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Abstract 

The paper focuses on the PCS Catastrophe Insurance Option Contracts and empirically tests the 
degree of agreement between their real quotes and the standard fmancial theory. The highest 
possible precision is incorporated since the real quotes are perfectly synchronized and the bid-ask 
spread is always considered. A static setting is assumed and the main topics of arbitrage, hedging 
and portfolio choice are involved in the analysis. Three significant conclusions are reached. First, 
the catastrophe derivatives may be very often priced by arbitrage methods, and the paper provides 
some examples of practical strategies that were available in the market. Second, hedging arguments 
also yield adequate criteria to price the derivatives and some real examples are provided as well. 
Third, in a variance aversion context many agents could be interested in selling derivatives to invest 
the money in stocks and bonds. These strategies show a suitable level in the variance for any desired 
expected return. Furthermore, the methodology here applied seems to be quite general and may be 
useful to price other derivative securities. Simple assumptions on the underlying asset behavior are 
the only required conditions. 
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1. Introduction 

New investment and financing opportunities, and innovative risk management techniques 
involving derivatives have been developed to allow individuals and corporations to cost
effectively reallocate funds and transfer risks to other parties. A growing concern on 
catastrophe losses has particularly brought attention to catastrophe derivatives and their 
potential financing and risk sharing benefits for the insurance industry. 

The PCS (Property Claim Services) Catastrophe Insurance Options Contracts launched 
by the Chicago Board of Trade (CBOT) on September 29, 1995 are among the most sig
nificant catastrophe derivatives. These are standardized option contracts based on indices 
that track the insured losses, as estimated by PCS, resulting from catastrophic events that 
occur in a given area and period. Previously, the CBOT had traded catastrophe futures 
and options contracts on an index provided by the Insurance Services Office (ISO). More
over, the CBOT planned to list PCS Single-Event Catastrophe options in 1998 to broad 
its product offering. In 1997 the Bermuda Commodities Exchange (BCOE) also began 
trading derivative securities based on the Guy Carpenter Catastrophe Index, an index of 
losses from climate events in US. 

In this paper we focus on the CBOT's PCS options. Previous literature on these 
particular contracts and other related catastrophe derivatives can be roughly divided into 
two major categories, according to their main objective. The first group of papers con
centrates on pricing issues. They view catastrophe derivatives as financial instruments 
and, accordingly, they take a financial approach to valuing (see Cummins and Geman 
(1995), Geman and Yor (1997), among others; Tomas (1998) suggests an actuarial ap
proach). They theorize on the dynamic stochastic behavior of the relevant underlying 
variables in order to obtain the desired pricing result. From a theoretical point of view 
this line of research is really important and very promising. From a practical point of view 
there are some difficulties due to market imperfections (bid-ask spread, other transaction 
costs, short-selling restrictions, illiquidity that makes difficult a continuous trading, etc.) 
and some specific properties shown by the underlying indices (their stochastic behavior, 
the absence of any underlying security available for trade, etc.).This motivates the exis
tence of a second group of papers devoted to describe the contracts and illustrate their 
most significant applications to both, insurance and capital markets (e.g. see D' Arcy and 
France (1992), Canter et al. (1996), Litzenberger et al. (1996), O'Brien (1997) and Jaffee 
and Russell (1997)). They explore the potential benefits of using catastrophe derivatives 
for the insurance industry, and they compare these securities to other competitive al
ternatives such as reinsurance and catastrophe-linked bonds. Some papers analyze the 
potentially attractive new investment opportunities provided by the catastrophe-linked 
assets from any investor's perspective. Most of all these papers stress the traders' need 
for an understandable and reliable complete pricing methodology for these innovative 
securities. 

The present paper may be included in the second group, but the standard static as-
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set pricing models are applied. Real bid and ask prices of catastrophe-linked derivatives 
are considered, and their level of adequation to the static financial theory is empirically 
tested. Examining static valuation minimizes the impact of real market imperfections, 
and problems implied by the nature of the underlying variables are avoided if one prices 
an arbitrary derivative by only bearing in mind the interest rates and the prices of other 
derivative securities. Thus, we can apply the main topics of asset pricing, arbitrage, hedg
ing and portfolio choice, in a model where bonds and derivatives are the only marketed 
assets. 1 

In order to apply the static theory, we will consider a two period model characterized 
by the current date, the derivatives expiration date, their current bid and ask prices and 
their final payoffs. The analysis is independently implemented once a day. 

Once the context has been fixed, we start by analyzing the existence of arbitrage 
portfolios. We take two different perspectives. First, we test the situation of an investor 
who incurs in the cost of the bid-ask spread, i.e. he/she sells at the bid and buys at the 
ask price. As expected, we found that it was not possible to form any arbitrage portfolio 
in that case. Second, we explore the position of any agent who posted one of the available 
prices (i. e. either he/she buys at the bid or sells at the ask for a given asset and incurs 
on the cost of the bid-ask spread for the rest of assets). If an arbitrage portfolio were 
available in this context, any other agent could offer a better price and still retain some 
of the arbitrage gains. Competition among traders willing to earn money without any 
risk of losing money should lead to a more reduced spread in this situation. We found 
some relative misspricings in this market what suggests that a narrower spread could have 
been possible. Consequently, the analysis reveals that traders can sometimes improve real 
bid or ask quotes without any type of risk or, equivalently, they can price by arbitrage 
methods. 

When a concrete derivative can not be priced by arbitrage methods, we explore the 
existence of hedged portfolios that contain this derivative. In particular, there may exist 
some hedged portfolios with a guaranteed positive return slightly lower than the risk-free 
return (or equal to it, if there exists an arbitrage portfolio of the first type) but with a 
possible return far larger than it, if some facts take place. Again, competition among 
traders trying to exploit the attractive benefits of this portfolios should lead to reductions 
of the spread. Our results show that interesting portfolios of this type could have been 
formed in some cases. 

Previous work on individual portfolio selection and the potential benefits to investors 
from participating in the (re)insurance market through catastrophe insurance-linked se
curities includes the papers by Canter et al. (1996) and Litzenberger et al. (1996). Based 
on some empirical evidence on the insignificant correlation of the PCS national index 
with the S&P 500 index (see also Litzenberger et al. (1996) and the references contained 
therein for more evidence on this regard), the first article stresses the diversification ben
efits that participating in the new securitized insurance risk opens to inv,estors. Using an 
approach suggested by Fisher Black and Robert Litterman based on the Capital Asset 

1 Stocks, whose returns show an insignificant correlation with the PCS indices ,(see Canter et al. 
(1996)), can be included too. 
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Pricing Model (C.A.P.M.), and after calculating some necessary parameters based on his
torical data of insured losses and premiums, the second paper finds some evidence on the 
attractiveness of including some hypothetical catastrophe bonds in diversified portfolios 
of stocks or bonds in terms of the new offered risk/return opportunities (see also more 
references about other related evidence in Canter et al. (1996)). 

Our study on portfolio choice in a mean-variance context is closely related to this 
previous work, but takes a different point of view. It concentrates on the investment in 
catastrophe insurance options market. Suppose that an investor, possibly attracted by the 
accompanied diversification benefits, add insurance risk to his/her traditional portfolio of 
stocks, bonds and real estate. How should he/she efficiently combine PCS options in this 
insurance portfolio with the risk-less asset in order to obtain the desired expected return 
with a minimum variance? We try to answer this question armed with two important 
results from static pricing theory. 

vVe also need the real probability distribution for the underlying insured loss index, 
and a linear pricing rule compatible with the real quotes. The probability distribution 
is obtained via simulation and historical catastrophe data. The linear pricing rule is 
generated from a risk-neutral probability measure attained by applying a methodology 
proposed by Rubinstein (1994) and a number of others. 

Once we have the probability measure and the pricing rule, we look for minimum 
variance portfolios. An interesting result seems to hold. For investors whose risk is not 
correlated with the PCS indices (i. e., investors that are not insurers) it may be very useful 
to sell catastrophe derivatives and to invest the money in other kind of assets, like bonds 
or stocks. 

Summarizing, our empirical results confirm the potential interest of catastrophe-linked 
derivatives. They are useful for insurers because, in some sense, they can be considered 
like a special type of reinsurance. Besides, they may be also interesting for another 
Financial Institutions (banks, for instance) because, if arbitrage and hedging arguments 
lead to low bid-ask spreads, these Institutions can adequately diversify their portfolios by 
selling derivatives. Consequently, the high level of risk due to catastrophic events may be 
appropriately diversified among large numbers of investors who trade" reinsurances" in a 
financial market. 

Let us finally remark that the methodology here applied seems to reveal two interesting 
properties. First, it is useful for traders because practical criteria and strategies to invest 
are provided. Second, it may be quite general and can be implemented to analyze other 
kind of securities. Very weak assumptions are required. Arbitrage and hedging arguments 
will hold if one is able to identify the underlying uncertainty, i.e., the underlying variables 
if we are working with derivatives. Variance aversion and C.A.P.M.-type arguments will 
work well when the probability measure, affecting the underlying uncertainty, can be 
determined with precision. This has been the case in this paper.2 

2"'hen the usual C.A.P.M. is tested, it is not possible to describe the underlying probability space, 
and researchers have to obtain information about it by studying some relations involving the returns 
associated with the different securities. Nevertheless, in this case, the underlying PGS indices behavior 
has been directly analyzed and the derivatives quotes were not used for this purpose. 
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The remainder of the paper is organized as follows. Section 2 briefly reviews the main 
theoretical results we rely on to carry out our empirical analysis of pes options quotes. 
Section 3 summarizes the foremost characteristics of pes options and all our data. In 
Section 4 we detail the concrete methodology we adopt in our empirical research of pes 
options quotes and provide our results. The paper ends with some concluding remarks in 
Section 5. 

2. Theoretical Background 

Throughout the paper we will consider a static setting to analyze how the theory of port
folio selection and different asset pricing models may be applied to pes option contracts. 
Thus, first of all, we must summarize the general framework and the basic assumptions 
that lead to the most important theoretical results on asset pricing. A brief review of 
these topics is the main purpose of the present section. Later, we will provide the way 
the theory applies in this article to study the market of pes option contracts. 

We focus on the two periods approach characterized by the present date to, a future 
date t l , n securities denoted by SI, S2, ... , Sn, their bid prices at to denoted by VI, V2, ... , Vn, 
their ask prices Cl, C2, ... , Cn, and the future prices (or final payoffs) at tl which depend 
on a finite number of states of the world Wl , W2 , ..• , Wk and are given by the matrix 
A = (aij), i = 1,2, ... , k, j = 1,2, ... , n, being aij ~ 0 the price of Sj if the state Wi takes 
place.3 IIi > 0 will denote the probability of Wi , i = 1,2, ... , k, and /1 will denote the 
whole probability measure. The inequalities Cj ~ Vj for j = 1,2, ... , n are clear, and we 
will accept the convention Vj = 0 (Cj = (0) if there is no bid (ask) price available for Sj. 
The first security SI will be a riskless asset (its final payoff is 1 and does not depend on 
the state of the world) and Cl = VI > 0.4 As usual, the riskless return is given by R = -.L. 

VI 

The row matrix x = (Xl, X2, ... , Xn) will represent the portfolio composed by Xj units 
of Sj, j = 1,2, ... , n, and Xj ~ 0 (Xj ~ 0) must hold if Vj = 0 (Cj = (0). Its current (at to) 
price will be P(x) = 2:j=l PjXj being Pj = Cj (pj = Vj) if Xj ~ 0 (Xj ~ 0).5 Its price at tl 
depends on the state of the world and is given by the column matrix Axt where xt is the 
transpose of x. 

For an arbitrary portfolio x, we will consider the portfolios x+ = (xt, ... ,x~) and 
x- = (xl' ... ' x~) composed by the purchased and sold securities respectively. To be 
precise, x; = Max{xj,O} and xj = Max{-xj,O} for j = 1,2, ... ,n. 

vVe will follow the approach by Prisman (1986) or Ingersoll (1987) to introduce the 
concept of arbitrage.6 

3 Almost all the results still hold for a matrix A whose elements are also negative, but the constraint 
aij :::: 0 makes things a little easier and is always fulfilled in our empirical analysis. 

4 Once again, thi" assumption can be avoided in a general framework, but it is useful and fulfilled in 
this article. 

5 i. e. agents can buy or sell any security but prices are larger if they buy. 
6In what follows, Axt :::: 0 denotes that all the elements in this matrix are larger than or equal to 

o. Analogously, Axt > > 0 denotes that all the elements are larger than 0, and Axt > 0 denotes that 
elements are larger than or equal to 0, but at least one element is strictly positive. Similar notations will 
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Definition 1. The portfolio x is said to be an arbitrage portfolio of the second type, or 
a strong arbitrage portfolio, if P(x) < 0 and Axt 2: 0 , or P(x) = 0 and Axt » o. 

The portfolio x is said to be an arbitrage portfolio of the nrst type, or a weak arbitrage 
portfolio, if P(x) = 0 and Axt > o. 

Previous literature has characterized the absence of arbitrage by the existence of state 
prices or discount factors (see for instance Chamberlain and Rosthchild (1983), Ingersoll 
(1987) or Hansen and Richard (1987)). The following result is a minor extension that 
incorporates the bid-ask spread and may be easily proved by re adapting classical proofs 
(see also Jouini and Kallal (1995)). 

Theorem 1. There are no arbitrage opportunities if and only if there exists a vector 
d = (d 1 , d2 , .•• , dk ) of discount factors such that di > 0, i = 1,2, ... , k and 

k 

Vj :::; L aijdi!-Li :::; Cj (2.1) 
i=l 

for j = 1,2, ... ,n. 
There are no arbitrage opportunities of the second type if and only if there exists a 

vector d = (db d2 , ••. , dk ) of discount factors such that di 2: 0, i = 1,2, ... , k, and (2.1) 
holds.7 

• 

k 

Let us remark that (2.1) leads to ~ = E di!-Li. If we set 
i=l 

(2.2) 

k 

i = 1,2, ... ,k, then Ai 2: 0 and EAi = 1, and therefore, A - (Al,A2, ... Ak) can be 
i=l 

considered a probability measure. Furthermore, (2.1) leads to 

V· < .!E),(S.) < c· (2.3) 
J-R J-J 

for j = 1,2, ... ,n, being E),(Sj) the expected value of Sj at tl computed with the proba
bility measure A instead of!-L. This is the reason why A is called a Risk Neutral Probability 
Measure, and Theorem 1 shows that its existence (and positiveness) is the necessary and 
sufficient condition to guarantee the absence of arbitrage of the second type (of any kind). 

The latter Theorem provides a very well known and important condition to ensure 
the absence of arbitrage, but we will need to know what happens when this absence fails. 
In order to improve bid or ask real prices for PCS option contracts, it is interesting to 
measure, in monetary terms, the degree of arbitrage. It is also useful to analyze market 
imperfections. For instance, due to transaction costs, the presence of arbitrage could be 
only apparent but not real. 

The following result summarizes some properties of the measures developed by Balbas 
and Munoz (1998). 

appear in similar cases .. 
7 An analogous result holds if probabilities Ili are not specified. In such a case, the discount factors 

d~ > 0 (~ 0) must verifiy Vj :::; Ei=l aijd~ :::; Cj. The proof is trivial since one can define d~ = dilli . 
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Theorem 2. Suppose that the set X of arbitrage strategies of the second type is non 
void. Then, problems 

M 
P(x) ax ---'---'--

P(-x-) 
{XEX 

and 

M 
-P(x) 

ax --~~~~--~ 
P(x+) - P(-x-) 

{XEX 

achieve an optimal value at the same portfolio x* . • 
The disagreement measures m and l are defined by m = pfi::) )' l = P(x,;)~(;;~x' ) or 

zero if no arbitrage opportunities of the second type do exist. Measures m and l vanish if 
and only if there are no arbitrage opportunities of the second type. When the arbitrage 
appears m (l) yields available relative arbitrage earns with respect to the value of the 
sold (interchanged) assets. The inequalities 0 ::; l ::; m ::; 1 may be proved, and the level 
of violation of the arbitrage absence grows up as the measures move from 0 to 1. The 
relationship l = 2~m holds, and thus since [0,1] :3 z ---+ 2~z E [0,1] is an increasing one 
to one function, both measures provide equivalent information. Further details may be 
found in Balbas and Munoz (1998) or Balbas et al. (1998).8 9 

Let us turn now to hedging strategies and arbitrage portfolios of the first type. If the 
model does not allow arbitrage portfolios of the second type, R is the highest return than 
can be guaranteed. However, an investor may be interested in a hedging portfolio whose 
guaranteed return is very close to (and lower thanlO ) R but provides larger returns in 
some states of the world. 

Let us fix a concrete security Sjo' and consider the usual way to hedge the purchase 
of this security, i.e. solve the problemll 

Min P(x) (2.4) 

If the solution is attained at X, it is clear that P(X) > 0 and ptx) is the optimal guaranteed 
return if a unit of Sjo is bought. Moreover, there are arbitrage portfolios of the first type 
such that Xjo = 1 if and only if R = P~x) and Axt > 1. 

An analogous analysis may be done to hedge the sale of Sjo. Just write Xjo = -1 in 
(2.4) instead of Xjo = 1. Obviously, not only hedging portfolios, but also arbitrage of the 
first type can be detected by computing all the hedging portfolios when jo moves from 1 
to n. 

The last part of this synopsis focuses on individual portfolio selection and variance 
aversion. Assume that there are no arbitrage opportunities (of any sort) in the model. 

80nce again, these results are also verified in a model where the probabilities JLi are not specified. 
9 Another procedure, useful to detect arbitrage portfolios, may be found in Garman (1976). 

IOOr equal to R if there are arbitrage strategies of the first type. 
11 Recall that Axt ;::: 1 means that all the elements in the column matrix Axt are larger than or equal 

to 1. 
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Then, the arbitrage absence still holds for some concrete linear pricing rule 7r such that 
Vj ::; 7rj ::; Cj, j = 1,2, ... , n, being 7rj the price of Sj provided by 7r. Besides, 7r may be 
considered as a positive real valued linear operator over the space Span(A), span of the 
columns of A. 12 Then, the Riesz Representation Theorem of linear operators in Hilbert 
spaces allows to establish the following result (see Chamberlain and Rosthchild (1983)). 

Theorem 3. There exists a unique discount factor d » 0 such that dt belongs to 
span(A). • 

We will assume that dt is not the payoff of a riskless asset. This hypothesis is not 
restrictive (it only affirms that the market is not risk-neutral and, consequently, >. =f J-t) 
and will always hold in our empirical test. 

In order to achieve an easier notation, denote by Sj the lh-column of A, j = 1,2, ... , n, 
and let us identify each feasible portfolio x with its final payoffAxt = y E Span(A). 
Denote by 7r(Axt) = 7r(y) = L~=1 YidiJ-ti its current price provided by 7r. In particular, 
7r(dt ) = L~~1 d~J-ti > O. Define the return (provided by 7r) of any Y E Span(A) such 
that 7r(Y) > 0 by R(y) = ;:fy), and consider its expected value EJ.L(R(y)) and standard 

deviation aJ.L(R(y)). 13 Then, the statement below, whose proof is a consequence of the 
Projection Lemma of Hilbert spaces (see for instance Duffie (1988)), provides the optimal 
portfolios in a variance-averse model 

Theorem 4. For any y E span(A) such that 7r(y) > 0, there exists a linear combination 
of dt and the riskless asset, c.pSl + 'ljJdt, such that 

i)'ljJ::;O 
ii) 7r(Y) = 7r(c.pSl + 'ljJdt

) 

iii) EIL(R(y)) = EJ.L (R(c.pSl + 'ljJdt)) 
ivy aIL(R(y)) :::: aJ.L (R(c.pSl + 'ljJdt )) • 

Hence, for a desired expected return, the minimum variance is attained by selling the 
portfolio x such that Axt = dt and investing the price of x, jointlY,with the own capital, 
in the riskless asset. 14 

3. Markets and Data 

CBOT's PCS Catastrophe options are standardized contracts based on PCS indices that 
track the insured losses resulting from catastrophic events that occur in a given area and 
risk period, as estimated by PCS. 

12i.e. the space of kxl column matrixes that can be obtained by linear combinations of the columns 
of A, 

13Recall that y and R(y) may be considered random variables and, therefore, EJ.L(R(y)) = 

1I:(Y) I:~=1 Yi!li and aJ.L(R(y)) = 1I:(Y) (I:~=I[Yi -7r(Y)EJ.L(R(y))]2!li) 1/2 
14Under the usual C.A.P.M. assumptions, the considered securities are stocks and, under the suitable 

hypotheses on their stochastic behavior, the portfolio x is composed by a long position in the riskless 
asset and short positions in the stocks. Since the coefficient 1/J must be negative, the Market Portfolio is 
composed by the stocks in a long position. 

8 



When PCS estimates that a natural or man-made event within the US is likely to 
cause more than $25 million in total insured property losses and determines that such 
effect is likely to affect a significant number of policyholders and property/casualty insur
ance companies, PCS identifies the event as a catastrophe and assigns it a catastrophe 
serial number. PCS provides nine loss indices daily to the CBOT: a national index, five 
regional indices, and three state indices (National, Eastern, Northeastern, Southeastern, 
Mid western, Western, Florida, Texas and California loss indices). Each PCS loss index 
represents the sum of current PCS estimates for insured catastrophic losses in the area 
and loss period covered divided by $100 million and rounded to the nearest first decimal 
point. 

The loss period is the time during which a catastrophic event must occur in order 
for the resulting losses to be included in a particular index. Most PCS indices have 
quarterly loss periods, some of them (California and Western) have annual loss periods, 
and one of them (National) has both quarterly and annual risk periods. Following the loss 
period, there exists a development period (twelve months) during which PCS continues 
estimating and reestimating losses for catastrophes that occurred during the loss period. 
The development period estimates affect PCS indices and determine the final settlement 
value of the indices. 

Catastrophe options are available for trading till the end of the development period. 
They are European and cash-settled (each point equals $200 cash value). They can be 
traded as either "small-cap" or "large-cap" contracts. These caps limit the amount of 
losses that are included under each contract: insured losses from $0 to $20 billion for the 
small contracts and losses from $20 to $50 billion for the large contracts. In practice, 
traders prefer negotiating call spreads and so further limiting their associated payoffs. 
Sophisticated combinations traded as a package, that include several expirations dates 
and indices, are also available. 15 Catastrophe options bid and ask quotes and the current 
value of the indices are daily provided by the CBOT. Premiums are quoted in (index) 
points and tenths of a point (each point equals $200). Strikes values are listed in integral 
multiples of five points. 

Our empirical work studies two periods: from February 25 to April 20, 1998 and from 
June 23 to July 30, 1998. The quotes used in the empirical analysis were provided by 
the CBOT and correspond to synchronized bid and ask quotes posted at the end of each 
day. For each of the days considered, we have also included a risk-free asset. Its prices 
were obtained from the coupon-only strips quotes reported by The Wall Street Journal. 16 

Treasury-bills could have been used instead but strips maturities were much closer to the 
options expiration dates. 17 

In order to learn about the distributional properties of the catastrophe waiting times 

15Henceforth, for short, we will merely say 'derivative' or 'option' to refer a single option or a package 
of ones. 

16Exact values were obtained through linear interpolation of midpoints of the bid-ask prices by using 
the closest maturities to the option expiration dates. 

17Some of our computations were also implemented with T-bills returns. Our main results remained 
unchanged. 

9 



and their associated amount of insured losses, our data also includes a 25-year (1973-1997) 
catastrophe record provided by PCS. This record included all catastrophes occurred in 
each state with indication of its serial number, begin and end dates, causes and the 
PCS's estimates of insured losses. The monetary value of losses was converted to 1997 
dollars by using the Producer Price Index reported by the Bureau of Labor Statistics (US 
Department of Labor). 

4. Empirical Research: Methodology and Results 

From now onwards, we will first make concrete the methodology employed in the empirical 
analysis and then we will present the obtained results. 

Our analysis only targets those derivatives with a single underlying index and a unique 
expiration date. We group those derivatives with the same expiration date and the same 
underlying index that are available for trading. We require for a given day a minimum of 
four assets in each set. For the first period this filtering left us with derivatives associated 
to the following indices: National Annual-98 (36 valid days), California Annual-98 (36 
days), Eastern September-98 (12 days) and Southeastern September-98 (10 days). For 
the second period we have the National Annual-98 (27 valid days), Eastern September-98 
(10) and Southeastern September-98 (10).18 Table 1 summarizes the number of relevant 
derivatives satisfying the above criteria and the number of their quotes available in the 
two periods. 19 This constitutes our whole sample for Subsections 4.1 and 4.2. 

Table 1 
Overview of the PCS Catastrophe Options Sample 

This table describes our sample of derivatives. For each specific index, we require a minimum of four tradable securities in order to includ 
a Ii,'iven day in the analysis. The first column gives cumulated figures corresponding to the entire periods, and the subsequent one 
summarize the daily number of derivatives and quotes. 

NAT ANN 98 EST SEP 98 SE SEP 98 CALANN98 

Total Daily Statistics Total Daily Statistics Total Daily Statistics Total Daily Statistics 

Number of Mean Min. Median Max. Mean Min. Median Max. Mean Min. Median Max. Mean Min. Median Max. 

Panel A: First Period 

Days 36 12 10 36 
Derivatives 316 8.77 8 9 9 53 4.42 4 4 5 40 4 4 4 4 144 4 4 4 4 
Bid Quotes 253 7.03 7 7 8 48 4 4 4 4 35 3.5 3 3.5 4 112 3.11 1 4 4 
Ask Quotes 260 7.22 6 7 9 53 4.42 4 4 5 40 4 4 4 4 120 3.33 3 3 4 

Panel B: Second Period 

Days ~7 \0 \0 
Derivatives 283 10.48 8 11 13 40 4 4 4 4 40 4 4 4 4 
Bid Quotes 187 6.93 5 7 8 40 4 4 4 4 18 \.8 1 2 2 
Ask Quot.es ~32 8.59 5 10 11 27 2.7 2 2 4 36 3.6 2 4 4 

18The expiration dates for the 98 annual contracts and the September 98 contracts are 12/31/99 and 
09/30/99: respectively. 

19\Ve aL<;o detected that it was possible to synthetically produce some other Eastern September-98 
options based on their corresponding Northeastern and Southeastern options for some [days in our sample. 
To be consistent, as the latter two negotiated independently, we decided not to include the synthesized 
Eastern options as other derivatives available for trading in our sample. 
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In Subsections 4.3 and 4.4, a large amount of data on waiting times and their associated 
amount of losses is required in order to perform reliable simulations and therefore, the 
characteristics of our historical data set forces us to exclusively concentrate on the National 
Annual-98 Index. 

4.1. Pricing by strong arbitrage methods 

The price of the PCS derivatives will be analyzed once a day along each tested period. 
Hence, under the notations of the second section, the date to will always be the cor
responding day, while securities S2, S3, ... , Sn will be PCS option contracts (call or put 
spreads, butterflies etc.), available this day, and with the same underlying index Wand 
expiration date t l . 20 Their bid and ask prices are perfectly synchronized and provided by 
CBOT. SI will be a pure discount bond available at to and such that its maturity is as 
close to tl as possible. Of course, all the data and parameters (dates to or t l , securities, 
prices etc.) depend on the concrete day under revision. 

Let El be the current value of the index and denote by E2, ... , Er the striking prices, 
corresponding to Si, i = 2,3, ... , n. The future state of the world will be determined by 
the final (at t l ) value of W, and the matrix A of final payoffs may be easily computed. 
In fact, all the elements in its first column (payoffs of the riskless asset) are equal to 
1, and the rest of the columns are given by the usual differences between Wand Ej , 

j = 1,2, ... , r. It is obvious that, for an arbitrary strategy x, its final payoffs verify the 
constraints Axt ;::: 0, Axt > 0 or Axt > > 0 if and only if these constraints are fulfilled 
when the settlement value ofW belongs to the set {El ,E2, ... ,Er}.2l So, the absence or 
existence of arbitrage may be tested under the assumption that these elements are the 
only possible states of the world. Furthermore, this simplification neither modifies the 
value of the disagreement measures m and l, nor affects the results when hedging or weak 
arbitrage portfolios are being computed. Consequently, we will permit W to attain all 
the feasible values only when testing portfolio choice models. 

Once the available derivatives, their real bid-ask prices provided by CBOT, the r states 
of the world and the matrix A are fixed, we can compute the measu~e m and the portfolio 
x* introduced in Theorem 2. If m =I- 0, there are arbitrage opportunities. This case has 
never appeared along the tested periods. 

Next, we fi'{ an arbitrary option Sjo, jo = 2,3, ... , n, and consider an agent who can buy 
this derivative by paying the price Vjo.22 If the new values for m and x* show the presence 
of arbitrage and the profits represented by m are high enough to overcome the market 
frictions, it may be concluded that the market allows to price Sjo by arbitrage methods. 
An agent can offer a new bid price vJo (such that Vjo ~ vJo ~ Cjo and, therefore, better 
than the current bid price Vjo) without any kind of risk. The position will be hedged by 

20i.e. the underlying index and the loss and development periods coincide for all the considered 
derivatives. 

21 And the same property holds if one writes 1 instead of 0 in the right side of above inequalities. 
22i.e. the bid-ask spread vanishes for the j6h-security. The rest of the prices are not modified. Of 

course, this analysis has not been implemented in cases where Vja = o. 
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implementing the arbitrage portfolio x* if a new investor accepts the new bid price. 
Analogously, one can analyze if the ask price Cja may be improved. Just consider that 

Cja equals both, the bid and the ask price, and compute the new solutions for m and x*. 23 

The above procedure can be applied for all the available securities (i. e. for jo = 

2,3, ... , n) in order to test how often the market allows to price by strong arbitrage meth
ods. The empirical results are confined to Table 2. 

Table 2 
Second Type Arhitrage Opportunities 

The bid·ask spread has been removed for each option at a time and its price was set equal to alternatevely the 
bid quote and the ask quote when possible. The table summarizes the resulting arbitrage opportunities of the 
second type and their associated optimal gains as quantified by the m measure. The first two columns show 
the number of days for which there are some arbitrage opportunities. Subsequent columns [,'ive statistics 
computed over those days with arbitrage opportunities (m;t 0). 

Detected Second Type Arbitrage Opport. Daily Maximum In (per cent) 

Days Daily Number ofOpport. Mean Min. Media Max. Mode 
n 

Index No. Per Mean Min. Median Max. 
cent 

Panel A: First Period 

NAT ANN 98 7 19.44 2 2 3 10.23 9.09 9.09 13.98 9.09 
EST SEP 98 5 41.67 1 1 1 6.82 6.67 6.82 6.98 6.70 
SE SEP98 0 0.00 
CAL ANN 98 26 72.22 15.46 11.76 16.67 21.05 16.67 

Panel B: Second Period 

NAT ANN 98 27 100.00 2.22 2 3 19.05 2.50 9.09 37.50 37.50 
EST SEP 98 9 90.00 1 1 1 10.13 9.96 10.17 10.23 10.17 
SE SEP 98 0 0.00 

This particular type of arbitrage is detected quite often. It should be noted that 
these results seem to reveal that the price setting process might be improved. Hedging 
(with arbitrage portfolios) would be feasible. The arbitrage profits are quite large and 
this should be used by investors to offer new prices. For the National Annual-98 index, 
arbitrage opportunities appear in seven out of 36 days for the first period (see Table 2) and 
in up to three different cases. The maximum value of m is equal to .1398 (this corresponds 
to an l value of .0752). For the second period and the same index, arbitrage is feasible 
every day for up to three different available premium quotes. This time the maximum 
value of m is .375 (l = .2308). This reflects a riskless benefit that amounts to a 37.5% of 
the total monetary value of the sold assets (or a 23.08% of the total monetary value of 
all traded assets). With respect to other indices, California and Eastern include a unique 
posi tion that allows for arbitrage hedging in the first period (the maximum value of m is 
.2105 and .0698, respectively) and the same may be said about the Eastern index in the 
second period (maximum m = .1023). No misspricings were found for the Southeastern 
index. In any event, the number of available positions were notably low for these last 
three indices (see Table 1). Thus, note that for a significant percentage of days, agents 

23This analysis has not been implemented in cases where Cja = 00. 
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could analyze the bid-ask spread and offer more efficient prices in some cases without 
assuming any kind of risk. This fact should lead to smaller spreads. 

For illustration purposes, we show in Table 3 the optimal (maximum m value) second 
type arbitrage portfolio detected on date 07/24/98 for the Eastern September-98 Index 
(Strategy 1). Exhibit 1 plots the portfolio payoffs pattern for different levels of the final 
index value. 

Table 3 
Optimal Second Type Arbitrage 

on July 24, 1995 for the 
Eastern September-9S Index 

This table shows the optimal second type arbitrage opportunity corresponding to date 7/24/1998 and the 
Eastern September·98 Index. CA 20 40 and PU 50 stand for a call spread and a put with relevant exercise 
prices as indicated, respectively. All derivatives available for trading together with their bid and ask prices are 
reported. The price for a zero·coupon bond (risk·less asset) with a maturity value of one point is also ~riven. All 
prices are expressed in points with a value of $200. Bold face is used to indicate those assets involved in the 
detected arbitrage portfolio, and the bought or sold units are given in parenthesis beside the affected price (a 
negative sign indicates a sale). The last two rows &'ive the portfolio price and the m value. This arbitrage was 
detected when the bid quote was set equal to the ask for the PU 50 derivative. The same arbitrage strategy 
was detected for 9 days. 

Asset Bid Ask 

Bond 0.93867188 0.93867188 (lOO) 
CA 20 40 3 (-4) n,B. 
CA 40 60 2.5 (-1) 3.5 
CA 150 200 2 n.s. 
PU 50 30 45 (-2) 

Portfolio Price ·10.6328 
Value of In 0.1017 

As better quotes could have been offered in some cases, this fact led us to try to 
compute the adjustments that could have been implemented in the bid (an increase) and 
ask (a decrease) premiums. To this aim we followed the next algorithm. Focusing on 
one of the quotes which gave rise to the above arbitrage opportunities, we appropriately 
moved up or down the implied quote only for a tick and then searched again for arbitrage 
opportunities. This process was iterated until reaching a total removal of the riskless 
arbitrage hedging. We carried over this algorithm for each price independently. The 
corresponding price and spread final adjustments are given in Table 4. For the National 
Annual derivatives, our results show price changes that range from 2.5% to 100% along 
with spread reductions ranging from 5% to 56.52%. Significant adjustments were also 
possible for the other indices. 

It should be mentioned that some refinements of this procedure point out that a more 
adjusted set of prices may still be reached. If the above algorithm is not carried out ceteris 
paribus, that is, if we keep the final adjusted premium before moving to the next one, 
we find that new arbitrage hedging strategies could appear, thereby leading to possible 
further reductions in the spread.24 

In summary, although the market quotes studied here do not permit to gain arbitrage 
profits to anyone obliged to incur in the cost of the bid-ask spread, better relative pricing 

24 As the ordering might be relevant in this case, we do not report our results. 
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by (strong) arbitrage methods is possible in the PCS options market for the studied 
periods. This is important for two reasons. First, this information is useful for traders 
since the whole arbitrage portfolio may be shown. Second, frictionless pricing theory 
suggests that competition among traders should lead to a situation with correct relative 
prices, that is, a set of quotes that should exhaust any exploitable possibility of making 
money without any sort of risk. 

Table 4 
Bid-Ask Spread Reduction 

This table shows the bid·ask spread reduction that can be implemented for each derivative in order to remove 
the second type arbitrage strategies previously detected. Those assets involved are reported on the left side; 
additionally, in parenthesis we indicate whether changes correspond to the ask quote (a), bid quote (b) or both 
bid and ask quotes (b/a). CA 40 60 stands for a call spread with exercise prices 40 and 60. PS 40 60 stands for a 
put spread with relevant exercise prices as indicated. The price change and the spread reduction are both 
given in ticks (i.e. $20 or one tenth of a point) and in percentage terms. For each asset some descriptive 
statistics have been computed over those days and quotes for which changes were possible. 

Price Change Spread Reduction 

Tick Per cent Ticks Per cent 

Index & Mean Min. Max. Mean Min. Max. Mean Min. Max. Mean Min. Max. 
Derivative 

Panel A: First Period 

NAT ANN 98 10.09 5.17 22.41 16.35 5.41 56.52 

CA 80100 (a) 5 3 13 8.62 5.17 22.41 5 3 13 19.80 10.34 56.52 
CA lOO 120 (b/a) 3.5 2 5 12.69 10.00 15.38 3.5 2 5 9.66 5.41 13.89 
CA 120 140 (a) 5.71 5 10 10.39 9.09 18.18 5 5 5 12.50 12.50 12.50 

EST SEP98 

PS 40 60 (a) 14 14 14 8.24 8.24 8.24 n.s. n.s. 

CALANN98 

CA 100 200 (b) 5.54 4 8 18.46 13.33 26.67 4 4 4 13.33 13.33 13.33 

Panel B: Second Period 

NAT ANN 98 26.33 2.50 100.00 13.45 5.00 33.33 

CA 40 60 (b) 3 3 3 4.00 4.00 4.00 n.s. n.s. 
CA 60 80 (b) 18 11 25 12.00 44.00 100.00 18 11 25 25.13 16.92 33.33 
CA lOO 120 (b) 6 6 6 60.00 60.00 60.00 6 6 6 15.00 15.00 15.00 
CA lOO 200 (a) 5 5 5 2.50 2.50 2.50 5 5 5 5.00 5.00 5.00 
CA 120 140 (b/a) 5.41 4 6 37.35 6.67 60.00 7.11 6 10 15.19 13.33 20.00 

EST SEP98 

PS 0 50 (a) 53.56 52 54 11.90 11.56 12.00 53.56 52 54 35.70 34.67 36.00 

Some factors related to the implementation of the detected arbitrage strategies and not 
considered so far might explain those relative misspricings. One of them is the existence 
of transaction costs. On this point, it should be kept in mind that measures m and l 
represent relative arbitrage profits, and the levels achieved by these measures are high 
enough to reflect earns after discounting transaction costs. 

Another factor is due to the number of units of each asset needed to implement some 
arbitrage strategies. This number might not be available for trading. We do not have any 
piece of information about the volume associated to the quotes gathered by the CBOT 
that constitute our sample. Nevertheless, a comparison between the volume corresponding 
to the transactions made during our sample periods and the number of derivatives needed 
to implement the detected arbitrage strategies lead us to think that in most cases this 
does not seem to be a real problem. 
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Index Level 

Exhibit 1: Final Payoffs of Strategy 1 

4.2. Weak arbitrage and hedging portfolios 

Suppose that for a fixed jo E {2, 3, ... , n} it is still obtained m = 0 after assuming that via 
is the ask price (respectively, cia is the bid price). Then, problem (2.4) (respectively, after 
the modification xia = -1) has been solved in order to analyze how the real bid price via 
(ask price cia) can be improved. This will be case when the achieved solution guarantees 
a return R or very close to R. If so, investors can offer a new bid (ask) via::; vja ::; cia 
and the solution of (2.4) provides a portfolio that will almost guarantee the riskless return 
R if a new agent accepts the new price. Furthermore, this strategy could lead to great 
returns in some states of the world, and thus, it could be interesting for many investors. 

Following this procedure hedging strategies were obtained and they were grouped 
into first type arbitrage opportunities (with a guaranteed return equal to Rand payoffs 
greater than one in at least one state of the world) and other optimal hedging strategies. 
Both, the guaranteed net return and the maximum possible net return, were computed 
for each detected position available for hedging and mean values are given in Table 5. We 
also report the corresponding mean values after substractioning the return guaranteed 
by the risk-free asset. For some states of the world, extraordinarily large returns might 
be obtained (e.g., there were first type arbitrage opportunities that involved selling one 
call spread 80/100 and gave rise to a possible net return of 2,215.63). The minimum net 
return equals that of the risk-free asset for almost all cases. 

Thus, an important part of the available positions might have been hedged by means of 
weak (and strong) arbitrage or other optimal strategies leading in many cases to possible 
returns exceeding largely that of the risk-free asset. Note that this has been feasible 
even in a situation in which the underlying index is not tradable, and put derivatives are 
seldom available. Considerations akin to the ones pointed out at the end of the previous 
subsection, regarding the proper interpretation of these results, also apply here. 
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Table 5 
Optimal Hedging Portfolios 

CA 40 60 stands for a call spread with exercise prices 40 and 60, and similarly for the other possible exercise 
prices. CB denotes a butterfly call spread with relevant exercise prices as indicated. For each derivative, the 
number of days for which a hedging strategy was available is €,-iven and in parenthes it is indicated whether 
the hedged derivative is bought (b) or sold (s) at the optimal hedb-ing portfolios. Guaranteed and maximum 
returns in average terms along with the corresponding excesses over the risk free rate ,R, are also b-iven. 

Optimal First Type Arbitrage 
Opport. 

Other Optimal Hedging Portfolios 

Mean Mean 
Days Guaranteed Maximum 

Return (%) Return (%) 
Index & Derivative ReturnExcess Return Excess 

NATANN98 

CA4060 

CA 120 140 

CALANN98 

CA 80 100 

Panel A: First Period 

29 (s) 10.27 0.00 2,215.632,205.36 

1 (s) 9.74 0.00 2,204.532,194.79 

Mean 
Days Guaranteed 

Return (%) 
ReturnExcess 

16 (b) 10.35 0.00 
1 (s) 10.62 0.00 

Panel B: Second Period 

NAT ANN 98 

CA6080 5 (b) 8.23 0.00 2,172.772,164.54 

Mean 
Maximum 
Return (%) 

Return Excess 

10.35 0.00 
10.62 0.00 

CB 40 60 80100 1 (s) 8.11 0.00 2,170.272,162.16 6 (s) 6.57 ·1.46 2,137.972,129.93 

Again, for illustration purposes, Table 6 shows the optimal hedging portfolio (weak 
arbitrage) on date 07/01/98 for the National Annual-98 Index (Strategy 2), Exhibit 2 
plots the portfolio payoffs pattern for different levels of the final index value. 

Table 6 
Optimal Hedging Portfolio 

(Weak Arhitrage) on July 1, 1998 
for the National Annual-98 Index 

This table shows the optimal hedging portfolio detected on date 7/111998 for the National Annual·98 Index. CA 
80 50 stands for a call spread with exercise prices 30 and 50, and similarly for the other possible exercise 
prices. CB denotes a butterfly call spread with relevant exercise prices as indicated. The reported portfolio is a 
weak arbitrage portfolio which permits to hedge the purchase of the CA 60 80 derivative. All derivatives 
available for trading together with their bid and ask prices are reported. The price for a zero·coupon bond 
(risk·less asset) with a maturity value of one point is also given. All prices are expressed in points with a value 
of $200. Bold face is used to indicate those assets involved in the detected hedb-ing portfolio, and the bought 
and sold units are given in parenthesis (a negative sign indicates a sale). The last row gives the portfolio price. 
The same portfolio was available for 5 consecutive days. 

Derivative Bid Ask 

Bond 0.92351562 0.92351562 (1) 
CA 30 50 10 n.s. 
CA4060 7.5 (-1) n.s. 
CA 60 80 2.5 (1) 9 
CA 80100 n.s. 7 
CA 100 120 1 5 
CA 100 150 n.8. 12 
CA 100200 n.8. 20 
CA 120 140 n.s. 5.5 
CA 150200 4 7.5 
CA 180200 0.4 1.8 
CA 200 250 n.8. 4 
CA 250300 0.5 2.5 
CB 406080 100 n.s. 5(1) 

Portfolio Price 0.92351562 
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Exhibit 2: Final Payoffs of Strategy 2 

4.3. Evaluating the index real distribution and the risk-neutral probability 
measure 

To asses catastrophe options from an actuarial point of view, an analysis of the distribu
tion of possible future values of the underlying indices is required. There are essentially 
two approaches to forming such probability assessments. One is to use computer simula
tion of scenarios based on a vast amount of meteorological, seismological and economic 
information. The other relies on statistical modelling based on historical data. 

This subsection is partially devoted to the analysis of the distributional properties 
of the National Annual Index to be used in the rest of the paper and for this matter 
we concentrate on the statistical analysis of historical catastrophe data. We develope a 
nonparametric simulation procedure in order to obtain the expected final payoffs. This 
method does not require any distributional assumption, instead 'it lets the data talk'. 
Furthermore, it relies on the empirical distribution of waiting times and their associated 
losses thereby avoiding the traditional shortage of data that is faced when using exclusively 
the empirical distribution of the final historical values of the index. 

In addition, from a financial perspective, once we have exhausted the arbitrage and 
hedging pricing approaches, risk considerations come into place and therefore the use of 
probability assessments is also necessary. As stated by Theorems 3 and 4, the underlying 
index real distribution is required in order to solve minimum variance problems. In this 
case, variables and parameters (dates to or tll the riskless return, securities, prices etc.) 
are introduced by the procedures already mentioned, but the set of states of the world 
must be enlarged. Now this set must incorporate all the index feasible final (at the 
expiration date t1) values and not only the derivatives striking prices. 

Fix a day to and, consequently, let us assume that all the parameters are fixed. To 
determine the final distribution of the underlying index W, we proceed as follows. First 
of all, we consider the empirical distribution of random variables T, "time between two 
consecutive catastrophes", and L, "losses caused by a specific catastrophe". It is assumed 
that T and L can achieve several values with probabilities according to the empirical 
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frequencies obtained from the real data described in the third section. Later, we simulate 
several values Tb T2 , ... , T8 of T till 2:::::1 Ti :::; t1 - to and 2::=1 Ti > t1 - to, and s -1 values 
LI, L2 , ... , L8 - 1 of L. Each specific result Li is incorporated if and only if Li 2: 25 million 
of dollars, and we take Li = 0 otherwise. If Wo is the index value at to, the simulation 
process provides the total value W = Wo + 2:l:::1 Li which is translated into index points. 
The whole simulation process is repeated a high number of times in order to attain a 
numerical distribution of W. 

The risk neutral probabilities, defined in (2.2), have been determined too. We have 
followed the general method proposed by Hansen and Jagannathan (1997).25 Hence, fix a 
day to and all the parameters of the problem. Suppose that the simulation process has been 
already implemented and, therefore, the (real) probability measure J-t = (P'b J-t2, ... , J-tk) is 
known. Then, the (risk-neutral) measure A is obtained by minimizing 2:~=1 (Ai - J-ti)2 
among the row-matrixes A such that 2:~=1 Ai = 1, Ai ~ 0, i = 1,2, ... , k, and (2.3) holds. 

Once the measures J-t and A have been determined, we can give two theoretical prices 
per security. The first one, ~EJ.l.(Sj), j = 1,2, ... ,n, is the Pure Premium, usual in 
Actuarial Sciences. The second (see (2.3)),~E>'(Sj), is deduced from a financial point of 
view by considering real quotes and applying the most important topics on static asset 
pricing models. 

Above procedures have been implemented for all the possible values of the current 
date to (every day of our sample periods). 

We restrict our observations of the value of insured losses to the sample period 
1990 - 1997 for several reasons. Exhibit 3 shows the annual number of catastrophes 
and quantity of their associated losses since 1973. As the figure suggests, while the an
nual number of catastrophes remains reasonably stable along the period, there seems to 
be a general positive trend, and a structural change in the behavior of the value of insured 
losses associated with each catastrophe since hurricane Hugo hit US in 1989. However, 
these patterns may be only illusory, and due to the fact that insured losses are affected by 
multiple variables ignored so far like population growth, development, changes in insur
ance coverage, number of premiums, and inflation. When a sufficient long period of time 
is considered, the adjustments of the loss series for these variables tend to homogenize 
it, approximating past losses to more recent ones.26 Thus, a reasonable approximation 
to the adjusted series can be obtained by concentrating on recent (unadjusted) losses. 
Moreover, any adjustment of the series, which become necessary when a long period of 
losses is considered, turns out to be quite cumbersome and methodologically questionable. 

\:Vith regard to the number of catastrophes, the whole sample since 1973 has been 
used. This is expected to surmount the difficulty of getting good estimates based on 
small samples for the probability of low frequency events such as catastrophes. 

25The Hansen and Jagannathan (1997) method extends the procedure provided by Rubinstein (1994) 
and by Jackwerth and Rubinstein (1996) to study the effect of the volatility smile on the risk neutral 
probability measure. 

26 An illustration of this effect may be found in Litzenberger et al. (1996). These authors adjust 
historical loss ratios for both, the increase in population and the market penetration of catastrophe 
coverage. 
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Exhibit 4: Probability distributions of the index final value (first period) 

The simulation process described above has been implemented in order to estimate 

the probability distributions of the final (end of 1999) value of the National Annual-98 

index for every day in both periods. A number of 100,000 replications has been used for 
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each day. Results are given in Exhibits 4 and 5. As the figures show, the probability 
mass is mainly accumulated around the index levels lying approximately in the intervals 
20-100 and 160-240. The distributions are bimodal or even trimodal. Note also that as 
days go by and the final date approaches, the probability mass tends to concentrate due to the accompanying uncertainty reduction. 
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Exhibit 5: Probability distributions of the index final value (second period) 

Once the required distributions have been estimated, the next step is to compute the 
discounted expected options payoffs (pure premiums). These are given in Table 7. Notice 
that the call spreads 100/120 and 120/140 have almost identical discounted expected payoffs. This is due to the general lack of probability mass in the interval 100-140. In 
general, pure premiums lie around options real quotes. 

\Ve now use this result to infer some conclusions on the individual prices of these 
options, based on our estimated future probabilities. First, mean midpoints of the bid and ask quotes being around mean pure premiums seem to indicate that, in average 
terms, transactions in this market could have been made at reasonable prices, close to the 
actuarial 'fair' ones during the sample periods. These are good news for those participating 
in the market that hedge their catastrophe insurance risks: this market seems to be an 
attractive alternative to traditional reinsurance, for instance, as it offers reinsurance at 
'fair' prices. However, those willing to participate in the (re)insurance market by selling 
options seeking for attractive returns over the risk-free rate might find difficult to get 
them, at least when trading with individual options. 
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Table 7 
Theoretical Prices for the 

National Annual-98 Index Derivatives 

This table shows the average theoretical prices corresponding to the National Annual-98 derivatives available 
for trading on any day during the sample periods. CA 40 60 stands for a call spread with exercise prices 40 and 
60, and similarly for the other possible exercise prices. CB denotes a butterfly call spread with relevant 
exercise prices as indicated. The first two columns give the mean pure (actuarial) premiums and the mean 
risk-neutral (financial) prices. The third column displays the absolute value of the difference between the 
previous two columns and the last two columns show the mean real bid and ask quotes for comparison 
purposes. All figures are given in points, each point with a value of two hundred dollars. We also report the 
mean euclidian distance between the measures 11 and A. (standard deviation in parenthesis) in the last row of 
each panel. 

Mean Theoretical Prices Mean Real Quotes 

Pure Risk-Neutral Discrepancy Bid (Days) Ask (Days) 
Derivatives Premium Price 

Panel A: First Period 

CA 40 60 10.42 10.46 0.038 8.61 (36) 9.47 (17) 
CA 60 80 5.48 6.10 0.617 6.09 (36) 7.31 (34) 
CA80100 3.70 4.35 0.644 4.12 (36) 5.96 (36) 
CB 40 60 80 100 6.72 6.11 0.606 3.88 (36) 6.00 (1) 
CA lOO 120 3.32 3.36 0.440 1.60 (36) 5.40 (36) 
CA 120140 3.26 3.48 0.221 1.50 (1) 5.50 (36) 
CA 150200 6.79 6.08 0.712 n.a. (0) 8.00 (28) 
CA 180 200 2.18 1.80 0.381 0.73 (36) 1.80 (36) 
CA 250 300 0.82 0.74 0.071 0.74 (36) 2.50 (36) 

Mean Square Distance (Std. Dev.): 0.000317 (0.000515) 

Panel B: Second Period 

CA 30 50 18.17 18.19 0.024 10.00 (11) n.a. (0) 
CA 40 60 17.03 17.11 0.082 9.48 (27) n.a. (0) 
CA6080 8.66 8.97 0.318 4.89 (27) 9.63 (27) 
CA80100 3.44 3.97 0.535 3.87 (3) 7.42 (26) 
CB 40 60 80 lOO 13.92 13.40 0.525 5.00 (15) 11.25 (16) 
CA 100 120 2.26 2.94 0.685 2.45 (22) 5.67 (27) 
CA 100 150 5.32 7.20 1.878 n.a. (0) 12.00 (22) 
CA 100 200 10.18 13.80 3.629 10.00 (7) 20.00 (21) 
CA 120140 2.11 2.77 0.658 1.00 (18) 5.59 (27) 
CA 150200 4.89 6.46 1.572 4.00 (21) 7.50 (22) 
CA 180200 1.87 1.80 0.065 0.40 (9) 1.80 (9) 
CA 200 250 2.24 3.12 0.881 n.a. (0) 4.30 (15) 
CA 250300 0.37 1.46 1.088 0.50 (27) 2.95 (20) 

Mean Square Distance (Std. Dev.): 0.000052 (0.000050) 

Second, for our sample periods, conclusions inferred from spread midpoints may sub
stantially change when the real bid-ask spread is taken into account _ On the one hand, in 
general, those hedgers able to buy at bid prices will find this market more attractive than 
the usual reinsurance (for most options mean bid prices are lower than the mean actuarial 
ones) but things might turn the other way round for hedgers that buy at the ask. On the 
other hand, keeping aside, at the moment, risk considerations, investors seeking for high 
returns should try to buy close to the bid or sell close to the ask. 

Third, investors searching for new investment/financing opportunities also attend to 
risk considerations in their decisions_ Analyzing risk and return on an option by option 
basis hardly makes sense as it is in a portfolio choice context where risk/return opportu
nities are fully understood (it is in this context where risk-pooling benefits, for instance, 
come into place). These are the topics considered in the next subsection_ 

To finish with the present subsection, we solve the minimization program that gives a 
possible vector of risk-neutral probabilities and we use them to obtain the corresponding 
theoretical risk-neutral prices. The latter are also given in Table 7.27 We also report the 

27Risk-neutral prices certainly verify the bid and ask quote restrictions day by day, even though the 
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average value of the objective function for both periods, and the resulting discrepancies 
between pure (actuarial) premiums and prices calculated with the risk-neutral probabil
ities. As these figures show, it might well be concluded that real prices, as summarized 
by the linear pricing rule extracted from them, are reasonably close to their 'fair' value. 

4.4. Looking for well diversified portfolios 

Consider an arbitrary date to, and the linear pricing rule 7r such that 7rj = JiE>'(Sj) , 
j = 1,2, ... , n. Then, the (unique) discount factor d of Theorem 3 may be easily found by 
means of the following conditions 

According to Theorem 4, the minimum-variance strategies are obtained by selling the 
portfolio x = (XI, X2, ... , Xn) such that Axt = dt. The portfolio x* = (0, X2, ... , xn)28 will 
also provide a very useful information. Depending on the sign of its theoretical price 
'L/i=2 7r/Ej, we know when variance-averse individuals must sell or buy derivatives in their 
reinsurance-linked portfolios. As it will be shown, it was obtained that almost all the 
days investors in the PCS options market must sell derivatives (the sign is positive).29 

For the empirical analysis we first excluded those redundant derivatives for each day. 
See Table 8 for a summary of the main results. Regarding to the x portfolio, this was 
mainly composed by bonds (87.98% and 68.36% in average terms for the first and the 
second periods, respectively) and its mean (gross) return equals .9460 and .9096.30 The 
portfolio x* has a positive value for 77.78% of the days in the first period and 81.48% 
in the second. Thus, risk-averse investors should view the PCS options market as a very 
profitable source of capital that allows them to finance their investments in other markets. 

In order to further illustrate the relationship between probabilities fJ, and A, and the 
portfolio x* payoffs (appropriately standardized), these variables are plotted at Exhibits 
6 and 7 for a representative day of both periods. It is clear that the portfolio final 
payoff becomes very negative only for states of the world (index final values) with slight 
probability. 

reported mean ri<;k-neutral prices do not have to lie inside the mean bid-ask spread, as either the bid 
or the ask quote may not be present every day these prices are computed {we use the term 'risk-neutral 
prices' as has become usual in finance}. 

28i.e. the portfolio x once the bond has been excluded 
29Remind that we are considering investors willing to participate in the catastrophe insurance market 

through pes options in order to benefit from their new risk/return opportunities when included in 
diversified stock and bond portfolios. Of course, insurers, who must hedge their prqper liabilities when 
the final index value becomes large, follow different portfolio criteria. ' 

30Recall that x is the portfolio that variance-averse investors should sell and combine with the risk-free 
asset in order to get the desired attainable return with the minimum variance. 
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Table 8 
Well Diversified Portfolios 

The first two rows show the risk/return characteristics of the entire portfolio by providing the expected return 
and its standard deviation, respectively (returns defined as payoffs divided by the l'isk neutral price). The 
third row gives the weight of x(the derivatives portfolio) over the entire diversified portfolio, while the fourth row shows 
the price of it in index points. Finally, the number of days in which x has positive price is indicated in the last row. 

Descriptive Statistics 

Portfolio Mean Std. Dev. Min. Median Max. 
Characteristics 

Panel A First Period 

Expected Return 0.9460 0.0809 0.8262 0.9330 1.0589 
Std.Dev. of the Return 5.1902 10.8703 1.4038 1.7278 64.1093 

Cat derivatives weight 0.1202 0.1875 -0.2386 0.1319 0.3374 

Price of r 0.1249 0.1930 -0.2345 0.1185 0.3664 

Days with positive 28 
Erice ~77. 78%) 

Panel B: Second Period 

Expected Return 0.9096 0.1753 0.6622 0.9911 1.0826 
Std.Dev. of the Return 1.4279 1.4056 0.3566 0.9453 5.5590 

Cat derivatives weight 0.3164 0.2907 -0.0980 0.5053 0.8079 
Price of x 0.3808 0.3519 -0.0845 0.5727 0.8648 

Days with positive 22 
erice (81.48%) 

Table 9 
An Example of 

Two Well Diversified Portfolios 

This table shows the asset weights of the derivatives portfolio it for two selected days. Weights were 
calculated as value invested in the asset divided by the portfolio value (a negative sign indicates a sale). The 
corresponding risk-neutral prices are also reported. The weights for these derivative portfolios over the entire 
(bond included) portfolios are 0.29 and 0.63 for panels A and B, respectively. 

Panel A Date 212511998 (1st. Panel B: Date 7/3011998 (2nd 
Periodl Periodl 
Weight Risk- Weight Risk-

Derivative Neut.ral Derivative Neutral 
£ri~e Pricf 

CA4060 0.06 11.66 CA4060 0.36 17.88 
CA6080 0.05 7.00 CA 60 80 -0.02 9.84 
CA 80 100 0.32 5.00 CA 80 100 -0.08 4.43 
CA 100 120 3.92 4.25 CA 100 120 1.74 3.50 
CA 120 140 -1.52 3.83 CA 100 150 -4.16 8.43 
CA 150200 -2.58 6.23 CA 120140 4.24 3.32 
CA 180 200 0.72 1.80 CA 150200 -1.59 7.5 
CA 250 300 0.00 0.80 CA 250 300 0.52 2.70 

Portfolio 0.30 Portfolio 0.86 
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Exhibit 6: Standardized payoffs of portfolio 55· on date 2/25/98 along with the 
corresponding risk-neutral and real probabilities 
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Exhibit 7: Standardized payoffs of portfolio x· on date 7/30/98 along with the 
corresponding risk-neutral and real probabilities 
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5. Concluding Remarks 

All along the paper it has been shown that arbitrage arguments, in a static setting, very 
often allows to price catastrophe-linked derivatives. Furthermore, the procedure to detect 
arbitrage portfolios has been provided and some illustrative examples have been presented. 

Hedging arguments have also been applied and, again, they have shown many possi
bilities to price these derivatives. Concrete procedures to detect hedged portfolios and 
concrete examples have been given. 

The Theory of Portfolio Selection also yields suitable strategies to invest. Moreover, 
if the bid-ask spread is reduced by arbitrage, the real quotes available in the market 
show very significant particularities. Linear pricing rules compatible with the quotes 
usually imply theoretical prices quite close to the actuarial pure premiums. However, 
even though a well diversified portfolio (in a variance aversion context) is composed by 
different catastrophe-linked derivatives in short and long positions, its price is usually 
negative (i. e., the total price of the sold derivatives is greater than the total price of the 
purchased ones) and this capital must be invested in shares and bonds. 

The above comments lead to significant implications. Insurers can consider the market 
to buy reinsurances and hedge their liabilities. The paid price may be adequate and not 
high with respect to the pure premiums. On the contrary, variance averse investors whose 
risk does not depend on the indices can use catastrophe-linked derivatives to compose 
portfolios with negative price that must be invested in other type of assets. This makes the 
market very interesting because it allows to appropriately diversify among many investors 
the risk due to catastrophic events. Anyway, we must notice that latter properties hold 
for linear pricing rules and, therefore, it is important to reduce the real bid-ask spreads 
observed in the market. As said above, it is possible by arbitrage and hedging arguments. 

The applied methodology seems to reveal two interesting advantages. It is useful for 
traders because practical criteria and strategies to invest are provided. Moreover, it seems 
to be general enough to apply in many other contexts. Only two properties are needed. 
The underlying uncertainty must be easily identified (arbitrage and hedging), and the 
probability space that explains its behavior has to be determined with precision (variance 
aversion). 
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