∣
t=0

= iχ(h)†χ(h)ψ ∀ψ ∈ F0(Y), h ∈ S(R4,R) .

Proof: Let ψ = Snf1 ⊗ · · · ⊗ fn with fi ∈ Y, and recall that T t
hf = f + tGh(f). Then

d

dt
Γ(T t

h)Snf1 ⊗ · · · ⊗ fn

∣∣∣
t=0

=
d

dt
Sn(T t

hf1) ⊗ · · · ⊗ (T t
hfn)

∣∣∣
t=0

= SnGh(f1) ⊗ f2 ⊗ · · · ⊗ fn + · · · + Snf1 ⊗ · · · ⊗ fn−1 ⊗Gh(fn) . (16)

On the other hand, if we start from the right hand side of the claim in the proposition, and use

Gh(fk) = −iπpµĥ(p)

∫

C+

d3p′

p′0
f ν

k p
′
νĥ(p′) = πpµĥ(p) 〈ipν ĥ, fk〉

then we see that

iχ(h)†χ(h)Snf1 ⊗ · · · ⊗ fn = iπa†(ipµĥ) a(ipµĥ)Snf1 ⊗ · · · ⊗ fn

= iπa†(ipµĥ)
1√
n

n∑

k=1

〈ipµĥ, fk〉Sn−1f1 ⊗ · · · f̃k · · · ⊗ fn

= iπ
n∑

k=1

〈ipµĥ, fk〉Sn (ipµĥ) ⊗ f1 ⊗ · · · f̃k · · · ⊗ fn

= SnGh(f1) ⊗ f2 ⊗ · · · ⊗ fn + · · · + Snf1 ⊗ · · · ⊗Gh(fn)

and so comparing this with Eqn. (16) establishes the proposition.

Thus if E denotes the *–algebra generated by ∆(Y, B) ∪ UG (dense in Fe), and we set γ(Ug) :=
Γ(Ug), then we now have a representation γ : E → Op(F0(Y)) which agrees with the Gupta–
Bleuler operator theory.

To conclude this section we wish to compare the physical algebra obtained by C*–methods
with the results of the spatial constraining in the usual theory. In the latter one defines

H′ :=
{
ψ ∈ F(N ) | ψ ∈ Dom(χ(h)) and χ(h)ψ = 0 ∀h ∈ S(R4,R)

}

so if we take Dom(χ(h)) = F0(Y), then

5.19 Proposition H′ = F0(C · p).
Proof: Since χ(h) : H(n) → H(n−1) and the n–particle spaces are linearly independent, it suffices
to check the condition χ(h)ψ = 0 on each H(n) separately. Write

ψ ∈ H′ ∩ F0(Y) in the form: ψ =
N∑

k=1

Snfk1 ⊗ · · · ⊗ fkn . (17)

So ψ ∈ H′ means χ(h)ψ = 0, which implies 〈χ(h)†ϕ, ψ〉 = 0 for all h ∈ S(R4,R) and ϕ ∈ H(n−1).
Explicitly:

0 = 〈a†(ipµĥ)ϕ, ψ〉

=
〈
a†(ipµĥ)

N∑

k=1

Sn−1gk1 ⊗ · · · ⊗ gk(n−1),
M∑

j=1

Snfj1 ⊗ · · · ⊗ fjn

〉

=
N∑

k=1

M∑

j=1

√
n
〈
(ipµĥ) ⊗ gk1 ⊗ · · · ⊗ gk(n−1), Snfj1 ⊗ · · · ⊗ fjn

〉

=
N∑

k=1

M∑

j=1

∑

σ∈Pn

√
n

n!
〈ipµĥ, fjσ(1)〉〈gk1, fjσ(2)〉 · · · 〈gk(n−1), fjσ(n)〉
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where Pn denotes the permutation group on {1, . . . , n}. This must hold for all ϕ so if we let the

gki vary over Y, we get that 〈ipµĥ, fji〉 = 0 for all h. Thus 0 =
∫
C+

d3p
p0
pµf

µ
jiĥ(p) for all h, and

the choice ĥ = ipµf
µ
ji then implies pµf

µ
ji C+ = 0 for all fji i.e. fji ∈ p. Thus H′ ⊆ F0(C · p). The

reverse inclusion is obvious.

Note that H′ = F0(C ·p) is of course preserved by A(p∩X), the generators of W (p∩X) = γ(δp∩X).
Thus by the exponential series, W (p∩X) maps H′ into its Hilbert space closure. Since obviously

Γ(T t
h) H′ = 1l , when we restrict the algebra γ(E) to H′, the constraints are factored out. We

already know that p∩X contains the smearing functions which produce the fields Fµν . We check
that the IIP is positive semidefinite on H′. First, the one–particle space.

5.20 Proposition We have K(f, f) ≥ 0 ∀ f ∈ p and Ker (K p) = p0.

Proof: Let f ∈ p, then by Theorem 5.5 we see pµf
µ(p) = 0 for all p ∈ C+, and thus by the proof

of Proposition 5.12, f0(p) = p · f(p)/‖p‖ for p 6= 0. Thus

K(f, f) := −2π

∫

C+

fµ(p) fµ(p)
d3p

p0
= 2π

∫

C+

(f · f(p) − |f0(p)|2)
d3p

p0
. (18)

Now

f · f(p) = ‖f(p)‖2 =

∥∥∥∥
p

‖p‖

∥∥∥∥
2

‖f(p)‖2 ≥
∣∣∣∣

p

‖p‖ · f(p)
∣∣∣∣
2

= |f0(p)|2

and so K(f, f) ≥ 0 for all f ∈ p.
Let K(f, f) = 0 for f ∈ p, then since by the preceding the integrand in Eqn. (18) is positive,

we conclude that ‖f(p)‖ = |p·f(p)|/‖p‖ on C+. Thus f(p) must be parallel to p, i.e. f(p) = ph(p)
for some h. Since f0(p) = p · f(p)/‖p‖ = ‖p‖h(p) = p0 h(p) we conclude fµ(p) = pµ h(p), i.e.

f ∈ p0 by Proposition 5.12. Thus Ker (K p) ⊆ p0. The reverse inclusion is obvious.

This establishes the positivity of the IIP on the one-particle space of H′, and then the posi-
tivity on all of H′ = F0(C · p) follows from the usual arguments for tensor products.

Next, in the usual theory one factors out the zero norm part of H′, i.e. H′′ := Ker (〈·, ·〉 H′).

5.21 Proposition

(i) H′′ =
{
ψ ∈ F0(C · p) | ψ(n) ∈ Sn(p0 ⊗ p ⊗ · · · ⊗ p)

}

where ψ(n) denotes the n–particle component of ψ.
(ii) H′/H′′ = F0(C · p/p0) ∼= Hphys where the identification is via the factor map.

Proof: (i) Since 〈·, ·〉 is a positive form on H′, the Cauchy–Schwartz inequality applies, hence
ψ ∈ H′′ iff 〈ψ, ϕ〉 = 0 for all ϕ ∈ H′. Let ψ ∈ H′′ be given by Eqn. (17), then we have

0 =
〈 N∑

k=1

Snfk1 ⊗ · · · ⊗ fkn, Sng1 ⊗ · · · ⊗ gn

〉

=
N∑

k=1

∑

σ∈Pn

1

n!
〈fk1, gσ(1)〉 · · · 〈fkn, gσ(n)〉

for all gi ∈ p. By letting gi vary over all p, we conclude for each k there is an i such that
〈fki, g〉 = 0 for all g ∈ p, so fki ∈ p0 by Proposition 5.20. This establishes the claim in (i).
(ii) It suffices to examine the n–particle spaces independently, and to ignore the symmetrisation
because it creates symmetric sums in which we can examine each term independently. We first
examine elementary tensors where no factor is in p0 (otherwise it is in H′′ already). Let ψ =
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f1⊗· · ·⊗fn. Now the factor map comes from the equivalence ψ ≡ φ iff ψ−φ ∈ H′′, for ψ, φ ∈ H′

and so we will show the equivalence class [ψ] depends only on the equivalence classes [fi] in p/p0.
To generate equivalent elements in the i–th slot, we just add an f1⊗· · ·⊗fi−1⊗gi⊗fi+1 · · · fn ∈ H′′

with gi ∈ p0. By doing this for all slots, we have demonstrated for the elementary tensors that
the factor map takes ψ = f1 ⊗ · · · ⊗ fn ∈ H′ to [ψ] = [f1] ⊗ · · · ⊗ [fn]. Extend by linearity to
conclude that H′/H′′ = F0(C · p/p0).

Recall from Remark 5.13(ii) that the space f of smearing functions corresponding to the
lhs of the Maxwell equations are in p0 and so as it is obvious that A(p0)H′ ⊂ H′′ from the
above characterisations, this substantiates the heuristic claim that the Maxwell equations hold
on H′/H′′.

Considering now the Poincaré transformations, recall we have the symplectic action on Y:

(Vgf)(p) := e−ipa Λ f(Λ−1p) ∀ f ∈ S(R4,C4), g = (Λ, a) ∈ P↑
+.

In fact, it is also K–unitary because

K(Vgf, Vgh) = −2π

∫

C+

(Vgf)µ(p) (Vgh)µ(p)
d3p

p0

= −2π

∫

C+

(Λf)µ(Λ−1p) (Λh)µ(Λ−1p)
d3p

p0

= −2π

∫

C+

f
µ
(Λ−1p)hµ(Λ−1p)

d3p

p0
= K(f, h)

since the measure d3p/p0 is Lorentz invariant on the light cone. So, using Mintchev [34] again, the
second quantized operator Γ(Vg) is well-defined on F0(Y), it is 〈·, ·〉–unitary, and it implements
Vg on A(f). To see that Γ(Vg) preserves H′, it suffices to note that Vgp ⊂ p because

pµ(Vgf)µ(p) = pµ(Λf(Λ−1p))µe
−ip·a = (Λ−1p)µfµ(Λ−1p)e−ip·a = 0

for f ∈ p. Moreover Γ(Vg) preserves H′′ because it preserves both p and p0 where the latter
follows from the fact that p0 is the kernel of the symplectic form on p and Γ(Vg) is a symplectic
transformation. Thus Γ(Vg) factors through to H′/H′′ = Hphys and in fact, since the IIP now is
a Hilbert inner product on this space, the factored Γ(Vg) becomes a unitary operator, which will
extend to the Hilbert closure of H′/H′′. It obviously will still implement the (factored through)
Poincaré transformations Ṽg on the factored field operators obtained by restricting A(p) to H′

and then factoring to H′/H′′.
Returning now to the C*–theory, observe from the characterisations of H′ and H′′ that γ(δp)

will map H′ to its Hilbert space closure in F(Y), and will map H′′ to its closure. (Also note
that γ(δp0) − 1l will map H′ to the closure of H′′.) Thus γ(δp) will lift to operators on the space
H′/H′′ with H′/H′′ in their domains. Equipping H′/H′′ with the inner product coming from
the initial IIP, will make these operators into unitaries which extend to the closure Hphys of
H′/H′′. The step of factoring through the operators from H′ to H′/H′′ will identify γ(δp0) with

1l . Thus we obtain an actual Hilbert space representation γ̃ : ∆(p/p0, B̃) → B(Hphys). (Recall

this last CCR–algebra was our final quasi–local physical algebra R̃0 of before). We know this
representation is a Fock representation, but this is also clear from

ω0(δf ) := 〈Ω, γ(δf )Ω〉 = lim
N→∞

N∑

k=0

ik

k!
〈Ω, [A(f)]kΩ〉

= exp(−K(f, f)/4) (19)
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and the fact that K(·, ·) is positive on p with kernel p0. (The usual calculation still works for

the last equality). This state ω0 thus extends from ∆(p/p0, B̃) to ∆(p/p0, B̃). In terms of the
original C*–algebra, note that ω0 comes from a (nonunique) state ω̃0 on Fe, because the formula

in Eqn. (19) still defines a state on C∗(δp) by positivity of K p (which obviously becomes ω0

after constraining out δp0) and it extends by the Hahn–Banach theorem to a state ω̃0 on Fe.
However, ω̃0 must necessarily be nonregular which we see as follows. We have ω̃0(δp0) = 1, hence
for c ∈ p0 and any f with B(f, c) 6= 0:

2ω̃0(δf ) = ω̃0(δf δtc + δtcδf ) = 2ω̃0(δf+tc) cos[tB(f, c)/2]

for all t ∈ R. This implies ω̃0(δf ) = 0 and thus the map t → ω̃0(δtf ) cannot be continuous at
t = 0.

This shows there are two ways of obtaining the final physical algebra, first, we can use
Krein representations as studied in this subsection, but these contain pathologies (only dense
*–subalgebras are represented, and these as unbounded operators), or second, we can use non-
regular representations – which can still produce regular representations on the final physical
algebra – and now the operator theory is much better understood. Nonregular representations
avoid the problems spelled out by Strocchi’s theorems [17, 18] because due to the nonregularity,
one cannot use Stone’s theorem to obtain generators for the one–parameter groups, hence the
operators representing the vector potential do not exist here. This dichotomy between nonregular
representations and IIP–representations was pointed out in previous papers, [8, 33].

6 Further topics

6.1 Global vs local constraining

For a system of local constraints Θ → (F(Θ), U(Θ)) as in Definition 3.3, a natural question to ask
is the following. What is the relation between the limit algebra R0 := lim

−→
R(Θ) and the algebra

Re obtained from enforcing the full constraint set ∪
Θ∈Γ

U(Θ) =: Ue in the quasi–local algebra F0?

In particular, when will R0 = Re? In other words, we compare the local constrainings of the net
to a single global constraining. (This has bearing on the BRST–constraining algorithm).

Now Re = Oe/De where as usual we have De = [F0(Ue − 1l )] ∩ [(Ue − 1l )F0] and Oe =
{F ∈ F0 | [F, D] ∈ De ∀D ∈ De}.

6.1 Theorem Let the system of local constraints Θ → (F(Θ), U(Θ)) have reduction isotony,
then R0 := lim

−→
R(Θ) = O0/(De ∩ O0) where O0 := lim

−→
O(Θ). Moreover, there is an injective

homomorphism of R0 into Re.

Proof: First observe that De ∩ O0 = [O0(Ue − 1l )] ∩ [(Ue − 1l )O0] because Ue ⊂ O0 hence every
Dirac state on O0 extends to one on F0, and the D–algebra is characterised as the maximal
C*–algebra in the kernels of all the Dirac states.

Now denote by ξΘ : O(Θ) → R(Θ) the factoring map by D(Θ). Let Θ1 ⊆ Θ2, then the
diagram

O(Θ1)
inclusion−−−→ O(Θ2)

y ξΘ1

y ξΘ2

R(Θ1)
ι12−−−→ R(Θ2)
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commutes by reduction isotony and the proof of Lemma 3.6. Thus there exists a surjective
homomorphism for the inductive limit algebras: ξ0 : O0 → R0, such that ξ0 O(Θ) = ξΘ, Θ ∈ Γ.
Clearly D(Θ) ⊂ Ker ξ0 for all Θ ∈ Γ, hence Ue − 1l ⊂ Ker ξ0, and so by the previous paragraph
De ∩ O0 ⊆ Ker ξ0. Thus De ∩ O(Θ) ⊆ Ker ξ0 ∩ O(Θ) = D(Θ). Since D(Θ) ⊂ De we conclude
De ∩O(Θ) = D(Θ), and so the global factoring map O0 → O0/(O0 ∩De) coincides on each O(Θ)
with ξΘ. Thus it is ξ0, i.e. Ker ξ0 = De ∩ O0, so R0 = ξ0(O0) = O0/(O0 ∩ De).

To prove the last claim, we just apply Lemma 3.6 to the pair (O0, Ue) ⊂ (F0, Ue). To verify
its two conditions, note that we already know by the first part of the proof that De ∩ O0 =
[O0(Ue − 1l )] ∩ [(Ue − 1l )O0] so we only need to check the second condition. We also saw above
that De ∩O0 is an ideal in O0 (the kernel of a homomorphism), hence the algebra of observables
in O0 of the constraints Ue is all of O0 (using Theorem 2.3(ii)). Thus we only need to show
that O0 ⊂ Oe, i.e. that O(Θ) ⊂ Oe for all Θ ∈ Γ. By Theorem 2.3(iii) we only need to show
that [F, Ue] ⊂ De ∀F ∈ O(Θ), but this follows immediately from the last paragraph since for an
observable F ∈ O0 we have: [F, Ue] ⊂ De ∩ O0 ⊂ De.

We do not as yet have useful general criteria to ensure that R0 = Re, though we now verify
that it holds for both stages of constraining in the Gupta–Bleuler example.
Example. Recall the first stage of constraining in the previous example. We had a system

of local constraints Γ ∋ Θ → (F(Θ), U(Θ)) where F(Θ) = C∗
(
δX(Θ) ∪ U(Θ)

)
and U(Θ) =

{UTh
| h ∈ C∞

c (Θ, R
4)}. By Theorem 5.5 we have R(Θ) ∼= C∗(δp(Θ)) and so R0 = lim

−→
R(Θ) =

∆(p, B) where p = ∪
Θ∈Γ

p(Θ). We need to compare this to Re which we obtain from the system

(F0, Ue) where F0 = lim
−→

F(Θ) = C∗(Ue ∪ δZ(0)
), (cf. Remark 5.4(i)) and Ue = ∪

Θ∈Γ
U(Θ) = U(0).

Now the method in the proof of Theorem 5.5 did not use the assumption Θ ∈ Γ, hence it can
be transcribed to prove that Oe = C∗(δpe) + De where pe := {f ∈ Z(0) | Th(f) = f ∀h ∈
C∞

c (Θ, R), Θ ∈ Γ}. Each f ∈ pe ⊂ Z(0) is in some Z(Θ), so is in p(Θ) by the defining condition.

Thus pe ∩Z(Θ) ⊆ p(Θ). However, by Theorem 5.5, these are characterised by pµf
µ C+ = 0, and

by Eqn. (8) this implies Th(f) = f for all h ∈ C∞
c (R4, R). Thus pe = p, so Oe = C∗(δp)+De and

hence by the argument in the last part of the proof of Theorem 5.5 we have Re
∼= C∗(δp) ∼= R0.

Next we verify for the second stage of constraining that the local and global constrainings
ultimately coincide. Here we have the system of local constraints: Γ ∋ Θ → (R(Θ), Ũ(Θ))
where R(Θ) = ∆(p(Θ), B) and Ũ(Θ) = δs(Θ), s(Θ) = p0 ∩ p(Θ). By Theorem 5.14 we have

R̃0
∼= ∆(p/p0, B̃). We need to compare this to the physical algebra R̃e obtained from the system

(R0, Ũe) where R0 = lim
−→

R(Θ) = ∆(p, B) and Ũe = ∪
Θ∈Γ

Ũ(Θ) = δp0. By Theorem 5.2 in [8] we

have R̃e
∼= ∆(p/p0, B̃) ∼= R̃0, and this proves the claim.

6.2 Reduction by stages

In this subsection we address the problem of reduction by stages, i.e. subdivide the initial
constraint set, then impose these constraint sets along an increasing chain (terminating with the
full set of constraints), and analyse when the final physical algebra of the chain is the same as that
obtained from a single constraining by the full set. This problem occurred in the Gupta–Bleuler
example, and is related also to the one in the previous subsection.

6.2 Definition An n–chain of constraints consists of a first–class constraint system (F , C)
and a chain of subsets

{0} 6= C1 ⊂ C2 ⊂ · · · ⊂ Cn = C
such that C ⊂ Oi ∀ i = 1, 2, . . . , n, where we henceforth denote by (SDi

, Di, Oi, Ri, ξi) the data
resulting from application of a T–procedure to (F , Ci). (Recall that ξi : Oi → Ri denotes the
canonical factorization map). By convention we will omit the subscript i when i = n.

39



Note that SD = SDn ⊂ SDn−1 ⊂ · · · ⊂ SD2 ⊂ SD1 and D1 ⊂ D2 ⊂ · · · ⊂ Dn = D. The
condition C ⊂ Oi is nontrivial, but necessary for the procedure in the next theorem. Below we
will use subscript notation Ai, A(i) and A{i} to distinguish between similar objects in different
contexts.

6.3 Theorem Given an n–chain of constraints as above, we define inductively the following
cascade of first–class constraint systems (R(k−1), ξ{k−1}(Ck)), k = 1, . . . , n with T–procedure
data (SD(k), D(k), O(k), R(k), ξ(k)) and notation ξ{k} := ξ(k) ◦ ξ(k−1) ◦ · · · ◦ ξ(1) and conventions
ξ{0} := id, R(0) = F . Then

(i) Dom ξ{k} = O1 ∩ O2 ∩ · · · ∩ Ok =: O{k}, Ker ξ{k} = O{k} ∩ Dk, and Ran ξ{k} = R(k) where
we use the conventions O{0} := F and D0 = {0}.

(ii) D(k) = ξ{k−1}(O{k−1} ∩Dk),

(iii) O(k) = ξ{k−1}(O{k}),

(iv) R(k)
∼= O{k}/(O{k−1} ∩ Dk) ⊂ Rk,

(v) the map ϕk : SDk
O{k} → S(R(k)) defined by ϕk(ω)(ξ{k}(A)) := ω(A), A ∈ O{k}, gives a

bijection ϕk : SDk+1
O{k} → SD(k+1).

We will call the application of a T–procedure to (R(k−1), ξ{k−1}(Ck)), k = 1, . . . , n to produce the

data (SD(k), D(k), O(k), R(k), ξ(k)) the kthstage reduction of the given n-chain.

Proof: We apply the second principle of induction, and also remind the reader that C ⊂ Oi

∀ i. For k = 1 we have by convention that (R(0), ξ{0}(C1)) = (F , C1) which is first–class, and
(SD(1), D(1), O(1), R(1), ξ(1)) = (SD1 , D1, O1, R1, ξ1). Thus Dom ξ{1} = Dom ξ1 = O1 = O{1},
Ker ξ{1} = Ker ξ1 = D1 = O{1} ∩ D1, Ran ξ{1} = Ran ξ1 = R1 = R(1). Moreover D(1) =
D1 = ξ{0}(O{0} ∩ D1), O(1) = ξ{0}(O{1}) = O1 and R(1) = R1 = O{1}/(O{0} ∩ D1). Now using

C2 ⊂ C ⊂ O1, the bijection ϕ1 : SD1 O1 → S(R1) given by Theorem 2.4, produces for ω ∈ SD2 :

ϕ1(ω)(ξ1(C
∗C)) = ω(C∗C) = 0 = ω(CC∗) = ϕ1(ω)(ξ1(CC

∗))

for all C ∈ C2, i.e. ϕ1(ω) ∈ SD(2). Conversely, if ϕ1(ω) ∈ SD(2) then ω ∈ SD2 . Thus the theorem
holds for k = 1.

For the induction step, fix an integer m ≥ 1 and assume the theorem is true for all k ≤
m. We prove that it holds for m + 1. Now (R(m), ξ{m}(Cm+1)) is first–class, because by (v),

ϕm(SDm+1 O{m}) = SD(m+1) 6= ∅ since by Cm+1 ⊂ C ⊂ Oi we have ∅ 6= SD O{m} and ϕm is a
bijection. We first prove (ii).

D(m+1) =
{
ξ{m}(F ) | F ∈ O{m} and

ω(ξ{m}(F
∗F )) = 0 = ω(ξ{m}(FF

∗)) ∀ω ∈ SD(m+1)

}

=
{
ξ{m}(F ) | F ∈ O{m} and

ω̂(F ∗F ) = 0 = ω̂(FF ∗) ∀ ω̂ ∈ SDm+1

}

(using (v) of induction assumption)

= ξ{m}(Dm+1 ∩ O{m}) .

For (iii) we see:

O(m+1) =
{
ξ{m}(F ) | F ∈ O{m} and
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[ξ{m}(F ), ξ{m}(Cm+1)] ⊂ D(m+1)

}
(by Theorem 2.3(iii))

=
{
ξ{m}(F ) | F ∈ O{m} and

ξ{m}([F, Cm+1]) ⊂ ξ{m}(Dm+1 ∩ O{m})
}

=
{
ξ{m}(F ) | F ∈ O{m} and

[F, Cm+1] ⊂ Dm+1 ∩ O{m} + O{m} ∩ Dm

}
.

Now since Dm ⊂ Dm+1, we have Dm+1 ∩ O{m} + O{m} ∩ Dm = Dm+1 ∩ O{m} and Cm+1 ⊂ O{m}

and so [F, Cm+1] ⊂ O{m} for all F ∈ O{m}. Thus

O(m+1) =
{
ξ{m}(F ) | F ∈ O{m} and [F, Cm+1] ⊂ Dm+1

}

= ξ{m}(O{m} ∩ Om+1) = ξ{m}(O{m+1}) .

For (iv), note that

R(m+1) = O(m+1)/D(m+1) = ξ{m}(O{m+1})
/
ξ{m}(Dm+1 ∩ O{m}) .

Define a map ψ : R(m+1) → Rm+1 by

ψ
(
ξ{m}(A) + ξ{m}(Dm+1 ∩ O{m})

)
:= A+ Dm+1 A ∈ O{m+1} .

To see that it is well–defined, let B ∈ O{m+1} be such that ξ{m}(A) − ξ{m}(B) ∈ ξ{m}(Dm+1 ∩
O{m}), i.e. A−B ∈ Dm+1 ∩ O{m} + O{m} ∩ Dm = Dm+1 ∩ O{m}, and so

ψ
(
ξ{m}(B) + ξ{m}(Dm+1 ∩ O{m})

)
= B + Dm+1 = A+ Dm+1 .

It is easy to see that ψ is a *–homomorphism onto the subalgebra O{m+1}/Dm+1 ∩ O{m} ⊂
Rm+1 and since Kerψ = ξ{m}(Dm+1 ∩ O{m}) = D(m+1) which is the zero of R(m+1), ψ is a
monomorphism.

To prove (i), recall that ξ{m+1} = ξ(m+1) ◦ ξ{m}, so

Dom ξ{m+1} =
{
F ∈ Dom ξ{m} | ξ{m}(F ) ∈ Dom ξ(m+1) = O(m+1)

}

=
{
F ∈ O{m} | ξ{m}(F ) ∈ ξ{m}(O{m+1})

}

=
{
F ∈ O{m} | F ∈ O{m+1} + O{m} ∩ Dm = O{m+1}

}

because Dm ⊂ Dm+1 ⊂ Om+1. Thus Dom ξ{m+1} = O{m+1}. Now

Ker ξ{m+1} =
{
F ∈ Dom ξ{m+1} | ξ{m}(F ) ∈ Ker ξ(m+1) = D(m+1)

}

=
{
F ∈ O{m+1} | ξ{m}(F ) ∈ ξ{m}(Dm+1 ∩ O{m})

}

=
{
F ∈ O{m+1} |

F ∈ Dm+1 ∩ O{m} + O{m} ∩ Dm = Dm+1 ∩ O{m}

}

= O{m+1} ∩ Dm+1 .

Ran ξ{m+1} = ξ(m+1)

(
ξ{m}(Dom ξ{m+1})

)
= ξ(m+1)

(
ξ{m}(O{m+1})

)

= ξ(m+1)(O{m+1}) = R(m+1) .
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Finally, to prove (v), since ϕm+1 is a surjection, each ω ∈ SD(m+2) is of the form ω = ϕm+1(ω̂)

for some ω̂ ∈ SDm+1 O{m+1}. Now ω ∈ SD(m+2) iff ω(ξ{m+1}(C
∗C)) = 0 = ω(ξ{m+1}(CC

∗)) for

all C ∈ Cm+2 iff ω̂(C∗C) = 0 = ω̂(CC∗) for all C ∈ Cm+2 iff ω̂ ∈ SDm+2 O{m+1}.

Example. The Gupta–Bleuler model of the previous section provide examples of 2–chains of
constraints both at the local and the global levels. We will only consider the global level, and
refer freely to the example of the last section where both global constrainings were done. Let
C1 := {UTh

−1l | h ∈ C∞
c (R4, R)} and let the total constraint set in F0 be C = C2 := C1∪ C̃ where

C̃ := 1l − Ũe = {1l − δf | f ∈ p0}.
6.4 Claim C1 ⊂ C2 = C is a 2–chain of constraints in F0 = C∗(δZ(0)

∪ U(0)). (Notation as in
Remark 5.4(i)).

Proof: To see that C is first–class, define a state ω̂ on ∆(Z(0), B) ⊂ F0 by ω̂(δf ) = 1 if f ∈ p0,
and otherwise ω̂(δf ) = 0 (that this defines a state is easy to check). Since by Theorem 5.5 the
space p is pointwise invariant under Th for h ∈ C∞

c (R4, R), (also using Eqn. (8)) so is p0, hence
ω̂ is invariant under G(0) = the group generated by G(Θ), Θ ∈ Γ. Thus ω̂ extends (uniquely) to
a Dirac state on F0 (by a trivial application of Theorem 4.1). Thus C is first class.

It is obvious that C ⊂ D2 ⊂ O2, so we only need to show that C ⊂ O1. By Theorem 5.5 and
the last subsection we have O1 = C∗(δp) + D1 and as C1 ⊂ D1 and δp0 ⊂ C∗(δp) it follows that
C ⊂ O1.

Now we want to show that R2 = R(2), i.e. the two–step reduction by stages produces the same
physical algebra as a single reduction by the full constraint set C. Recall that by Theorem 6.3(iv),
we have a monomorphic imbedding:

R(2)
∼= O{2}/(O{1} ∩ D2) ⊂ R2 = O2/D2

where O{2} = O1 ∩ O2, O1 = O{1}. So we will have the desired isomorphism R2 = R(2), if
we can show that this imbedding is surjective. Now we know from the last subsection that
O1 = C∗(δp) + D1, and below in the next two claims we prove that O2 = C∗(δp) + D2. Then
since D1 ⊂ D2 we have O1 ⊂ O2, so

R(2)
∼= O1/(O1 ∩ D2) ⊂ R2 = O2/D2 .

Now note that each equivalence class corresponding to an element of R2 is of the form A + D2

with A ∈ C∗(δp), and this contains the equivalence class of A + D1 from O1/(O1 ∩ D2). So the
imbedding is surjective.

It remains to prove that O2 = C∗(δp) + D2. We first prove:

6.5 Claim

O2 = C∗(δp′0) + D2 where p′0 = {f ∈ Z(0) | B(f, s) = 0 ∀ s ∈ p0} .

Proof: We adapt the proof of Theorem 5.5. Since O2 ⊂ F0 = C∗(δZ(0)
∪ U(0)), for a general

A ∈ O2 we can write

A = lim
n→∞

An where An =
Nn∑

i=1

δfi

Ln∑

j=1

λ
(n)
ij Uγ

(n)
ij

(20)

where fi 6= fj if i 6= j, fi ∈ Z(0), γ
(n)
ij ∈ G(0) and λ

(n)
ij ∈ C. Consider the equivalence classes of

Z(0)/p0. If fi − fj =: s ∈ p0, then δfi
= δfj

· δs exp (iB(s, fj)/2) and δs ∈ Ũe. Thus we can write
Eqn. (20) in the form

An =
Nn∑

i=1

δfi

Ln∑

j=1

Kn∑

k=1

λ
(n)
ijkδsij

U
γ
(n)
ik

(21)
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where fi − fj 6∈ p0 if i 6= j and sij ∈ p0. Let ω ∈ SD2 , then

πω(An)Ωω =
Nn∑

i=1

ζ
(n)
i πω(δfi

)Ωω (22)

where ζ
(n)
i =

Ln∑

j=1

Kn∑

k=1

λ
(n)
ijk ∈ C .

Let h ∈ p0, then from δh ∈ Ũe and A ∈ O2, we get, using Eqn. (22):

0 = ω(A∗(δh − 1l )∗(δh − 1l )A) = lim
n→∞

ω(A∗
n(21l − δh − δ−h)An)

= lim
n→∞

{
2ω(A∗

nAn) −
Nn∑

i, j=1

ζ
(n)
i ζ

(n)
j ω(δ−fi

(δh + δ−h)δfj
)
}

(23)

The state ω̂ on F0 defined by ω̂(δf ) := χp0(f) and ω̂(Ug) = 1 ∀ g ∈ G(0) (encountered in the proof
of Claim 6.4) is in SD2 , so Eqn. (23) becomes for it:

0 = lim
n→∞

{
2

Nn∑

j=1

|ζ(n)
j |2 −

Nn∑

j=1

|ζ(n)
j |2(eiB(h, fj) + e−iB(h, fj))

}

= 2 lim
n→∞

Nn∑

j=1

|ζ(n)
j |2

(
1 − cos B(h, fj)

)
(24)

where we made use of fi − fj 6∈ p0 if i 6= j and the equation

πω(δ−fi
δhδfj

)Ωω = πω(δ−fi
eiB(h, fj)δfj

δh) Ωω

= eiB(h, fj)e−iB(fi, fj)/2 πω(δfj−fi
)Ωω .

Now the terms in the sum of Eqn. (24) are all positive so in the limit these must individually
vanish, i.e.

lim
n→∞

|ζ(n)
j |2(1 − cos B(h, fj)) = 0 ∀ h ∈ p0 .

Thus since the first factor is independent of h and the second is independent of n, either

lim
n→∞

|ζ(n)
j |2 = 0 or B(h, fj) = 0 ∀h ∈ p0 (i.e. fj ∈ p′0). Now we can rewrite the argument

around Eqn. (12) almost verbatim to obtain O2 = C∗(δp′0) + D2.

6.6 Claim p′0 = p.

Proof: Clearly p′0 ⊇ p by definition. For the converse inclusion, let f ∈ C∞
c (R4, R

4) such that

ρ(f) := f̂ C+ ∈ p′0, i.e. we have B(ρ(f), ρ(k)) = 0 ∀ ρ(k) ∈ p0. Now by Proposition 5.12, if ρ(k)
is in p0, then ρ(k)µ(p) = ipµh(p) for some h such that ρ(k) ∈ Z(0). In particular, we can take
h = ρ(r) for r ∈ C∞

c (R4, R), in which case ρ(k)µ = ρ(∂µr), and so

0 = B(ρ(f), ρ(k)) = D̂(f, k)

=

∫ ∫
fµ(x) kµ(y)D(x− y) d4x d4y

=

∫ ∫
fµ(z + y) kµ(y)D(z) d4z d4y

=

∫ ( ∫
fµ(z + y)

∂r(y)

∂yµ
d4y

)
D(z) d4z
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= −
∫ ( ∫

(∂µfµ)(z + y) r(y) d4y
)
D(z) d4z

= −
∫ ∫

(∂µfµ)(x) r(y)D(x − y) d4y d4x

= −D̃(ρ(∂µfµ), ρ(r))

for all r ∈ C∞
c (R4, R) and where D is the Pauli–Jordan distribution and D̃ is the symplectic

form for the free neutral scalar bosonic field. It is well–known that D̃ is nondegenerate on
ρ(C∞

c (R4, R)), (to see this, use the Schwartz density argument in the proof of Proposition 5.12)
hence since ρ(∂µfµ) is also in this space, we conclude ρ(∂µfµ) = 0, i.e. pµρ(fµ) = 0, i.e. by
Eqn. (8) ρ(f) ∈ p. Hence we have the reverse inclusion, so p′0 = p.

Thus O2 = C∗(δp) + D2 and so R2
∼= R(2).

6.3 The weak spectral condition

A very important additional property which is used in the analysis of algebraic QFT, is that of
the spectral condition.

6.7 Definition An action α : P↑
+ → AutF0 on a C*–algebra F0 satisfies the spectral condition

if there is a state ω ∈ S(F0) such that

(i) ω is translation–invariant, i.e. ω ◦ αg = ω ∀ g ∈ R
4 ⊂ P↑

+,

(ii) the spectrum of the generators of translations in πω is in the forward light cone V+.

Let now Θ → (F(Θ), U(Θ)) be a system of local constraints with reduction isotony and weak
covariance. We want to find the weakest requirement on Θ → (F(Θ), U(Θ)) to ensure that

α̃ : P↑
+ → AutR0 (cf. Theorem 3.14(iii)) satisfies the spectral condition. We propose:

6.8 Definition The given action α : P↑
+ → AutF0 on F0 = lim

−→
F(Θ) satisfies the weak spectral

condition iff the set

C := (Ue − 1l ) ∪ {αf (A) | A ∈ O0, f ∈ F (V+)} ⊂ O0 := lim
−→

O(Θ)

is a first–class constraint set, where we used the notation

Ue :=
⋃

Θ∈Γ

U(Θ), αf (A) :=

∫

R4
αt(A) f(t) d4t ,

F (V+) := {f ∈ L1(R4) | supp f̂ ⊂ R
4\V+ and supp f̂ is compact}

where f̂ denotes the Fourier transform of f .

6.9 Theorem Let Θ → (F(Θ), U(Θ)) be a local system of contraints with reduction isotony and

weak covariance. Then α̃ : P↑
+ → AutR0 satisfies the spectral condition iff α : P↑

+ → AutF0

satisfies the weak spectral condition.

Proof: We will use the notation in Subsection 6.1 By the last definition, α satisfies the
weak spectral condition iff C is first–class iff the left ideal [O0C] in O0 is proper iff the left
ideal ξ0([O0C]) = [R0ξ0(C)] is proper in R0 where ξ0 : O0 → O0/(De ∩ O0) = R0 is the
canonical factoring map, and we used Ker ξ0 = De ∩ O0 ⊂ [O0(Ue − 1l )] ⊂ [O0C]. Now
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ξ0(C) = {ξ0(αf (A)) | A ∈ O0, f ∈ F (V+)} because ξ0(Ue − 1l ) = 0. Let A ∈ O0 and f ∈ F (V+),
then

ξ0(αf (A)) = ξ0
( ∫

R4
αt(A) f(t) d4t

)
=

∫

R4
ξ0(αt(A)) f(t) d4t

=

∫

R4
α̃t(ξ0(A)) f(t) d4t = α̃f (ξ0(A)) .

Thus [R0ξ0(C)] is the left ideal generated in R0 by {α̃f (B)) | B ∈ R0, f ∈ F (V+)} and this is
precisely Doplicher’s left ideal (cf. [35, 36]), which is proper iff α̃ satisfies the spectral condition
by 2.7.2 in Sakai [36].

In general the weak spectral condition seems very difficult to verify directly. However, for the
Gupta–Bleuler example in this paper, it is easily verified via the last theorem:

Example. We show that the final HK–QFT of the Gupta–Bleuler example (as expressed in
Theorem 5.14) satisfies the spectral condition, and hence the initial system must satisfy the weak
spectral condition. Thus we need to show the existence of a state on R̃0 := lim

−→
R̃(Θ) which

satisfies the two conditions in Definition 6.7 for the action α̃ : P↑
+ → Aut R̃0. Now the usual

Gupta–Bleuler theory studied in Subsection 5.6 produced a Fock state ω0 on R̃0 = ∆(p/p0, B̃)
given by the formula

ω0(δζ(f)) := exp ( −K(f, f)/4) , f ∈ p

where ζ : p → p/p0 is the usual factoring map, and we want to show that it satisfies the spectral
condition. We already know that K produces a Hilbert inner product on p/p0, and that it is
Poincaré invariant w.r.t. Ṽg which denotes the factoring of Vg to p/p0. Thus the implementer
of a Poincaré transformation g is just the second quantization of Ṽg, i.e. Ug := Γ(Ṽg). We need
to verify the spectral condition for the generators of the translations. Recall for g = (Λ, a) we
have (Vgf)(p) = e−ipa Λf(Λ−1p). Translation by a therefore acts by multiplication operators
(Vaf)(p) = e−ipaf(p) with infinitesimal generators P̃µ of Ṽa being the factoring to p/p0 of the
multiplication operators f(p) → pµf(p). Now for f ∈ p:

K(ζ(f), P̃0 ζ(f)) = −2π

∫

C+

fµ(p) p0 fµ(p)
d3p

p0
= −2π

∫

C+

fµ(p) fµ(p) d3p ≥ 0

since we have shown in the proof of Proposition 5.20 that fµ(p) fµ(p) ≤ 0 ∀f ∈ p, p ∈ C+. So
P̃0 ≥ 0. Since Ua = Γ(Ṽa) = exp (− iaµ dΓ(P̃µ)), the generators for translation for ω are dΓ(P̃µ),
and so P̃0 ≥ 0 implies dΓ(P̃0) ≥ 0.

To conclude, notice from the fact that P̃µ acts on p/p0 and in p we have restriction to C+,
that the spectrum of P̃µ must be in C+. Now in second quantization on an n–particle space:

dΓ(P̃µ) = P̃µ ⊗ 1l ⊗ · · · ⊗ 1l + 1l ⊗ P̃µ ⊗ 1l ⊗ · · · ⊗ 1l + · · · + 1l ⊗ · · · ⊗ 1l ⊗ P̃µ

and the spectrum for this will be all possible sums of n vectors in C+, and this will always be in
V+. Since the spectrum for the full dΓ(P̃µ) is the sum over all those on the n–particle spaces, this
will still be in V+ since V+ is a cone. Thus we have verified the spectral condition as claimed.

7 Conclusions.

In this paper we introduced the concept of a system of local quantum constraints and we ob-
tained a “weak” version of each of the Haag–Kastler axioms of isotony, causality, covariance and
spectrality in such a way that after a local constraining procedure the resulting system of physical
algebras satisfies the usual version of these axioms. We analyzed Gupta–Bleuler electromagnetism
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in detail and showed that it satisfies these weak axioms, but that it violates the causality axiom.
This example was particularly satisfying, in that we obtained by pure C*–algebra techniques the
correct physical algebra and positive energy Fock–representation without having to pass through
an indefinite metric representation. We did however also point out the precise connection with
the usual indefinite metric representation.

There are some further aspects of our Gupta–Bleuler example which are of independent
interest. These are:

(1) the use of nonlinear constraints χ(h)†χ(h), which we realised as automorphisms on the field
algebra (outer constraint situation),

(2) a nonstandard extension of our smearing formulii to complex–valued functions (cf. Re-
mark 5.4(ii)), which implied noncausal behaviour on nonphysical objects, where the latter
were eliminated in the final theory (hence the need for weak causality),

(3) the use of nonregular representations, but as in the last point the nonregularity was re-
stricted to nonphysical objects.

There are many future directions of development for this project, and a few of the more
evident ones are:

• Find an example of a realistic constrained local field theory which satisfies the weak Haag–
Kastler axioms, but violates the usual covariance axiom (a variant of the Coulomb gauge
may work).

• Continue the analysis here for the rest of the Haag–Kastler axioms, i.e. find the appropriate
weak versions of e.g. the axioms of additivity, local normality, local definiteness etc., as
well as examples which satisfy the weak axioms but not the usual ones.

• In the present paper we assumed a system of local constraints which is first–class. Now a
reduction procedure at the C*–level exists also for second class constraints (cf. [10]) and
so one can therefore ask what the appropriate weakened form of the Haag–Kastler axioms
should be for such a system. A possible example for such an analysis is electromagnetism
in the Coulomb gauge.

• Develop a QFT example with nonlinear constraints. This is related to the difficulty of
abstractly defining the C*–algebra of a QFT with nontrivial interaction. Our Gupta–
Bleuler example has several similarities with Dimock’s version of a Yang–Mills theory on
the cylinder [37], and so this seems to be a possible candidate for further development.

8 Appendix 1

Next we wish to gain further understanding of the algebras D, O, R by exploiting the hereditary
property of D. Denote by πu the universal representation of F on the universal Hilbert space
Hu [9, Section 3.7]. F ′′ is the strong closure of πu(F) and since πu is faithful we make the
usual identification of F with a subalgebra of F ′′, i.e. generally omit explicit indication of πu. If
ω ∈ S(F), we will use the same symbol for the unique extension of ω from F to F ′′.

8.1 Theorem For a constrained system (F , C) there exists a projectionP ∈ F ′′ such that

(i) N = F ′′ P ∩ F ,

(ii) D = P F ′′ P ∩ F and
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(iii) SD = {ω ∈ S(F) | ω(P ) = 0}.

Proof: From Theorem 2.3 (i) D is a hereditary C∗–subalgebra of F and by 3.11.10 and 3.11.9
in [9] there exists a projection P ∈ F ′′ such that D = PF ′′P ∩ F . Further by the proof of
Theorem 2.2 (iii) as well as 3.10.7 and 3.11.9 in [9] we obtain that N = F ′′ P ∩ F and

SD = {ω ∈ S(F) | ω(P ) = 0} ,

which concludes this proof.

A projection satisfying the conditions of Theorem 8.1 is called open in [9].

8.2 Theorem Let P be the open projection in Theorem 8.1. Then:

(i) O = {A ∈ F | PA(1l − P ) = 0 = (1l − P )AP} = P ′ ∩ F , and

(ii) C′ ∩ F ⊂ O.

Proof: (i) Recall that O = MF (D), and let A ∈ F and D ∈ D. Then by Theorem 8.1 there exists
an F ∈ F ′′ such that D = PFP and so

AD = (PAP + (1l − P )AP + PA(1l − P ) + (1l − P )A(1l − P ))PFP

= PAPFP + (1l − P )APFP

= PAPD + (1l − P )APD .

Therefore using Theorem 8.1 again we have AD ∈ D for all D ∈ D iff (1l − P )APD = 0 for all
D ∈ D. But from 3.11.9 in [9] P is in the strong closure of D in F ′′ so that AD ∈ D ∀D ∈ D iff
(1l − P )AP = 0. Taking adjoints we get also the condition PA(1l − P ) = 0 iff DA ⊂ D.

(ii) Let D ∈ D = [FC] ∩ [CF ] and A ∈ C′∩F . Then AD ∈ [FC] ∩ [A CF ] = [FC] ∩ [C AF ] ⊂
D. Similarly, DA ∈ D so that by definition we have A ∈ O.

What these two last theorems mean, is that with respect to the decomposition

Hu = P Hu ⊕ (1l − P )Hu

we may rewrite

D =
{
F ∈ F

∣∣∣ F =

(
D 0
0 0

)
, D ∈ PFP

}
and

O =
{
F ∈ F

∣∣∣ F =

(
A 0
0 B

)
, A ∈ PFP, B ∈ (1l − P )F(1l − P )

}
.

It is clear that in general O can be much greater than the traditional observables C′ ∩ F . Next
we show how to identify the final algebra of physical observables R with a subalgebra of F ′′.

8.3 Theorem For P as above we have:

R ∼=
{
F ∈ F

∣∣∣ F =

(
0 0
0 A

)}
= (1l − P ) (P ′ ∩ F) ⊂ F ′′.

Proof: The homomorphism Φ: O → (1l − P ) (P ′ ∩ F) defined by Φ(A) := (1l − P )A, A ∈
O = P ′ ∩ F , will establish an isomorphism with R := O/D if we can show that Ker Φ = D,
i.e. (1l−P )A = 0 iff A ∈ D. Clearly, if A ∈ D = P F ′′ P ∩F (cf. Theorem 8.1), then (1l−P )A = 0.
Conversely, assume that A ∈ O = P ′∩F satisfies (1l−P )A = 0, i.e. A = PA. Then, A ∈ P F ′′∩F
and so since A ∈ P ′ ∩ F , we have A ∈ P F ′′ P ∩ F = D, which ends the proof.
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8.4 Remark (i) With the preceding result we may interpret the projection P in Theorem 8.1
as being equivalent to the set C if we are willing to enlarge F to C∗(F ∪{P}). This can be
partially justified by the fact that

R ∼= (1l − P ) (P ′ ∩ F) ⊂ C∗(F ∪ {P}) .

(ii) The projection P can also be used to make contact with the original heuristic picture.
Given a Dirac state ω ∈ SD we see from Theorem 8.1 (iii) that 1l −πω(P ) is the projection
onto the physical subspace

H(p)
ω := {ψ ∈ Hω | πω(C)ψ = 0}.

Since πω(O) ⊂ πω(P )′ ∩ πω(F), then πω(O) is a subalgebra of the algebra of observables
in the field algebra πω(F) which preserves the physical subspace. (In fact O = {F ∈ F |
πω(F )H(p)

ω ⊆ H(p)
ω ∀ω ∈ S(F)}). If πω is faithful, then πω(O) contains the traditional

observables πω(C)′∩πω(F). Now restricting πω(O) to the subspace H(p)
ω = (1l − πω(P ))Hω

we have for the final constrained system:

πω(O) H(p)
ω = (1l − πω(P ))πω(O) = πω((1l − P )(P ′ ∩ F)),

which by Theorem 8.3 produces a representation of R.

Appendix 2

We will give in this appendix the proof of Theorem 4.4. Recall the notation and results of
Subsection 4.2.

8.5 Theorem Given nondegenerate (X, B) and s ⊂ X as in Subsection 4.2, where s ⊂ s′ and
s = s′′, then

O = C∗(δs′ ∪ D) = [C∗(δs′) ∪D] .

Proof: From Theorem 2.3 (ii) and (v) it is clear that O ⊃ C∗(δs′ ∪ D) and we only have to
prove the converse inclusion. We first show that for any Dirac state ω of ∆(X, B) we have that

πω(δf )Ωω ⊥ H(p)
ω := {ψ ∈ Hω | πω(δs)ψ = ψ} for all f 6∈ s′. For any f 6∈ s′, choose a k ∈ s such

that B(f, k) 6∈ 2πZ. Then

πω(δk)(πω(δf )Ωω) = eiB(k, f)πω(δf δk)Ωω = eiB(k, f)πω(δf )Ωω

and so πω(δf )Ωω is in a different eigenspace of πω(δk) than H(p)
ω , hence must be orthogonal to it.

Now recall (cf. Remark 8.4 (ii)) that if A ∈ O, then πω(A) preserves H(p)
ω (here ω is a

Dirac state). Thus πω(A)Ωω ⊥ πω(δf )Ωω for f 6∈ s′, and so ω(δfA) = 0 for f 6∈ s′. Now let

An =
Nn∑
i=1

λ
(n)
i δhi

⊂ ∆(X, B) be a sequence converging to A. We furthermore partition the set

{hi | i ∈ N} into s–equivalence classes and choose one representative in each, so that we can write

An =
∑

j

δhj

∑

i

β
(n)
ij δcij

where cij ∈ s and hj − hk 6∈ s if j 6= k

i.e. the first sum is over representatives in different equivalence classes. Thus we get for A ∈ O
that for all f 6∈ s′:

0 = lim
n→∞

ω(δfAn) = lim
n→∞

∑

j, i

β
(n)
ij ω(δf δhj

δcij
) . (25)
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Now we make a particular choice for ω, by setting ω(δf ) = 1 if f ∈ s and zero otherwise. (To

see that this indeed defines a state, note that if we factors the central state on ∆(s′/s′′, B̃) to
C∗(δs′), then by [3, p. 387] it extends uniquely to ∆(X, B) and will coincide with ω). Then

ω(δf δhj
δcij

) = exp [i(B(f, hj) +B(f + hj , cij))/2] ω(δf+hj+cij
)

= e
i
2
B(f, hj)χs(f + hj)

where χs denotes the characteristic function of the set s. Thus Eqn. (25) becomes:

lim
n→∞

∑

j, i

β
(n)
ij e

i
2
B(f, hj)χs(f + hj) = 0 ∀ f 6∈ s′ .

If there is a k such that hk 6∈ s′, we can choose f = −hk in the previous equation, then since

hj − hk 6∈ s for j 6= k, we get χs(hj − hk) = δjk and thus lim
n→∞

∑
i β

(n)
ik = 0.

Consider now the universal representation πu : A → B(Hu) and let ψ ∈ H(p)
u := {ψ ∈ H(p)

u |
πu(D)ψ = 0}. Then for each k such that hk 6∈ s′ we have

lim
n
πu

(
δhk

∑

i

β
(n)
ik δcik

)
ψ = πu(δhk

) lim
n

∑

i

β
(n)
ik ψ = 0 .

Hence in the sums involved in πu(An)ψ we can drop all terms where hj 6∈ s′, i.e.

πu(A)ψ = lim
n
πu(An)ψ = lim

n

∑

hj∈s′

πu(δhj
)
∑

i

β
(n)
ik πu(δcik

)ψ

= lim
n

∑

hj∈s′

πu(δhj
)
∑

i

β
(n)
ik ψ ∈ πu(C∗(δs′))ψ ∀ψ ∈ H(p)

u .

Thus the restriction of O = πu(O) to H(p)
u is the same as the restriction of C∗(δs′) to H(p)

u (given
that C∗(δs′) ⊂ O). However, recall from Theorem 8.3 and the preceding remarks, that O/D =

R ∼= O H(p)
u = C∗(δs′) H(p)

u (with respect to the open projection P , we have H(p)
u = (1l −P )Hu).

Thus O = C∗(δs′) + D.
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