

DISTORTION OF BOUNDARY SETS UNDER INNER FUNCTIONS AND APPLICATIONS.

BY

José L. Fernández (*) and Domingo Pestana

Departamento de Matemáticas Universidad Autónoma de Madrid 28049 Madrid, SPAIN.

 (\ast) Research supported by a grant from CICYT, Ministerio de Educación y Ciencia, Spain.

0. Introduction.

An <u>inner function</u> is a bounded holomorphic function from the unit disk Δ of the complex plane such that the radial boundary values have modulus 1 a. e.. If E is a Borel subset of $\partial \Delta$, we define $f^{-1}(E) = \{e^{i\theta} \mid \lim_{r \to 1} f(re^{i\theta}) \text{ exists and belongs to } E\}$.

In this paper we study the relationship between the metrical sizes of E and $f^{-1}(E)$ and consider some applications. The collection of all Borel subsets of $\partial \Delta$ is denoted \mathcal{B} . In this context the classical lemma of Löwner asserts the following:

<u>THEOREM L1.</u> If f is inner, f(0) = 0, and if $E \in \mathcal{B}$, then $L(f^{-1}(E)) = L(E)$

Here and hereafter L means normalized Lebesgue measure. There is a companion result about conformal mapping:

<u>THEOREM L2.</u> If f is univalent, with $f(\Delta) \subset \Delta$, f(0) = 0, and if $E \in \mathcal{B}$, with radial limits $f(E) \subset \partial \Delta$, then

$$L(f(E)) \ge L(E)$$

Both results are easy applications of invariance properties of harmonic measure ([A, p.12], [T p.322]).

Recently, Makarov and Hamilton ([M], [H]; see also [Po 1]) have extended L2 to fractional dimensions. Their results can be summarized as follows:

<u>THEOREM A.</u> If f is univalent, f(0) = 0, and $f(\Delta) \subset \Delta$, then if E is a Borel subset of $\partial f(\Delta) \cap \partial \Delta$, and if $0 < \alpha < 1$, then

(i) $M_{\alpha}(f(E)) \ge C_{\alpha}M_{\alpha}(E)$

and,

(ii)
$$cap_{\alpha}(f(E)) \ge |f'(0)|^{-1/2} cap_{\alpha}(E) \ge cap_{\alpha}(E)$$

In particular, $Dim(f(E)) \ge Dim(E)$.

Here, M_{α} , cap_{α} , and Dim, denote α -dimensional content, α -dimensio- nal capacity and Hausdorff (or capacitary) dimension. We refer to [T] and [K-S] for definitions and basic background. For $\alpha = 0$, cap_0 means logarithmic capacity; (ii) holds and it is due to Pommerenke.

We have

<u>THEOREM 1.</u> If f is inner, f(0) = 0, and if $E \in \mathcal{B}$, we have for $0 < \alpha \leq 1$,

(i) $M_{\alpha}(f^{-1}(E)) \ge C_{\alpha}M_{\alpha}(E)$

and for $0 \leq \alpha < 1$,

(ii)
$$cap_{\alpha}(f^{-1}(E)) \ge C_{\alpha}cap_{\alpha}(E)$$

An inmediate consequence is the following:

<u>Corollary.</u> If f is inner, and $E \in \mathcal{B}$,

$$Dim(f^{-1}(E)) \ge Dim(E)$$

None of these inequalities can be reversed. See Section 3 for the appropriate examples.

The outline of this paper is as follows: in Section one, we give the proofs of some lemmas needed in the proof of Theorem 1, which is given in Section two; in section 3 we give some examples in order to prove that the inequalities in Theorem 1 cannot be reversed. Finally, section 4 contains the applications to radial boundeness.

We would like to thank J.J. Carmona, J.G. Llorente and Ch. Pommerenke for helpful conversations.

1. <u>Some lemmas.</u> In what follows p_{μ} denotes the Poisson extension of a measure μ in $\partial \Delta$.

Lemma 1. Let $\mu \geq 0$ be a measure in $\partial \Delta$, and let f be an inner function.

Then, there exist a measure $\nu \geq 0$, such that $(p_{\mu}) \circ f = p_{\nu}$, and if ν has singular part σ , and continuous part γ and we denote,

$$A = \{e^{i\theta} \mid p_{\sigma}(re^{i\theta}) \to \infty, \text{ as } r \to 1\}$$
$$B = \{e^{i\theta} \mid \exists \lim_{r \to 1} f(re^{i\theta}) = f(e^{i\theta}), \ |f(e^{i\theta})| = 1 \text{ and } \lim_{r \to 1} p_{\gamma}(re^{i\theta}) > 0\}$$

then

$$A \cup B \subset f^{-1}(support \ \mu)$$

and so,

$$\nu(f^{-1}(support\ \mu)) = \|\nu\|$$

<u>Proof</u>: Let us denote by E the support of μ ; $(p_{\mu} \circ f$ is harmonic and positive in $\partial \Delta$ and so, as it is well known, there exists ν as above). Now if $e^{i\theta} \in A$, then $|f(re^{i\theta})| \to 1$, as $r \to 1$. The curve $\{f(re^{i\theta}) \mid 0 \leq r < 1\}$ in the w-disk must end on a (unique) point $e^{i\psi}$ of $\partial \Delta$. Indeed, if not, it is easy to see that $p_{\mu}(re^{i\theta}) \to \infty$, as $r \to 1$, in an open interval of $\partial \Delta$. Now, $e^{i\psi} \in E$, since otherwise p_{μ} vanishes continuously at $e^{i\psi}$. By this same reason, $B \subset f^{-1}(E)$. Finally, since A has full σ -measure and B has full γ -measure, $\nu(A \cup B) = \nu(\partial \Delta)$.

If μ is a probability in $\partial \Delta$, then the α -energy $I_{\alpha}(\mu)(0 \leq \alpha < 1)$ is defined as

$$I_{\alpha}(\mu) = \int \int_{\partial \Delta \times \partial \Delta} \phi_{\alpha}(|x-y|) d\mu(x) d\mu(y)$$

where

$$\phi_{\alpha}(t) = \begin{cases} \log \frac{1}{t}, \text{ if } \alpha = 0\\ 1/t^{\alpha}, \text{ if } 0 < \alpha < 1 \end{cases}$$

Recall that if $E \subset \partial \Delta$ is a closed subset, then

 $\phi_{\alpha}(cap_{\alpha}(E)) = \inf\{I_{\alpha}(\mu); \mu \text{ probability supported on } E\}$

and that the infimum is attained for a probability μ_e which is called the equilibrium distribution on E. Moreover, if $\hat{\mu}(n)$ and γ_n^{α} denote the Fourier coefficients of the measure μ and the kernel $\varphi_{\alpha}(t) = \phi_{\alpha}(|1 - e^{it}|)$ respectively, then

$$I_{\alpha}(\mu) = 4\pi^{2} \sum_{-\infty}^{\infty} |\hat{\mu}(n)|^{2} \gamma_{n}^{\alpha} = \gamma_{0}^{\alpha} + 8\pi^{2} \sum_{1}^{\infty} |\hat{\mu}(n)|^{2} \gamma_{n}^{\alpha}$$

Let us denote, by $J_{\alpha}(\mu)$ the integral

$$J_{\alpha}(\mu) = \int \int_{\Delta} |p_{\mu}(z) - 1|^2 \frac{dxdy}{|z|^2 (\log \frac{1}{|z|})^{\alpha}}$$

Lemma 2. There exist a constant $C_{\alpha} \geq 1$ such that

$$C_{\alpha}^{-1}J_{\alpha}(\mu) \le I_{\alpha}(\mu) - \gamma_{0}^{\alpha} \le C_{\alpha}J_{\alpha}(\mu)$$

<u>Proof</u>: Notice that

$$J_{\alpha}(\mu) = 4\pi \sum_{n=1}^{\infty} |\hat{\mu}(n)|^2 \int_0^1 r^{2n-1} \frac{dr}{(\log \frac{1}{r})^{\alpha}} = 4\pi \frac{\Gamma(1-\alpha)}{2^{1-\alpha}} \sum_{n=1}^{\infty} |\hat{\mu}(n)|^2 n^{\alpha-1} \frac{dr}{2^{1-\alpha}} = 4\pi \frac{\Gamma(1-\alpha)}{2^{1-\alpha}} \sum_{n=1}^{\infty} |\hat{\mu}(n)|^2 \frac{dr}{2^{1-\alpha}} = 4\pi \frac{\Gamma(1-\alpha)}{2^{1-\alpha}} = 4\pi \frac{\Gamma(1-\alpha)}{2^{1-\alpha}} = 4\pi \frac{\Gamma(1-\alpha)}{2^{1-\alpha}} = 4\pi \frac{\Gamma(1-\alpha)}{2^{1$$

So, since $\gamma_n^{\alpha} \simeq n^{\alpha-1}$, see [K-S, p.40], the lemma follows.

Lemma 3. If μ is a probability on $\partial \Delta$, f is an inner function with f(0) = 0, and ν is the probability on $\partial \Delta$ such that $p_{\nu} = (p_{\mu}) \circ f$, then

$$I_{\alpha}(\nu) \le C_{\alpha} I_{\alpha}(\mu)$$

where C_{α} is a constant ≥ 1 .

<u>Proof</u>: The lemma follows from lemma 2 and subordination, since $|p_{\mu} - 1|$ is subharmonic.

2. <u>Proof of Theorem 1.</u>

We may assume that E is a closed subset of $\partial \Delta$ and $M_{\alpha}(E) > 0$. Then, see e.g.[T, p.64], there exists a positive mass distribution on E of finite total mass such that: (i) $\mu(E) = M_{\alpha}(E)$; (ii) $\mu(I) \leq C_{\alpha}L(I)^{\alpha}$, for any open interval in $\partial \Delta$, where C_{α} is a constant independent of E. Given $z = re^{i\theta}(r < 1)$, let us denote by I_z the open interval (in $\partial \Delta$) with center $e^{i\theta}$ and lenght 1 - |z|.

A standard argument shows that

(1)
$$p_{\mu}(z) \le \frac{C_{\alpha}}{(1-|z|)^{1-\alpha}}$$

with C_{α} a new constant. Let ν be a measure such that $(p_{\mu}) \circ f = p_{\nu}$. Schwarz's lemma and (1) give the same inequality for ν . On the other hand, it is well known that

$$p_{\nu}(z) \ge C \frac{\nu(I_z)}{1 - |z|}$$

and so, we obtain that

(2)
$$\nu(I_z) \le C_{\alpha} L(I_z)^{\alpha}$$

Now, if σ is the singular part of ν , and we cover the set A in lemma 1 with intervals of radii r_i , we see, by (2), that

$$\sigma(A) \le C_{\alpha} \sum_{i} r_{i}^{\alpha}$$

and therefore, $\sigma(A) \leq C_{\alpha}M_{\alpha}(A) \leq C_{\alpha}M_{\alpha}(f^{-1}(E))$. Since A has full σ -measure we conclude that

(3)
$$\|\sigma\| \le C_{\alpha} M_{\alpha}(f^{-1}(E))$$

On the other hand, if γ is the continuous part of ν we obtain from lemma 1 that

$$\gamma(B) \le C_{\alpha} M_{\alpha}(B) \le C_{\alpha} M_{\alpha}(f^{-1}(E))$$

and since B has full γ -measure we deduce that

(4)
$$\|\gamma\| \le C_{\alpha} M_{\alpha}(f^{-1}(E))$$

and so, by (3) and (4), and since f(0) = 0,

$$M_{\alpha}(E) = \|\mu\| = \|\nu\| \le C_{\alpha}M_{\alpha}(f^{-1}(E))$$

This finishes the proof of (a).

To prove (b), we may assume that E is closed. Let us denote by μ_e the equilibrium distribution of E, and let ν be the positive measure such that $p_{\nu} = (p_{\mu_e}) \circ f$. Since $f(0) = 0, \nu$ is a probability on $\partial \Delta$, and by lemma 3,

(5)
$$I_{\alpha}(\nu) \le C_{\alpha}I_{\alpha}(\mu_e) = C_{\alpha}\phi_{\alpha}(cap_{\alpha}(E))$$

But, from lemma 1, $\nu(f^{-1}(E)) = 1$, and so

$$I_{\alpha}(\nu) = \int \int_{f^{-1}(E) \times f^{-1}(E)} \phi_{\alpha}(|z-w|) d\nu(z) d\nu(w)$$

Now, let $\{K_n\}$ be an increasing sequence of compacts subsets if $\partial \Delta$, $K_n \subset f^{-1}(E)$ such that $\nu(K_n) \nearrow 1$. The monotone convergence theorem gives

(6)
$$I_{\alpha}(\nu) \ge \lim_{n \to \infty} \phi_{\alpha}(cap_{\alpha}(K_n)) = \inf_{n} \phi_{\alpha}(cap_{\alpha}(K_n)) \ge \phi_{\alpha}(cap_{\alpha}(f^{-1}(E))).$$

(b) is now a consequence of (5) and (6).

3. <u>Some examples</u>.

The following examples show that there are no inequalities in the opposite direction.

EXAMPLE 1. Let $f_n(z) = z^n$, $z \in \Delta$, $n \in \mathbb{N}$. If E is a small closed interval with center 1, $E = \{e^{i\theta} : \theta \in [-\delta, \delta]\}$, and $0 \le \alpha < 1$, then

$$cap_{\alpha}(f_n^{-1}(E)) \to cap_{\alpha}(\partial \Delta)$$

as n tends to ∞ .

<u>Proof</u>: $f_n^{-1}(E)$ consists of n closed intervals of length $\frac{\delta}{n}$ and centered at the points $z_{j,n} = e^{2\pi j i/n}$ (j = 1, ..., n). Let us denote by $\delta_{j,n}$ the measure concentrated in $z_{j,n}$, and write $\mu_n = \frac{1}{n} \sum_{j=1}^n \delta_{j,n}$.

The α -equilibrium distribution of $\partial \Delta$ is Lebesgue measure. But μ_n tends to L weakly as $n \to \infty$. Consequently,

$$\overline{\lim}_{n \to \infty} \phi_{\alpha}(cap_{\alpha}(f_{n}^{-1}(E)) \leq \overline{\lim}_{n \to \infty} \int \int_{\partial \Delta \times \partial \Delta} \phi_{\alpha}(|x-y|) d\mu_{n}(x) d\mu_{n}(y) =$$
$$= \int \int_{\partial \Delta \times \partial \Delta} \phi_{\alpha}(|x-y|) dL(x) dL(y) = \phi_{\alpha}(cap_{\alpha}(\partial \Delta)) \leq \phi_{\alpha}(cap_{\alpha}f_{K}^{-1}(E))$$

for every K.

Therefore,

$$\lim_{n \to \infty} \phi_{\alpha}(cap_{\alpha}f_n^{-1}(E)) = \phi_{\alpha}(cap_{\alpha}(\partial \Delta)).$$

EXAMPLE 2. Let $F(z) = e^{-\frac{1+z}{1-z}}$ and be $E = F^{-1}(\{\frac{1}{2^n}, n = 1, 2, 3, ..., \}) \cup \{0\}$. If H is a universal covering map from Δ onto $\Delta \setminus E$, then H is inner and

$$Dim(H^{-1}{1}) = 1 > 0 = Dim{1}.$$

<u>Proof</u>: E only accumulates at 1. Since E has zero logarithmic capacity we deduce that H is inner, ([CL, p.37]). Let A be the set

$$A=\{e^{i\theta}\mid \lim_{r\rightarrow 1}(F\circ H)(re^{i\theta})=0\}$$

We shall verify that Dim(A) = 1. But notice now that if $F(H(re^{i\theta})) \to 0$, as $r \to 1$, then $H(re^{i\theta}) \to 1$. Thus, $A \subseteq H^{-1}\{1\}$.

Notice that $F \circ H$ is a universal covering map of

$$\Delta \setminus \{\frac{1}{2^n}, n = 1, 2, 3, ...,\} \setminus \{0\}$$

and consequently $F \circ H$ is a singular inner function. Let us denote by μ the corresponding singular measure $(\log |F \circ H| = -p_{\mu})$. Let g be the reciprocal of $F \circ H$. Then g is a holomorphic mapping in the disk which omits the points $\{2^n; n = 1, 2, ...\}$. By a theorem of Littlewood, [L, p.228], we conclude that for constants C > 0, b > 2.

$$|g(z)| \leq \frac{C}{(1-|z|)^b}$$
, for each $z \in \Delta$

Consequently,

$$|p_{\mu}(z)| \le b \cdot \log \frac{1}{1-|z|} + \log C$$

One easily concludes that any set of positive μ -measure must have dimension 1. Since $p_{\mu}(re^{i\theta}) \to \infty$ for μ -a.e. $e^{i\theta}$, we conclude that A has dimension 1, as desired.

4. Radial boundeness of holomorphic functions.

The first application concerns singularities of inner functions. In [F], it is proved that if f is inner, E is the set of points of Δ that f omits and S(f) is the set of singularities of f, then

 $Dim S(f) \ge \alpha(\rho_E)$

where α is a continuous monotone function in $[0, \infty)$ with $\alpha(x) > \frac{1}{2}$, $\alpha(0) = 1$, and $\rho_E = \inf\{\rho(a, b) \mid a, b \in E, a \neq b\}$, where ρ denotes hyperbolic distance in Δ .

The following improvement is useful.

<u>Corollary 1.</u>Let f be an inner function, and let E be the set of points in Δ that f omits. If B is the set of accumulation points of E in $\partial \Delta$, then

$$Dim S(f) \ge \max\{Dim(B), \alpha(\rho_E)\}$$

<u>Proof</u>: We can assume that f(0) = 0. We claim that $\partial \Delta \setminus S(f) \subset f^{-1}(\partial \Delta \setminus B)$. Indeed, if $a \in \partial \Delta \setminus S(f)$ then f is analytic in a neigbourhood U_a of a, so that if $z \in U_a \cap \Delta$ then |f(z)| < 1, if $z \in U_a \cap \partial \Delta$ then |f(z)| = 1 and if $z \in U_a \setminus \overline{\Delta}$ then |f(z)| > 1. Now $f(U_a)$ is a neigbourhood of f(a), and $E \cap f(U_a \cap \Delta) = \emptyset$; therefore $f(a) \notin B$.

So $S(f) \supset f^{-1}(B)$. By theorem 1, we obtain that,

$$Dim S(f) \ge Dim f^{-1}(B) \ge Dim (B)$$

If f is a holomorphic function from Δ into **C** we denote by Mf the radial maximal function, i.e.,

$$Mf(e^{i\theta}) = \sup_{0 < r < 1} |f(re^{i\theta})|$$

THEOREM 2. Let f be an inner function, and let E be the set of points in Δ that f omits. Then

$$Dim \left\{ \theta \mid Mf(e^{i\theta}) < 1 \right\} \ge \alpha(\rho_E)$$

<u>Proof</u>: Let $r \in (0,1)$ such that $E \cap \{|z| = r\} = \emptyset$ and |f(0)| < r. Let Ω_r be the connected component of $f^{-1}(\Delta_r)$ wich contains zero, where $\Delta_r = \{|w| < r\}$. The domain Ω_r is simply connected. Let $\varphi_r : \Delta \to \Omega_r$ be a conformal mapping onto Ω_r , with $\varphi_r(0) = 0$. Then $h = \frac{1}{r}(\varphi_r \circ f)$ is inner. Indeed, $h \in H^{\infty}$ and by Fatou's theorem, h has radial boundary values almost everywhere. On the other hand, if we denote by $A_r = \partial \Omega_r \cap \partial \Delta$, and by $B_r = \{e^{i\theta} : \exists \lim_{s \to 1} \varphi_r(se^{i\theta}) \in A_r\}$, we can write $\partial \Delta = B_r \cup N \cup H$ where N has logarithmic capacity zero and H is an open set across which φ_r extends analytically (and $\varphi_r(H) \subset \partial \Omega_r \cap \Delta$).

So φ_r has finite and non zero angular derivative a.e. in B_r , (a consequence of McMillan's twist point theorem, see e.g. [Po 2, p.326]), and so, in the corresponding points of A_r f has radial boundary values with modulus less than 1. Thus, since f is inner, and because of Löwner's lemma, we deduce that $L(B_r) = 0$. This implies that h is inner. Moreover, we have that

(7)
$$S(h) \subseteq B_r \cup N$$

We claim that

(8)
$$A_r \subseteq \{e^{i\theta} \mid \sup_{0 < s < 1} |f(se^{i\theta})| < 1\}$$

This is so, because if $e^{i\theta} \in A_r$, then there exists a curve $\gamma \subseteq \Omega_r$ ending at $e^{i\theta}$ and beginning at zero and since $|f| \leq r$ on γ , and |f| < 1 everywhere, an application of Lindelöf's Theorem, gives

$$\sup_{0 < s < 1} |f(se^{i\theta})| \le \sqrt{r} < 1$$

The theorem is now a consequence of (7) and (8). For, if it were false we could choose r so close to 1, and β such that

$$Dim\{\theta \mid \sup_{s} |f(se^{i\theta})| < 1\} < \beta < \alpha(\rho(\frac{E_r}{r})).$$

So by (8), we have $cap_{\beta}(A_r) = 0$. But, (7) and Theorem A give

$$cap_{\beta}(S(h)) \le cap_{\beta}(B_r) \le \sqrt{|\varphi'_r(0)|}cap_{\beta}(A_r) = 0$$

Therefore, we obtain $Dim(S(h)) < \beta < \alpha(\rho(\frac{E_r}{r}))$ which contradicts corollary 1, because h omits $\frac{E_r}{r}$.

Notice the following surprising

<u>Corollary 2.</u> If f is holomorphic in Δ and omits two values, then

$$Dim\{\theta \mid Mf(e^{i\theta}) < \infty\} = 1$$

In general (i.e. with no hypothesis on omitted values) f may be radially unbounded everywhere (simply consider $f(z) = \sum_{k=1}^{\infty} \lambda_k z^{a_k}$ which λ_k , and a_k growing very fast). If f is

simply non-zero then f is radially bounded on a countable dense set. This is the best one can say. Consider, for instance, the function f = F' where F is a universal cover of the plane minus the Gaussian integers. Now, F is in the Bloch class, i.e. for some constant Cwe have $|f(z)| \leq C \cdot (1 - |z|)^{-1}$, $z \in \Delta$. Also, f never vanishes. If f is radially bounded at $e^{i\theta}$ then $\int_0^1 |F'(re^{i\theta})| dr < \infty$ and, consequently, F has a finite radial limit at $e^{i\theta}$. But Fhas finite radial limit only at a countable set.

<u>Proof of Corollary 2.</u> Without lost of generality we can assume that 0, 1 are omitted values of f. Let g be a branch of $\frac{1}{2\pi i} \log f$. Then $|\log |f|| \le 2\pi |g|$ and so,

$$\{\theta \mid Mg(e^{i\theta}) < \infty\} \subset \{\theta \mid Mf(e^{i\theta}) < \infty\}$$

Notice that g omits \mathbf{Z} and $g = F \circ b$ where F is the universal covering map of $\mathbf{C} \setminus \{0, 1\}$ and $b : \Delta \longrightarrow \Delta$ is holomorphic and omits $F^{-1}(\mathbf{Z})$. Since the hyperbolic distance in $\mathbf{C} \setminus \{0, 1\}$ between k and k + 1 ($k \in \mathbf{Z}, k \geq 2$) is at most

$$C\int_{k}^{k+1} \frac{dx}{x\log x} = C\log\frac{\log(k+1)}{\log k}$$

(see [A, p.17]) we deduce that

$$\rho_{F^{-1}(\mathbf{Z})} = 0$$

Therefore $Dim\{\theta \mid Mb(e^{i\theta}) < 1\} = 1$ by Theorem 2. This implies that $Dim\{\theta \mid Mg(e^{i\theta}) < \infty\} = 1$ and the corollary follows.

Theorem 2 and its corollary could be compared with classical results of Frostman and Nevanlinna which can be stated as

<u>THEOREM B.</u> I f is holomorphic from Δ into Δ_R , $0 < R \le \infty$), and f omits a set E of <u>positive</u> logarithmic capacity then (i) If $R < \infty$, $L(\{\theta \mid Mf(e^{i\theta}) < R\}) > 0$.

(ii) If $R = \infty$, then $L\left(\{\theta \mid Mf(e^{i\theta}) < \infty\}\right) = 1$.

REFERENCES

[A] AHLFORS, L.V., <u>Conformal invariants</u>, McGraw-Hill, New York, 1973.

[CL] COLLINGWOOD, E.F., LOHWATER, A.J., <u>The theory of cluster sets</u>, Cambridge University Press, London and New York, 1966.

[F] FERNANDEZ, J.L., <u>Singularities of inner functions</u>, Math. Z., 193 (1986), 393-396.

[H] HAMILTON, D., <u>Conformal distortion of boundary sets</u>, Trans. Amer. Math. Soc. 308(1988) 69-81.

[K-S] KAHANE, J.P., SALEM, R., <u>Ensembles Parfaits et Sèries Trigonomètriques</u>, Hermann, Paris, 1963.

[L] LITTLEWOOD, J.E., <u>Lectures on the theory of functions</u>, Oxford University Press, Oxford, 1944.

[M] MAKAROV, N.G., <u>LIL for smooth measures</u>, LOMI Preprint, 1988.

[Po 1] POMMERENKE, CH., <u>On the logarithmic capacity and conformal mapping</u>, Duke Math. J. 35 (1968), 321-326.

[Po 2] POMMERENKE, CH. <u>Univalent functions</u>, Vandenhoek und Ruprecht, Gottingen, 1975.

[T] TSUJI, M., <u>Potential Theory in Modern Function Theory</u>, Chelsea, New York 1959.