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Abstract 

 

 

Prediction intervals in State Space models can be obtained by assuming Gaussian innovations 

and using the prediction equations of the Kalman filter, where the true parameters are 
substituted by consistent estimates. This approach has two limitations. First, it does not 

incorporate the uncertainty due to parameter estimation. Second, the Gaussianity assumption of 

future innovations may be inaccurate. To overcome these drawbacks, Wall and Stoffer (2002) 

propose to obtain prediction intervals by using a bootstrap procedure that requires the backward 
representation of the model. Obtaining this representation increases the complexity of the 

procedure and limits its implementation to models for which it exists. The bootstrap procedure 

proposed by Wall and Stoffer (2002) is further complicated by fact that the intervals are 
obtained for the prediction errors instead of for the observations. In this paper, we propose a 

bootstrap procedure for constructing prediction intervals in State Space models that does not 

need the backward representation of the model and is based on obtaining the intervals directly 
for the observations. Therefore, its application is much simpler, without loosing the good 

behavior of bootstrap prediction intervals. We study its finite sample properties and compare 

them with those of the standard and the Wall and Stoffer (2002) procedures for the Local Level 

Model. Finally, we illustrate the results by implementing the new procedure to obtain prediction 
intervals for future values of a real time series. 
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Abstract

In the context of linear state space models with Gaussian errors and known parameters, the
Kalman filter generates best linear unbiased predictions of the underlying components together
with their corresponding prediction mean squared errors (PMSE). However, in practice, the
filter is run by substituting some parameters of the model by consistent estimates. In these
circumstances, the PMSEs given by the Kalman filter do not take into account the parameter
uncertainty and, consequently, they underestimate the true PMSEs. In this paper, we propose
two new bootstrap procedures to obtain PMSE of the unobserved states based on obtaining
replicates of the underlying states conditional on the information available at each moment of
time. By conditioning on the available information, we simplify the procedure with respect to
alternative bootstrap proposals previously available in the literature. Furthermore, we show
that the new procedures proposed in this paper have better finite sample properties than the
alternatives. We implement the proposed procedures for estimating the PMSE of several key
unobservable US macroeconomic variables as the output gap, the non accelerating inflation rate
of unemployment (NAIRU), the long-run investment rate and the core inflation. We show how
taking into account the parameter uncertainty may change the prediction intervals constructed
for those unobservable macroeconomic variables and, in particular, change the conclusions about
the utility of the NAIRU as a macroeconomic indicator for expansions and recessions.
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1 Introduction

State space models and the Kalman filter are very popular tools for describing the dynamic

evolution of a large range of economic and financial time series in which there are unobserved

variables of interest. Some applications include the estimation of regression models with time

varying parameters as in Cooley and Prescott (1973), models with unobserved expectations of

agents as Hamilton (1985), models with unobserved factors like in Engle and Watson (1981)

for metropolitan wage prices or models with measurement errors like in Howrey (1984). There

are also many applications in which the unobserved states are components with a direct in-

terpretation; see, for example, Orphanides and van Norden (2002) and Doménech and Gómez

(2006) for estimating unobserved the output gap in several economies, Pedregal and Young

(2006) for electricity load demand with unobserved modulated periodic components, Stock

and Watson (2007) for a trend-cycle model with stochastic volatility fitted to US inflation

or Rueda and Rodŕıguez (2009) to estimate fertility rates, just to cite a few recent empirical

applications. One of the main attractiveness of state space models is that they allow the

estimation of the underlying states which, as the previous applications illustrate, are often of

interest in themselves.

Obviously, there is also an interest in obtaining measures of the uncertainty associated with

the corresponding estimates of the states. In the context of linear state space models with

Gaussian errors and known parameters, the Kalman filter generates best unbiased one-step-

ahead predictions of the unobserved components together with their corresponding prediction

mean squared errors (PMSE). However, in practice, the filter is run by substituting some

parameters of the model by consistent estimates. In this case, the PMSEs resulting from

the filter underestimate the true PMSEs because they do not take into account the additional

uncertainty due to the parameter estimation. Counting for this uncertainty may be important

in many practical situations; see, for example, Durbin and Koopman (2000). In this paper, we

focus on analyzing how the parameter uncertainty can change the intervals and consequently,
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the conclusions about the evolution of the output gap, the non accelerating inflation rate of

unemployment (NAIRU), the long-run investment rate and the core inflation in the US which

are obviously variables of interest in the context of macroeconomic policy; see Orphanides

and van Norden (2002), Kang et al. (2009) and Sinclair (2009) for empirical applications of

unobserved component models to estimate some of these variables. We build on previous work

by Doménech and Gómez (2006) who propose a multivariate unobserved components model for

the US economy with the four unobserved variables mentioned above. They obtain prediction

intervals of the unobserved output gap, NAIRU, core inflation and structural investment rate

that do not incorporate the parameter uncertainty. We show that taking into account the

additional uncertainty associated with the estimation of the parameters, the conclusions about

the utility of the NAIRU as a macroeconomic indicator for expansions and recessions can be

changed.

There are several alternatives proposed in the literature to incorporate the estimation un-

certainty into the PMSEs of the Kalman filter estimates of the unobserved components. They

can be classified into three main groups. First, several proposals are based on the asymptotic

distribution of the parameter estimator; see Ansley and Kohn (1986), Hamilton (1986) and

Quenneville and Singh (2000). These procedures can be inadequate in small samples because,

in this case, the asymptotic distribution could be a poor approximation of the finite sample

distribution of the parameter estimator. The second group of alternatives is based on using

a full Bayesian approach. However, in relatively large models, the computations can become

very heavy and time consuming; see Harvey (2000). Finally, Pfeffermann and Tiller (2005)

propose using bootstrap procedures which have the advantage of being computationally sim-

ple even in relatively complicated models. The bootstrap PMSEs proposed by Pfeffermann

and Tiller (2005) are based on obtaining the unconditional PMSEs of the estimates of the

underlying states. However, one should note that the Kalman filter is designed to generate

PMSEs conditional on the available information set. Although this distinction is irrelevant

in state space models with time-invariant system matrices, it could be important when the
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system matrices in the state space model are observation dependent. Furthermore, by taking

into account this distinction, it is possible to simplify the bootstrap procedures proposed by

Pfeffermann and Tiller (2005) improving at the same time their finite sample performance.

In this paper, we propose two new bootstrap procedures to obtain PMSEs of the Kalman

filter estimates of the unobserved states in Gaussian state space models that incorporate the

parameter uncertainty. By obtaining replicates of the underlying states conditional on the

information available at each moment of time, we simplify the procedures with respect to

alternative bootstrap PMSEs. The first bootstrap procedure proposed is parametric and it

is based on resampling from the assumed distribution of the errors. The second procedure is

based on resampling from the residuals of the estimated model and consequently, does not

assume any particular error distribution. We carry out Monte Carlo experiments to analyze

the finite sample performance of our procedures and show that, they reduce the biases of the

asymptotic procedure of Hamilton (1986) and the bootstrap PMSEs proposed by Pfeffermann

and Tiller (2005). We also show that the proposed procedures can be implemented in the

context of non-Gaussian models with good performance.

In the empirical application to estimate the macroeconomic unobservable variables de-

scribe above, we show that, given that the sample size is relatively large, the PMSEs and, con-

sequently, the prediction intervals constructed for these variables, are rather similar when us-

ing the standard Kalman filter or the asymptotic approximation of Hamilton (1986). Doménech

and Gómez (2006) use the standard Kalman filter PMSE to construct prediction intervals for

the NAIRU and conclude that it is an adequate indicator for predicting expansions and re-

cessions. However, the intervals are wider when using the bootstrap methods, specially, when

using the procedures proposed in this paper that take into account the added uncertainty due

to the parameter estimation. Because of this additional uncertainty, our intervals support the

doubts of Staiger et al. (2001) on the ability of the difference between the NAIRU and the

unemployment rate for predicting periods of expansion and recession.
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The rest of the paper is organized as follows. Section 2 describes the Kalman filter and

shows the biases incurred when estimating the PMSEs of the estimates of the underlying states

by running the filter with estimated parameters. We also briefly describe the asymptotic

procedure of Hamilton (1986) and the bootstrap procedures proposed by Pfeffermann and

Tiller (2005) to overcome these biases. In Section 3, we propose two new bootstrap procedures

to obtain PMSEs of the one-step-ahead estimator of the unobserved states that take into

account the parameter uncertainty in the context of conditionally Gaussian state space models.

Their finite sample properties are analyzed and compared with those of the standard Kalman

filter, the asymptotic and bootstrap PMSEs proposed by Hamilton (1986) and Pfeffermann

and Tiller (2005) respectively. All the results are illustrated with simulated data in the context

of the random walk plus noise (RWN) model with homoscedastic and heteroscedastic errors.

Section 4 analyzes the finite sample performance of the new bootstrap procedures in non-

Gaussian models and compare them with those obtained using the alternative procedures.

Section 5 contains the empirical application in which we estimate the uncertainty associated

with the unobserved quarterly output gap, NAIRU, investment rate and core inflation in the

US. Finally, Section 6 concludes the paper.

2 PMSE of Kalman filter estimators of unobserved compo-
nents

Unobserved component models can be casted into the following state space model

Yt = Ztαt + dt +R1tεt, (1a)

αt = Ttαt−1 + ct +R2tηt, t = 1, . . . , T, (1b)

where Yt is an N×1 vector time series observed at time t, αt is the m×1 vector of unobservable

state variables, εt is a k×1 vector of independent white noises with zero mean and covariance

matrix Ht and ηt is a g × 1 vector of serially uncorrelated disturbances with zero mean and

covariance matrix Qt. The disturbances εt and ηt are uncorrelated with each other in all time
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periods. Finally, the initial state vector, α1, has mean a1|0 and covariance matrix P1|0. All

the system matrices, Zt, dt, Tt, ct, R1t, R2t, Ht and Qt, are assumed to be known one-step-

ahead1. The model in (1) is time-invariant when, with the exception of dt and ct, all the

system matrices are time-invariant.

2.1 PMSE of the Kalman filter with estimated parameters

The Kalman filter provides estimates of the underlying states, αt, and their corresponding

PMSE, which are denoted by at|t−1 and Pt|t−1 respectively, given the information available at

time t − 1, i.e. {Y1, ..., Yt−1}2. If the errors are further assumed to have a conditional joint

Normal distribution, using well known results of this distribution, at|t−1 and Pt|t−1 are the

conditional mean and its conditional PMSE respectively. In particular, it is possible to see

that

αt
Yt

∣∣∣∣Y1, . . . , Yt−1 ∼ N
[(

at|t−1

Ztat|t−1 + dt

)
,

(
Pt|t−1 Pt|t−1Z

′
t

ZtPt|t−1 Ft

)]
(2)

where

at|t−1 = Ttat−1|t−2 + ct +KtF
−1
t−1Vt−1 (3a)

Pt|t−1 = TtPt−1|t−2T
′
t −KtF

−1
t−1K

′
t +R2tQtR

′
2t, (3b)

and Kt = TtPt−1|t−2Z
′
t−1, is the filter gain, Vt = Yt−dt−Ztat|t−1 is the one-step-ahead vector

of innovations and Ft is their covariance matrix given by Ft = ZtPt|t−1Z
′
t + R1tHtR

′
1t; see,

Harvey (1989) for details. When running the Kalman filter equations in (3), it is assumed

that all the parameters involved in the system matrices and the initial conditions a1|0 and P1|0

are known. It is important to observe that in linear models in which the system matrices are

independent of the observations, the PMSE, Pt|t−1, is also independent of the observations.

1When dealing with smoothing filters (based on observations up to time T ), the system matrices together
with a1|0 and P1|0 are assumed to be known in all time periods.

2The Kalman filter also provides updated estimates of the underlying components at time t based on the
information available up to time t. Furthermore, it is also possible to estimate αt based on all the information
in the time series {Y1, ..., YT }. These latter estimates are known as smoothing estimates. Although in this
paper we focus on one-step-ahead estimates of the underlying components, the results can be easily extended
to updated and smoothing estimates.
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Therefore, in this case, Pt|t−1 is also the unconditional error covariance matrix associated with

the conditional mean estimator of the underlying state.

Finally, it is also useful for the bootstrap procedures described later in this paper to express

the state space model in (1) in what is known as the Innovation Form (IF) which depends on

a unique disturbance vector instead of two. The IF is given by equation (3a) together with

Yt = Ztat|t−1 + dt + Vt. (3c)

Note that the unique disturbance vector in the IF is the one-step-ahead vector of innovations,

Vt.

Consider, as an illustration, the univariate RWN model. Although we consider this par-

ticular model for its simplicity, it has been successfully applied for explaining the dynamic

evolution of many real time series; see, for example, Koopman and Bos (2004) and Stock and

Watson (2007) who fit it for explaining monthly US inflation. The RWN model is defined by

the following equations

yt = µt + εt (4a)

µt = µt−1 + ηt (4b)

where yt is the observation at time t of the series of interest and εt and ηt are mutually

independent Gaussian white noises with variances σ2
ε and σ2

η = σ2
εq respectively, where q is

known as the signal-to-noise ratio. We generate R = 1000 replicates of {y(j)
t , µ(j)

t , j = 1, ..., R}

by model (4) with σ2
ε = 1 and q = 0.25, sample sizes T = 40, 100 and 500, and initial

value equal to zero, µ0 = 0. For each replicate, we run the Kalman filter in (3) with known

parameters to obtain one-step-ahead estimates of the underlying level, µ(j)
t , denoted by m(j)

t|t−1

and their PMSE, denoted by P (j)
t|t−1. Furthermore, for each simulated series j and moment of

time t, we also generate 10000 replicates of µ(j)
t+1, denoted by µ(j,i)

t+1 , i = 1, ..., 10000, from the

corresponding conditional distribution in (2). Finally, at each moment of time, we compute the

empirical conditional PMSE of m(j)
t|t−1 given by PMSE

(j)
t|t−1 = 1

10000

∑10000
i=1

(
µ

(j,i)
t −m(j)

t|t−1

)2
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and the relative bias3 d
(j)
t = P

(j)
t|t−1/PMSE

(j)
t|t−1−1. Figure 1 plots the averages over the Monte

Carlo replicates of d(j)
t denoted as KF1 which, as expected, evolve around zero through time

regardless of the sample size considered. The average and standard deviations through time

of the Monte Carlo averages plotted in Figure 1 have been reported in the left column of Table

1. Note that the average relative biases and their standard deviations, which as expected are

very small and do not depend on the sample size, can be attributed to the simulation error.

We consider a second illustration with a slightly more complicate model in which the

system of matrices are time-varying. In particular, we consider the RWN model in (4) but

where the transitory noise, εt, is heteroscedastic and given by

εt = ε†σt, (5)

where σ2
t = α0 + α1v

2
t−1, vt is the innovation given by vt = yt −mt|t−1, and ε†t is a Gaussian

white noise process with variance 1, distributed independently of ηt. Note that, given the

specification of σ2
t and assuming that the parameters are known, the model is still condition-

ally Gaussian since knowledge of past observations and past estimates of the state implies

knowledge of the past innovations vt−1. This model is related with the STARCH model de-

scribed by Harvey et al. (1992) but they differ in that the STARCH model assumes that

σ2
t = α0 +α1ε

2
t−1 and, consequently, it is not conditionally Gaussian. Unobserved component

models with heteroscedastic disturbances are becoming very popular to represent the dynamic

evolution of macroeconomic variables as, for example, inflation or electricity prices; see, Broto

and Ruiz (2009), Jungbacker et al. (2009) and Stock and Watson (2007) among many others.

In this case, we also generate R = 1000 series from the heteroscedastic RWN model with εt

defined as in (5) with α0 = 0.6719, α1 = 0.2 and σ2
η = 0.25. The initial conditions are given

by µ0 = 0 and σ2
1 equal to the marginal variance of εt, which is one. As above, we run the

Kalman filter for each simulated series and compute m(j)
t|t−1 and P (j)

t|t−1 and the corresponding

3All programs for maximizing the log-likelihood and subsequent estimation of the unobserved components
and PMSE were written by the first author in MATLAB.
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biases d(j)
t . Figure 2 plots the corresponding average biases denoted by KF2 which, similarly

to those plotted in Figure 1 for the time-invariant model, are very close to zero for all sample

sizes. The central column of Table 1 reports the averages and standard deviations through

time of the averages of d(j)
t plotted in Figure 1 which are identical to those reported in the

time-invariant case.

Up to now, we have assumed that the parameters of the model are known when running

the Kalman filter. However, in practice, some of these parameters are unknown and have

to be substituted by consistent estimates. In this paper, we consider the Quasi-Maximum

Likelihood (QML) estimator of the parameters; see, for example, Harvey (1989) and Durbin

and Koopman (2001) for details. Denote by Ẑt, d̂t, Ĥt, R̂1t, T̂t, ĉt, R̂2t and Q̂t the system of

matrices where the unknown parameters have been substituted by their QML estimates.

Furthermore, the initial conditions for the filter are also unknown. The usual practice is

to assume that they are given by the unconditional distribution of the unobserved state in

case of stationary states or by a diffuse prior distribution when they are non-stationary; see

Harvey (1989). Then, equations (3a) and (3b) of the Kalman filter can be run with the

system matrices substituted by their respective estimates providing ât|t−1 and P̂t|t−1. Note

that, ât|t−1, is an estimate of the conditional mean of the state, at|t−1. However, P̂t|t−1 is not

the PMSE of ât|t−1 as it does not take into account the parameter uncertainty involved in its

computation. Therefore, P̂t|t−1 will underestimate the true conditional PMSE of ât|t−1.

To illustrate the biases incurred when P̂t|t−1 is considered as the PMSE of ât|t−1, we

consider again the same design of the Monte Carlo experiments carried out above with the

homoscedastic and heteroscedastic RWN models. In this case, for each replicate, we estimate

the parameters by QML using as starting values for the filter m̂1|0 = 0 and P̂1|0 =∞ for both

the homoscedastic and heteroscedastic models. Then, as before, the empirical PMSE of m̂t|t−1

is calculated as PMSE
(j)
t|t−1 = 1

10000

∑10000
i=1

(
µ

(j,i)
t − m̂(j)

t|t−1

)2
where m̂t|t−1, is the one-step-

ahead estimate of µt provided by the Kalman filter with estimated parameters. Figures 1 and
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2 plot the averages through all replicates of the relative biases d(j)
t for the homoscedastic and

heteroscedastic models, respectively4. Note that in the homoscedastic model P̂t|t−1 underesti-

mate the true PMSE of m̂t|t−1 denoted as KF2 in approximately 9% when T = 40. Obviously,

because this bias is caused by using estimated parameters which are consistent, it disappears

as the sample size increases. Something similar can be observed in the heteroscedastic model

although in this case, the biases are clearly larger. For example, when T = 40, the bias is

approximately 18%. The average biases reported in Table 1 show that when the Kalman filter

is run with estimated parameters P̂t|t−1 is a negatively biased estimator the conditional true

PMSE of m̂t|t−1. These biases can be very important in small samples specially when the

model is time-varying.

As we mentioned in the introduction, there have been several proposals in the literature

to compute the PMSE of the estimator of the unobserved components that take into account

the parameter uncertainty. Next, we describe how to obtain PMSE of ât|t−1 based on the

asymptotic distribution of the parameter estimator as proposed by Hamilton (1986) and the

bootstrap PMSE proposed by Pfeffermann and Tiller (2005).

2.2 Asymptotic approximation

Hamilton (1986) proposes to estimate the PMSE of ât|t−1 by considering the following decom-

position of PMSEt|t−1 = E
t−1

[(
ât|t−1 − αt

) (
ât|t−1 − αt

)′]
PMSEt|t−1 = E

t−1

[(
ât|t−1 − at|t−1

) (
ât|t−1 − at|t−1

)′]+

E
t−1

[(
at|t−1 − αt

) (
at|t−1 − αt

)′] (6)

where the t − 1 under the expectation means that it is taken conditional on {Y1, . . . , Yt−1}.

Note that the cross-product E
t−1

[(
ât|t−1 − at|t−1

) (
at|t−1 − αt

)′] is zero under the assumption

of conditional Normality. The second term in (6) is denoted by Hamilton (1986) as filter

4Note that when the Kalman filter is run the effect of the initial values on the estimates of the PMSE
vanishes in approximately five iterations; see Ray (1989). Consequently, we remove P̂t|t−1, for t = 1 to 5, for

calculating the corresponding biases d
(j)
t .
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uncertainty. It represents how far would the state be from its estimate when the parameters

are known. This uncertainty is due to the uncertainty in separating signal and noise and

it is inherent to the Kalman filter. On the other hand, the first term in (6), denoted as

parameter uncertainty, represents the discrepancy between the estimates of the unobserved

states obtained with known and unknown parameters. In order to estimate the PMSE in (6),

Hamilton (1986) considers the following relationship

PMSEt|t−1 = Eθ

{
E
t−1

[(
ât|t−1 − at|t−1

) (
ât|t−1 − at|t−1

)′ |θ]}+

Eθ

{
E
t−1

[(
at|t−1 − αt

) (
at|t−1 − αt

)′ |θ]} , (7)

where θ is the vector of model parameters

Once the parameters are estimated, a large number, M , of realizations of θ̂(i) is generated

from the asymptotic distribution of the estimator. Then, the Kalman filter is run using

each of the realizations θ̂(i) and the original observations, {Y1, . . . , YT }, obtaining a series of

estimates the state and their corresponding PMSE, denoted by â(i)
t|t−1 and P̂ (i)

t|t−1, respectively.

In this way, an analogue of the expectations within squared brackets in (7) can be obtained

by
(
â

(i)
t|t−1 − ât|t−1

)(
â

(i)
t|t−1 − ât|t−1

)′
and P

(i)
t|t−1 respectively. Then, the sample averages for

all possible values of the parameters are obtained to estimate the expectation over all values

of θ. Finally, the estimate of PMSE in (7) is given by

P̂MSE
Asy

t|t−1 =
1
M

M∑
i=1

P̂
(i)
t|t−1 +

1
M

M∑
i=1

(
â

(i)
t|t−1 − ât|t−1

)(
â

(i)
t|t−1 − ât|t−1

)′
. (8)

Figures 1 and 2 plot the relative biases of the asymptotic estimator of the PMSE in

(8) denoted as Asy for the RWN models considered above. We can observed that when

T = 40 the biases are even larger in absolute value than when the PMSE are computed with

estimated parameters. Table 1, that reports the averages through time of theses averages,

shows that regardless of whether the RWN model is homoscedastic or heteroscedastic, the

relative bias is around 20%, while the relative biases of the PMSEs obtained from the Kalman

filter with estimated parameters are -8% and -15% in the homoscedastic and heteroscedastic



Rodriguez & Ruiz 12

models respectively. Obviously, as the ML estimator is consistent, the biases decrease with

the sample size. However, it is important to note that even when T = 100 the biases are

rather larger when the model is heteroscedastic.

2.3 Bootstrap procedures

We have seen that in small sample sizes, the asymptotic approximation can be poor and,

consequently, the asymptotic estimator of the PMSE in (8) can also have poor properties.

Alternatively, Pfeffermann and Tiller (2005) propose using bootstrap procedures to obtain

PMSEs of ât|t−1 that incorporate the parameter uncertainty. They propose parametric and

non-parametric bootstrap procedures. Next, we describe only the parametric bootstrap that

has the best performance according to our simulation results. They consider the decomposition

of the PMSE in (6) but with the expectations taken over all possible point realizations of

{Y1, . . . , YT } and {α1, . . . , αT } instead of expectations conditional on the available data set.

The parametric bootstrap analogue of (6) is obtained as follows:

Step 1. Given a realization of {Y1, . . . , YT }, estimate the parameters, θ̂ , and implement

the Kalman filter to obtain the estimates of the underlying state, ât|t−1(θ̂) and the

corresponding PMSE, P̂t|t−1(θ̂).5

Step 2. Obtain a bootstrap replicate of the series {Y ∗1 , . . . , Y ∗T }, and of the underlying state

{α∗1, . . . , α∗T }, by extracting realizations, ε∗t and η∗t , t = 1, . . . , T, from the joint Gaussian

distribution of εt and ηt, using them and the estimated parameters, θ̂, substituted in

model (1). Then, estimate the bootstrap parameters, θ̂∗.

Step 3. Implement again the Kalman filter with the bootstrap estimates, θ̂∗, and the boot-

strap replicates {Y ∗1 , . . . , Y ∗T }, to obtain bootstrap estimates of the state, â∗t|t−1(θ̂∗), and

their corresponding PMSE, P̂ ∗t|t−1(θ̂∗).

5We add explicitly the dependence of the estimates of the unobserved states and their corresponding PMSE
on the estimated parameters to clarify the procedure.
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Step 4. Using the bootstrap series {Y ∗1 , . . . , Y ∗T } and the parameters estimated in step 1, θ̂,

run the Kalman filter to obtain the estimates of the state denoted by â∗t|t−1(θ̂).

Repeat B times steps 2 to 4. Finally, the bootstrap analogue of the PMSE of ât|t−1 in (6)

is estimated by6

P̂MSE
PT

t =
1
B

B∑
j=1

(
â
∗(j)
t|t−1(θ̂∗)− â∗t|t−1(θ̂)

)(
â
∗(j)
t|t−1(θ̂∗)− â∗t|t−1(θ̂)

)′
+2P̂t|t−1 −

1
B

B∑
j=1

P̂
∗(j)
t|t−1(θ̂∗). (9)

In order to illustrate the performance of the bootstrap procedure proposed by Pfeffermann

and Tiller (2005), we consider again the Monte Carlo design carried out in previous section for

the RWN model. Figures 1 and 2 plot the Monte Carlo averages of the relative biases denoted

by PT for the homoscedastic and heteroscedastic models respectively. We can observe that

in the small sample size, T = 40, the relative biases of PMSEPTt are smaller than those

of the Hamilton (1986) approximation but only slightly smaller than the biases obtained

when the Kalman filter is run with estimated parameters. Table 1, that reports the averages

through time of the relative biases, shows that in the homoscedastic model the bias is -7.62%

compared with -8.02% in the Kalman filter. The reduction in the biases is a little bit larger

in the heteroscedastic model. In the moderate sample size, T = 100, the procedures proposed

by Hamilton (1986) and Pfeffermann and Tiller (2005) have similar relative biases in the

homoscedastic model while in the heteroscedastic model, there is a larger reduction when

the bootstrap procedure is implemented. Finally, in large sample size, both procedures are

approximately unbiased.

6Pfeffermann and Tiller (2005) also propose a non-parametric bootstrap for estimating the PMSE which
is based on obtaining the bootstrap replicates of {Y ∗1 , . . . , Y ∗T } by using the IF of the model in (3a) and
(3c) and random extractions, {V ∗1 , . . . , V ∗T }, from the empirical distribution of the standardized innovations,

V̂t/
√
F̂t; see, Stoffer and Wall (1991) and Rodriguez and Ruiz (2009) for its practical implementation. This

non-parametric bootstrap does not assume any particular distribution of the errors. In our comparisons, we
do not consider this non-parametric bootstrap because the results are always worse than for the parametric
bootstrap.
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As we noted above, the PMSE in (9) is computed by taking expectations over all boot-

strap realizations of the original series. However, the Kalman filter is designed to obtain

conditional estimates of the underlying state and their corresponding PMSE. Therefore, it

could be possible to simplify computationally the bootstrap procedure and, simultaneously

improve its performance by computing the PMSEs conditional on the available data set. This

is the proposal of this paper that we develop in the following section.

3 A new bootstrap procedure

In this section, we propose new bootstrap procedures to estimate the conditional PMSE of

the one-step-ahead estimator of the unobserved components obtained by the Kalman filter

run with estimated parameters. Our proposed procedures are similar to that proposed by

Hamilton (1986) in the sense that we compute PMSE conditional on the available information

set. However, instead of dealing with the parameter uncertainty by simulating the parameters

from the asymptotic distribution of the corresponding estimator, we simulate them from a

bootstrap distribution. In this way we obtain PMSEs with better properties in small samples

than those of Hamilton (1986). On the other hand, dealing with conditional PMSE allows us

to simplify computationally the procedure with respect to the bootstrap procedures proposed

by Pfeffermann and Tiller (2005) and, at the same time, we improve their performance in small

samples. Furthermore, from an analytical point of view, the distinction between conditional

and unconditional PMSEs can be important when dealing with models in which the system

matrices are time-variant.

The first procedure proposed in this paper is a parametric bootstrap procedure based on

resampling from the assumed joint Gaussian distribution of the noises. Alternatively, we also

propose a non-parametric procedure, based on resampling from the empirical distribution

of the standardized one-step-ahead innovations, V̂ s
t = V̂t/

√
F̂t, which does not assume any

particular distribution of the errors.
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First, we describe the proposed parametric bootstrap algorithm.

Step 1. Given the realization {Y1, . . . , YT }, estimate the parameters, θ̂ , and implement the

Kalman filter to obtain the estimates of the underlying state, ât|t−1(θ̂), and the corre-

sponding PMSE, P̂t|t−1(θ̂), t = 1, . . . , T.

Step 2. Obtain a bootstrap replicate of the series {Y ∗1 , . . . , Y ∗T } and of the underlying state

{α∗1, . . . , α∗T }, by extracting realizations, ε∗t and η∗t , t = 1, . . . , T, from the joint Gaussian

distribution of εt and ηt and using them in model (1) with the parameters substituted

by θ̂. Estimate the bootstrap parameters, θ̂∗.

Step 3. Run the Kalman filter with the original observations {Y1, . . . , YT } and the boot-

strap parameters estimated in step 2 to obtain a bootstrap replicate of ât|t−1(θ̂∗) and

P̂t|t−1(θ̂∗), t = 1, . . . , T.

Steps 2 and 3 are repeated B times. Then, similarly as in (8), the parametric conditional

bootstrap PMSEs are obtained as follows

P̂MSE
CB1

t|t−1 =
1
B

B∑
j=1

P̂
(j)
t|t−1(θ̂∗)

+
1
B

B∑
j=1

(
â

(j)
t|t−1(θ̂∗)− ât|t−1(θ̂)

)(
â

(j)
t|t−1(θ̂∗)− ât|t−1(θ̂)

)′
. (10)

The first two steps are identical to those proposed by Pfeffermann and Tiller (2005).

However, in step 3, we run the Kalman filter with the bootstrap estimates of the parameters

and the original time series, while they run the filter with the bootstrap replicates of the series.

In this way, we compute the PMSE conditional on the information contained in the original

series, while the P̂MSE
PT

t in equation (9) are unconditional. Furthermore, by computing the

conditional PMSE, we avoid running the filter for each bootstrap replicate as it is done in step

4 of the procedure described in previous section. This simplification implies a large reduction

in computing time when estimating the PMSE of the underlying unobserved components.
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We also propose a non-parametric bootstrap for estimating the conditional PMSE. Steps 1

and 3 are the same as in the parametric case. However, in step 2, we construct the bootstrap

replicates by resampling the standardized one-step-ahead innovations, V̂ s
t , and using the IF

with the estimated parameters, θ̂, as follows

a∗t+1|t = T̂t+1â
∗
t|t−1 + ĉt+1 + K̂∗t+1F̂

∗−1
t V̂ ∗t (11)

Y ∗t = Ẑtâ
∗
t|t−1 + d̂t + V̂ ∗t . (12)

Then the bootstrap parameters, θ̂∗ are estimated. Finally, the conditional PMSE is estimated

as in equation (10) and is denoted as P̂MSE
CB2

t|t−1.

Table 1: Averages and standard deviations (Std) through time
of the relative biases (in percentage) of PMSE of the underlying
level in the RWN models with Gaussian homoscedastic, Gaus-
sian heteroscedastic and non-Gaussian errors.

Homoscedastic Heteroscedastic Non-Gaussian

Average Std Average Std Average Std

T = 40

KF1a 0.02 0.04 0.02 0.04 -2.69 9.84
KF2b -8.02 0.57 -15.44 0.71 -10.85 6.81
Asyc 20.53 15.34 20.71 1.23 21.59 19.30
PT -7.62 0.68 -11.72 1.12 -94.62 8.58
CB1 -1.46 0.61 -1.63 1.28 -3.25 3.75
CB2 -1.21 0.60 -1.87 1.28 -3.42 3.54

T = 100

KF1 0.02 0.01 0.02 0.04 -1.18 6.52
KF2 -6.82 0.25 -6.24 0.24 -7.02 4.92
Asy -3.88 0.22 11.03 0.73 -4.32 4.97
PT -3.55 0.20 -3.20 0.50 -96.53 6.08
CB1 -0.64 0.37 -0.79 0.36 -2.12 2.60
CB2 -0.56 0.37 -2.33 0.36 -2.35 2.58

T = 500

KF1 0.02 0.05 0.02 0.05 -0.37 3.18
KF2 -0.97 0.14 -1.25 0.10 -1.79 2.74
Asy -0.29 0.15 -0.23 0.11 -1.65 2.74
PT 0.20 0.15 -0.80 0.34 -99.10 2.35
CB1 -0.18 0.15 -0.96 0.12 -1.86 1.59
CB2 -0.25 0.15 -1.08 0.12 -1.60 1.63

a Kalman filter procedure with known parameters.
b Kalman filter procedure with estimated parameters.
c Asymptotic approximation proposed by Hamilton (1986).
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Figure 1: Monte Carlo averages of the ratios dt = 100×
(

Pt|t−1

PMSEt
− 1
)

for the RWN
model with homoscedastic Gaussian error and T = 40 (first row), T = 100 (second
row) and T = 500 (third row).

In order to analyze the finite sample properties of the two new bootstrap procedures pro-

posed in this paper, we consider the same Monte Carlo experiments described previously. Par-

ticularly, for each generated series, {y(j)
1 , . . . , y

(j)
T }, j = 1, . . . , R, and sample sizes, T = 40, 100

and 500, we generate B = 1000 bootstrap replicates, estimate the PMSEs by both procedures,

and calculate the corresponding relative biases. Figure 1, that plots the Monte Carlo aver-

ages of these relative biases for the homoscedastic RWN model, shows that, regardless of the

sample size, the biases of the proposed parametric and non-parametric bootstrap PMSE are

very similar. These biases obviously decrease with the sample size and are clearly smaller

than those observed when the PMSEs are computed using the Kalman filter with estimated

parameters, the asymptotic proposal of Hamilton (1986) or the bootstrap procedure proposed
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by Pfeffermann and Tiller (2005) when the sample sizes are small or moderate. The time

averages and standard deviations reported in Table 1 show that the reductions of the rela-

tive biases can be very important in the small sample when T = 40. For example, in the

homoscedastic RWN model, the relative bias is -8.02% when using the Kalman filter with

estimated parameters, 20.53% when using the asymptotic distribution of the ML estimator,

-7.62% when using the bootstrap procedure of Pfeffermann and Tiller (2005) while they are

as small as -1.46% and -1.21% when using the parametric and non-parametric bootstrap pro-

cedures proposed in this paper. The reduction of the relative biases is still important when

T = 100 while when T = 500 all procedures to compute the PMSEs of the unobserved level

µt are approximately unbiased. It is also remarkable that the relative biases and standard

deviations of the parametric and non-parametric bootstrap procedures proposed in this paper

are approximately the same when implemented in the Gaussian RWN model regardless of

whether the disturbances are homoscedastic or heteroscedastic. The similarity in the behav-

ior of the parametric and non-parametric procedures could be expected given that the model

is conditionally Gaussian and in the parametric procedure, we are resampling from the true

Gaussian distribution. However, it is comforting to observe that the behavior of the paramet-

ric procedure which does not assume any particular distribution is comparable with that of

the parametric procedure.

Therefore, our simulation results show that in small and moderate sample sizes the pro-

posed bootstrap procedures to compute the conditional PMSE of ât|t−1 have very small biases

which are smaller than those of alternative procedures. Furthermore, this reduction of bias is

accomplished using procedures which are simpler from a computational point of view. It is

also important to point out that we have considered a very simple model in order to illustrate

the performance of the CB1 and CB2 procedures. Therefore, it is expected that the simplicity

of our procedures when compared with alternatives is going to be even more important when
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Figure 2: Monte Carlo averages of the ratios dt = 100×
(

Pt|t−1

PMSEt
− 1
)

for the RWN
model with heteroscedastic Gaussian error and T = 40 (first row), T = 100 (second
row) and T = 500 (third row).

dealing with more complicated models.

4 Robustness against non-Gaussian models

It is important to note that when the conditional Normality assumption is not satisfied,

equations (3a) and (3b) do not provide the conditional mean of the unobserved states and

their corresponding conditional PMSEs. However, they still provide optimal one-step-ahead

estimates of the underlying state in the sense that they have minimum PMSE, given by Pt|t−1,

among all estimators which are linear functions of the observations. Taking into account

this feature, in this section, we analyze the robustness of the two new bootstrap procedures

proposed in this paper to estimate the PMSE of the unobserved components in the context

of a particular non-Gaussian model of interest in the context of Stochastic Volatility models.
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In particular, we consider again the RWN model in (4) but this time the error term of the

measurement equation, εt, has a log
(
χ2

1

)
distribution; see, for instance, Harvey et al. (1994) for

the relation between this model and the linear transformation of the Autoregressive Stochastic

Volatility Model. In order to guarantee that the variances of the two error terms are equal

to those of the homoscedastic Gaussian model considered in the previous sections, we center

and re-scaled the log
(
χ2

1

)
. In addition, given that the model is not conditionally Gaussian,

the distribution in (2) is not further the true conditional distribution of the vector (αt, Yt)
′.

Consequently, for each simulated series j and moment of time t, we generate 10000 replicates

of µ(j)
t , µ(j,i)

t , i = 1, . . . , 10000, by particle filtering; see, Kitagawa (1996) and Arulampalam

et al. (2002) for details about particle filtering procedures. Then, the empirical conditional

PMSEs and their corresponding relative biases are computed as in previous sections.

Figure 3 plots the averages through Monte Carlo replicates of the relative biases when the

Kalman filter is run with known and estimated parameters. In this case, the parameters have

been estimated by QML by maximizing the Gaussian log-likelihood. First of all this figure

illustrates that even when the Kalman filter is run with known parameters, Pt|t−1 are slightly

biased estimates of the true PMSE. This result can also be observed in the fifth column of

Table 1 that reports the averages and standard deviations through time of the relative biases

plotted in Figure 3. In the small sample, when T = 40, the relative bias is -2.69% and this bias

decrease with the sample size. However, the standard deviations are much larger than those

reported for the conditional Gaussian models. These biases can be attributed to the fact that

when the model is not conditionally Gaussian, mt|t−1 is not the true conditional mean of µt.

On the other hand, the relative biases reported in the fifth column of Table 1 for the PMSE

computed with the Kalman filter with estimated parameters are not very different from those

reported for the conditional Gaussian models. However, once more, the standard deviations

are much larger. The same result is observed for the asymptotic procedure proposed by

Hamilton (1986) which seems to be rather robust to the presence of non-Gaussianity. It is

remarkable that in the non-Gaussian RWN model considered in this paper, the parametric
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bootstrap procedure proposed by Pfeffermann and Tiller (2005) has very large biases which do

not decrease with the sample size. The parametric bootstrap are based in resampling from the

centered and re-scaled log
(
χ2

1

)
distribution to obtain replicates of εt while the replicates of ηt

are obtained by resampling from a N
(

0, σ̂2
η

)
distribution. It has in average a overestimation

of the true PMSE of approximately 95% for all sample sizes. Finally, the two new bootstrap

procedures proposed in this paper have an adequate performance even in the small sample size.

In particular, the relative biases of the parametric and non-parametric procedures proposed

in this paper are -3.25% and -3.42%, respectively when T = 40, and, -2.12% and -2.35% when

T = 100. They are clearly smaller than the biases of any of the three alternative feasible

estimators of the PMSE and very close to those reported for the PMSE computed by the

Kalman filter with known parameters. Finally, notice that as in the Gaussian RWN models,

the biases and standard deviations of the parametric and non-parametric procedures are very

similar. Therefore, we can conclude that the proposed procedures can be implemented in

non-Gaussian state space models with adequate performances.

5 Empirical application: Estimating the output gap, the NAIRU,
the Trend Investment Rate and the Core Inflation in US

In this section, we apply the new proposed bootstrap estimators of the PMSE of the unob-

served components to estimate the uncertainty associated with the estimation of the output

gap, NAIRU, investment trend and core inflation of the US economy, based on the unobserved

components model proposed by Doménech and Gómez (2006). It is important to note that

this model is multivariate including four observable variables namely, the logarithm of the

GDP, yt, the inflation, πt, the unemployment rate, Ut and the investment rate, xt defined as

the ration between investment and GDP. Therefore, as a by product, we illustrate how the

bootstrap procedures proposed in this paper to estimate PMSE of the unobserved components
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Figure 3: Monte Carlo averages of the ratios dt = 100 ×
(

Pt|t−1

PMSEt
− 1
)

the RWN

model with error term εt distributed as logχ2
1 and T = 40 (first row), T = 100

(second row) and T = 500 (third row).

can also be implemented in multivariate systems.

The model proposed by Doménech and Gómez (2006) incorporates the following three

stylized facts often observed in those macroeconomic variables, namely: (i) Negative corre-

lation between the output gap and the deviations of unemployment from the NAIRU, often

known as the Okun’s law; (ii) Short run trade-off between inflation and unemployment known

as forward looking Phillips curve; and (iii) Co-movement of output and investment called
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accelerator-type investment equation. It is given by

yt ≡ ypt + zt, (13a)

zt+1 = 2θ1 cos θ2zt−1 − θ2
1zt−2 + ωzt, (13b)

ypt+1 = µ+ ypt + ωyt, (13c)

πt =

(
1−

4∑
i=1

µi

)
πt +

(
4∑
i=1

µiπt−i

)
+ ηyzt + vπt, (13d)

πt = πt−1 + ωπt, (13e)

Ut = φuUt−1 + (1− φu)U t + φ0zt + vut, (13f)

U t = U t−1 + ωut, (13g)

xt = βxxt−1 + (1− βx)xt + βy0zt + βy1zt−1 + vxt, (13h)

xt = xt−1 + ωxt, (13i)

where zt is the unobserved output gap which is assumed to follow cyclical AR(2) process in

equation (13b) and, ypt is the logarithm of the potential output represented by a random walk

plus drift model in equation (13c). The parameter µ captures the growth rate of the potential

output. The noises ωzt and ωyt are assumed to be mutually independent Gaussian white noises

with zero mean and variances σ2
ωz and σ2

ωy respectively. The following two equations, (13d)

and (13e) describe the dynamic evolution of inflation, πt and its relation with the output gap.

πt is the core inflation which follows a random walk. The noises vπt and ωπt are Gaussian

white noises with variances σ2
vπ and σ2

ωπ respectively. Both noises are mutually independent

and independent of ωzt and ωyt. Equations, (13f) and (13g) describe the Okun’s law where

Ut is the unemployment rate and U t is the NAIRU. Once more, the disturbances associated

with the unemployment, vut and ωut are Gaussian white noises with variances σ2
vu and σ2

ωu,

respectively. They are mutually independent and independent of the rest of disturbances in

the model. Finally, the last two equations, (13h) and (13i) describe the dynamic evolution

of the investment rate, xt where xt is the long run investment trend . The disturbances vxt

and ωxt are Gaussian white noises with zero mean and variances σ2
vx and σ2

ωx and, once more,

they are assumed to be mutually independent and independent of all previous disturbances.
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Model (13) can be casted into a state space framework as in (1) with Yt =[
yt, Ut − φuUt−1, xt − βxxt−1, πt −

(∑4
i=1 µiπt−i

)]′
, αt =

[
ypt , U t, xt, πt, zt−2, zt−1, zt

]′, εt =

[vut, vxt, vπt], ηt = [ωyt, ωut, ωxt, ωπt, ωzt], Ht = diag
{
σ2
vu, σ

2
vx, σ

2
vπ

}
, Qt =

diag
{
σ2
ωy, σ

2
ωu, σ

2
ωx, σ

2
ωπ, σ

2
ωz

}
,

T =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 −θ2

1 2θ1 cos θ2


,

Z =


1 0 0 0 0 0 0
0 1− φu 0 0 0 0 φ0

0 0 1− βx 0 0 βy1 βy0
0 0 0 1−

∑4
i=1 µi 0 0 ηy

 ,

R1 =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1


, and R2 =


0 0 0
1 0 0
0 1 0
0 0 1

 ,

where diag{.} is the diagonal matrix.

In this paper, we fit model (13) to the same data analyzed by Doménech and Gómez

(2006). It consists on quarterly observations from 1948:Q1 to 2003:Q1 of the log (GDP ), the

inflation rate, defined as the average inflation over the last four months, the unemployment

rate defined as the average of the unemployment rate over the last four months and the

nominal investment rate. After a preliminary analysis of the data, several breaks in the

marginal variances of inflation and output are detected and incorporated into de model. As in

Doménech and Gómez (2006), we estimate parameters by QML by maximizing the one-step-

ahead error prediction decomposition of the Gaussian log-likelihood where the innovations

and their covariances matrices are obtained by running the Kalman filter. The asymptotic

distribution of the QML estimator can be found in, for example, Harvey (1989). Table 2

reports the QML estimates of the parameters which are very close to those reported by

Doménech and Gómez (2006). Note that in the output column in Table 2 the estimated
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breaks in the output volatility is highly significant, there is a decreasing in the volatility

after 1983:Q1. Moreover, the volatility changes in inflation clearly has two significant breaks:

substantial increases in 1972:Q1 on the one hand, and decreases in 1983:Q1. The output gap is

significant in the three equations that describe the inflation, unemployment and investment.

As expected, in the Phillips curve and the investment equation the sign of the coefficients

associated with the output gap are positive.

Figure 4 plots the estimated kernel densities of the four one-step-ahead components of

the innovations vector. It shows that the estimated innovations of the unemployment and

investment seem to has asymmetric distribution. Therefore, it could be expected that in this

case, the parametric based on the Normal assumption and non-parametric PMSEs may differ.

(a) (b)

(c) (d)

Figure 4: Histogram and estimated kernel density of the standardized one-step
ahead errors of (a) Output, (b) Unemployment, (c) Investment and (d) Inflation.

After estimating the parameters, the Kalman filter is run to obtain one-step-ahead es-

timates of the underlying components and their PMSE7. The estimates of the output gap,

7Alternatively, Doménech and Gómez (2006) implement a smoothing algorithm to estimate the unobserved
components together with their PMSEs. However, they report very large correlations between smoothed and
one-step-ahead estimates of the underlying components. Therefore, their estimates are comparable with those
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Table 2: Parameter estimates of unobserved components model for output, un-
employment, inflation and investment.

Output Inflation NAIRU Investment
θ1 0.7710 ηy 0.3123 σvπ 0.0044 φ0 -0.3107 βy0 0.6458

(15.73) (3.52) (2.94) (-14.31) (16.24)
θ2 0.2359 µ1 0.1427 σωπ1 0.0096 φU 0.3653 βy1 -0.6102

(3.02) (2.24) (8.69) (6.27) (-12.89)
σy1 0.0075 µ2 -0.1332 σωπ2 0.0163 σvu 0.0009 βx 0.8253

(10.81) (-2.67) (4.38) (3.86) (15.05)
σy2 0.0069 µ3 0.2413 σωπ3 0.0047 σωu 0.0022 σvu 0.0033

(11.59) (3.13) (3.41) (6.41) (12.17)
σγ 0.0048 µ4 -0.1679 σωu 0.0023

(14.07) (-2.35) (3.17)

Note: Estimation were carried out with 221 quarterly observations from 1948:I to 2003:I.
In parenthesis is the t-statistic.

NAIRU, investment trend and the core inflation have been plotted in Figure 5 together with

the 90% prediction intervals based on the PMSE estimated by the Kalman filter and the as-

sumption of Normality. We also estimate the PMSEs by using the asymptotic approximation

proposed by Hamilton (1986), the bootstrap procedure of Pfeffermann and Tiller (2005) and

the two new bootstrap procedures proposed in this paper. Table 3 reports the averages and

standard deviations through time of the PMSEs estimated for each of the four underlying

components by each of the five procedures. The PMSEs obtained by the Kalman filter run

with the estimated parameters and the procedure proposed by Hamilton (1986) are very sim-

ilar for the NAIRU, Investment and long-run inflation. However, there is a large difference

in the PMSE of the output gap which is 0.0143 when estimated by the Kalman filter with

estimated parameters but it is 0.0214 when incorporating the parameter uncertainty using

the asymptotic distribution of the QML estimator. Furthermore, the PMSEs estimated using

the bootstrap procedure proposed by Pfeffermann and Tiller (2005) assuming Gaussian errors

are very similar to those obtained by using the asymptotic procedure for all variables but in-

vestment. In this case, it is larger using the bootstrap procedure, 0.0093, while it is estimated

as 0.0062 using the asymptotic approximation. Finally, the PMSEs obtained using the two

obtained in this paper.
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bootstrap procedures proposed in this paper are clearly larger than those obtained by all the

alternative procedures for all four unobserved variables. Note that the parametric bootstrap

is based on the assumption of Gaussian errors which seems to be not satisfied in all equations.

As expected, given the simulation results in the previous section, the PMSEs estimated using

the parametric and non-parametric bootstrap procedures are very similar for all variables.

Only in the case of the NAIRU the PMSE estimated using the parametric bootstrap is 0.0063

while it is 0.0089 when the non-parametric procedure is implemented. Note that the unem-

ployment is one of the variables for which the innovations seem to be non-Normal. Also note

that, for the investment trend, the bootstrap PMSE is around five times the PMSE com-

puted using the Kalman filter with estimated parameters. The smallest difference between

the bootstrap and Kalman filter PMSE is about 30% for the core inflation. Consequently, the

90% prediction intervals based on the PMSEs proposed by Hamilton (1986) and Pfeffermann

and Tiller (2005) will be wider than those based on the PMSEs of the Kalman filter with

estimated parameters. Furthermore, when the bootstrap PMSEs proposed in this paper are

used for constructing prediction intervals, the resulting intervals will be still wider than for

the previous procedures. This is reflected in Figure 5, that also plots the 90% prediction

intervals for the PMSEs computed the non-parametric bootstrap procedure proposed in this

paper. When comparing these intervals with those obtained by using the Kalman filter with

estimated parameters, it is clear that the former one is much wider. Therefore, taking into

account the parameter uncertainty may change the conclusions about the uncertainty asso-

ciated to the four unobserved variables estimated. This effect is specially important when

estimating the NAIRU and the long-run investment rate. The differences between the predic-

tion intervals constructed for the NAIRU may have important implications as regards to its

utility for macroeconomic policy. By looking at the prediction intervals that do not take into

account the parameter uncertainty, Doménech and Gómez (2006) conclude that the difference

between the NAIRU and the unemployment rate is useful for policy makers in the sense that

it can be used for identifying expansions and recessions very accurately. Figure 6, that plots
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the unemployment rate together with the 90% prediction intervals for the NAIRU, shows that

the former is out of the intervals in the second half of the sixties indicating an expansion and

in the first half of the eighties suggesting a recession. However, once we construct the intervals

be taking into account the parameter uncertainty as suggested in this paper, they are much

wider and, consequently, the unemployment is not out of the 90% prediction intervals of the

NAIRU in any moment along the sample period considered. Therefore, when taking into

account the parameter uncertainty, the conclusion of Staiger et al. (2001) that doubt about

the ability of that difference for economy policy is supported.

Table 3: Averages and standard deviations (in squared brackets) through time of
PMSEs computed using the Kalman filter with estimated parameters (KF2), the
asymptotic approximation of Hamilton (1986) (Asy), the bootstrap procedure of
Pfeffermann and Tiller (2005) (PT), and the parametric (CB1) and non-parametric
(CB2) bootstrap procedures.

KF2 Asy PT CB1 CB2

Output Gap 0.0143 0.0214 0.0217 0.0238 0.0283
[0.0012] [0.0013] [0.0016] [0.0078] [0.0095]

NAIRU 0.0050 0.0051 0.0051 0.0063 0.0089
[0.0004] [0.0004] [0.0004] [0.0021] [0.0074]

Investment 0.0059 0.0062 0.0093 0.0212 0.0223
[0.0019] [0.0021] [0.0048] [0.0066] [0.0097]

Inflation 0.0137 0.0140 0.0142 0.0179 0.0173
[0.0116] [0.0119] [0.0121] [0.0132] [0.0110]

6 Conclusions

In this paper, we propose two new bootstrap procedures to obtain PMSEs of the Kalman

filter estimator of the unobserved states in state space models which take into account the

uncertainty attributable to parameter estimation. It has the advantage of being as simple as

the procedures based on the asymptotic distribution of the parameters and, at the same time,

has the good performance of bootstrap procedures even in small sample sizes.
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Figure 5: Kalman filter Estimates and 90% prediction intervals for the output gap,
NAIRU, Investment trend and Core inflation.

Figure 6: Estimated of the NAIRU, the unemployment rate and prediction inter-
vals.

We show that our bootstrap procedures for estimating PMSE of the one-step-ahead esti-

mator of unobserved state for time-invariant and time-variant models have better small sample
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properties than alternative bootstrap procedures previously proposed in the literature. The

two new bootstrap PMSEs are also more accurate than the asymptotic procedures and that

those obtained from the Kalman filter with estimated parameters.

We also show that our bootstrap procedures for estimating PMSE of the one-step-ahead

estimator of the underlying components perform very well even when the conditional Normal-

ity assumption is not satisfied.

We show the importance of taking into account the parameter uncertainty by implementing

the proposed bootstrap procedures to estimate the PMSE for the one-step-ahead estimator

of the output gap, NAIRU, trend investment rate and core inflation of the US economy. In

this case, with our bootstrap procedures the estimated PMSEs are larger than those obtained

with the alternative procedures and, consequently, the prediction intervals will be wider which

has consequences for policy makers. We put some doubts on the usefulness of the difference

between the unemployment rate and the NAIRU for predicting expansions and recessions of

the economy.
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Rueda, C. and P. Rodŕıguez (2009). State space models for estimating and forecasting fertility.

International Journal of Forecasting In press.

Sinclair, T. (2009). The relationships between permanent and transitory movements in US

output and the unemployment rate. Journal of Money Credit and Banking 41, 529–542.

Staiger, D., J. H. Stock, and M. W. Watson (2001). Prices, wages and the U.S. NAIRU in

the 1990s. National Bureau of Economic Research WP8320.

Stock, J. H. and M. W. Watson (2007). Why has U.S. inflation become harder to forecast?

Journal of Money Credit and Banking 39, 3–33.

Stoffer, D. S. and K. D. Wall (1991). Bootstrap State-Space models: Gaussian maximum

likelihood and the Kalman filter. Journal of the American Statistical Association 86, 1024–

1033.


	1 Introduction
	2 PMSE of Kalman filter estimators of unobserved components
	2.1 PMSE of the Kalman filter with estimated parameters
	2.2 Asymptotic approximation
	2.3 Bootstrap procedures

	3 A new bootstrap procedure
	4 Robustness against non-Gaussian models
	5 Empirical application: Estimating the output gap, the NAIRU, the Trend Investment Rate and the Core Inflation in US
	6 Conclusions

