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This paper studies first-order differentiability properties of the value function in 

concave dynamic programs. Motivated by economic considerations, we dispense with 

commonly imposed interiority assumptions. We suppose that the correspondence of 

feasible choices varies with the vector of state variables, and we allow the optimal 

solution to belong to the boundary of this correspondence. Under minimal assumptions 

we show that the value function is continuously differentiable. We then discuss this 

result in the context of several economic models. 
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1 Introduction

Dynamic optimization problems are often analyzed by the methods of dynamic program-

ming – which build on properties of the value and policy functions. Although these

methods have been extensively studied, we should note the following important gap that

places this methodology really behind the static theory of constrained optimization: Gen-

eral results on the differentiability of the value function have only been established under

suitable interiority conditions. Therefore, differentiability properties of this function –

often needed for the characterization and computation of optimal solutions – cannot be

invoked in full–fledged constrained optimization problems.

Constrained optimization is pervasive in economics. Constraints may come in the

form of feasibility and technological conditions, individual rationality and incentive com-

patibility, transaction costs, borrowing limits and solvency restrictions, liquidity and

collateral requirements, as well as many other financial frictions. Standard assumptions

on utility and production functions do not prevent these constraints from being binding.

Indeed, a vast body of research in economic dynamics has focussed on effects of these

constraints on quantitative properties of equilibrium solutions.

In this paper we consider a general class of concave, discrete–time optimization prob-

lems in which the correspondence of feasible choices varies with the vector of state vari-

ables and the optimal solution may belong to the boundary of this correspondence. Under

minimal assumptions we show that the value function is continuously differentiable. We

then discuss this result in the context of some economic applications. We focuss on mod-

els of economic growth [Sargent (1980)], finance [Lucas (1978)], and dynamic contracts

[Kehoe and Levine (1993), Kocherlakota (1996) and Thomas and Worrall (1988)]. In all

these models the differentiability of the value function is key for the characterization,

analysis, and computation of optimal solutions. For the models of Kocherlakota (1996)

and Thomas and Worrall (1988), from differentiability properties of the Pareto frontier

we establish some deep results on the structure of constrained efficient allocations.

There is an alternative characterization of optimal solutions in terms of the Euler

equations and the transversality condition but this latter system of equations usually

becomes rather awkward [e.g., Stokey, Lucas and Prescott (1989)]. Dynamic program-

ming presents an attractive methodology for the analysis of optimization problems. The

differentiability of the value function is essential to extend the powerful tools of differ-
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ential calculus to the methodology of dynamic programming. In a recent paper, Araujo,

Pascoa and Torres–Mart́ınez (2006) study a family of non-smooth constrained optimiza-

tion problems, and nicely merge dynamic programming methods with duality theory.

We impose additional differentiability assumptions to get a sharper characterization of

an optimal solution that is more suitable for computation, and we obtain an explicit

expression for the derivative of the value function that may shed further insights into the

determinants of equilibrium prices and quantities. Moreover, by the welfare theorems

this derivative can be linked to equilibrium prices. Using the differentiability of the value

function, we show uniqueness of the system of Kuhn–Tucker multipliers for a concave

infinite-horizon optimization problem. This system of multipliers varies continuously

with primitive parameters.

Most available results on the differentiability of the value function rest upon a weak

interiority assumption which is generally subsumed under the following two conditions:

(i) The optimal solution lies in the interior of the choice set [e.g., see Benveniste and

Scheinkman (1979), and earlier, more restrictive results by Lucas (1978) and Mirman and

Zilcha (1975)], and (ii) the choice set does not vary with the vector of states [e.g., see the

seminal work of Danskin (1967), and Milgrom and Segal (2002) for further results and

economic applications]. Both (i) and (ii) turn out to be mathematically equivalent if the

policy function is continuous. Under these weak interiority conditions the differentiability

of the value function can then be established by a well–known static argument in which

this function is defined as the envelope of differentiable short–run return functions. For

non–interior solutions, however, the static envelope construction breaks down. Thus, in

the absence of (i) and (ii) the derivative of the value function may involve an infinite sum

of discounted marginal utilities and returns, and to bound this derivative the asymptotic

behavior of these discounted marginal quantities must be “well behaved”.

In our analysis of the differentiability of the value function we introduce two further

fundamental assumptions: A rank condition on the matrix of partial derivatives of the

saturated constraints and an asymptotic condition on the behavior of discounted marginal

utilities and returns. Both assumptions are indispensable and are only needed for non–

interior solutions. The rank condition is familiar from the static theory [Gauvin and

Dubeau (1982)]. The asymptotic condition is vacuously satisfied in static optimization

problems.

The paper is structured as follows. In Section 2 we set out an abstract (reduced–
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form) optimization problem, and recall some basic results from dynamic programming.

In Section 3 we present our main results on the differentiability of the value function. In

Section 4 we consider several economic applications to illustrate the applicability of our

results and the role of our main assumptions. We conclude in Section 5 with some final

comments. The Appendix contains all the proofs.

2 The Model and Preliminary Considerations

As in many other related papers, we lay out an abstract optimization framework that

encompasses various economic models. For the sake of simplicity, our analysis will focuss

on a deterministic discrete–time problem but our results can be extended to stochastic

and continuous–time models.

The primitive elements of our optimization problem are given by a correspondence of

feasible choices Γ : X −→ 2X on a state space X ⊂ Rn, with Ω = Graph(Γ) as the choice

set, a one–period return function U : Ω −→ R, and a discount factor 0 < β < 1. Then,

for every initial condition x0 the problem is to find a sequence {xt}t≥1 that solves the

following discounted infinite–horizon program:

v(x0) = sup
{xt}t≥1

∞∑
t=0

βtU(xt, xt+1)

s.t. xt+1 ∈ Γ(xt), t = 0, 1, 2, . . . , (1)

x0 fixed.

We shall often identify optimization problem (1) with the collection of its primitive

elements (X, Γ, Ω, U, β).

2.1 Basic assumptions

The following basic assumptions will always be in force. Further specific assumptions

will be introduced as we proceed with the analysis.

B1: The state space X is a closed and convex set with nonempty interior.

B2: The correspondence Γ is continuous and compact–valued. Its graph Ω is a convex

set.
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B3: The utility function U is concave and continuous. Moreover, for every fixed x

function U(x, y) is strictly concave in y.

2.2 Value and policy functions

These basic assumptions do not insure that the value function v(x0) in (1) takes on

finite values. Hence, in the sequel we simply suppose that function v : X −→ R is

well defined and continuous. Then, for every initial condition x0 there exists a unique

sequence {xt}t≥1 that solves the above discounted infinite–horizon program. As is well

known, function v is concave, and the unique fixed point of the Bellman equation

v(x) = max
y∈Γ(x)

{U(x, y) + βv(y)} (2)

for all x ∈ X. The maximum value is attained at a unique point y given by the policy

function, y = h(x). Function h : X −→ X is continuous. A sequence {xt}t≥0 solves

optimization problem (1) if and only if xt+1 = h(xt) for all t ≥ 0. Hence, Bellman’s

equation characterizes completely the set of optimal solutions to the infinite–horizon

program (1).

In applications it becomes of considerable interest to explore analytical properties

of the value and policy functions. These analytical properties are often established by

the method of successive approximations : For an initial guess v0 let each function vT be

defined recursively as

vT (x) = max
y∈Γ(x)

{U(x, y) + βvT−1(y)} (3)

for all T ≥ 1. Under mild regularity conditions [Le Van and Morhaim (2002) and Rincón–

Zapatero and Rodŕıguez-Palmero (2003)], the sequence {vT}T≥0 converges uniformly to

function v on every compact set K ⊂ X. In the proofs of our main results we operate

directly with the Bellman equation (2), but these results may also be established by

approximating the value function v by infinite sequences {vT}T≥0 generated recursively

by (3).

3 Differentiability of the Value Function

Barring a few isolated studies [e.g., Sargent (1980), Huggett and Ospina (2001)], available

results on the differentiability of class C1 of the value function v rely on the following
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interiority assumption: If y0 = h(x0) then there exists an open neighborhood N(x0) of

point x0 such that y0 ∈ Γ(x) for every x ∈ N(x0). In other words, this interiority assump-

tion asserts that every optimal solution y0 = h(x0) must be feasible for every point x in

an open neighborhood of x0. The assumption is trivially satisfied if the correspondence

Γ(x) does not vary with x [Danskin (1967)] or if the policy function is continuous and

y0 ∈ int(Γ(x0)) [Benveniste and Scheinkman (1979)]. Under this interiority assumption,

function v can be defined as the envelope of short–run, C1 functions and by concavity

this function is of class C1.

There are, however, many economic models displaying non–interior solutions and

in which the feasible correspondence Γ(x) depends on the initial state x. In growth

theory, technological constraints are usually binding in models with adjustment costs,

irreversible investment, or when the optimal consumption choice equals zero. There

is also a growing, vast literature in macroeconomics and finance that considers models

of heterogeneous agents with market frictions and borrowing and liquidity constraints.

A main goal of this literature is to understand the effects of these restrictions on the

evolution of equilibrium aggregates. Steady–state dynamics will only be affected if these

restrictions bind infinitely often. As a matter of fact, the existence of a stochastic steady

state may entail that borrowing constraints must always be binding in some states of

nature [Huggett and Ospina (2001)].

As shown below, for non–interior solutions the derivative of the value function v may

be determined by an infinite sum of discounted marginal utilities and returns. Hence, in

contrast to the interior case the derivative of v cannot be calculated from a simple static

problem, and to bound this derivative it becomes necessary to restrict the asymptotic

behavior of the discounted marginal utilities and returns. A simple example below illus-

trates that the derivative of v may be unbounded even if the derivatives of the utility

and production functions are bounded.

3.1 Main results

To establish that function v is of class C1, we require differentiability of the return

function U , and some regularity conditions for boundary solutions. These conditions

include a qualification constraint transported from the static theory [Gauvin and Dubeau

(1982)], and an asymptotic restriction on the discounted utility of a marginal unit invested
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today. This latter condition is specific to the infinite–horizon model and it is only needed

for those optimal paths {xt}t≥0 such that (xt, xt+1) belongs to the boundary of Ω for all

t ≥ 0.

D1: For every point x ∈ int(X) function U is of class C1 on some open neighborhood

N(x, h(x)) of (x, h(x)).

This assumption implies that at every point (x, h(x)) with x ∈ int(X) the gradient

vector DU(x, h(x)) does exist. The assumption is necessary for the derivative Dv(x) to

be well defined. Note that if h(x) belongs to the boundary of Γ(x) then D1 requires that

U admits a differentiable extension over some open neighborhood N(x, h(x)).

D2: h(X) ⊂ int(X).

This simple assumption may be weakened in applications. The assumption may be

innocuous if the set X can be appropriately redefined, i.e., the domain could be restricted

or expanded so that it is not optimal to reach its boundary. Furthermore, as shown

below (see Figure 1) if D2 is violated, then the derivative of the value function may get

unbounded at boundary points of X.

D3: There is a finite collection of functions g = (. . . , gi, . . .) such that Ω = {(x, y) ∈
Rn × Rn : g(x, y) ≥ 0}. Each function gi : Rn × Rn −→ R is concave and of class

C1. Let I(x) = {i : gi(x, h(x)) = 0} denote the set of saturated constraints, and let s

denote the cardinality of I(x). Then for all x the rank of the matrix of partial derivatives

{D2g
i(x, h(x)) : i ∈ I(x)} must be equal to s.

Hence, by D3 the graph of the technological correspondence Ω is a polyhedral set

as it is defined by a finite number of concave functions. As is well understood from

the static theory, the full rank condition entails that the number of choice variables

cannot be less than that of saturated constraints. This constraint qualification is more

restrictive than the usual Slater condition, which simply requires that the feasible set

Γ(x) has non–empty interior. The condition will imply that the Kuhn–Tucker multi-

pliers are unique since the above matrix of partial derivatives can be inverted in a cer-

tain generalized sense. More specifically, let D2gs(x, h(x)) refer to the matrix of partial

derivatives of the saturated constraints {D2g
i(x, h(x)) : i ∈ I(x)}. Then, D2gs(x, h(x))
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has a Moore–Penrose inverse D2g
+
s = D2g

>
s (D2gsD2g

>
s )−1 at every (x, h(x)), where

D2g
>
s (x, h(x)) denotes the transpose matrix. In all our computations below, we let

G(xt, xt+1) = [−D2g
+
s (xt, xt+1)|0n×(m−s)]D1g(xt, xt+1), where for convenience the satu-

rated constraints are listed first. It should be understood that if xt+1 ∈ int(Γ(xt)) then

G(xt, xt+1) = 0.

Let ∂v(x) be the superdifferential of concave function v at x. Recall that the superdif-

ferential is well defined at every interior point x [Rockafellar (1970)]. Moreover, function

v is differentiable at x if and only if the superdifferential at x is a singleton. Also, if v

is differentiable on a neighborhood N(x) then it is continuously differentiable on N(x).

Let bd(Ω) denote the boundary of Ω, and ‖ · ‖ the Euclidean norm.

D4: Let {xt}t≥0 be an optimal solution. Assume that (xt, xt+1) ∈ bd(Ω) for all t ≥ 0.

Then

(i) If X is a bounded set,

lim sup
t→∞

β‖G(xt, xt+1)‖ < 1. (4)

(ii) If X is an unbounded set,

lim inf
t→∞

(
βt max

qt∈∂v(xt)

∥∥∥qt ·
t−1∏
s=0

G(xt−s−1, xt−s)
∥∥∥) = 0. (5)

Assumption D4 will be discussed below in the context of some applications. D4(i) can

actually be restated in the weaker form: lim inft→∞ βt‖
∏t−1

s=0 G(xt−s−1, xt−s)‖ = 0. For

some simple models this limiting condition often reduces to β(1 + r) < 1, where r is the

constant interest rate. For an unbounded domain X condition (4) may preclude growth,

and hence it is replaced by the corresponding condition (5), which is a joint assumption

on preferences and technology. Joint assumptions on preferences and technology are

postulated in the endogenous growth literature to ensure the existence of an optimal

path.

If there is a time T such that xT+1 ∈ int(Γ(xT )), then D4 is not needed since differ-

entiability can be established from the static theory.

Proposition 1 Let a feasible optimization problem (X, Γ, Ω, U, β) satisfy B1–B4 and

D1–D3. Let {xt}t≥0 be an optimal path with x0 ∈ int(X). Assume that there exists a first

8



time T ≥ 0 such that xT+1 ∈ int(Γ(xT )). Then, the value function v is differentiable of

class C1 on a neighborhood N(x0) of x0. The derivative of v at x0 is defined as

Dv(x0) = D1U(x0, x1)

+
T−1∑
t=0

βt
(
βD1U(xt+1, xt+2) + D2U(xt, xt+1)

) t−1∏
s=0

G(xt−s−1, xt−s).
(6)

Of course, for T = 0 we get the standard envelope theorem Dv(x0) = D1U(x0, x1).

But it should be noted that for T > 0 this result requires the constraint qualification D3

– which applies to those optimal pairs (xt, xt+1) that belong to the boundary of Ω.

Theorem 1 Let a feasible optimization problem (X, Γ, Ω, U, β) satisfy B1–B4 and D1–

D4. Then, function v : int(X) −→ R is differentiable of class C1. The derivative of v at

an interior point x0 is defined as

Dv(x0) =
∞∑

t=0

βt

((
D1U(xt, xt+1) + D2U(xt, xt+1)G(xt, xt+1)

) t−1∏
s=0

G(xt−s−1, xt−s)

)
(7)

for every optimal path {xt}t≥0 with x0 ∈ int(X).

Our strategy of proof for Theorem 1 is to show that at every interior point x0 the

superdifferential ∂v(x0) is a singleton, and hence by concavity function v is differentiable

of class C1 on int(X). To this end, we prove the following technical result which can be

viewed as a generalized version of the envelope theorem for concave functions (Theorem

7 and Proposition 3 in the Appendix): q0 ∈ ∂v(x0) if and only if there exists some

q1 ∈ ∂v(h(x0)) such that

q0 = D1U(x0, h(x0)) + (D2U(x0, h(x0)) + βq1)G(x0, h(x0)). (8)

Then, using an iterative argument we substantiate uniqueness of q0 as given by expression

(7).

As already pointed out, for the differentiability of v assumptions D1 and D3 are indis-

pensable. Both assumptions are taken from the static optimization theory. Assumption

D2 may be weakened in specific economic applications. D4 is also a sufficient condition

to ensure that the infinite sum in (7) is well defined and equal to the derivative Dv(x0).

In Section 4 below we will check D3–D4 in some economic applications.
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We next show that a slightly weaker form of D4 is actually necessary for v(x) to

be well defined. For this simple result we assume that G(x, h(x)) and D1U(x, h(x)) +

D2U(x, h(x))G(x, h(x)) are non–negative numbers. As discussed below, these non–

negativity conditions are satisfied in standard models of economic growth.

Proposition 2 Let X ⊂ R. Let {xt}t≥0 be the optimal solution starting at x0 ∈ int(X).

Assume that (xt, xt+1) ∈ bd(Ω) for every t ≥ 0. Let G(xt, xt+1) ≥ 0 and D1U(xt, xt+1) +

D2U(xt, xt+1)G(xt, xt+1) ≥ 0 for all (xt, xt+1). Then, under B1–B4 and D1–D3 we have:

(i) If X is a bounded set,

lim inf
t→∞

βG(xt, xt+1) ≤ 1. (9)

(ii) If X is an unbounded set, there exists a constant η ≥ 0 such that

lim sup
t→∞

(
βt min

qt∈∂v(xt)
qt ·

t−1∏
s=0

G(xt−s−1, xt−s)
)
≤ η. (10)

The necessity of these conditions stems from the concavity of the value function,

since at an interior point x0 every concave function must have well–defined directional

derivatives [Rockafellar (1970)]. For some simple models condition (9) often reduces to

β(1+r) ≤ 1, where r is the constant interest rate. Hence, our sufficient conditions (4)–(5)

are slightly stronger than (9)–(10). These sufficient conditions ensure that the derivative

of the value function Dv(x0) is given by expression (7).

3.2 Duality theory

As a simple application of Theorem 1 we now show that for every optimal path there

exists a unique set of Kuhn-Tucker multipliers satisfying the Euler equations and the

transversality condition. The existence of these multipliers can be established in a simple

way by an induction argument on Bellman’s equation [Weitzman (1973)], but uniqueness

has remained an open issue because of the complexity involved in these equations. By

the welfare theorems, the uniqueness of the multipliers entails that an optimal allocation

is just supported by a unique price system.

Let us rewrite Bellman’s equation as

v(x) = max
y
{U(x, y) + βv(y) + λ(x)g(x, y)}
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where λ(x) is a non-negative vector of Kuhn-Tucker multipliers. By our generalized

version of the envelope theorem (see Theorem 7 below) the derivative of the value function

Dv(x) is given by

Dv(x) = D1U(x, h(x)) + λ(x)D1g(x, h(x)) (11)

for every λ(x) such that

D2U(x, y) + βDv(y) + λ(x)D2g(x, y) = 0. (12)

Observe that the above expression (8) readily follows from (11) after substituting

out λ(x) from (12). Moreover, from these equations we can see informally the role of

assumption D3: If the matrix of derivatives of the saturated constraints D2gs(x, y) has

full rank then (12) implies that the vector of multipliers λ(x) is unique. Consequently, if v

is differentiable at h(x) then there is a unique multiplier λ(x) and so the superdifferential

∂v(x) must contain a unique vector.

Let {xt}t≥0 be an optimal path. If the value function v is differentiable, then by

conditions (11) and (12) evaluated over these optimal values we can derive the following

system of Euler equations

D2U(xt−1, xt) + λt−1D2g(xt−1, xt) + β[D1U(xt, xt+1) + λtD1g(xt, xt+1)] = 0, (13)

where λt ≥ 0 and g(xt, xt+1) ≥ 0 with λtg(xt, xt+1) = 0, for all t = 1, 2, · · · . To this

system of equations we also need to append a transversality condition. For simplicity,

let us assume that X is a compact set. Then, let

lim
T→∞

βT [D1U(xT , xT+1) + λT D1g(xT , xT+1)] = 0. (14)

As is well known [cf. Benveniste and Scheinkman (1982)], both (13)–(14) are sufficient

conditions for the characterization of an optimal path {xt}t≥0.
1

Theorem 2 Assume that X is a compact set. Under the conditions of Theorem 1,

for every optimal path {xt}t≥0 there exists a unique system of Kuhn-Tucker multipliers

{λt}t≥0 satisfying (13)–(14).

1The extension of our uniqueness result below to an unbounded domain X requires some further mild

regularity conditions. The non–negativity conditions of Proposition 2 allow for a simple extension of the

transversality condition to unbounded domains, e.g., see Benveniste and Scheinkman (1982).
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This result can be viewed as an envelope theorem for concave infinite-horizon opti-

mization. Indeed, by (11)–(12) we can construct a system of Kuhn-Tucker multipliers

{λt}t≥0 that satisfies the Euler equations (13) and the transversality condition (14). Then,

Theorem 2 completes the other direction: The system of multipliers {λt}t≥0 satisfying the

Euler equations (13) and the transversality condition (14) is unique and can be generated

by the derivative of the value function Dv as given by (11)–(12).

3.3 Sensitivity

In many economic applications it is of interest to establish that the derivative of the

value function varies continuously with perturbations of the model. By (11)–(12) the

derivative of the value function determines the dynamics of the state variables and the

corresponding system of shadow values. We now prove a simple result on the continuity of

the derivative of the value function with respect to approximations of the return function.

(Similar results on the continuity of the derivative of the value function will also hold for

other primitive components.) By Theorem 2 this continuity result applies to the unique

system of Kuhn-Tucker multipliers {λt}t≥0 satisfying the Euler equations (13) and the

transversality condition (14).

For simplicity, we focuss on perturbations on the return function U under the sup

norm. For given two functions U and Un let ‖U − Un‖ = sup(x,y)∈Ω ‖U(x, y)− Un(x, y)‖.
Convergence in the sup norm is known as uniform convergence in the space of functions.

Let vn refer to the value function of an optimization problem (X, Γ, Ω, Un, β)

Theorem 3 Let all feasible optimization problems (X, Γ, Ω, U, β) and {(X, Γ, Ω, Un, β)}n≥0

satisfy assumptions B1–B4 and D1–D4. Assume that the sequence of functions {Un}n≥0

converges uniformly to function U . Then, the sequence of value functions {vn}n≥0 con-

verges uniformly to the original value function v, and the sequence of derivative functions

{Dvn}n≥0 converges uniformly to the derivative Dv on every compact set K ⊂ X.

This theorem is a strengthening of Theorem 1 as it also ensures the continuity of the

derivative with respect to primitive parameters. As in our preceding analysis, concavity

is essential for this result. Observe that if a sequence of C1 concave functions {Un}n≥0

converges uniformly to a C1 function U , the sequence of derivative functions {DUn}n≥0

converges uniformly to the derivative function DU on every compact set K ⊂ X [cf.
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Rockafellar (1970, Theorem 25.7)].2 Then, we show that the corresponding sequence of

value functions {vn}n≥0 converges uniformly to the value function v, and the sequence

of derivative functions {Dvn}n≥0 converges uniformly to the derivative function Dv on

every compact set K ⊂ X.

4 Applications

Envelope theorems are often encountered in the analysis of dynamic economic models. We

study the differentiability of the value function in some simple models of economic growth,

finance, and dynamic contracts. Other areas of economics using recursive optimization

include monetary theory, taxation, labor, and industrial organization. It should also be

clear that these results readily extend to stochastic models with a finite number of states

of uncertainty at each date.

4.1 A simple growth model

We first consider the differentiability of the value function in the standard one-sector

model with irreversible investment. This problem was originally studied by Sargent

(1980). We show that the derivative of the value function is well defined at every positive

capital stock, but it may get unbounded as this stock approaches zero. Let

v(x0) = max
∞∑

t=0

βtu(ct)

s.t. ct + xt+1 = f(xt),

xt+1 ≥ (1− δ)xt, t = 0, 1, 2, . . . ,

x0 fixed, 0 < β < 1.

The utility function u : R+ −→ R and the production function f : R+ −→ R+ are

both increasing, strictly concave and of class C1. Moreover, f(0) = 0 and limx→∞ βf ′(x) <

1. From these primitive functions, the return function U : R+ × R+ −→ R is de-

fined as U(x, y) = u(f(x) − y) and the feasible correspondence Γ : R −→ 2R+ as

Γ(x) = [(1 − δ)x, f(x)]. The graph of correspondence Γ(x) is bordered by two concave

2Actually, the uniform convergence of the sequence of derivatives {DUn}n≥0 on a compact set K

holds under pointwise convergence of the sequence {Un}n≥0; see Rockafellar (1970, Theorem 25.7).
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functions g1(x, y) = f(x) − y ≥ 0 and g2(x, y) = −(1 − δ)x + y ≥ 0. Both constraints

depend on state variable x. Hence, the standard envelope theorem cannot be applied if

any of these constraints is saturated.

Let us first consider boundary solutions of the form y = h(x) = f(x), where c = 0

and G(x, y) = f ′(x). Then, as the optimal policy is monotone, condition (4) in D4 reads

simply as

lim
t→∞

βf ′(xt) < 1.

But D4 is trivially satisfied since an optimal solution {xt}t≥0 cannot stay at the upper

boundary at all times: There must be a time T such that cT > 0.3 Also, for h(x) = f(x)

we have D1U(x, h(x)) + D2U(x, h(x))G(x, h(x)) = u′(0)f ′(x) − u′(0)f ′(x) = 0. Hence,

the non-negativity restriction of Proposition 2 is always satisfied. As this value is equal

to zero it follows from (8) that

v′(x) = βv′(h(x))f ′(x). (15)

Moreover, by (12) we must have u′(0) ≤ βv′(f(x)). Then, iterating on (15) we get

v′(x0) = βT v′(xT )(fT )′(x0), (16)

where T is the first time that cT > 0. By the envelope theorem v′(xT ) = u′(cT )f ′(xT ) for

xT+1 > (1− δ)xT ,.

So far, our discussion for boundary solutions of the form h(x) = f(x) has centered on

positive initial conditions x > 0. We now illustrate that in the absence of D2 for x = 0

the derivative v′(0) may be unbounded even if u′(0) and f ′(0) are finite. Suppose that

βf ′(0) > 1 and limx→∞ βf ′(x) < 1. Then, there is a unique, stable steady-state solution

(x∗, c∗). Let us furthermore assume that u′(0) < βu′(c∗)f ′(0). (This last condition is

satisfied if the curvature of u is sufficiently small.) Under the postulated conditions

βf ′(0) > 1 and u′(0) < βu′(c∗)f ′(0) it is readily seen (Figure 1) that for every x in a

small neighborhood of 0 we have h(x) = f(x), and so (15) holds true. Let T (x0) be

the first time that optimal consumption cT > 0 for initial condition x0. Then T (x0)

converges to ∞ as x0 goes to 0. As βf ′(0) > 1 and cT ≤ c∗, we get from (16) that v′(x0)

gets unbounded as x0 converges to zero.

3Note that the related condition limx→∞ βf ′(x) < 1 ensures existence of a steady-state solution

(x∗, c∗).
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If constraint g2 is saturated, then G(x, y) = 1−δ. Hence, condition (4) in D4 is always

satisfied for this kind of boundary solutions as β(1 − δ) < 1. Differentiating Bellman’s

equation (2) for h(x) = (1 − δ)x we get v′(x) = u′(f(x) − (1 − δ)x)[f ′(x) − (1 − δ)] +

β(1−δ)v′((1−δ)x). Consequently, if over an optimal path {xt}t≥0 constraint g2(xt, xt+1) is

saturated at all times, then the derivative of the value function is determined by an infinite

sum of marginal values. More precisely, v′(x0) =
∑∞

t=0 βt(1− δ)tu′(ct)(f
′(xt)− (1− δ)).

For deterministic models only very restrictive conditions ensure that an optimal solution

{xt}t≥0 will always be at the lower boundary g2(x, y) ≥ 0. But for some stochastic

models [Sargent (1980) and Christiano and Fisher (2000)] after a large negative shock

the irreversibility constraint may be binding. Our results can readily be extended to

cover these stochastic models.

To complete the argument that D4 holds true in this model, we now observe that there

are no other boundary solutions: There is no optimal path {xt}t≥0 in which constraint

g1(x, y) ≥ 0 is saturated at some time periods and constraint g2(x, y) ≥ 0 is saturated

at some other periods. Indeed, if βf ′(0) > 1 then there exists a globally stable interior

steady-state solution (x∗, c∗). And if βf ′(0) ≤ 1 then all optimal paths {xt}t≥0 converge

to x = 0, and at most constraint g2(x, y) ≥ 0 is saturated.

It is now readily seen that the above assumptions D1 and D3–D4 are all satisfied in

the present model. D2 is not satisfied in this model as f(0) = 0. However, as suggested

in our commentary after D2 if the domain can be changed slightly to X = [x,∞) where

x > 0 is an arbitrarily small number, then D2 simply requires βf ′(0) > 1. But even

if βf ′(0) ≤ 1 assumption D2 is not really needed since for this model our method of

proof directly yields the differentiability of v at every interior point x0. Therefore, by a

straightforward extension of Theorem 1 we have that the value function v is differentiable

at every interior point x0.

4.2 Growing economies

Suppose now that f(x) = Ax+(1−δ)x. If A+(1−δ) > 1, then every optimal path {xt}t≥0

with x0 > 0 must be unbounded. For simplicity, let u(c) = c1−σ

1−σ
with ∞ > σ > 0. It is

easy to check that the objective in the above one-sector growth model will be unbounded

if β(A+(1− δ))1−σ > 1. In short, in growing economies the existence of an optimal path

is usually achieved under joint restrictions on preferences and productivity.
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For these economies D4(i) is not suitable, and D4(ii) is the corresponding condition

that allows for growth over time. If u(c) = c1−σ

1−σ
and the production function is linear,4

then the value function v is homogeneous of degree 1 − σ and the superdifferential of v

is homogeneous of degree −σ. Under this homogeneity property of the superdifferential,

condition D4(ii) can be easily checked. Indeed, for A+(1−δ) > 1 with β(A+(1−δ))1−σ <

1, condition D4(ii) will be satisfied for every optimal solution {xt}t≥0 that grows at a

rate g with 1 + g ≤ Ax + (1 − δ) since β(1 + g)1−σ < 1. Therefore, D4(ii) allows for

positive growth at the cost of imposing joint restrictions on preferences and technologies.

These joint restrictions are usually postulated for the optimization problem to be well

defined.

4.3 Finance

Since the influential work of Lucas (1978), the derivative of the value function has been

widely used for the pricing of assets and the study of their dynamic properties. Our

results are useful to integrate various types of financial constraints and market frictions.

Most of our remarks on the differentiability of the value function for models of economic

growth can be applied directly to asset pricing models. Hence, our discussion will be

brief.

As already pointed out, the standard envelope theorem can be applied for interior

solutions or for fixed choice sets such as for predetermined borrowing limits, short-sale

constraints, and further exogenous bounds on asset trading. Our work is meant to deal

with financial constraints which vary endogenously with the vector of state variables.

For instance, think of models with cash-in-advance constraints, reserve and collateral re-

quirements, and various other liquidity restrictions. Since most of these models allow for

active asset trading and portfolio reallocation, the non-interiority restrictions imposed

by these constraints may only last for one period until the portfolio can be reallocated.

Hence, there could be no boundary solutions in the sense of D4, and the differentiability

of the value function follows from Proposition 1. There are, however, endogenous finan-

cial restrictions in which D4 may become relevant. These restrictions may arise from

solvency and participation constraints, reputation and learning. Kiyotaki and Moore

(1997) are concerned with propagation effects of collateral requirements arising from a

4Linearity of the production function is needed for the existence of a balanced growth path.
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participation constraint. In this model the optimal strategy for the investor is always

to reinvest all marketable dividends and to consume the non-marketable part. Thus,

even though consumption is positive the optimal solution is always at the boundary of

feasible investment. Alvarez and Jermann (2000) present an asset pricing model with a

non-default participation constraint as set forth by Kehoe and Levine (1993). This par-

ticipation constraint is analyzed in the following application for a consumption allocation

problem.

4.4 Constrained efficient allocations

Constrained efficient allocations are of interest for the characterization and computation

of equilibrium solutions in non-optimal economies [Cass (1984) and Kehoe and Levine

(1993)]. We study the differentiability of the Pareto frontier for the models of Kocher-

lakota (1996) and Thomas and Worrall (1988). The proof of Thomas and Worrall (1988)

replicates the envelope argument of Benveniste and Scheinkman (1979). This method of

proof, however, is of limited application for this family of models since the choice set may

vary with the state variables. Koeppl (2003) considers a simple version of Kocherlakota’s

model in which the value function is not always differentiable.

As an extension of the above results, here we offer a complete analysis of differentia-

bility. The differentiability of the value function rests on a certain number of constraints

not being saturated/binding.5 Roughly speaking, for Kocherlakota’s model the value

function fails to be differentiable at those utility levels in which the maximum possible

number of constraints are binding. By the concavity of the value function we then show

that for every point in a subset of full measure of the Pareto frontier there is some state

s such that none of the participation constraints are binding and the value function is

continuously differentiable. Hence, non-differentiability of the value function can only

occur at “switching” points where a maximum possible combination of constraints are

saturated/binding. This information is valuable to understand the dynamics of efficient

allocations in constrained optimization problems. We would like to remark that these re-

sults can be extended to some other models with incentive and participation constraints

5As before, we say that a constraint gi(x, h(x)) ≥ 0 is saturated if gi(x, h(x)) = 0. A constraint

gi(x, h(x)) ≥ 0 is binding if there is an associated Kuhn-Tucker multiplier λi(x) > 0, for λi(x) defined

as in (12). Note that by the Kuhn-Tucker theorem if a constraint is binding then it is saturated, but a

saturated constraint may not be binding.

17



[e.g., the unemployment insurance model of Hopenhayn and Nicolini (1996) and several

other models discussed in Ljungqvist and Sargent (2004)].

The special structure of the optimization allows for a direct proof without resorting

to assumption D4. In pure exchange economies this assumption usually holds trivially.

We identify the lack of differentiability of the value function with a failure of assump-

tion D3. All the constraints are analytically quite similar as they entail certain utility

requirements. Hence, the matrix of partial derivatives as defined in D3 becomes singular

at points in which a maximum number of constraints become saturated. We should note

that these singularities on the matrix of derivatives may be circumvented by seemingly

marginal changes in the formulation of the model. Thus, two nearly equal formulations

may yield quite different outcomes regarding the differentiability of the value function

and the dynamics of optimal allocations. The models of Kocherlakota (1996) and Thomas

and Worrall (1988) differ in the timing for the participation constraints and the degree of

risk aversion. What turns out to be crucial for the differentiability of the value function

in this setting is the timing of events rather than the presence of a risk neutral agent.

We start with a simple version of Kocherlakota’s model. Consider an exchange econ-

omy with two agents 1 and 2. There are s = 1, . . . , S states at each date t = 1, 2, . . . . For

simplicity, assume that the aggregate quantity of output ω is constant, but individual

endowments ωi(s) > 0, for i = 1, 2, are subject to idiosyncratic shocks. For present

purposes there is no restriction of generality to suppose that the endowment streams

{{ωi
t(s)}t≥0}i=1,2 are symmetrically distributed and follow an iid process. Let π(s) > 0

denote the time-invariant probability for each state s.

Both agents have identical preferences represented by the discounted expected objec-

tive E0

∑∞
t=0 βtu(ct(s)), where E0 denotes conditional expectation at time t = 0. The

one-period utility u : R+ −→ R is increasing, strictly concave, and continuously differen-

tiable.

Let Uaut = E0

∑∞
t=0 βtu(ωi

t(s)) be the reservation utility generated by the consumption

of the endowment stream {ωi
t(s)}t≥0 for every agent i. We then require that at each

date and state an individual consumption allocation must at least secure the agent’s

reservation utility. This individual rationality constraint seems a minimal requirement

for loan repayments and other contractual obligations so that no agent will have incentives

to renege the contract at some future date [Kehoe and Levine (1993)]. As most of the

literature, we trace down the set of efficient consumption allocations by a social planning
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program in which the value function V (U0) assigns the maximum utility to an agent (say

agent 2) over all possible utility levels U0 of the other agent. More precisely, let

V (U0) = max{(c1t (s),c2t (s))} E0

∑∞
t=0 βtu(c2

t (s))

s.t. E0

∑∞
t=0 βtu(c1

t (s)) ≥ U0,

u(c1
t (s)) + Et

∑∞
τ=1 βτu(c1

t+τ (s)) ≥ u(ω1(s)) + βUaut for all t and s,

u(c2
t (s)) + Et

∑∞
τ=1 βτu(c2

t+τ (s)) ≥ u(ω2(s)) + βUaut for all t and s,

c1
t (s) + c2

t (s) = ω for all t and s,

where Et is the expectations operator at time t. The graph of function V (U0) defines

the Pareto frontier, that is, all feasible non-dominated utility pairs (U0, V (U0)). Let

Umax = V (Uaut). In the sequel we assume that the Pareto frontier is non-degenerate,

that is, Umax > Uaut. Then, one readily checks that function V : [Uaut, Umax] −→ R is

well defined, decreasing, concave and continuous.

By the optimality principle applied to this optimization problem, we get the following

version of Bellman’s equation:

V (U0) = max{cs,Us}
∑S

s=1 πs[u(ω − cs) + βV (Us)]

s.t.
∑S

s=1 πs[u(cs) + βUs] ≥ U0, (P1)

u(cs) + βUs ≥ u(ω1
s) + βUaut for all s, (P2)

u(ω − cs) + βV (Us) ≥ u(ω − ω1
s) + βUaut for all s, (P3)

Us ∈ [Uaut, Umax] for all s.

Note that the value function V also appears in constraint (P3), but this does not com-

plicate substantially the application of our methods. Assuming that V is differentiable

and that all optimal solutions {cs, Us} lie in the interior, we get the following system of

first-order conditions

0 = −πsu
′(ω − cs) + λπsu

′(cs) + µsu
′(cs)− νsu

′(ω − cs), (17)

0 = βπsV
′(Us) + λβπs + µsβ + νsβV ′(Us), (18)

where λ, {µs}s, and {νs}s are Kuhn-Tucker multipliers corresponding to the constraints

(P1), (P2), and (P3), respectively, for all s.

For given U0, let S2(U0) be the subset of states s where constraint (P2) is saturated,

and Sb
2(U0) the subset of states s where constraint (P2) is binding. That is, S2(U0) is

the subset of states s where constraint (P2) holds with equality at the optimal solution
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{cs, Us}, and Sb
2(U0) is the subset of states s with some µs > 0. Analogously, let S3(U0)

be the subset of states s where constraint (P3) is saturated and Sb
3(U0) be the subset

of states s where constraint (P3) is binding. Under the present assumptions, (P1) will

always be binding. Also, it is easy to show that the intersection S2(U0)∩S3(U0) is empty

[cf., Kocherlakota (1996)]. Hence, for each s there is at most one constraint (P2) or (P3)

that is saturated.

D3’: S2(U0) ∪ Sb
3(U0) 6= S and Sb

2(U0) ∪ S3(U0) 6= S.

We first show that both S2(U0) and S3(U0) are always proper subsets of S. Moreover,

the value function V is differentiable at an interior point U0 if and only if D3′ is satisfied.

Theorem 4 Let U0 ∈ int([Uaut, Umax]). Then, S2(U0) 6= S and S3(U0) 6= S. The value

function V is differentiable of class C1 at U0 if and only if D3′ is satisfied. At points of

differentiability, the derivative

V ′(U0) = −u′(ω − cs)

u′(cs)
,

for every state s where none of the constraints (P2)–(P3) are binding.

Remark 1 As one can see from the method of proof of Theorem 4, the full rank condition

in D3 is equivalent to the condition: S2(U0) ∪ S3(U0) 6= S. But one should bear in mind

that this qualification constraint is a sufficient condition. Given the special structure of

our optimization problem, D3 can be sharpened. The necessary and sufficient condition

for Kocherlakota’s model is D3′. Under this latter condition there is a unique λ as deter-

mined by the equations system (17)–(18) and so the derivative V ′(U0) = −λ. Note that

D3′ can be defined as: (i) S2(U0) ∪ S3(U0) 6= S or (ii) for S2(U0) ∪ S3(U0) = S there

must be some non-binding constraint in S2(U0) and some other non-binding constraint

in S3(U0). Hence, D3′ is slightly weaker than S2(U0) ∪ S3(U0) 6= S. We would like to

emphasize that the condition Sb
2(U0) ∪ Sb

3(U0) 6= S leaves out some cases in which V is

not differentiable, and hence this condition is not adequate for our purposes. A main

advantage of working with a necessary and sufficient condition for the differentiability of

V is that the condition must hold generically. That is, by concavity the value function

V is differentiable at almost all U0. Hence, D3′ must be satisfied at almost all U0. As

illustrated presently, this result allows us to prove that the value function V is of class C1
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over certain regions of the domain and to study further dynamic properties of constrained

efficient allocations.

Following Koeppl (2003), let us discuss these results for the model with two states,

s = a, b. Suppose that ω1(a) > ω2(b), so that a is the good state for agent 1 and b is the

good state for agent 2. We first observe that S2(U0) 6= S and S3(U0) 6= S for every interior

point U0. Suppose not. Thus, let S2(U0) = S. Then, πa[u(ca) + βUa] + πb[u(cb) + βUb] =

Uaut, which violates (P1), since we have assumed that U0 > Uaut. Therefore, S2(U0) 6= S

and S3(U0) 6= S. Also, observe that if no constraint is binding over the states s = a, b,

then the multipliers {µs}s, and {νs}s are always equal to zero. By (18), we get that

−λ = V ′(U0) = V ′(Ua) = V ′(Ub). Hence, the consumption allocation is always constant

{(c, ω − c)} and so it must be first-best efficient.6

Suppose now that no first-best consumption allocation is attainable. Then, for every

interior utility level U0 at least one constraint (P2) or (P3) must be binding at some state

s. Let Û be the fixed point Û = V (Û) where both agents are assigned the same utility

level. Consider a utility level Uaut < U0 < Û . If the value function V is differentiable, then

we claim that Sb
2(U0) = {a} and S3(U0) is empty. Note that if function V is differentiable,

by Theorem 4 we must have Sb
2(U0) ∪ S3(U0) 6= S; moreover, since U0 < Û , constraint

(P2) must be binding at state a so that agent 1 can make consumption transfers to agent

2. Hence, by Theorem 4 the set S3(U0) is empty and the derivative V ′(U0) = −u′(ω−cb)
u′(cb)

.

This function varies continuously with U0 as optimal consumption cb is a continuous

function of U0. Therefore, by a standard result [cf. Rockafellar (1970, Theorem 25.1)]

we get that the value function V is continuously differentiable at every point U0 such

that Uaut < U0 < Û . In an analogous manner we can establish the differentiability of

V at every point U0 such that Û < U0 < Umax. In this latter case, S2(U0) is empty and

Sb
3(U0) = {b}, and the derivative V ′(U0) = −u′(ω−ca)

u′(ca)
. Since no first-best allocation is

attainable, it follows that at point Û we must have Sb
2(Û)∪ Sb

3(Û) = S, and by Theorem

4 the value function V fails to be differentiable.

Let us now examine the dynamics of consumption allocations. Let Uaut < U0 < Û .

Then, as already discussed, Sb
2(U0) = {a} and S3(U0) is empty. By (18), we have −λ =

V ′(U0) = V ′(Ub) > V ′(Ua). Consequently, at state a agent 1 transfers consumption to

6We stress that a first-best, Pareto-efficient allocation may be compatible with S2(U0)∪S3(U0) = S,

but it is not compatible with some constraint being binding. Therefore, by Theorem 4 the value function

V is differentiable at every U0 achieving a first-best allocation.
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agent 2 with the promise of a higher utility Ua > U0, whereas at state b the same utility

level is preserved, Ub = U0. Therefore, the sequence of promised utilities converges

monotonically to Û with probability one. As a matter of fact, convergence may be

achieved in finite time since the value function is not differentiable at Û . Let us summarize

these results:

Theorem 5 Assume that there are two states s = a, b. Suppose that no first-best con-

sumption allocation is attainable. Let Û = V (Û). For every point U0 ∈ int([Uaut, Û ])

the set Sb
2(U0) = {a} and S3(U0) is empty. The value function V is differentiable

of class C1 at U0 and the derivative V ′(U0) = −u′(ω−cb)
u′(cb)

. Analogously, for every point

U0 ∈ int([Û , Umax]) the set S2(U0) is empty and Sb
3(U0) = {b}. The value function V is

differentiable of class C1 at U0 and the derivative V ′(U0) = −u′(ω−ca)
u′(ca)

. Finally, at point

Û the set Sb
2(Û) = {a} and Sb

3(Û) = {b} and the value function V is not differentiable.

Finally, let us turn our attention to the model of Thomas and Worrall (1988). We

consider a version of this model in which both agents are risk averse. Here, the value

function is differentiable. The technical reason is that assumption D3 is always satisfied

because of a slightly different timing for the participation constraints.

Let U i
aut(s) = u(ωi(s)) + E1

∑∞
t=1 βtu(ωi

t(s)) where E1 denotes the expectations oper-

ator at time 1. Hence, U i
aut(s) is the reservation utility for agent i = 1, 2 once state s is

known. Then, consider the following recursive program

V (Us) = max{cs,Us′} u(ω − cs) + β
∑S

s′=1 πs′ [V (Us′)]

s.t. u(cs) + β
∑S

s′=1 πs′Us′ ≥ Us, (P ′
1)

Us′ ≥ U1
aut(s

′) for all s′, (P ′
2)

V (Us′) ≥ U2
aut(s

′) for all s′. (P ′
3)

In this latter version of the model the suggested interpretation is that contracting

takes place at the beginning of the period but after the state s is known, whereas in

Kocherlakota’s model contracting takes place before the state s is known. Under this

seemingly minor change in the timing of contracting, the value function V (Us) is always

continuously differentiable.

Theorem 6 For every s the value function V is differentiable of class C1 at every inte-

rior point Us of the feasible domain [U1
aut(s)), V (U1

aut(s))]. The derivative

V ′(Us) = −u′(ω − cs)

u′(cs)
.
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Hence, a variation in the timing of events changes the structure of the constraints

so that D3 is always satisfied and the value function is differentiable. Of course, these

changes will influence the set of efficient allocations and the dynamics of the system.

From the perspective of economic theory none of these models can be dismissed. Both

models seem plausible and logically consistent. Indeed, the choice of timing for the

participation constraints has to be dictated by the economic application.

5 Concluding Remarks

In this paper we consider a general class of concave, infinite-horizon constrained optimiza-

tion problems in which the choice set may depend on the vector of state variables. Under

minimal assumptions we show that the value function is continuously differentiable.

We dispense with commonly imposed interiority assumptions. These interiority as-

sumptions are quite restrictive in economic applications and are not needed in the static

optimization theory. For our optimization problem the derivative of the value function

may be defined by an infinite sum of future discounted marginal utilities and returns,

and so the usual static envelope argument breaks down. Furthermore, an example above

(see Figure 1) illustrates that the derivative of the value function may be unbounded

even if the utility and production functions have bounded derivatives.

To circumvent these interiority restrictions we postulate two further fundamental

assumptions: A qualification constraint on the saturated constraints and an asymptotic

condition on the behavior of marginal utilities and returns. As is well known from the

static theory, the qualification constraint guarantees the existence of a unique set of Kuhn-

Tucker multipliers. The uniqueness of these multipliers is necessary for the existence of

the derivative of the value function (see our technical Theorem 7 in the Appendix). An

application on constrained efficient allocations in Section 4 illustrates that the constraint

qualification may not hold in some economic models and the value function may not be

differentiable. As shown in Proposition 2 the asymptotic condition on the behavior of

marginal utilities and returns is also unavoidable. Under this asymptotic condition the

derivative of the value function is bounded and can be expressed as an infinite sum of

discounted marginal utilities and returns.

We may then conclude from the present work that in dynamic optimization prob-

lems under mild regularity assumptions the value function is differentiable of class C1.
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Moreover, this function will not generally be differentiable of class C2 since the optimal

decision rule may display kinks at points in which additional constraints get saturated

[cf., Santos (1991)].

The differentiability of the value function is often invoked in the analysis of optimal

solutions. Moreover, as shown above this differentiability property ensures uniqueness

of the system of Kuhn-Tucker multipliers for infinite–horizon optimization, and the con-

tinuity of these multipliers with respect to initial conditions and primitive parameters.

These shadow values appear as additional state variables in proofs of existence of Markov

equilibria for dynamic games of monetary and fiscal policy [Kydland and Prescott (1980)

and Phelan and Stacchetti (2001)] and for competitive economies with heterogeneous

agents and market frictions [Miao and Santos (2005)]. For the computation of these

equilibria for every initial condition it is useful to have uniqueness and continuity of the

system of multipliers.

There are several directions in which this research can be extended. First, in Section

4 our results were directly applied to a stochastic model with a finite number of states of

uncertainty. It should be possible to consider more general stochastic frameworks. Note

that in stochastic models the interiority assumption is usually very restrictive, since

after a bad shock the optimal solution may reach the boundary [Christiano and Fisher

(2000) and Kehoe, Levine and Woodford (1992)]. Second, concavity plays a crucial role

in our results. For non-concave problems the optimal solution may not be unique, and

the differentiability of the value function is a very demanding property. A considerable

body of theoretical research has focussed on some other regularity properties of the value

function such as Lipschitz continuity [cf. Askri and Le Van (1998) and Clarke (1990)]

and supermodularity [cf. Amir, Mirman, and Perkins (1991)]. Finally, this research was

motivated by various economic applications. As discussed in Section 4 the differentiability

of the value function is key for the study of equilibrium solutions in models of economic

growth, finance, and dynamic contracts. But these exercises do not exhaust the range of

possible economic applications: There are many other related dynamic models for which

the differentiability of the value function should be of interest.
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6 Appendix

All results should be understood to hold under the assumptions in the text.

6.1 Proofs for Section 3

In this part we apply basic results from convex analysis to the Bellman equation

v(x) = max
y∈Γ(x)

{U(x, y) + βv(y)}

for all x ∈ X. For convenience, we write ϕ(x, y) = U(x, y) + βv(y).

Note that function v has a well defined superdifferential ∂v(x0) at every interior point

x0 in X [Rockafellar (1970)]. Hence, in what follows x0 refers to an interior point. For

our first preliminary results we will work with the normal cone NΩ(x0, y0) of the convex

set Ω at point (x0, y0) :

NΩ(x0, y0) = {ξ ∈ R2n : ξ · (x− x0, y − y0) ≤ 0,∀(x, y) ∈ Ω}.

Lemma 1 q0 ∈ ∂v(x0) if and only if there exists ξ ∈ ∂ϕ(x0, h(x0)) such that ((q0, 0) −
ξ) ∈ −NΩ(x0, h(x0)).

Proof. We follow Aubin (1993, Problem 35). Define the indicator function of set Ω as

IΩ(x, y) =

0, (x, y) ∈ Ω

−∞, (x, y) /∈ Ω

Note that function IΩ is concave and upper semicontinuous. Now, rewrite Bellman’s

equation as

v(x) = max
y∈Rn

(
ϕ + IΩ

)
(x, y)

for all x ∈ X. This is an unconstrained optimization problem. By Aubin (1993, Prop.

4.3), q0 ∈ ∂v(x0) if and only if (q0, 0) ∈ ∂
(
ϕ + IΩ

)
(x0, y0). Moreover,

∂
(
ϕ + IΩ

)
(x0, h(x0)) = ∂ϕ(x0, h(x0)) + ∂IΩ(x0, h(x0)) = ∂ϕ(x0, h(x0))−NΩ(x0, h(x0)).

Therefore, q0 ∈ ∂v(x0) if and only if there exists ξ ∈ ∂ϕ(x0, h(x0)) such that ((q0, 0)−
ξ) ∈ −NΩ(x0, h(x0)). Q.E.D.
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Corollary 1 q0 ∈ ∂v(x0) if and only if there exists p0 ∈ ∂2ϕ(x0, h(x0)) such that (q0 −
D1ϕ(x0, h(x0),−p0) ∈ −NΩ(x0, h(x0)).

Proof. By D1, function ϕ(x, y) is differentiable with respect to x. Hence, ∂1ϕ(x, y) =

D1ϕ(x, y), and so ∂ϕ(x, y) = {∂1ϕ(x, y)} × ∂2ϕ(x, y) for all (x, y). Let ξ = (ξ1, ξ2),

ξi ∈ ∂iϕ(x0, h(x0)), i = 1, 2. Then, the corollary is a straightforward consequence of our

previous lemma for p0 = ξ2. Q.E.D.

From these preliminary results we now derive a generalized envelope theorem for

constrained, non-smooth optimization.

Theorem 7 q0 ∈ ∂v(x0) if and only if there exists p0 ∈ ∂2ϕ(x0, h(x0)) such that q0 =

D1ϕ(x0, h(x0)) + p0G(x0, h(x0)).

Proof. As is well known [e.g., Clarke (1990, Corollary 2, p. 56)] by D3 we must have

−NΩ(x0, y0) =
{

(q, p) ∈ Rn × Rn : (q, p) =
∑

i∈I(x)

λi(D1g
i(x0, y0), D2g

i(x0, y0)), λ
i ≥ 0

}
.

Then, by our previous lemma

q0 −D1ϕ(x0, y0) =
∑

i∈I(x)

λiD1g
i(x0, h(x0, ) (19)

−p0 =
∑

i∈I(x)

λiD2g
i(x0, h(x0)) (20)

for some λi ≥ 0, for all i ∈ I(x). Let λ = (. . . , λi, . . .). Hence, from (20) we get that

λ = −p0D2g
+
s (x0, h(x0)). To complete the proof we substitute this expression for λ into

(19) and let G(x0, h(x0)) = [−(D2g
+
s (x0, h(x0))|0]D1g(x0, h(x0)). Q.E.D.

This static result is now extended to a finite number of periods.

Proposition 3 q0 ∈ ∂v(x0) if and only if for every T ≥ 1 there exists some qT ∈ ∂v(xT )

such that

q0 =
T−1∑
t=0

βt
(
D1U(xt, xt+1) + D2U(xt, xt+1)G(xt, xt+1)

) t−1∏
s=0

G(xt−1−s, xt−s)

+ βT qT

T−1∏
t=0

G(xT−t, xT+1−t).
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Proof. Fix an arbitrary q0 ∈ ∂v(x0). By the previous envelope theorem, q0 ∈ ∂v(x0)

if and only if there exists p0 ∈ D2U(x0, x1) + β∂v(x1) such that q0 = D1U(x0, x1) +

p0G(x0, x1). Then, there is some q1 ∈ ∂v(x1) such that

q0 = D1U(x0, x1) + (D2U(x0, x1) + βq1)G(x0, x1). (21)

Now, the same argument can be applied to q1. Hence, there exists p1 ∈ D2U(x1, x2) +

β∂v(x2) such that q1 = D1U(x1, x2) + p1G(x1, x2). Therefore, q1 = D1U(x1, x2) +

(D2U(x1, x2) + βq2)G(x1, x2) for some q2 ∈ ∂v(x2). Plugging in this last value for q1

into (21), we have

q0 = D1U(x0, x1) + D2U(x0, x1)G(x0, x1)

+ βD1U(x1, x2)G(x0, x1) + βD2U(x1, x2)G(x1, x2)G(x0, x1)

+ β2q2G(x1, x2)G(x0, x1).

Proceeding inductively, the result holds for every T ≥ 1. Q.E.D.

Proposition 4 Let {xt}t≥0 be an optimal sequence. If v is differentiable at xT for some

T ≥ 0, then v is differentiable at x0. The derivative of v at point x0 is defined as

Dv(x0) =
T∑

t=0

βt
(
D1U(xt, xt+1) + D2U(xt, xt+1)G(xt, xt+1)

) t−1∏
s=0

G(xt−s−1, xt−s)

+ βT Dv(xT )
T−1∏
t=0

G(xT−t, xT−t+1).

Proof. If v is differentiable at xT then ∂v(xT ) = {qT} is a singleton. Hence, by the

previous proposition there exists a unique vector q0 ∈ ∂v(x0). Therefore, v differentiable

at x0 and the derivative Dv(x0) is given by the above expression. Q.E.D.

Proof of Proposition 1. By the envelope theorem [Benveniste and Scheinkman

(1979)] the value function is differentiable of class C1 on a neighborhood N(xT ) of xT ,

and the derivative Dv(xT ) = D1U(xT , xT+1). Hence, by Proposition 4 this function is

differentiable of class C1 on some neighborhood N(x0) of x0. Moreover, this proposition

also gives the value of the derivative in (6) for Dv(xT ) = D1U(xT , xT+1). Q.E.D
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Proof of Theorem 1. Assume first that X is bounded, and hence that it is a

compact set. As already pointed out, function v is differentiable at x0 if ∂v(x0) is a

singleton. By way of contradiction, let q0, q̃0 ∈ ∂v(x0). Then, by Proposition 3, for every

T ≥ 0 there exist qT+1, q̃T+1 ∈ ∂v(xT+1) such that

‖q0 − q̃0‖ ≤ βT

∥∥∥∥T−1∏
t=0

G(xt, xt+1)

∥∥∥∥ ‖qT − q̃T‖. (22)

We next show that this expression converges to zero as T goes to ∞. Note that

h(X) is a compact set, and by D2 we have that h(X) ⊂ int(X). Hence, ∂v(h(X)) is a

compact set [Rockafellar (1970)] and all vectors qT , q̃T must belong to ∂v(h(X)). Then,

by condition D4(i) the above expression (22) converges to zero and so q0 = q̃0. This

proves that ∂v(x0) is singleton at every interior point x0. Hence, v is differentiable of

class C1 on int(X). The value of the derivative Dv(x0) is obtained by letting T go to ∞
in Proposition 4.

If X is an unbounded set, then D4(ii) applies, and the differentiability of the value

function is obtained in a similar way. Q.E.D

Proof of Proposition 2. Suppose that X is a compact set. Under the non-

negativity conditions, it follows from Proposition 3 that for q0 = max ∂v(x0) we must

have

q0 ≥ βT qT

T−1∏
t=0

G(xT−t, xT−t+1) ≥ 0 (23)

for some qT ∈ ∂v(xT ), for all T ≥ 1. Since v is strictly concave and h(X) ⊂ int(X) every

sequence of vectors {qT}T≥0 ⊂ ∂v(h(X)) must be bounded below by a positive constant.

Hence, the sequence {βT+1
∏T

t=0 G(xT−t, xT−t+1)}T≥0 must be bounded. As X ⊂ R, this

last condition implies that lim inft→∞ βG(xt, xt+1) ≤ 1.

If X is unbounded the proof proceeds in a similar way. For this purpose we should

note that by Proposition 3 inequality (23) must be satisfied for some qT ∈ ∂v(xT ), and

so it must always hold for the minimum value qT ∈ ∂v(xT ). Q.E.D

Proof of Theorem 2. Suppose that {xt}t≥0 is the optimal path starting at x0.

For this optimal path assume that there are two sequences of Kuhn-Tucker multipliers

{λt}t≥0 and {λ′t}t≥0 that satisfy equations (13) and (14). For all initial conditions x0 and
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all feasible sequences xt+1 ∈ Γ(xt) for t = 1, 2, · · · , n, let

vλ,n(x0) = max
{xt}n+1

t=1

n∑
t=0

βtU(xt, xt+1) + βn+1αn+1xn+1, (24)

where αn+1 = D1U(xn+1, xn+2) + λn+1D1g(xn+1, xn+2), and

vλ′,n(x0) = max
{xt}n+1

t=1

n∑
t=0

βtU(xt, xt+1) + βn+1α′n+1xn+1, (25)

where α′n+1 = D1U(xn+1, xn+2) + λ′n+1D1g(xn+1, xn+2). Note that the added linear parts

αn+1 and α′n+1 are chosen so that at point x0 the optimal solution is {xt}n+1
t=0 for both

optimization problems, and for this optimal solution {λt}n
t=0 is the sequence of associated

Kuhn-Tucker multipliers under (24), and {λ′t}n
t=0 is the sequence of associated Kuhn-

Tucker multipliers under (25). By D3, each sequence of multipliers is unique.

By the same methods as the proof of Theorem 1, we can readily see that functions vλ,n

and vλ′,n are concave and of class C1. Moreover, by (14) and the definitions of αn+1, α′n+1,

the sequences of functions {vλ,n}n≥1 {vλ′,n}n≥1 converge uniformly to function v. Hence,

the sequences of derivative functions {Dvλ,n}n≥1 and {Dvλ′,n}n≥1 converge uniformly

to function Dv on every compact set K ⊂ int(X) [Rockafellar (1970, Theorem 25.7)].

Observe that Dvλ,n(x0) = D1U(x0, x1) + λ0D1g(x0, x1), and Dvλ′,n(x0) = D1U(x0, x1) +

λ′0D1g(x0, x1), for all n. The convergence of these derivatives to a unique common value

implies that λ0D1g(x0, x1) = λ′0D1g(x0, x1). Moreover, by the same argument it follows

that λ1D1g(x1, x2) = λ′1D1g(x1, x2). Then, by condition D3 applied to (13) we get

uniqueness of the multiplier, λ0 = λ′0. Q.E.D

Proof of Theorem 3. Let us first prove that {vn}n≥0 converges uniformly to v.

The proof is standard. Pick an initial condition x0. For this initial condition x0, let

{xt}t≥0 be the optimal solution for optimization problem (X, Γ, Ω, U, β), and let {xnt}t≥0

be the optimal solution for optimization problem (X, Γ, Ω, Un, β). Without loss of gener-

ality, assume that v(x0) > vn(x0). Then,

v(x0)− vn(x0) =
∞∑

t=0

βt(U(xt, xt+1)− Un(xnt, xnt+1)) ≤
∞∑

t=0

βt(U(xt, xt+1)− Un(xt, xt+1))

≤ 1

1− β
‖U − Un‖.

Hence, {vn} converges uniformly to v. By Theorem 1, all functions vn and v are dif-

ferentiable. As these functions are also concave, by Rockafellar (1970, Theorem 25.7) the
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sequence of derivative functions {Dvn}n≥0 converges uniformly to Dv on every compact

set K ⊂ int(X). Q.E.D

6.2 Proofs for Section 4

Proof of Theorem 4. The proof for S2(U0) 6= S and S3(U0) 6= S has already

been discussed in the text. Hence, let us first show that if S2(U0) ∪ Sb
3(U0) = S then

the value function V is not differentiable at U0. For concreteness, we suppose that

Sb
3(U0) = {1, . . . , s} and S2(U0) = {s + 1, . . . , S}. We argue by contradiction. If the

value function V is differentiable at U0, then considering the non–smooth form of the

first–order optimality conditions, these can be expressed as the linear system

π1u
′(c1) −u′(ω − c1) · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

πsu
′(cs) 0 · · · −u′(ω − cs) 0 · · · 0

πs+1u
′(cs+1) 0 · · · 0 u′(cs+1) · · · 0
...

...
. . .

...
...

. . .
...

πSu′(cS) 0 · · · 0 0 · · · u′(cS)

π1 q1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

πs 0 · · · qs 0 · · · 0

πs+1 0 · · · 0 1 · · · 0
...

...
. . .

...
...

. . .
...

πS 0 · · · 0 0 · · · 1





λ

ν1

...

νs

µs+1

...

µS



=



π1u
′(ω − c1)

...

πSu′(ω − cS)

−π1q
′
1

...

−πSq′S



where qs ∈ ∂V (Us) for s ∈ Sb
3(U0) and q′s ∈ ∂V (Us) for s ∈ S. We will prove first that

qs = −u′(ω−cs)/u
′(cs) for every s ∈ Sb

3(U0). Suppose not, that is, qsu
′(cs)+u′(ω−cs) 6= 0

for some s ∈ Sb
3(U0). Then, a contradiction is attained as follows. Solving for νs from

the system we obtain νs = −πs
q′su′(cs)+u′(ω−cs)
qsu′(cs)+u′(ω−cs)

. The non–negativity of the multiplier νs

impose qs 6= q′s. Solving now for λ, λ = u′(ω−cs)
πsu′(cs)

(νs + πs), and substituting the value

of νs we get λ = πs(qs − q′s)
u′(ω−cs)

qsu′(cs)+u′(ω−cs)
. As we are supposing in our reasoning that

V is differentiable at U0, λ must be unique, thus qs = q′s, in contradiction with our

previous supposition qs 6= q′s. In consequence, qs = −u′(ω − cs)/u
′(cs) for every s ∈

Sb
3(U0), as claimed. Now, we will show that qs = q′s for every s ∈ Sb

3(U0) and that

also q′s = −u′(ω − cs)/u
′(cs) for s ∈ S2. The proof of these claims is based in the

following observation. Since that the first order conditions hold at the solution, the
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linear system defined above is solvable. Thus the Rouche–Frobenius Theorem implies

that the independent term, (π1u
′(ω− c1), . . . , πSu′(ω− cS),−π1q

′
1, . . . ,−πSq′S)>, must be

linearly dependent of the vector columns of the matrix of the system. Given the easy

structure of the matrix, it is readily seen that the unique possibility is qs = q′s for every

s ∈ Sb
3(U0) and q′s = −u′(ω − cs)/u

′(cs) for s ∈ S2, as claimed.

Based in these observations, it is immediate to see that the rank of the matrix system

is S, lesser that the number of unknowns, S +1, as the last S rows are linearly dependent

of the first S rows. Hence, we must have infinitely many solutions, which are of the form

λ = −(1 +
νs′
πs′

)qs′ for νs′ ≥ 0 and all s′ ∈ Sb
3(U0), and µs = −πs(λ + qs) for µs ≥ 0

and all s ∈ S2(U0). More specifically, let λ0 = V ′(U0). Then, by (17)–(18) we have

λ0 = −qs′+νs′
u′(ω−cs′ )
πs′u

′(cs′ )
for s′ ∈ Sb

3(U0). Hence, the interval [λ0−νs′
u′(ω−cs′ )
πs′u

′(cs′ )
,∞] determines

the set of feasible λ satisfying (17)–(18). Let ∆(s′) = mins′ νs′
u′(ω−cs′ )
πs′u

′(cs′ )
over all s′ ∈ Sb

3(U0).

Note that ∆(s′) > 0. It follows that all λ in [λ0 −∆(s′),∞] are feasible solutions under

(17)–(18) for all s′ ∈ Sb
3(U0). In the same way, we may define ∆(s) = mins

µs

πs
over all

s ∈ S2(U0). Then, ∆(s) ≥ 0 and all λ in [0, λ0+∆(s)] are feasible solutions under (17)–(18)

for all s ∈ S2(U0). By Theorem 7, the superdifferential ∂V (U0) = {−λ : −λ0 −∆(s) ≤
−λ ≤ −λ0 + ∆(s′)}. By assumption, this is a non-degenerate interval. Hence, we have

reached a contradiction to the assumed differentiability of V at U0. Therefore, if D3′ is

not satisfied then function V is not differentiable at U0.

Finally, If D3′ is satisfied, then ∆(s′) = ∆(s) = 0, as either S2(U0) ∪ S3(U0) 6= S or

for S2(U0)∪S3(U0) = S there must be one non-binding constraint in S2(U0) and another

non-binding constraint in S3(U0). By Theorem 7, the superdifferential ∂V (U0) reduces

to a unique vector λ0, and so V is differentiable at U0. Moreover, the corresponding

expression for the derivative follows from the first–order condition (17). Q.E.D

Proof of Theorem 6. Although it is easy to check that the qualification constraint

always holds true in this model, we shall offer a direct proof of this result. Note that the

value function V (U0) is concave, and hence this function is differentiable almost every-

where. By similar arguments to Theorem 7, at a point of differentiability the derivative

V ′(Us) = −u(ω−cs)
u′(cs)

. Since cs is a continuous function of Us, at points of existence the

derivative V ′(Us) varies continuously with Us. Therefore, by a standard result [Rockafel-

lar (1970, Theorem 25.1)] the value function is differentiable of class C1 over the whole

domain int([U1
aut(s)), V (U1

aut(s))]) for each s. Q.E.D
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0

f(x)

h(x)

Figure 1: The derivative of the value function may be unbounded even if the utility and

production functions have bounded derivatives. If for all x in a small neighborhood of

x = 0 the policy function h(x) = f(x) and βf ′(0) > 1 then v′(x) gets unbounded as x

converges to 0. This example does not satisfy D2, and hence it illustrates that for points

in the boundary of the domain X some regularity condition is needed for the derivative

of the value function to be well defined. As already remarked, in this example D2 would

hold if the domain X is restricted to {x : x ≤ x < ∞} for every positive constant x

sufficiently close to 0.
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