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0. Introduction.

An inner function is a bounded holomorphic function from the unit disk A of the
complex plane such that the radial boundary values have modulus 1 a. e.. If E is a Borel
subset of A, we define f~1(E) = {e' | lirq f(re') exists and belongs to E}.

In this paper we study the relationship between the metrical sizes of E and f~!(FE)
and consider some applications. The collection of all Borel subsets of A is denoted B. In
this context the classical lemma of Lowner asserts the following:

THEOREM L1. If f is inner, f(0) =0, and if E € B, then

Here and hereafter L means normalized Lebesgue measure.
There is a companion result about conformal mapping:

THEOREM L2. If f is univalent, with f(A) C A, f(0) =0, and if E € B, with
radial limits f(E) C OA, then

L(f(E)) =z L(E)

Both results are easy applications of invariance properties of harmonic measure ([A,
p.12], [T p.322]).

Recently, Makarov and Hamilton ([M], [H]; see also [Po 1]) have extended L2 to

fractional dimensions. Their results can be summarized as follows:

THEOREM A. If f is univalent, f(0) = 0, and f(A) C A, then if E is a Borel
subset of Of(A)NOA, and if 0 < a < 1, then

(i) Mo(f(E)) = CaMa(E)

(i) capa(f(E)) 2 |1/ (0)|7/? capa(E) = capa(E)
In particular, Dim(f(E)) > Dim(E).



Here, M, cap., and Dim, denote a-dimensional content, a-dimensio- nal capacity
and Hausdorff (or capacitary) dimension. We refer to [T] and [K-S] for definitions and
basic background. For o = 0, capy means logarithmic capacity; (ii) holds and it is due to
Pommerenke.

We have

THEOREM 1. If f is inner, f(0) =0, and if £ € B, we have for 0 < a <1,

(i) Mo (f~Y(E)) > CoMo(E)

and for 0 < a <1,

(ii) capa(fHE)) > Cocapa(E)

An inmediate consequence is the following:

Corollary.If f is inner, and E € B,

Dim(f~H(E)) > Dim(E)

None of these inequalities can be reversed. See Section 3 for the appropiate examples.

The outline of this paper is as follows: in Section one, we give the proofs of some
lemmas needed in the proof of Theorem 1, which is given in Section two; in section 3
we give some examples in order to prove that the inequalities in Theorem 1 cannot be
reversed. Finally, section 4 contains the applications to radial boundeness.

We would like to thank J.J. Carmona, J.G. Llorente and Ch. Pommerenke for helpful
conversations.



1. Some lemmas. In what follows p,, denotes the Poisson extension of a measure g
in OA.

Lemma 1. Let > 0 be a measure in 0A, and let f be an inner function.
Then, there exist a measure v > 0, such that (p,) o f = py, and if v has singular part
o, and continuous part v and we denote,

A={e"? | p,(re??) — oo, asr — 1}
B={"|3 lirri f(re?y = f(e?), |f(e?)| =1 and lirr%pv(rew) > 0}
then

AU B C f Y (support )

and so,

v(f = (support p)) = ||v|

Proof: Let us denote by E the support of u; (p, o f is harmonic and positive in A
and so, as it is well known, there exists v as above). Now if ¢’ € A, then |f(re?)| — 1,
as 7 — 1. The curve {f(re?) | 0 < r < 1} in the w-disk must end on a (unique) point
e of OA. Indeed, if not, it is easy to see that p,(re?) — oo, as r — 1, in an open
interval of OA. Now, e'¥ € E, since otherwise p, vanishes continuously at e’. By this
same reason, B C f~1(E). Finally, since A has full c—measure and B has full y—measure,
v(AU B) = v(0A).

If 11 is a probability in A, then the a-energy I, (1)(0 < o < 1) is defined as

Io(n) = / /a bl —ydu(@)du(y

where

log%, ifa=0

Cboz(t):
1/t if0<a<1

Recall that if £ C 0A is a closed subset, then

dal(cape(E)) = inf{l,(n); p probability supported on E}

and that the infimum is attained for a probability u. which is called the equilibrium
distribution on E. Moreover, if ji(n) and 7% denote the Fourier coefficients of the measure
1 and the kernel ¢, (t) = ¢ (|1 — €%|) respectively, then
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p) =47 " |p(n) Py = A8 +87TQZ| T

Let us denote, by J, () the integral
/ / pu(z) — 12 _ dwdy
1) = g Ty

Lemma 2. There exist a constant C,, > 1 such that

CotJa(p) < Lo(p) =16 < Cadalp)

Proof: Notice that

oS 1 9
) = xS ()P / pn=t — 4r PO SR 2o
nz_:l 0 (log 7) 2! Z

T

So, since v& ~ n®~1, see [K-S, p.40], the lemma follows.

Lemma 3. If p is a probability on OA, f is an inner function with f(0) =0, and v
is the probability on OA such that p, = (p,) o f, then

Ia(”) < Ca[oz(:u)

where Cy, is a constant > 1.

Proof: The lemma follows from lemma 2 and subordination, since |p, — 1| is subhar-
monic.

2. Proof of Theorem 1.

We may assume that E is a closed subset of 0A and M, (F) > 0. Then, see e.g.[T,
p.64], there exists a positive mass distribution on F of finite total mass such that: (i)
p(E) = My(E); (i) p(I) < Co L(I)%, for any open interval in 0A, where C, is a constant
independent of E. Given z = re®(r < 1), let us denote by I, the open interval (in 0A)
with center e and lenght 1 — |z|.

A standard argument shows that



Ca
(1) pu(z) < A=

with C, a new constant. Let v be a measure such that (p,) o f = p,. Schwarz’s lemma
and (1) give the same inequality for v. On the other hand, it is well known that

v(I)
>
PA2) 2 T
and so, we obtain that
(2) v(I,) < CoL(I:)"

Now, if ¢ is the singular part of v, and we cover the set A in lemma 1 with intervals
of radii r;, we see, by (2), that

o(A) < Co Y 1y
and therefore, o(A) < CoMy(A) < CoMy(f~Y(E)). Since A has full o-measure we
conclude that
(3) lofl < CoaMa(f~(E))
On the other hand, if v is the continuous part of v we obtain from lemma 1 that

Y(B) < CoMo(B) < CoaMo(fH(E))

and since B has full y-measure we deduce that

(4) Il < CaMa(fH(E))

and so, by (3) and (4), and since f(0) =0,

Mo(E) = [ull = V]| < CaMa(f~1(E))
This finishes the proof of (a).
To prove (b), we may assume that F is closed. Let us denote by pu. the equilibrium

distribution of E, and let v be the positive measure such that p, = (p,. ) o f. Since
f(0) =0, v is a probability on JA, and by lemma 3,

(5) Ia(V) < Cala(ﬂe) = Caqba(capa(E))
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But, from lemma 1, v(f~!(E)) = 1, and so

allV) = ollz —w|)dv(z)dv(w
L= [ [ el i)

Now, let {K,} be an increasing sequence of compacts subsets if A, K,, C f~1(E)
such that v(K,,) / 1. The monotone convergence theorem gives

(6) Ia(v) > nh_{go Pa(capa(Ky)) = i%f ba(capa(Ky)) > d)a(capa(f_l(E))).

(b) is now a consequence of (5) and (6).

3. Some examples .

The following examples show that there are no inequalities in the opposite direction.

EXAMPLE 1. Let fu(z) = 2", z€ A, ne N. If E is a small closed interval with
center 1, E = {e": 0 € [-6,0]}, and 0 < a < 1, then

CaPq (fil(E)) — capa(0A)

as n tends to 0.

Proof: f,1(E) consists of n closed intervals of length % and centered at the points
Zjn = ¥/ (j =1,..,n). Let us denote by §;,, the measure concentrated in z;,,, and

The a-equilibrium distribution of A is Lebesgue measure. But pu,, tends to L weakly
as n — o0o. Consequently,

Rt o6 (capo (£ () < Tty / /aMA bl — y1)dpin () dpn () =

- / / 6o (|2 — y))AL(2)dL(y) = du(capa(dA)) < du(capafr (E))
OAXOA

for every K.



Therefore,

lim o (capafy ' (E)) = dalcapa(0A)).

EXAMPLE 2.Let F(2) = ¢ T and be E = F-'({s%, n=1,2,3,.., ) U{0}. If H
is a universal covering map from A onto A\ E, then H is inner and

Dim(H '{1}) =1> 0= Dim{1}.

Proof: E only accumulates at 1. Since E has zero logarithmic capacity we deduce
that H is inner, ([CL, p.37]). Let A be the set

A={e? | lim(F o H)(re’) =0}

r—1

We shall verify that Dim(A) = 1. But notice now that if F(H(re?)) — 0, as r — 1,
then H(re'®) — 1. Thus, A C H~{1}.

Notice that F' o H is a universal covering map of

A\{Qin,n:LQ,g,...,}\{o}

and consequently F' o H is a singular inner function. Let us denote by u the corresponding
singular measure (log|F o H| = —p,). Let g be the reciprocal of F' o H. Then g is a
holomorphic mapping in the disk which omits the points {2"; n = 1,2,...}. By a theorem
of Littlewood, [L, p.228], we conclude that for constants C' > 0,b > 2.

C
lg(2)] < m, for each z € A

Consequently,

Ipu(2)| < b-log +logC

1|z

One easily concludes that any set of positive p-measure must have dimension 1. Since
pu(re??) — oo for p-a.e. e, we conclude that A has dimension 1, as desired.

4. Radial boundeness of holomorphic functions.

The first application concerns singularities of inner functions. In [F], it is proved that
if f is inner, E is the set of points of A that f omits and S(f) is the set of singularities of
f, then



Dim S(f) = a(pk)

where « is a continuous monotone function in [0,00) with a(z) > 1, a(0) = 1, and

pr = inf{p(a,b) | a,b € E, a # b}, where p denotes hyperbolic distance in A.
The following improvement is useful.

Corollary 1.Let f be an inner function, and let E be the set of points in A that f
omits. If B is the set of accumulation points of E in A, then

Dim S(f) > max{Dim(B),a(pr)}

Proof: We can assume that f(0) = 0. We claim that A\ S(f) C f~1(0A \ B).
Indeed, if a € OA\ S(f) then f is analytic in a neighourhood U, of a, so that if z € U, NA
then |f(2)| < 1, if z € U, N OA then |f(2)| = 1 and if z € U, \ A then |f(z)] > 1. Now
f(Uy,) is a neigbourhood of f(a), and E N f(U, N A) = 0; therefore f(a) ¢ B.

So S(f) D f~1(B). By theorem 1, we obtain that,

Dim S(f) > Dim f~*(B) > Dim (B)

If f is a holomorphic function from A into C we denote by M f the radial maximal
function, i.e.,

MEET) = e 1 )]

THEOREM 2.Let f be an inner function, and let E be the set of points in A that
f omits. Then

Dim {0 | Mf(e') <1} = a(pp)

Proof: Let r € (0,1) such that EN{|z| = r} = 0 and |f(0)] < r. Let Q, be
the connected component of f~1(A,) wich contains zero, where A, = {|w| < r}. The
domain €2, is simply connected. Let ¢, : A — (). be a conformal mapping onto €2,,
with ¢,.(0) = 0. Then h = %(gpr o f) is inner. Indeed, h € H* and by Fatou’s theorem,
h has radial boundary values almost everywhere. On the other hand, if we denote by
A, = 0Q,NIA, and by B, = {e¥ : 3 im% gpr(sew) € A,}, we can write 0A = B,UNUH

where N has logarithmic capacity zero and H is an open set across which ¢, extends
analytically (and ¢, (H) C 092, N A).



So ¢, has finite and non zero angular derivative a.e. in B,., (a consequence of McMil-
lan’s twist point theorem, see e.g. [Po 2, p.326]), and so, in the corresponding points of A,
f has radial boundary values with modulus less than 1. Thus, since f is inner, and because
of Lowner’s lemma, we deduce that L(B,) = 0. This implies that & is inner. Moreover, we
have that

(7) S(h) C B,UN

We claim that

(8) A, C{e | sup [f(se’)| <1}
0<s<1

This is so, because if € € A,., then there exists a curve v C Q, ending at e and
beginning at zero and since |f| < r on v, and |f| < 1 everywhere, an application of
Lindel6f’s Theorem, gives

sup [ f(se”)| < Vr <1
0<s<1

The theorem is now a consequence of (7) and (8). For, if it were false we could choose
r so close to 1, and 3 such that

; 7 Er
Dim{0 | sup |f(se”)| < 1} < B < a(p(=7)).
So by (8), we have capg(A,) = 0. But, (7) and Theorem A give

capp(S(h)) < capp(Br) < /g, (0)|caps(Ar) =0

Therefore, we obtain Dim(S(h)) < 3 < a(p(£)) which contradicts corollary 1, be-
cause h omits %

Notice the following surprising

Corollary 2. If f is holomorphic in A and omits two values, then

Dim{0 | Mf(e?) < o0} =1

In general (i.e. with no hypothesis on omitted values ) f may be radially unbounded

everywhere (simply consider f(z) = Z Apz® which Ag, and aj growing very fast). If f is
k=1
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simply non-zero then f is radially bounded on a countable dense set. This is the best one
can say. Consider, for instance, the function f = F’ where F' is a universal cover of the
plane minus the Gaussian integers. Now, F'is in the Bloch class, i.e. for some constant C
we have |f(2)] < C-(1—z|)7!, 2 € A. Also, f never vanishes. If f is radially bounded at

¢? then fol |F'(re'?)|dr < oo and, consequently, F' has a finite radial limit at ¢?. But F
has finite radial limit only at a countable set.

Proof of Corollary 2. Without lost of generality we can assume that 0,1 are omitted
values of f. Let g be a branch of 5= log f. Then |log |f|| < 27|g| and so,

7

{01 Mg(e”) < 00} € {0 | Mf(e) < o0}

Notice that g omits Z and g = F'ob where F is the universal covering map of C\{0, 1}
and b : A — A is holomorphic and omits F~1(Z). Since the hyperbolic distance in
C\ {0,1} between k and k+ 1 (k € Z,k > 2) is at most

k+1
C’/ dx Olo log(k + 1)
k xlogx log k

(see [A, p.17]) we deduce that
pr-1(z) =0

Therefore Dim{6 | Mb(e®) < 1} = 1 by Theorem 2. This implies that Dim{6 |
Mg(e?) < oo} =1 and the corollary follows.

Theorem 2 and its corollary could be compared with classical results of Frostman and
Nevanlinna which can be stated as

THEOREM B.] f is holomorphic from A into Ar ,0 < R < 00), and f omits a set
E of positive logarithmic capacity then

(i) If R < oo, L ({0 | M f(e"’) < R}) > 0.

(it) If R = oo, then L ({6 | M f(e'?) < o0}) = 1.
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