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I. INTRODUCTIONConsider the ve
tor |ψ〉, pertaining to a �nite-dimensional Hilbert spa
e H = HA ⊗HB,that des
ribes a pure state of two quantum systems A and B. |ψ〉 is said to be a produ
tstate if there exists |φ〉A ∈ HA and |ϕ〉B ∈ HB su
h that
|ψ〉 = |φ〉A ⊗ |ϕ〉B . (1)Separable states are mixtures of produ
t states. In other words, the density operator ρa
ting on H that 
hara
terizes the quantum state of A and B is 
alled separable if it 
anbe written as a 
onvex 
ombination of produ
t ve
tors, that is,

ρ =
∑

i

pi|φi, ϕi〉〈φi, ϕi| =
∑

i

pi ρ
A
i ⊗ ρBi , (2)where 0 ≤ pi ≤ 1, ∑i pi = 1, and |φi, ϕi〉 = |φi〉A ⊗ |ϕi〉B.If ρ 
annot be written as in Eq. (2), then the state is said to be entangled. Entanglementis one of the most fas
inating issues in quantum me
hani
s, not only from a theoreti
al pointof view [1℄, but also be
ause of its appli
ations in the 
ontext of quantum information theory,su
h as 
ryptography and teleportation [2℄. Therefore, it is a very interesting question toask whether a given state is entangled or not. Although no general answer is known, thereexist a great variety of separability 
riteria, like the partial transpose 
riterion [3℄, Bell'sinequalities violation [4℄, and the 
onstru
tion of entanglement witnesses (EW's) [5℄. The�rst of these 
riteria gives ne
essary and su�
ient 
onditions when the dimension of H iseither 2 × 2 or 2 × 3, while otherwise it is just a ne
essary 
ondition. The se
ond 
riterionprovides only a ne
essary 
ondition. Finally, the third 
riterion is ne
essary and su�
ient inthe sense that, given an entangled state, there always exists an EW that dete
ts it; however,it is not known how to 
onstru
t all possible EW's, and this 
riterion turns out to be ane
essary separability 
ondition on
e a parti
ular set of EW's has been 
hosen.The relationship between entanglement and the un
ertainty prin
iple has been investi-gated in several re
ent works (see e.g. [6℄). The key fa
t is that, when measuring a 
olle
tionof nonlo
al observables on a given state, the lower bound on the un
ertainty of the out
omesis higher for separable states than for entangled states, be
ause of the 
orrelations inherentin the latter. Nonlo
al operators possess, in general, entangled eigenstates, while separablestates 
annot be simultaneous eigenstates for the set of nonlo
al operators. Using this idea,2



there have been a
hieved varian
e-based separability 
riteria [7℄ inspired by the Heisenberg-Robertson formulation of the un
ertainty prin
iple [8℄, as well as entropy-based separability
riteria [9, 10℄ derived from entropi
 un
ertainty relations [11, 12, 13℄. The ne
essary separa-bility 
onditions obtained in this way have the advantage of being more easily implementedin experiments, sin
e they are based on expe
tation values and probabilities for the out-
omes of measurements. On the 
ontrary, the partial transpose 
riterion demands 
ompleteknowledge of the density matrix, whose experimental determination requires 
onsiderablee�ort.In this paper we derive new separability 
riteria based on a di�erent mathemati
al formu-lation of the un
ertainty prin
iple, the so-
alled Landau-Pollak un
ertainty relation, and weshow that these 
onditions are better than those obtained using entropies in the examplesproposed so far. The arti
le is organized as follows. The Landau-Pollak un
ertainty relationis brie�y reviewed in Se
. II, where we state some properties that will be useful later on.In Se
. III, we derive new separability 
onditions for two-qubit systems. In Se
. IV, weinvestigate the a

ura
y of the resulting 
riteria using some well-known examples. In Se
.V, the relationship between one of our separability 
onditions and a set of optimal EW's ispointed out. Se
tion VI deals with the extension of our approa
h to more 
omplex 
ases,i.e. bipartite systems of qudits and multipartite systems.II. THE LANDAU-POLLAK UNCERTAINTY RELATIONLet X denote a Hermitian operator representing some physi
al observable in a �nite-dimensional Hilbert spa
e of dimension D, with a 
omplete set of orthonormal eigenve
tors
{|xi〉} (i = 1, 2, . . . , D) and N distin
t eigenvalues (N ≤ D). For n = 1, 2, . . . , N , theprobability pn(X) of �nding the state ρ in the nth eigenspa
e of X (i.e., the probability ofobtaining the nth possible out
ome in a measurement of X) is given by

pn(X) = Tr(Pn(X)ρ
)

, (3)where Pn(X) denotes the proje
tion operator on the nth eigenspa
e of X.The un
ertainty prin
iple states that, for general pairs of observables X and Y , theout
omes of a simultaneous measurement 
annot both be �xed with arbitrary pre
ision. One3



way to express this fa
t mathemati
ally is through the Landau-Pollak un
ertainty relation,
arccos

√

max
n

pn(X) + arccos
√

max
n

pn(Y ) ≥ arccos c , (4)where
c = c(X, Y ) ≡ max

i,j
|〈xi|yj〉| . (5)The relevan
e of this inequality in quantum me
hani
s was �rst pointed out by U�nk [14℄,who translated to the quantum language the original work of Landau and Pollak on un
er-tainty in signal theory [15℄.The expressions

Mr(P) =

(

N
∑

n=1

(pn)
1+r

)1/r

, r > −1 , (6)measure the 
on
entration of the probability distribution P = (p1, p2, . . . , pN). They are
losely related to the Rényi entropies [16℄,
H(R)
q (P) =

1

1 − q
ln

(

N
∑

n=1

(pn)
q

)

, q > 0 , (7)and the Tsallis entropies [17℄,
H(T )
q (P) =

1

1 − q

(

N
∑

n=1

(pn)
q − 1

)

, q > 0 , (8)both of whi
h in
lude the usual (Shannon) entropy as the parti
ular 
ase q = 1. Thequantities Mr(P) were �rst used as measures of un
ertainty in quantum me
hani
s in Refs.[12, 14℄, where a summary of their properties is given; a more detailed analysis 
an be foundin [18℄. Here we will just mention that Mr(P) is a 
ontinuous non-de
reasing fun
tion of r,with the limiting value
M∞(P) = max

n
pn , (9)and Mr(P) is 
onvex in P, i.e., for 0 ≤ λ ≤ 1,

Mr

(

λP1 + (1 − λ)P2

)

≤ λMr(P1) + (1 − λ)Mr(P2) . (10)Taking into a

ount Eq. (9), the Landau-Pollak un
ertainty relation (4) 
an be writtenas
arccos

√

M∞(X) + arccos
√

M∞(Y ) ≥ arccos c . (11)4



Maximizing the sumM∞(X)+M∞(Y ) under the 
onstraint (11), we obtain the un
ertaintyinequality
M∞(X) +M∞(Y ) ≤ 1 + c , (12)whi
h is weaker than (11) but has a simpler and more natural form.III. SEPARABILITY CONDITIONS FOR TWO-QUBIT SYSTEMSConsider the following observables a
ting on a bipartite two-dimensional Hilbert spa
e,

Z = σAz ⊗ σBz , X = σAx ⊗ σBx , (13)where σji (i = x, y, z; j = A,B) are the standard Pauli operators a
ting on the j qubit. Sin
e
Z and X 
ommute, for this pair of observables we have that c = 1, and the right-hand sideof (11) vanishes imposing no restri
tion on the possible out
omes of measurements. Thetrivial lower bound 0 in Eq. (11) is attained, for instan
e, if the measured state is one of thefour maximally entangled elements of the Bell basis,

|φ±〉 =
1√
2

(

|00〉 ± |11〉
)

,

|ψ±〉 =
1√
2

(

|01〉 ± |10〉
)

, (14)where we 
onsider |0〉 and |1〉 to be eigenve
tors of σz 
orresponding to the eigenvalues +1and −1, respe
tively.However, if Z and X a
t on a separable state, the lower bound 0 is not attainable, whi
henables the possibility of obtaining a separability 
ondition. This 
an be done by usingLemma 1 of [10℄, whi
h we quote here:Let ρ = ρA ⊗ ρB be a produ
t state on a bipartite Hilbert spa
e H = HA ⊗HB, and let
A (B) be observables with nonzero eigenvalues on HA (HB). Then

P(A⊗ B, ρ) ≺ P(A, ρA),

P(A⊗ B, ρ) ≺ P(B, ρB) (15)holds. The notation P ≻ Q (�P majorizes Q�) means that, if P = (p1, p2, . . . , pN) and
Q = (q1, q2, . . . , qN) denote two probability distributions written in de
reasing order (i.e.
p1 ≥ p2 ≥ . . . ≥ pN and q1 ≥ q2 ≥ . . . ≥ qN), then

k
∑

i=1

pi ≥
k
∑

i=1

qi (16)5



for all k ∈ [1, . . . , N ].It follows from the previous de�nition that Eq. (15) implies the inequalities
M∞(A⊗ B, ρ) ≤M∞(A, ρA),

M∞(A⊗ B, ρ) ≤M∞(B, ρB). (17)Therefore, if ρsep denotes an arbitrary (mixed) separable state, i.e. ρsep =
∑

i pi ρ
A
i ⊗ ρBi ,and A1, A2, B1, B2 are observables with nonzero eigenvalues, we have that

M∞(A1 ⊗B1, ρsep) +M∞(A2 ⊗B2, ρsep)

≤
∑

i

pi
(

M∞(A1 ⊗B1, ρ
A
i ⊗ ρBi ) +M∞(A2 ⊗ B2, ρ

A
i ⊗ ρBi )

)

≤
∑

i

pi
(

M∞(A1, ρ
A
i ) +M∞(A2, ρ

A
i )
)

≤
∑

i

pi
(

1 + c(A1, A2)
)

= 1 + c(A1, A2) , (18)where we have used Eqs. (10) and (12) in addition to (17). Sin
e both σz and σx have theeigenvalues +1 and −1, they satisfy the 
onditions of the above lemma, and use of Eq. (18)with the well-known value c(σz, σx) = 1/
√

2 gives
M∞(Z, ρsep) +M∞(X, ρsep) ≤ 1 +

1√
2
≈ 1.71 . (19)We have seen that the method developed by Gühne and Lewenstein in [10℄ to deriveseparability 
onditions from entropi
 un
ertainty relations 
an also be applied to the Landau-Pollak un
ertainty relation. However, as we shall prove in the following, inequality (19) 
anbe improved by performing a dire
t maximization of the sum of M∞(Z) and M∞(X) inprodu
t states; the bound attained in this way will be valid for any separable state be
auseof the 
onvexity of M∞.An arbitrary produ
t state is of the form (1) with

|φ〉A = cosα|0〉A + eiδ sinα|1〉A ,

|ϕ〉B = cos β|0〉B + eiγ sin β|1〉B , (20)where α, β ∈ [0, π/2] and δ, γ ∈ [0, 2π). Both Z and X have the eigenvalues +1 and −1,
6



and the 
orresponding eigenspa
e proje
tors are
P+(Z) = |00〉〈00|+ |11〉〈11| ,

P−(Z) = |01〉〈01|+ |10〉〈10| ,

P±(X) = |φ±〉〈φ±| + |ψ±〉〈ψ±| . (21)Therefore, a

ording to Eq. (3), the probabilities of �nding the pure separable state (1,20)in these eigenspa
es are, respe
tively,
p+(Z) = (cosα cos β)2 + (sinα sin β)2 ,

p−(Z) = 1 − (cosα cos β)2 − (sinα sin β)2 ,

p±(X) =
1

2
(1 ± cos δ cos γ sin 2α sin 2β) . (22)Sin
e p±(Z) do not depend on δ and γ, and sin 2α sin 2β is always nonnegative, the maximumvalue of M∞(Z) +M∞(X) equals the maximum of the fun
tions

f±(α, β) = p±(Z) +
1

2
(1 + sin 2α sin 2β) , (23)whi
h o

urs when α = ±β. Thus we �nd our �rst ne
essary separability 
ondition,

M∞(Z, ρsep) +M∞(X, ρsep) ≤
3

2
. (24)If for a 
ertain state M∞(Z) + M∞(X) > 3/2, then Eq. (24) implies that the state isentangled.As shown in [9℄, the introdu
tion of a third observable,

Y = σAy ⊗ σBy , (25)enables the possibility of obtaining a more a

urate separability 
ondition, due to the fa
tthat we are then using the maximal number of 
omplementary observables available for ea
hsubsystem [19℄. Unfortunately, no generalization of the Landau-Pollak un
ertainty relationis known for sets of more than two observables (leaving aside the one that is trivially obtainedfrom Eq. (12)), whi
h prevents us from using Gühne and Lewenstein's method in this 
ase.Therefore, we will follow the dire
t maximization pro
edure in order to set an upper boundfor the sum of M∞(X), M∞(Y ), and M∞(Z) in separable states.Observable Y has the same eigenvalues as Z and X, with eigenspa
e proje
tors
P±(Y ) = |φ∓〉〈φ∓| + |ψ±〉〈ψ±| , (26)7



and the 
orresponding probabilities for the pure separable state (1,20) are
p±(Y ) =

1

2
(1 ± sin δ sin γ sin 2α sin 2β) . (27)Sin
e sin 2α sin 2β is nonnegative, and the maximum over δ and γ of the four fun
tions of theform ±(sin δ sin γ ± cos δ cos γ) = ± cos(δ ∓ γ) equals 1, we only have to �nd the maximumof the fun
tions

g±(α, β) = p±(Z) + 1 +
sin 2α sin 2β

2

= f±(α, β) +
1

2
. (28)Re
alling the derivation of Eq. (24), we obtain our se
ond ne
essary separability 
ondition,

M∞(X, ρsep) +M∞(Y, ρsep) +M∞(Z, ρsep) ≤ 2 . (29)Taking into a

ount that M∞(Y, ρsep) ≥ 1/2, we see that 
ondition (24) 
an be derived from(29), so that the latter is stronger than the former.Attending to [7, 9℄, the best separability 
onditions are obtained by 
hoosing as observ-ables the three orthogonal 
omponents of the total spin of the system,
Si = σAi ⊗ IB + IA ⊗ σBi (i = x, y, z) , (30)where I denotes the identity operator. These observables all have the eigenvalues ±2 (non-degenerate) and 0 (two-time degenerate), with eigenspa
e proje
tors
P±(Sx) =

1

2

(

|φ+〉 ± |ψ+〉
)(

〈φ+| ± 〈ψ+|
)

,

P0(Sx) = |φ−〉〈φ−| + |ψ−〉〈ψ−| ,

P±(Sy) =
1

2

(

|φ−〉 ± |ψ+〉
)(

〈φ−| ± 〈ψ+|
)

,

P0(Sy) = |φ+〉〈φ+| + |ψ−〉〈ψ−| ,

P+(Sz) = |00〉〈00| , P−(Sz) = |11〉〈11| ,

P0(Sz) = |01〉〈01|+ |10〉〈10| , (31)
8



and the 
orresponding probabilities for the generi
 pure state (1,20) are
p±(Sx) =

1

4
(1 ± cos δ sin 2α)(1 ± cos γ sin 2β) ,

p0(Sx) =
1

2
(1 − cos δ cos γ sin 2α sin 2β) ,

p±(Sy) =
1

4
(1 ± sin δ sin 2α)(1 ± sin γ sin 2β) ,

p0(Sy) =
1

2
(1 − sin δ sin γ sin 2α sin 2β) ,

p+(Sz) = (cosα cos β)2 , p−(Sz) = (sinα sin β)2 ,

p0(Sz) = (cosα sin β)2 + (sinα cos β)2 . (32)We therefrom see that the maximum value of∑iM∞(Si) for produ
t states is the maximumof
w(α, β) = p(Sz) + 1 +

sin 2α sin 2β

2
, (33)whi
h is easily found to be equal to 2. Thus we get our third ne
essary separability 
ondition,

M∞(Sx, ρsep) +M∞(Sy, ρsep) +M∞(Sz, ρsep) ≤ 2 . (34)Another interesting possibility is that of measuring a non-degenerate Bell diagonal ob-servable,
B = λ1|φ+〉〈φ+| + λ2|φ−〉〈φ−| + λ3|ψ+〉〈ψ+| + λ4|ψ−〉〈ψ−| , (35)with λi 6= λj when i 6= j. The probability distribution for the out
omes of B a
ting on thepure separable state (1,20) is
pφ±(B) =

1

2
[(cosα cos β)2 + (sinα sin β)2 ± ξ(α, β)ζ+(δ, γ)] ,

pψ±(B) =
1

2
[(cosα sin β)2 + (sinα cos β)2 ± ξ(α, β)ζ−(δ, γ)] , (36)where ξ(α, β) = 1

2
sin 2α sin 2β and ζ±(δ, γ) = cos(δ ± γ). The nonnegativity of ξ(α, β)implies that M∞(B) is the maximum over α and β of the fun
tions
h1(α, β) =

1

2
[(cosα cos β)2 + (sinα sin β)2 + ξ(α, β)] ,

h2(α, β) =
1

2
[(cosα sin β)2 + (sinα cos β)2 + ξ(α, β)] , (37)and, therefore,

M∞(B) ≤ 1

2
. (38)9



This last ne
essary separability 
ondition is not new, sin
e it was previously derived byGühne and Lewenstein [10℄ using a di�erent method. As pointed out by these authors,
ondition (38) is equivalent to the set of four optimal EW's
Wφ± =

1

2
I − |φ±〉〈φ±| , Wψ± =

1

2
I − |ψ±〉〈ψ±| . (39)IV. ACCURACY OF THE SEPARABILITY CONDITIONSNext we will test the power as entanglement dete
tors of the separability 
onditionsderived in the previous se
tion, by applying them to states whose separability limits arealready known. We will also 
ompare our separability 
onditions with previous 
riteria. Allthe probabilities below are 
al
ulated using Eq. (3) and the proje
tors found in Se
. III.A. Werner statesWerner states [20℄ are mixtures of a 
ompletely random state and a maximally entangledpure state. In the 
ase of two qubits, and 
hoosing the maximally entangled state to be thesinglet state, they read

ρW =
1 − p

4
IA ⊗ IB + p|ψ−〉〈ψ−| , (40)where p ∈ [0, 1]. These states are known to be separable i� p ≤ 1/3 (see [21℄ and referen
estherein). The probabilities of �nding ρW in ea
h eigenspa
e when measuring the observablesof Se
. III are

p±(X) = p±(Y ) = p±(Z) =
1 ∓ p

2
,

p0(Si) =
1 + p

2
,

p±(Si) = pφ±(B) = pψ+(B) =
1 − p

4
,

pψ−(B) =
1 + 3p

4
. (41)

10



Thus we have,
∑

τ=X,Z

M∞(τ, ρW ) = 1 + p ,

∑

τ=X,Y,Z

M∞(τ, ρW ) =
3(1 + p)

2
,

∑

i=x,y,z

M∞(Si, ρW ) =
3(1 + p)

2
,

M∞(B, ρW ) =
1 + 3p

4
. (42)We see from these results that the separability 
ondition (24) dete
ts entanglement when

p > 1/2, while (29), (34), and (38) dete
t entanglement when p > 1/3. It is worth notingthat in this 
ase the three latter separability 
onditions, like varian
e-based 
riteria [7℄, areoptimal in the sense that they are able to dete
t all the entangled states. All four 
onditionsimprove the bound obtained in [9℄ using Shannon entropies (p > 0.55), as well as thosederived in [10℄ by means of Tsallis entropies (p > 1/
√

3) and Bell's inequality 
riterion(p > 1/
√

2). Even more, when measuring the same observables (i.e. when using the sameexperimental setting), our 
onditions always improve on the bounds given by the Shannonand Tsallis entropi
 
onditions, respe
tively: p > 0.78 and p > 1/
√

2 when measuring Xand Z; p > 0.65 and p > 1/
√

3 when measuring X, Y , and Z; p > 0.55 when measuring Sx,
Sy, and Sz; and p > 0.74 when measuring B (in the last two 
ases only Shannon entropi

onditions are available).B. Gisin statesGisin states [22℄ are mixtures of the same fra
tion of the pure states |00〉 and |11〉, andany pure superposition of the states |01〉 and |10〉. That is,

ρG = p|χ〉〈χ| + 1 − p

2

(

|00〉〈00|+ |11〉〈11|
)

, (43)where |χ〉 = cosα|01〉 + eiβ sinα|10〉, α ∈ [0, π/2], β ∈ [0, 2π), and p ∈ [0, 1]. The state ρGis known to be separable i� [3℄
p ≤ 1

1 + sin 2α
. (44)

11



In this 
ase,
p±(X) = p±(Y ) =

1 ± p sin 2α cos β

2
,

p+(Z) = 1 − p, p−(Z) = p ,

p±(Sx) = p±(Sy) =
1

2
p+(X) ,

p0(Sx) = p0(Sy) = p−(X) ,

p±(Sz) = pφ±(B) =
1 − p

2
, p0(Sz) = p ,

pψ±(B) =
p (1 ± sin 2α cos β)

2
, (45)whi
h leads to

∑

τ=X,Z

M∞(τ, ρG) = max{p, 1 − p} +
1 + p sin 2α |cos β|

2
,

∑

τ=X,Y,Z

M∞(τ, ρG) = max{p, 1 − p} + 1 + p sin 2α |cos β| ,

∑

i=x,y,z

M∞(Si, ρG) = max

{

p,
1 − p

2

}

+ 2 max

{

1 − p sin 2α cos β

2
,
1 + p sin 2α cos β

4

}

,

M∞(B) = max

{

1 − p

2
,
p (1 + sin 2α |cos β|)

2

}

. (46)These results imply that 
onditions (24), (29), (34), and (38) dete
t entanglement when
p >

(

1 + 1
2
sin 2α |cos β|

)−1, p > (1 + sin 2α |cos β|)−1, p > (1 − sin 2α cos β)−1, and p >

(1 + sin 2α |cos β|)−1, respe
tively (noti
e that the restri
tion imposed by (34) is meaningfulonly when β ∈ (π/2, 3π/2)). Thus we �nd that in this 
ase the best separability 
onditionsare (29) and (38), though in general they are not optimal. When β = 0, π all entangledstates are dete
ted by (29) and (38), but as β departs from these values the separability
onditions fail to dete
t an in
reasing amount of entangled states, until for β = π/2, 3π/2no entanglement is dete
ted. For values of β su
h that |cos β| >
√

2 − 1, 
onditions (29)and (38) improve the bound given by Bell's inequality 
riterion, p > (1+ (
√

2− 1) sin 2α
)−1[22℄. It is worth noting that, due to the dependen
e of the probabilities on two parameters,to establish whi
h states are dete
ted by the entropi
 separability 
riteria is mathemati
ally
umbersome, and has to be 
arried out by numeri
al analysis.12



C. Mixtures of a singlet and a maximally polarized pairThe states
ρ0 = p|ψ−〉〈ψ−| + (1 − p)|00〉〈00| , (47)with p ∈ [0, 1], are known by the positive partial transpose 
riterion to be separable only if

p = 0 [3℄. The probabilities for the observables of Se
. III are now
p±(X) = p±(Y ) =

1 ∓ p

2
,

p0(Sx) = p0(Sy) =
1 + p

2
,

p±(Sx) = p±(Sy) =
1 − p

4
,

p+(Z) = p+(Sz) = 1 − p ,

p−(Z) = p0(Sz) = pψ−(B) = p ,

p−(Sz) = pψ+(B) = 0 ,

pφ±(B) =
1 − p

2
, (48)and, therefore,

∑

τ=X,Z

M∞(τ, ρ0) = max{p, 1 − p} +
1 + p

2
,

∑

τ=X,Y,Z

M∞(τ, ρ0) = max{p, 1 − p} + 1 + p ,

∑

i=x,y,z

M∞(Si, ρ0) = max{p, 1 − p} + 1 + p ,

M∞(B) = max

{

p,
1 − p

2

}

. (49)We thus �nd that 
ondition (24) dete
ts entanglement for p > 2/3, while it su�
es tohave p > 1/2 in order to dete
t entangled states using 
onditions (29), (34), and (38).These bounds are not optimal, but they improve on that derived from the violation of Bell'sinequality, p > 0.8 [3℄. Furthermore, as in the 
ase of Werner states, in ea
h measurementsetting the bounds provided by our 
onditions are better than those obtained using Shannonentropies: p > 0.85 when measuring X and Z; p > 0.73 when measuring X, Y , and Z;
p > 0.55 when measuring Sx, Sy, and Sz; and p > 0.78 when measuring B.13



V. EQUIVALENCE OF CONDITION (29) AND THE SET OF OPTIMAL EW'S(39)The ne
essary separability 
ondition (38) is equivalent to the set of optimal EW's (39)[10℄. Using the three-dimensional spa
e representation of density matri
es with 
oordinatesTr(Xρ), Tr(Y ρ), and Tr(Zρ) (see Refs. [10℄ and [23℄), this equivalen
e means that 
ondition(38) is able to re
ognize the o
tahedron 
ontaining all separable states, whi
h lies inside thetetrahedron whose verti
es are the Bell states and 
ontains all possible states.For the three families of states 
onsidered in the previous se
tion, the separability 
ondi-tions (29) and (38) dete
t the same entangled states, whi
h suggests that they are equivalent.In the following we will prove that this is indeed the 
ase, so that 
ondition (29) is also equiv-alent to the set of optimal EW's (39) and has the same su

ess at dete
ting the o
tahedronthat 
ontains the separable states.Condition (38) 
an be stated as
0 ≤ Tr(|BSi〉〈BSi|ρsep) ≤ 1

2
, (50)where |BSi〉 is any element of the Bell basis (14). Taking into a

ount the identities [10℄Tr(|φ±〉〈φ±|ρ

)

=
1±Tr(Xρ)∓Tr(Y ρ) + Tr(Zρ)

4
,Tr(|ψ±〉〈ψ±|ρ

)

=
1±Tr(Xρ)±Tr(Y ρ) − Tr(Zρ)

4
, (51)and noting that Tr(τρ) = p+(τ) − p−(τ) ≡ ∆p(τ) (τ = X, Y, Z) , (52)the inequalities in (50) 
an be written as

− 1 ≤ ±∆p(X, ρsep)∓∆p(Y, ρsep) + ∆p(Z, ρsep) ≤ 1 ,

− 1 ≤ ±∆p(X, ρsep)±∆p(Y, ρsep) − ∆p(Z, ρsep) ≤ 1 . (53)This is equivalent to the eight inequalities of the form
−1 ≤ ±∆p(X, ρsep) ± ∆p(Y, ρsep) ± ∆p(Z, ρsep) ≤ 1 , (54)that is,
|∆p(X, ρsep)| + |∆p(Y, ρsep)| + |∆p(Z, ρsep)| ≤ 1 . (55)14



Finally, noting that for τ = X, Y, Z

|∆p(τ)| = M∞(τ) −
(

1 −M∞(τ)
)

= 2M∞(τ) − 1 , (56)Eq. (55) redu
es to (29), whi
h proves that this separability 
ondition is equivalent to (38).VI. SEPARABILITY CONDITIONS FOR MORE COMPLEX SYSTEMSIf we 
onsider multipartite and/or higher-dimensional systems (qudits), the dire
t max-imization pro
edure used in Se
. III for two-qubit systems be
omes too 
ompli
ated to be
arried out analyti
ally, due to the in
reasing number of free parameters, although it 
an befa
ed numeri
ally. However, the method of Gühne and Lewenstein (see Se
. III) 
an also beapplied in this 
ase, and allows us to derive separability 
onditions from the Landau-Pollakun
ertainty relation.A. Bipartite systems of quditsFor states of a two-dimensional Hilbert spa
e, the best dete
tion of entanglement isa
hieved by measuring in ea
h subsystem the three orthogonal 
omponents of spin, whi
hare also a maximal set of 
omplementary observables. We re
all that two observables A,Bin D-dimensional Hilbert spa
e are said to be 
omplementary if c(A,B) = 1/
√
D [24℄,and maximal sets of D + 1 pairwise 
omplementary observables are known to exist when

D is either a prime [25℄ or a power of a prime [19℄. However, when the dimension of theHilbert spa
e is greater than two, the orthogonal 
omponents of spin are not 
omplementaryobservables and both 
ases must be treated separately.Choosing A1, A2 and/or B1, B2 to be 
omplementary observables in D-dimensionalHilbert spa
e, we �nd from Eq. (18) that
M∞(A1 ⊗ B1, ρsep) +M∞(A2 ⊗ B2, ρsep) ≤ 1 +

1√
D
. (57)On the other hand, if Sn and Sn′ denote D-dimensional spin observables along the axes

15



n and n′, respe
tively, we have that [26℄
c2(Sn, Sn′) =





D − 1

n∗





(

cos2 β

2

)D−1−n∗ (

sin2 β

2

)n∗

,

n∗ =

[

D sin2 β

2

]

, (58)where β is the angle between the axes n and n′, and the square bra
kets denote integer partof the expression within. Therefore, use of Eq. (18) leads to
M∞(SAn ⊗ SBn , ρsep) +M∞(SAn′ ⊗ SBn′, ρsep)

≤ 1 +

√

√

√

√

√





D − 1

n∗





(

cos
β

2

)D−1−n∗ (

sin
β

2

)n∗

, (59)and 
hoosing the axes n, n′ to be orthogonal (β = π/2) the previous inequality simpli�es to
M∞(SAx ⊗ SBx , ρsep) +M∞(SAz ⊗ SBz , ρsep)

≤ 1 +

√

√

√

√

√

1

2D−1





D − 1

[D/2]



 . (60)It is worth noting that when D is odd the spin observables have one non-degeneratezero eigenvalue, so that the 
onditions in Gühne and Lewenstein's lemma are not ful�lled.However, as pointed out by these authors [10℄, the requirement that the observables havenonzero eigenvalues is more a te
hni
al 
ondition and 
an always be a
hieved by alteringthe eigenvalues, sin
e the Landau-Pollak un
ertainty relation, like the entropi
 un
ertaintyrelations 
onsidered in [10℄, does not depend on them.B. Multipartite systemsIn the 
ase of tripartite systems we must distinguish between fully separable states, whi
hare states (or mixtures of states) of the form
|ψ〉ABC = |φ〉A ⊗ |ϕ〉B ⊗ |χ〉C , (61)and biseparable states, whi
h are produ
t states with respe
t to one parti
ular bipartitesplitting of the system, e.g.

|ψ〉ABC = |φ〉A ⊗ |ϕ〉BC , (62)16



or mixtures of states of this form. Fully separable and biseparable states, as well as otherkinds of partially separable states, 
an be de�ned likewise for general multipartite systems.A straightforward generalization of Eq. (18) enables us to derive biseparability 
onditionsfor multipartite qubit and qudit systems. Thus, for instan
e, on the analogy of (19) we �ndthe following biseparability 
ondition for systems of three qubits:
M∞(σAx ⊗ σBx ⊗ σCx ) +M∞(σAz ⊗ σBz ⊗ σCz )

≤ 1 +
1√
2
≈ 1.71 . (63)Likewise, the multipartite analogues of Eqs. (57) and (60) are, respe
tively, the follow-ing biseparability 
onditions for systems with an arbitrary number of subsystems in D-dimensional Hilbert spa
e:

M∞(CA1

1 ⊗ · · · ⊗ CAD

1 , ρsep) +M∞(CA1

2 ⊗ · · · ⊗ CAD

2 , ρsep)

≤ 1 +
1√
D
, (64)where C1 and C2 are 
omplementary observables, and

M∞(SA1

x ⊗ · · · ⊗ SAD

x , ρsep) +M∞(SA1

z ⊗ · · · ⊗ SAD

z , ρsep)

≤ 1 +

√

√

√

√

√

1

2D−1





D − 1

[D/2]



 . (65)We emphasize that, as already noted in Se
. III in relation to the two-qubit 
ase, theseparability and biseparability 
onditions obtained in this se
tion 
annot be improved by
onsidering measurements of additional observables, due to the fa
t that no nontrivial gen-eralization of the Landau-Pollak un
ertainty relation is known for sets of more than twoobservables [27℄.VII. CONCLUSIONSWe have derived several ne
essary separability 
onditions for two-qubit systems, namelyEqs. (24), (29), (34), and (38), on the basis of the so-
alled Landau-Pollak un
ertaintyrelation. Like entropy-based separability 
riteria, our 
onditions are expressed in terms ofthe probability distributions for the out
omes of measurements, so that they 
an be applied17



in many experimental settings. On the other hand, the measure of un
ertainty used here,
M∞, is mathemati
ally easier to handle than entropies.In order to test the power of these 
onditions as entanglement dete
tors, we have appliedthem to three well-known families of two-qubit states, namely Werner states, Gisin states,and mixtures of a singlet and a maximally polarized pair. In most 
ases, the results obtainedare better than those provided by other separability 
riteria, su
h as Bell's inequalitiesviolation and entropy-based 
riteria. Conditions (29), (34), and (38) are even able to dete
tall entangled two-qubit Werner states, thus improving on entropy-based 
riteria [9, 10℄ andreprodu
ing the results of varian
e-based 
riteria [7℄. However, the other two families showthat in general our 
onditions are not optimal, i.e. they are ne
essary but not su�
ient. Itwould be interesting to know whether a re�ned 
hoi
e of operators 
an give optimal resultsfor these states, and, more generally, whether given an entangled state it is always possibleto 
onstru
t a set of observables su
h that the sum of their M∞ measures is greater in thatstate than in a generi
 produ
t state.We have proved that 
onditions (29) and (38) are equivalent. Sin
e (38) is known to beequivalent to the set of four optimal EW's (39), the same happens for (29). As a 
onsequen
e,(29) is able to dete
t all entangled states lying outside the o
tahedron of separable statesin the three-dimensional representation of density matri
es [28℄. Condition (24) is weakerthan (29), sin
e it does not in
lude the 
orrelations in the third observable; however, wehave 
onsidered it expli
itly be
ause it only needs two measurements and, therefore, it isexperimentally less demanding.Finally, we have extended our results to more 
ompli
ated 
ases than two-qubit systems,i.e. to multipartite and higher-dimensional systems, for whi
h no ne
essary and su�
ient
ondition for entanglement is known to date. The separability 
onditions obtained in these
ases, however, are limited due to the la
k of a nontrivial un
ertainty relation of Landau-Pollak type for sets of more than two observables. Therefore, further resear
h in this �eldmight help to improve the results presented here.A
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