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The problem of calculating the information entropy in both position and momen-
tum spaces for the nth stationary state of the one-dimensional quantum harmonic
oscillator reduces to the evaluation of the logarithmic potentig|(tV

=— % (Hy(x))?In |x—t|e*"2 dx at the zeros of the Hermite polynomial,{t).

Here, a closed analytical expression foi(}} is obtained, which in turn yields an
exact analytical expression for the entropies when the exact location of the zeros of
H,(x) is known. An inequality for the values of,{t) at the zeros of KH(x) is
conjectured, which leads to a new, nonvariational, upper bound for the entropies.
Finally, the exact formula for )(t) is written in an alternative way, which allows

the entropies to be expressed in terms of the even-order spectral moments of the
Hermite polynomials. The asymptotic (n>1) limit of this alternative expression
for the entropies is discussed, and the conjectured upper bound for the entropies is
proved to be asymptotically valid. © 1997 American Institute of Physics.
[S0022-2488(97)00709-3]

I. INTRODUCTION

In the framework of the modern density functional thebry the physical and chemical
properties of a many fermion system may be completely described by means of the single-particle
probability density, which is to be denoted pfr) in position space angl(p) in momentum space.

The spread or extent of these quantum-mechanical probability densities is measured by the
Boltzmann—Shannon information entropy, which for one-dimensional systems is defined as

s,=— | pom podx, ®

in position space, and

s,== [ v yprap, @

in momentum space. These entropies are closely related to fundamental and/or experimentally
measurable quantities, such as, e.g., the kinetic energy and the magnetic susceptibility, which
makes them useful in the study of the structure and dynamics of atomic and molecular
system€~19Moreover, they have been applied to a wide range of quantum-mechanical problems,
such as the mathematical formulation of the position-momentum uncertainty prifcipland
spreading of wave packet$® approximate calculations of energy eigenvalues and eigenstates by
means of the maximum-entropy principfel’ and time evolution of chemical reactiotfs.

3Expanded version of a talk presented at the International Workshop on Orthogonal Polynomials in Mathematical Physics
(Madrid, June 1996
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5032 Jorge Sanchez-Ruiz: Entropies of the harmonic oscillator eigenstates

The calculation of position and momentum entropies for physically interesting quantum states
has been the subject of considerable effort in recent years. It has been'$fbinat, for the
stationary states of many important systems, such as D-dimensional harmonic oscillator and
hydrogen atom, the entropies can be expressed in terms of the integrals

Ev=— [ 0400 In(py00)m00 ax,

where p,(x) are orthogonal polynomials with respect to the weight function w(x). These integrals
are called “entropies of the orthogonal polynomialgx),” and they are closely related to the
LP-norms, whose study is of independent interest in the theory of general orthogonal and extremal
polynomials?!

Asymptotic formulas for E in the n—oe limit have been obtained in the case whe(xp are
general orthogonal polynomials on a finite inter#alor Freud orthogonal polynomials
[w(x)=exp(-4x™), m>0] on the whole real axi$:>>?*However, the analytical value of these
entropies is only known for Chebyshev polynomials of the first and second kinds, in an exact
form, and for Gegenbauer polynomials in an approximate ¥¥aye problem of determining the
entropies of general orthogonal polynomials remains open.

For the nth eigenstate of the one-dimensional harmonic oscillator Hamiltonian,

2
P 1 2,2
=—+-m
H > > WX,

the probability densities for position and momentum are expressed in terms of the Hermite poly-
nomial H,(x),

p(X) = —— (Ha(ax)?e=",  y(p)= ———— (Hy(pla))?e~ 71
2l " ' 2'miJra " '

wherea=(mw)¥? (we choose units such that z=1). The corresponding entropies of position and
momentum can be written as

S,=—Ina+S,, S,=Ina+s,, 3)

where
S, In(2”n|\/—)+n+1+ ! En(H) (4)
= N ~ ————
2 2z "
is given in terms of E(H), the so-called entropy of Hermite polynomials, whose expression is

En(H)=- f:(Hn(X))2 In(H(x))% ™ dx. (5)

The values of $have been numerically calculated up to n=3bhile for n>1 they are
approximately given by the asymptotic formula

Sy~ In(my2n)—1, (6)

which has been rigorously proved by means of the theory of strong asymptotics of Freud
polynomials?® and can also be derived from the semiclassical (Wentzel—Kramers—Brjllapin
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proximation for one-dimensional quantum systém€.0n the other hand, the variational inequal-
ity relating entropy and standard deviation for arbitrary one-dimensional random variables,

Sa<i+In(y27AA),

together with Eq. (3) and the well-known values of AX and AP for the harmonic oscillator
eigenstates,

1
n+_- az,

i
nTs 2

(AX)?= 5

1
—, (AP)?=
o

yields the upper bound

S,<i+in J@ZniDm. @)

However, the exact analytical value of Bas been calculated only in the simplest cases n=0 and
n=121° For the ground state (n=0) we have

So=In(/m) +3, ®)
so that in this case the equality sign holds in (7) and the entropy surB3=2S, attains the
lower bound in the optimal entropic uncertainty relation for one-dimensional position and
momentum--12
S,+S,=1+Inm,
while in the first excited state (n=1) we have
S, =In(2ym) — i+, (9)
whereyis Euler's constant. The main aim of the present work is to find the generalization of these
results to arbitrary values of n.

The Hermite polynomial H(x) has n real and simple zeros, and is of the form
Ho(x)=2"x"+O(x"" 1) (see, e.g., Ref. 27), so that it can be factorized as

Hn<x)=2“i:H1 (X—%q.1),

where x, ; (i=1,2,...,n) is the ith root of (x). Introducing this expression into the logarithmic
function in (5), and taking into account the normalization integral for Hermite polynomials,

f (H,(x))2e™ dx=2"n!\/7,
we see that F(H) can be written in the forA?
n
En(H)=—2"!\m In(2%") + 22 V(Xn,), (10)
i=1
where \(t) is the logarithmic potential of the Hermite polynomial,¢t), defined as

V,(t)=— fio(Hn(x))2 In|x—t|e‘X2 dx. (11)
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5034 Jorge Sanchez-Ruiz: Entropies of the harmonic oscillator eigenstates

The n (real and simple) zeros of,tk) are symmetrically distributed around the origin, since
H,(—X)=(—1)"H,(x).2" Therefore, it is readily seen thati~t)=V,(t), and Eq. (10) can also
be written as

m

En(H)=—=2"n17 In(22") +2eV,(0)+ 4>, Vp(Xn.), (12)
i=1

where % ; (i=1,2,...,m) is the ith positive root of [{x), and we have introduced the convenient
notations

n

m= 2| e=n—2m. (13)

In the latter equation, the square brackets denote integer part of the expression within,ege that
equal to 0 or 1 according to whether n is even or odd.

Equations (10) and (12) show that the problem of calculatipgH, and hence S reduces
to the evaluation of \(t) at the zeros of H(x). In Sec. Il below we obtain a closed analytical
expression for Y(t) in terms of,F; and,F, hypergeometric functions, which, unlike the recur-
sive formula derived in Ref. 20, provides us with analytical expressions fidJEand S, when
the exact location of the zeros of,tk) is known. An inequality for the values of () at the
zeros of H,(x) is conjectured, which leads to a new upper bound fars$ronger than that in Eq.
(7) for n odd. Finally, in Sec. lll, it is shown that the exact formula fe{ty can be written as an
infinite series involving the Gausg-, hypergeometric function, which enables us to express
E,(H) and S in terms of the even—order spectral momentg(n) of the Hermite polynomials.
Comparison of the asymptotic (n>1) limit of this alternative expression with Eq. (6) proves the
asymptotic validity of the conjectured upper bound fqr. S

II. CALCULATION OF THE LOGARITHMIC POTENTIAL AND THE ENTROPIES

To calculate {|(t), we first make use of the multiplication formula for Hermite polynomials
(see, e.g., Ref. 28),
mrn mint2l

HrCOHA00= 2 i =gyt Himen-2/00,

which in the particular case m=n gives, writing j=n—Kk,

s [N} Ha(x)
(Ho(0)?=2"n! 2 (k) TR

Substituting this equation in the expression (11) of the logarithmic potengi@) Vwe find

" W, (t x )
vn(t)=2”n!kzO (E) _szkk(_') W2k(t)=—f_sz,((x)In|x—t|e‘X dx. (14)

Now we are faced with the problem of calculating the integralg(ty, which can also be
considered as logarithmic potentials for Hermite polynomials and thus have independent interest.
To achieve this goal, we consider the Taylor series expansion

©

W(f)(o)
Wa(D=3, —

r!

t" (15)
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Making the change of variables x=y +1t in Eqg. (14), we have

W)= [~ Hay+tinlyle % ay.

By repeated application of Leibniz’s rule for differentiating under the integral sign, and taking into
account that, from Rodrigues’ formula for Hermite polynomials,

r

d —22 r —22
H (e Hn(z)):(_l) e Hn+r(z)-
we obtain
WHR(H) = (= 1) Wayi (1),
so that Eq. (15) reads

o (—1)'Way(0)
WZK(t):r:Eo (r—|2k+

t". (16)
The parity property H(—x)=(—1)"H,(x) implies that W, ,(0)=0 if r is odd, and Eg. (16)
simplifies to

o Wayi2(0) = .2
WZk(t>=r:EO (;—r;!tzn Wy 1 2(0)=—2 fo Hos 2% In x dx. (17)

The integrals W, . ,,(0) may be evaluated by means of the following re${lt,

1 ( v+1 1 1)
F -n, —— ’

"2 2 2 2a

22r‘|—(v+3)/2 rv+1

5 r

j H, (x)x"e 29 dx=(—1)"

0 \/;a(v+1)/2 I

where F(a,b;c;z)sFq(a,b;c;z) is the Gauss hypergeometric function, which is valid for
Rea > 0, Rer > —1. In our case, withe=3 and n=k-+r, we obtain

1
kK+r+ 5

2 2 ’2’1

(18)

v+1 1
(e 2 L)

w . L 2Bl (g
0H2k+2r(x)xe dx=(-1) r > r

J

The hypergeometric function of unit argument on the right-hand side can be simplified using the
property?®

(C_b)n
() '

where n is a positive integer or zero, ¢ is not a negative integer or zero, ghd @Jchhammer’s
symbol,

F(—n,b;c;)=

T(z+n) T'(1-2)

T Y T 1o

We thus have
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5036 Jorge Sanchez-Ruiz: Entropies of the harmonic oscillator eigenstates

v+1 1 (—v2)ysr T(HT(k+r—wl2)

F(—k—r, ; ,
2 2 Deer T(kFr+HT(—v/2)

and Eq. (18) then reads

f H2k+2|r(X)X”efx2 dx=(— 1)k*rp2k+ar-1p
0

v+1\ I'(k+r—v/2)
2 r'(—vl2)

Differentiating this equation with respect 10 we obtain

- ya—x2 o kerazkezr—1p| v} TkHr—v/2)
fo Hokio(X)x’e™* In x dx=(—1)"""2 F( 5 (= v12)
1 v+1 K v v 20
X\ |~ k+r—5] 4 — 5| (20)

where (z)=I"'(2)/T'(z) is the logarithmic derivative of the gamma function. In the case when
k+r=0, this formula reduces to

J’mH vg | d —1F v+1 v+1
. o(X)x"e nxdx=7 5 5
so that we readily get
Wy(0)= 1F Ll —\/; 2In2 21
o0)==—5 I\ 5]¥|5|=5 (y+2In2). (21)

On the other hand, both I'(z) ani{z) have simple poles foe=0, with residues 1 and-1,
respectively. Therefore, when k+r>0, we can take the limit0 in Eq. (20) to obtain

o T
JH2k+2,(x)e‘X2 Inxdx=—g(—1)"“22"+2r1“(k+r), k+r>0,
0

which in turn leads to

J

W2k+2r(0)=7(—1)k+r22"+2’1“(k+r), k+r>0. (22)

We can evaluate Yy(t) by substituting Egs. (21) and (22) into (17). In the case k=0, we
have

” W. r 0 * -1 r22r1—~
WO(t):WO(O)Jrzl (zz—r()!)tzr:g y+2In2+> (ED27r(r)

2r
“ T(2r+1) = (23)

Using the recurrence and duplication formulas for the gamma fun¢tith,

[(z+1)=zI(2), T(22=2%2"%3}),I(2),
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together with (19), and shifting the summation index to s=r—1, Eq. (23) can be written in terms
of a ,F, hypergeometric function,

Wo(t)— Vm y+2In2-2¢ ze( 1,1; 32;—?)). (24)

On the other hand, for k>0 we have

< 2k+2r(0> f o (~D22T(k+1)
and use of the duplication formula for the gamma function and Eq. (19) leads to
1
Way(t) = @ (—1)k22k(k—1>!lv|(k. 5,—@), (26)

where M(a,c,z)5F4(a;c;z) is Kummer's confluent hypergeometric function. Substituting Egs.

(24) and (26) into (14), we finally obtain
1 n| (—1)kak 1
+§E (k) —k M(k,z,—tz)),

=
(27)

Vo()=2"n17| 2

2

3
5 +in2- t2 2F2<11 2;—t?

which is the sought for closed analytical expression for the logarithmic potenift) ¥efined by
Eqg. (11).
In the particular case t=0, using the identity

1)Kok
y+2|n2+2 ( )% —y{m+et 5], (28)
whose proof can be found in the Appendix, Eq. (27) reduces to
Vo(0)=—2""Inl/my(m+e+2). (29)

The function \4(t) in Eq. (27) is plotted against t for 0=<n<5 in Fig. 1. Therefrom we see
that \/,(t) has n local minima, which are located at the zeros pf},2° and the value of \(t)
at these minima decreases monotonicallygs| increases. We also observe that it holds the
inequality

Vn(xn,i)$vn(0)y (30)

which is strict for x, ;# 0. We conjecture Eq. (30) to be valid for all n, although We have not been
able to prove it analytically. On the other hand,(%)<O0 for all n=1, since thet{*

m+e

=—y-—2In2+2, >0, (31)

1
m+&'+§ “ 2k 1

¥

so that the absolute value of,§k, ;) increases monotonically witfx, ;|. This implies, in view of
Egs. (10) and (12), that the contribution of the zeros q{>t) to the entropy Sincreases as so
does their absolute value.

A closed formula for the entropy of Hermite polynomialg(B) can be obtained by combin-
ing Egs. (10) and (27),
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FIG. 1. Logarithmic potential }(t) for 0O=n=<5, as given by Eq. (27).
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n n __1\kok N
En(H)zznn!ﬁ(ny—zi_El X2 2F2<1,1;§,2;—x§’i)+2 (E) %2 M(k,%,—xﬁJ).

k=1 i=1
(32)
Alternatively, using Eqg. (12) instead of (10), and taking into account Egs. (29) and (31), we obtain

m+e

3
En(H):znn!\/;(ny—ZekZl 1 42 xn,2F2(11 52 x§,i>

—1)k

B2 S et

) . (33)

In turn, from these results, using Eq. (4), we obtain frtl& expressions

1 " 3
sn:In(Z”n!\/;)+n+§+ny—22 X2 2F2( 1,1; E,Z;—xﬁ i)
s '

n kak N
+3 (E)( S ( = 2) (34)
k=1 =
and
S,= In(2”nl\/_)+n+1+n 2 E ! —42x Fol 1,1; 32'—x2)
2 Y ek—l 2k—1 “~ n,i 2" 2 1o n,i
(—1)kok 1
=1 2 :

respectively, which are the generalizations of Eqgs. (8) and (9) to arbitrary values of n. For
example, in the n=2 case, the zeros of the polynomig(xy=4x2—2 are +1/v2, so that we
have

4M2l
+ UL

= 8\/_+5+2 2,F 11-32- L 8M 1l !
82_ n( 77) 2 ')’ 22 ] 121 ) 2 12! 2

while in the n=3 case the zeros offk) =8x—12x are 0 and %/3/2, and we have

=In(48y +5+3 6,F 11'32' 3 12|\/|11 3+12|\/|21
SS_ n( 77) 6 Y 2t 2 ’ 1511 5 !Ey 5 151 E
16M 31 3
“g M3z

Fully analytic, though increasingly cumbersome, expressions of this kind may be written for every
n<9, since then H(x)=xH(x?), where H,(x) is a polynomial of degree m=<4.
Using Egs. (10) and (29), the conjectured inequality (30) yields an upper bound,(fien E

m+e

2”n|n\/—('y 221 T 1) (36)

n+e+1

E,(H)<- 2”n'\/_(ln 22" 4 ny
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5040 Jorge Sanchez-Ruiz: Entropies of the harmonic oscillator eigenstates

where, recalling Eqg. (13), we have written ne-in the equivalent formri+ €)/2, and the second
expression is obtained from the first one by using (31). Introducing the previous equation into (4),
we get

m+e

+ -+l
n E nw

1
&1 2k—1)
@37)

n+e+1
2

1
=In(2"n! )+ §+n 1+y-2

Snsln( n'Z\F

This conjectured upper bound fof, 8irns out to be stronger than that given by Eq. (7) when n is
odd, and coincides with the exact value not only for n=0, but also for n=1 [see Egs. (8) and (9)].

Ill. ALTERNATIVE EXPRESSIONS
Using Eqg. (23) for W(t), and Eq. (25) for W,(t), k>0, Eq. (27) can be written as

15 (-1)(r—1)
V(=2 | £ SHin2+3 rZ —anr 2t)2
1 (— 1)k2k o (DT(k+r)
+2k21(k> T TR )
which, taking advantage of Eqg. (28), and writing again (¢)/2 instead ofm+ ¢, simplifies to
vn(t)zznln!ﬁ(— nterl +> ﬁ(zt)zf
r=1 (2r)
(— 1)k2'< o (=D)T(k+r)
+k§=)1(k 2 @i (2t) ) (38)

Taking into account Eq. (19), together with the iderftity

n)_(—1>k<—n>k
k)~ k! ’

the summation over k in the double series of Eg. (38) can be performed in terms of the Gauss
hypergeometric function,

n| (—1)k2XT(r+k)
k) — = —-1DI(F(—n,r;1;2)—1).

k!

k=1

Substituting this equation into (38), we obtain

n+e+1) “(—1) 2% (r—1)!

> !

2 20! F(—n,r;1;2)t2r) , (39)

vn(t)zznln!ﬁ( —

which is an alternative expression for the logarithmic potentiglt)/
The entropy of the Hermite polynomials defined by Eq. (10) can thus be written in the form

“(=1)72%(r—1)!
n2 2n)!

+e+1

F(—n,r;l;Z)Mzr(n)),
(40)

En(H)=2”n!\/—( In(22") — m,//(
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wherepu,(n) (r=0,1,2,...) are the spectral moments around the origin of the Hermite polyno-
mial H,(x), i.e., the quantities

1 n
pe(n)== > (X0, (41)

ni=1
and Eq. (4) then yields

N 1
n+§—n¢

n+e+1
2

n!'\/m

Z (1) 2% (r—1)!
2 (2t

»
r

=1 (2]’)'

Sn=ln< F(—=n,r;1;2) us(N).

(42)

This new expression for Ss less useful than Egs. (34) and (35) for practical calculations,
since, unfortunately, there are no global and compact expressions for the mamgmty, but
they have to be recurrently generated. For Hermite polynomial(s)) vanishes when r is an odd
integer, while it can be showhthat

n—-1
so(N) =1, wa(n)= B

and for r=2 the even spectral momenis,(n) are determined by means of the nonlinear recur-
rent formula

s—4

(2n+2-9us—3(N)—=2pus-a(n)+n ;1 Hs—3-(Nu(n)| =0, s=5.

However, Eq. (42) turns out to be more appropriate than Egs. (34) and (35) to display the
relation between our exact results and the asymptotic approximation (6). Use of the well-known
asymptotic expansions for the gamma and psi functibgives

1 1
In(n!)~ n+> In n—n+§In(2w)+O(n*1),
n+e+1 n+e €
>— |~ — +0(n"?)~In n—In2+ﬁ+O(n’2),

where the remaining terms of these expansions can be explicitly written in terms of Bernoulli
numbers. Substituting these results into Eq. (42), we obtain
o (-1

Sn~ln(7-r\/ﬁ)+ }— e+n ~F(—n,r;1;2) u,(N)+0(n71).  (43)
2 =1 (2r)!

Comparison of this equation with (6) leads to the asymptotic formula

ni (=122 (r—1)!

3
“ 20! F(—n,r;1;2) pp(n)~e— 5 +0(1). (44)

2

Finally, we note that, comparing the exact formula fgr, &£q. (42), with the conjectured upper
bound (37), the latter turns out to be equivalent to the inequality
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5042 Jorge Sanchez-Ruiz: Entropies of the harmonic oscillator eigenstates

“ (=122 (r—1)
E( (r-1)

= (2! F(=n,1;1;2) pa(n)<0, (45)

which Eq. (44) implies to be, at least, asymptotically valid. When n is even, the validity of Egs.
(37) and (45) follows from that of Eq. (7), which then places a stronger upper boung thaus

(37). For n odd, however, Eq. (37) is stronger than (7), so that the problem of finding a proof of
its general validity remains open.
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APPENDIX: PROOF OF EQ. (28)

Equation (28) follows from the identity

which is the particular case x=2 of the more general formula

(-2 1-(=DF
" =—k21 T (A1)

D% & 1-(1-
f(x)_El(k)( X 2 X). (A2)

The validity of Eqg. (A2) can be proved by induction over n, and also by considering the
Newton binomial expansion of' x),

1 (1-x)"-1
12 _ _ k_
f(x)—XKE( (=)= —.
Making the change of variables 1 —x=t, and taking into account that
n_q n-t
= tk,
-1 k§=:0
we readily obtain
(1-x)"-1 o(1- x)k
0= S e

Finally, the value of the integration constant C is determined from the condition f(0)=0, which
leads to Eq. (A2).

The expression 1 — (— ¥)vanishes if k is even, while it is equal to 2 if k is odd, so that only
the odd values of k give a nonvanishing contribution to the right-hand side of (Ahx=Em
+¢€, with m=[n/2] and €e=0,1 for n even and odd, respectively, the last nonzero term in the
summation is that corresponding to k=2me-21 (2m—1=n—1 for n even and tn+1=n
for n odd). Writing k=21—1, we have
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m+e

é _2m+225—1 1_(_1)k_2 1
=1 k = k A 2-1

and taking into account Eq. (31) we complete our proof of (28).
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