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1. Introdution.In [F℄, G. B. Folland obtained an expansion in spherial harmonis of the Poisson-Szeg�o kernel for theunit ball B in Cn, Pn(z; w) = 1!2n (1� jzj2)nj1� hz; wij2n ; z 2 B ; w 2 �B ;where hz; wi denotes the standard salar produt in Cnhz; wi = z1w1 + � � �+ zn wn ;and !2n is the (2n� 1)-dimensional Lebesgue measure of the unit sphere of Cn.Let �B denote the Laplae-Beltrami operator assoiated to the Bergman metri on B,�B = 4n+ 1 (1� jzj2) nXi;j=1(Æij � zi �zj) �2�zi��zj :�B is the basi invariant di�erential operator on the symmetri spae SU(n; 1)=U(n) � B. The solution ofthe Dirihlet problem(1.1) ( �Bu = 0 ; in B ;u = f ; in �B ;with ontinuous boundary data f is given by the following representation formulau(z) = Z�B Pn(z; w) f(w) dw :If Hp;qn denotes the linear spae of restritions to �B of harmoni polynomials g(z; �z) on Cn whih arehomogeneous of degree p in z and degree q in �z, the solution of the Dirihlet problem (1.1), with f 2 Hp;qn ,is given by(1.2) u(r�) = Sp;qn (r) f(�) ; 0 � r � 1 ; � 2 �B ;where Sp;qn (r) = rp+q F (p; q; p+ q + n; r2)F (p; q; p+ q + n; 1) :By F (a; b; ; t) we denote the usual Gauss hypergeometri funtionF (a; b; ; t) = 1Xk=0 (a)k (b)k()k tkk! ;where (u)k is the Pohhammer symbol,(u)k = u (u+ 1) � � � (u+ k � 1) = �(u+ k)�(u) :The formula (1.2) points to the ruial role of Sp;qn in the expansion of the Poisson-Szeg�o kernel inspherial harmonis. In fat,(1.3) Pn(r�; w) = 1Xp;q=0Sp;qn (r)Hp;qn (h�; wi) ;where Hp;qn (h � ; wi) 2 Hp;qn is the zonal harmoni with pole w, f. [F℄.2



If one wants to use the expansion in spherial harmonis, then one is required to know uniform estimatesin the variable t of F (p; q; p+ q+n; t) when the parameters p; q grow, in order to obtain bounds of integralsinvolving Sp;qn (see e.g. Theorem 2 below). For q = p+ a, with a bounded, Watson [W℄ [L, p. 237℄ gave theasymptoti behaviour of suh an F . However, we will need more general estimates.In this paper, we study the asymptoti behaviour ofF (q;mq; q +mq + n; t)and we obtain the following uniform estimate, where B( � ; � ) denotes the Beta funtion:Theorem 1. There exists a universal onstant C, not depending on n; p; u;m; z, suh that, for all realnumbers, u; p � 0, m;n � 1, 0 � z < 1, if we denoteG = F (p+ u;mp+ 1; (m+ 1)p+ u+ n+ 1; z)B(mp+ 1; p+ u+ n);then G � C L ;where L = tmp+10 (1�m(1� t0))p+u(1� t0)n�1 � 1� za2 � b2z�1=4 1mpp+ 1and t0 = a+ bz �p(1� z) (a2 � b2z)2z = 2a+ bz +p(1� z) (a2 � b2z) ;a = 1 + 1m ; b = 1� 1m :Besides, this result is sharp in the sense thatlimp!1 GL = p2� :By making the hoies u = 1=m, p+ u = q, we have the followingCorollary. There exists a universal onstant C, not depending on n; q;m; z, suh that, for all real numbers,m;n � 1, q � 1=m, 0 � z < 1, if we denoteG = F (q;mq; q +mq + n; z)B(mq; q + n) ;then G � C Lwhere L = tmq0 (1�m(1� t0))q(1� t0)n�1 � 1� za2 � b2z�1=4 1mpq + 1 :Observe that without loss of generality we an suppose m � 1, beause of the symmetry of the hyper-geometri funtion in the two �rst parameters.It is not possible to obtain a similar uniform upper bound of F beause L is zero for z = 1. Howeverusually the hard inequalities involve lower bounds.One ould think that the hypothesis p = mq is too restritive, but this is enough in order to prove someresults in whih p and q grow independently (see Theorem 2 below). On the other hand, Theorem 2 is sharp.3



This uniform estimation of Sp;qn allow us to obtain an integral expression for the �-energy of a omplexmeasure supported in �B. We reall that the �-energy is de�ned as follows:J�(�) = ZZ�B��B ��(d(x; y)) d�(x) d�(y) ;where ��(t) =8><>: log 1t ; if � = 0 ;1t� ; if 0 < � < 2n ;and d(x; y) is a distane in �B.More onretely, we have obtained in [FPR2℄ the following result.Theorem A ([FPR2℄). If � is a omplex measure supported on �B and d(z; w) = j1 � hz; wij1=2, we havefor 0 < � < 2n, that(1.3) J�(�) � Z 10 �Z�B jP�(r�)j2 d�� r�=2�1(1� r2)n��=2�1 dr ;where � means that the quotient of the two terms is between two onstants whih an depend on n and �,and P� denotes the invariant Poisson extension of �, whih we reall is de�ned as followsP�(z) = Z�B Pn(z; w) d�(w) ; z 2 B :Theorem A is one of the keys to obtain a apaity distortion result [FPR2℄ under inner funtions. Reallthat if E is a losed subset of �B, then(ap�(E))�1 = inffJ�(�) : � a probability measure supported on Eg :Reall also that an inner funtion is a bounded holomorphi funtion from the unit ball B of Cn into theunit disk � of the omplex plane suh that the radial boundary values have modulus 1 almost everywhere.If E is a non empty Borel subset of ��, we denote by f�1(E) the following subset of �Bf�1(E) = f� 2 �B : limr!1 f(r�) exists and belongs to Eg :Theorem B. [FPR2℄ If f is inner in the unit ball of Cn, f(0) = 0, and E is a Borel subset of ��, we have:i) If 0 < � < 2 (and also � = 0 if n = 1), thenap2n�2+�(f�1(E)) � C(n; �) ap�(E) :ii) If � = 0 and n � 2, then 1ap2n�2(f�1(E)) � C(n)�1 + log 1ap0(E)� :Corollary. With the same hypotheses of Theorem B, we haveDim(f�1(E)) � Dim(E) + 2n� 2 ;where Dim denotes Hausdor� dimension with respet to the distane d(z; w) = j1� hz; wij1=2.4



These two theorems translate to the distane d(z; w) = j1� hz; wij1=2 in �B the orresponding results[FPR1℄ for the eulidean distane. It is interesting to remark that in the eulidean ase the analogue of (1.3)is an equality. On the other hand, these results have a lot of appliations [FP1℄, [FP2℄, [FPR1℄.The heart of the proof of Theorem A is to redue it to the following:Theorem 2. For all non negative integers p; q; n (n � 1) and for all �, 0 < � < n=2, we have, with onstantswhih only depend on n, �, thatI = Z 10 �F (z)F (1)�2 zp+q+��1(1� z)n�2��1dz � �(p+ �)�(q + �)�(p+ n� �)�(q + n� �) ;where F (z) is the hypergeometri funtion F (p; q; p+ q + n; z).The outline of the paper is as follows. In Setion 2 we give the proof of Theorem 1. We will proveTheorem 2 in Setions 3 and 4. In Setion 5 we will give an open question.Notations. By C we will denote a onstant, whih sometimes an depend on n and �, that an hangeits value from line to line and even in the same line. The expression A � B will mean that there exists aonstant C, depending at most on n and �, suh that C�1 � A=B � C. Finally, A � B when x! a, meansthat limx!aA=B = 1.Aknowledgements. We would like to thank R. Askey and D. Zeilberger for some helpful ommuniationsand Jos�e L. Fern�andez for many useful disussions. We would like also thank to the referees for their arefulreading of the manusript and their suggestions.
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2. Proof of Theorem 1.Theorem 1. There exists a universal onstant C, not depending on n; p; u;m; z, suh that, for all realnumbers, u; p � 0, m;n � 1, 0 � z < 1, if we denoteG = F (p+ u;mp+ 1; (m+ 1)p+ u+ n+ 1; z)B(mp+ 1; p+ u+ n);then G � C L ;where L = tmp+10 (1�m(1� t0))p+u(1� t0)n�1 � 1� za2 � b2z�1=4 1mpp+ 1and t0 = a+ bz �p(1� z) (a2 � b2z)2z = 2a+ bz +p(1� z) (a2 � b2z) ;(2.1) a = 1 + 1m ; b = 1� 1m :Besides, limp!1 GL = p2� :In order to prove the Theorem 1 we will need the following well-known integral expression [S, p. 20℄ [L,p. 99℄ G = Z 10 tmp(1� t)p+u+n�1(1� zt)�p�u dt :Aordingly, we an write G = Z 10 epf(t)g(t) dt ;where f(t) = log tm(1� t)1� zt and g(t) = (1� t)u+n�1(1� zt)u :Observe that the funtion f has a unique maximum t0 in [0; 1℄, given by (2.1).The lassial Laplae's method (see e.g. [O℄, [Wo℄) for asymptoti expansions gives that the prinipalontribution of the integrand of G is loated in a neighborhood of t0. Consequently, it will be useful to haveat our disposal some expressions involving t0 .Lemma 2.1. If t0 is de�ned by (2:1) we have the following formulaez t20 = (a+ bz) t0 � 1 ;(2.2) 2 z t0 = a+ bz �p(1� z) (a2 � b2z) ;(2.3) 2 (1� zt0) = b (1� z) +p(1� z) (a2 � b2z) = t0�a (1� z) +p(1� z) (a2 � b2z)� ;(2.4) 1� t0 = p(1� z) (a2 � b2z)� a (1� z)2z = t02 �p(1� z) (a2 � b2z)� b (1� z)� ;(2.5) (1� t0) (1� zt0) = t0m (1� z) ;(2.6) 1� t01� zt0 = 1�m (1� t0) ;(2.7) f 00(t0) = �m2t20 sa2 � b2z1� z ;(2.8) 6



Proof. In order to �nd t0 we need, of ourse, to solve the equation f 0(t) = 0. This equation is equivalentto (2.2). The identities (2.3)-(2-7) an be obtained by an elementary argument if we reall (2.1) and thede�nition of a and b. More onretely, (2.6) and (2.7) use (2.2). To obtain (2.8) we use (2.6) and (2.3) inthe following way f 00(t0) = �mt20 � 1(1� t0)2 + z2(1� zt0)2=(2:6)�m2t20 1m (1� z)2 + (1� zt0)2 � z2(1� t0)2(1� z)2= �m2t20 a+ bz � 2zt01� z=(2:3)�m2t20 p(1� z) (a2 � b2z)1� z : Q.E.D.Proof of Theorem 1. Following Laplae's method (see e.g. [O℄, [Wo℄), we de�ne a new variable � by theequation(2.9) f(t0)� f(t) = �2and the ondition that � must be an inreasing funtion of t.Using the Taylor's polynomial of degree 2 of f in t0, we obtain that if we de�ne h by t = h(�), we have(2.10) h0(0) =s �2f 00(t0) :Then(2.11) G = epf(t0) Z 1�1 e�p�2g(h(�))h0(�) d� :If we use (2.9) and (2.10), we have that as p!1G � epf(t0) g(h(0))h0(0) Z 1�1 e�p�2 d� = epf(t0) g(t0)s �2�f 00(t0) p :Then, using (2.8), we obtainG � �tm0 (1� t0)1� zt0 �p� 1� t01� zt0�u(1� t0)n�1s2�p t20m2 r 1� za2 � b2z :The identity (2.7) givesG � tmp+10 (1�m (1� t0))p+u(1� t0)n�1 1ms2�p r 1� za2 � b2z � p2� L :This proves the last part of Theorem 1. To prove the main part of Theorem 1 we need to estimate g(h(�))and h0(�) near 0. These estimates must be uniform in n, p, u, m and z.7



For eah 0 < " < 1 we de�ne t = (1� ") t0 ;(2.12) x = b+sa2 � b2z1� z � 2 ; if 0 � z < 1 ;(2.13) w = 1 + m"2 x � 1 +m" ; if 0 � z < 1 :(2.14)We need to estimate(2.15) �2 = f(t0)� f(t) = log� 1(1� ")m 1� t01� (1� ") t0 1� (1� ") zt01� zt0 � :A omputation gives, using (2.4), that(2.16) 1� (1� ") zt01� zt0 = 1�m"+ m"2 x = w �m" ;and also, using (2.5), that(2.17) 1� t01� (1� ") t0 = 11 + m"2 x = 1w ;where x, w are de�ned by (2.13) and (2.14). If we substitute (2.16) and (2.17) in (2.15) we obtain(2.18) f(t0)� f(t) = log� 1(1� ")m�1� m"w �� � log 1(1� ")m(1 +m") :We wish to show that(2.19) h0(�) � K h0(0) ; for all � 2 [�1; 0℄ ;for some onstants K > 0 and �1 < 0 whih are independent of n, p, u, m and z. In order to obtain thisinequality onsider the funtion H = h�1 (i.e. H(t)2 = f(t0) � f(t)). Then, (2.19) is equivalent to theinequality(2.20) 1H 0(t) � KH 0(t0) = Ks �2f 00(t0) ;for all t 2 [t1; t0℄, with t1 = h(�1).Sine we are working with t < t0, we have thatH(t) = �pf(t0)� f(t) :And realling (2.8), (2.12), (2.13) and (2.14), we see that to prove (2.20) is equivalent to prove that(2.21) 4 (f(t0)� f(t))f 0(t)2 � 2K2 t20m2 1x� b = 2K2 t20m2 12m" (w � 1)� b :On the other hand if t is given by (2.12), omputations give, with the help of (2.6), (2.16) and (2.17), thatf 0(t) = m(1� ")t0 � 11� (1� ")t0 + z1� (1� ")zt0=(2:16)(2:17) m(1� ")t0 � 1w(1� t0) + z(w �m")(1� zt0)=(2:6) mt0 � 11� " � w (1� z)�m" (1� zt0)w (w �m")(1� z) � ;8



and so if we use (2.4) and (2.14) to obtain 1� zt0 = x2 (1� z) ;we �nd that(2.22) f 0(t) = mt0 � 11� " � 1w (w �m")� :Substituting (2.18) and (2.22) into the inequality (2.21), we obtain that (2.19) is equivalent to(2.23) M(w) = log� 1(1� ")m �1� m"w ��� K24m" (w � 1)� 2b � 11� " � 1w (w �m")�2 � 0 ;for all w � 1 +m" and " � "1 .In order to show (2.23) the next lemma plays an important role.Lemma 2.2. For all 0 < " < 1, m > 0, K �p(1� ")=3, w � 1 +m", we have M 0(w) > 0.In the proof of Lemma 2.2 we will need the next inequality:Lemma 2.3. For all ";m > 0, w � 1 +m", we have(2.24) w (w �m")� (1� ")w � 1�m" b=2 � w + 2 :Proof of Lemma 2.3. The restritions 1 +m" � w and b < 1 give1 +m" � w + wm" (1� b=2) :This inequality an be transformed, using the fat that m = mb+ 1, into1 + "+m" b � w + wm"� wm" b=2 ;whih is equivalent to w (w �m")� (1� ") � (w + 2) (w � 1�m" b=2) :Therefore, we obtain (2.24) by observing that w � 1�m" b=2 � m"�m" b=2 > 0. Q.E.D.Proof of Lemma 2.2. We have thatM 0(w) = 1w �m" � 1w + K2m"4 � 1(w � 1�m" b=2)2� 11� " � 1w (w �m")�2� 2w � 1�m" b=2� 11� " � 1w (w �m")� 2w �m"w2 (w �m")2 � :Then(2.25) M 0(w) � m"w (w �m") � K2m"2 (w � 1�m" b=2)� 11� " � 1w (w �m")� 2w �m"w2 (w �m")2 :We an bound, with the help of (2.24), the term(2.26) 1w � 1�m" b=2 � 11� " � 1w (w �m")� = 1(1� ")w (w �m") w (w �m")� (1� ")w � 1�m" b=2� w + 2(1� ")w (w �m") :9



We an also obtain an upper bound of the the term(2.27) 2w �m"w2 (w �m")2 < 2ww2 = 2w :Substituting (2.26) and (2.27) into (2.25), we obtainM 0(w) > m"w (w �m") � K2m"w w + 2(1� ")w (w �m")= m"w (w �m") �1� K21� "�1 + 2w�� :The hypothesis on K in Lemma 2.2 gives that K2 � (1� ")=3, and thenK21� "�1 + 2w� � 1 :This implies M 0(w) > 0. Q.E.D.Consequently, if K �p(1� ")=3, we have thatM(w) �M(1 +m") ;and so, we only need to prove that N(") =M(1 +m") � 0.Lemma 2.4. For all 0 < " < 1, m > 0, K � 1� ", we have that N(") � N(0) = 0 .Proof of Lemma 2.4. It is enough to show that N 0(") > 0. Reall thatN(") =M(1 +m") = log� 1(1� ")m(1 +m")�� K22a � 11� " � 11 +m"�2 :Therefore, N 0(") = m1� " � m1 +m" � K2a � 11� " � 11 +m"�� 1(1� ")2 + m(1 +m")2� :Using the fat that 11� " � 11 +m" = m"a(1� ") (1 +m") ;we have N 0(") = m"(1� ") (1 +m") �ma�K2 � 1(1� ")2 + m(1 +m")2�� :The hypothesis K2 � (1� ")2 givesK2(1� ")2 �1 +m (1� ")2(1 +m")2� < 1 +m = ma ;and this implies N 0(") > 0. Q.E.D.It is onvenient to make a bak-up of our results. We have showed that if 0 < " < 1, m > 0, K �minfp(1� ")=3; 1� "g, for t = (1� ") t0 , 1H 0(t) � KH 0(t0) :10



Take 0 < " � "0 < 1 and K = minfp(1� "0)=3; 1� "0g � minfp(1� ")=3; 1� "g. Then we haveh0(H(t)) � K h0(0) ; for all t 2 [(1� "0) t0; t0℄ :Then (2.18) gives, if m � 1,H((1� "0) t0)2 = f(t0)� f((1� "0) t0) � log 1(1� "0)m(1 +m"0) � log 11� "20 � �21 ;where the last inequality is true sine m � 1. Of ourse, H((1� "0) t0) and �1 are negative numbers and wehave H((1� "0) t0) � �1 ;and then h0(�) � K h0(0) ; for all � 2 [�1; 0℄ :Therefore (2.11) and the positivity of the integrand give thatG � epf(t0) Z 0�1 e�p�2g(h(�))h0(�) d�� K h0(0) epf(t0) Z 0�1 e�p�2g(h(�)) d� :Observe that h(�) is an inreasing funtion on � and g(t) is a dereasing funtion on t (beause n � 1).Then G � K epf(t0)g(t0)h0(0) Z 0�1 e�p�2 d� � Cpp+ 1 epf(t0) g(t0)h0(0) :This �nishes the proof of Theorem 1 by observing thatlimp!1 Z 0�1 e�p�2 d�Z 1�1 e�p�2 d� = 12 : Q.E.D.
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3. Proof of Theorem 2. First part.In this Setion we will prove one half of Theorem 2. More onretely:Theorem 2.1. There exists a positive onstant C, depending only on n and �, suh that for all nonnegativeintegers p; q; n (n � 1) and for all �, 0 < � < n=2, we haveI = Z 10 �F (z)F (1)�2 zp+q+��1(1� z)n�2��1dz � C �(p+ �)�(q + �)�(p+ n� �)�(q + n� �) ;where F (z) is the hypergeometri funtion F (p; q; p+ q + n; z).If p or q are 0, F is the onstant 1, and I is the Beta funtion B(p+ q + �; n� 2�). So we an assumethat p and q are not zero.By the symmetry of the hypergeometri funtion in the two �rst variables, it is enough to prove theinequality for p � q. Let p = mq, with m � 1.The orollary following Theorem 1 gives thatF (z)B(mq; q + n) � C L :Gauss summation formula [S, p. 28℄, [L, p. 99℄, givesF (1) = �(mq + q + n) �(n)�(mq + n) �(q + n) ;and therefore F (z)B(mq; q + n) = F (z)F (1) �(mq) �(n)�(mq + n) � F (z)F (1) C(mq)n ;where we have used the following well-known fat,Proposition 3.1. For all u, v �xed real numbers, we have that�(x+ u)�(x+ v) � 1xv�u ; when x! +1 :Hene, F (z)F (1) � C(n)mn�1qn�1=2 tmq0 (1�m(1� t0))q(1� t0)n�1� 1� za2 � b2z�1=4;where a = 1 + 1=m and b = 1� 1=m.Then we have I � C m2n�2q2n�1J;where J = Z 10 eqf(z)g(z) dz;and f(z) = log (t2m0 (1�m(1� t0))2zm+1) ;g(z) = (1� t0)2n�2pa2 � b2z z��1(1� z)n�2��1=2 :12



The funtions t0 and f are inreasing; observe thatddz� 2t0� = b� b2(1� z) + 2=mp(1� z) (a2 � b2z) ;and that this funtion is negative beausebp(1� z) (a2 � b2z) � 2 1pm bp1� z � 1m + b2(1� z) :Following Laplae's method ([O℄, [Wo℄) we introdue the new variable � = �f(z); then, if z = h(�), wehave J = Z 10 e�q�g(h(�)) jh0(�)j d� :In order to bound J we need some estimates for the funtionr(z) = 2=mp4=m+ b2(1� z) + ap1� z :The funtion r is inreasing for 0 � z � 1; then we have that 1=(m+ 1) � r(z) � 1=pm. For eah k, suhthat pm=(m + 1) � k � 1, there is a unique 0 � zm � 1 suh that r(zm) = k=pm. A omputation showsthat(3.1) p1� zm = 12k (apm�pb2m+ 4k2) :and zm = 14k2�2apb2m2 + 4k2m�m(a2 + b2)� :We need the following lemma in order to prove that there is an interval [0; A℄ for the variable � , forsome universal onstant A, in whih the estimates are valid.In what follows we hoose k = (p65� 1)=8 and zm suh that r(zm) = k=pm for this partiular k.Lemma 3.1. If �m is de�ned as �m = �f(zm), there is a universal positive onstant A suh that �m � Afor all m � 1.In order to prove this result we need some inequalities.Lemma 3.2. We have, for all z 2 [zm; 1℄, and for all m � 1, thatkr1� zm � 1� t0 �r1� zm ;(3.2.A) 1�pm(1� z) � 1�m (1� t0) � 1� kpm(1� z) ;(3.2.B) 1� t0 � 1� t0(zm) < 2 1� k2m < 2m ;(3.2.C) pm(1� z) �pm(1� zm) < 2 1� k2k = 12 ;(3.2.D) zm 2 h34 ; 1i ;(3.2.E) kr1� zm � � log t0 � 2r1� zm ;(3.2.F) kpm(1� z) � � log(1�m(1� t0)) � 2pm(1� z) ;(3.2.G) 0 � � log z �r1� zm ;(3.2.H) a2 � b2z � 5m ;(3.2.I) 4kpm(1� z) � � � 10pm(1� z) ;(3.2.J) 13



Proof of Lemma 3.2. A straigthforward omputation shows, using (2.5), that(3.3) 1� t0 = r(z)p1� z :This proves (3.2.A) and (3.2.B), sine r is an inreasing funtion for 0 � z � 1.Sine t0 = t0(z) is an inreasing funtion of z, we have, using the fat that r(zm) = k=pm and also(3.1), that 1� t0 � 1� t0(zm) = r(zm)p1� zm = kr1� zmm = 12 �a�rb2 + 4k2m �and so 1� t0 � 1� t0(zm) = 12 4m � 4k2ma+rb2 + 4k2m < 2 1� k2m :whih proves (3.2.C).In order to prove (3.2.D) it is enough to observe that (3.3) and (3.2.C) givepm(1� zm) = mk (1� t0(zm)) < 2 1� k2kand this last number is equal to 1=2 beause of our hoie of the onstant k.(3.2.E) follows diretly from (3.2.D).(3.2.A) gives 1�r1� zm � t0 � 1� kr1� zm :If we use the inequalities x � � log(1� x) � x1� x ; for all x 2 (0; 1) ;and we observe (see (3.2.D)) that p(1� z)=m � 1=2, we obtain (3.2.F).(3.2.G) an be dedued like (3.2.F) using (3.2.B) instead of (3.2.A).The inequality (3.2.H) follows from� log z � 1� zz � 43 (1� z)= 43pm(1� z)r1� zm �r1� zm ;where we have used (3.2.E) and (3.2.D).(3.2.I) an be proved using (3.2.D) in the following waya2 � b2z = a2 � b2 + b2(1� z) � 4m + 1� zm � 5m :Finally, (3.2.J) follows from (3.2.F), (3.2.G) and (3.2.H). Q.E.D.Proof of Lemma 3.1. The inequality (3.2.J) with z = zm gives�m � 4kpm(1� zm) :14



On the other hand, (3.1) allows to omputelimm!1pm(1� zm) = limm!1 m2 k �a�rb2 + 4k2m �= limm!1 m2 k 4m � 4k2ma+rb2 + 4k2m = 1� k2k = 14 ;where the last equality is true beause of our hoie of k.Sine �m > 0 for all m � 1 and lim infm!1 �m � k, we have thatA = infm �m > 0 : Q.E.D.Lemma 3.3. If z 2 [zm; 1℄, the derivative with respet to z of the funtion t0 satis�es(3.4) t00(z) � 2pm(1� z) :Proof. Reall (see (2.1)) that t0(z) = a2z + b2 � pa2 � b2z2z p1� z :Therefore, t00(z) = �a2z2 + 2a2 � b2z4z2pa2 � b2z p1� z + pa2 � b2z2z 12p1� z :Hene,(3.5) t00(z) � a22z2pa2 � b2z p1� z + 1pm 1p1� z ;where we have used (3.2.E) and (3.2.I). On the other hand, using that a2 � b2 = 4=m and (3.2.E), we havethat a22z2pa2 � b2z p1� z � a22z2pa2 � b2 p1� z � 2pm(1� z) :Besides, using (3.2.D), we dedue 2pm(1� z) � 1pm(1� z) :Finally, substituting these two last inequalities in (3.5), we obtain (3.4). Q.E.D.Lemma 3.4. For all z 2 [zm; 1℄ we have that(3.6) f 0(z) � C r m1� z :Proof. Reall that f(z) = log (t2m0 (1�m(1� t0))2zm+1) :Hene, f 0(z) = 2m t00t0 + 2m t001�m(1� t0) + m+ 1z :15



Using (3.2.A) and (3.2.D), we have that t0 � 1=2. Similarly, using (3.2.B) and (3.2.D) again, one deduesthat 1�m(1� t0) � 1=2. Therefore, if we reall (3.2.E) and (3.4), we obtain thatf 0(z) � 4m (t00 + t00 + 1) � Cr m1� z : Q.E.D.Lemma 3.5. Let A = infm �m . Then, for all � 2 [0; A℄, we have thatjh0(�)j � C �m ;(3.7) g(h(�)) � C �4n�4��3m3n�2��3 :(3.8)Proof. First, realling that h = (�f)�1 and using (3.6) and (3.2.J), we have thatjh0(�)j = 1f 0(z) � Cr1� zm � C �m :This proves (3.7). Seondly, reall also thatg(h(�)) = g(z) = (1� t0)2n�2pa2 � b2z z��1(1� z)n�2��1=2 :Therefore, using (3.2.A), (3.2.I) and (3.2.E), we have thatg(h(�)) � C �1� zm �n�1pm (1� z)n�2��1=2 = C (1� z)2n�2��3=2mn�3=2 ;and so, (3.2.J) gives the result. Q.E.D.Proof of Theorem 2.1. Reall that we need a lower bound of the integralJ = Z 10 e�q� g(h(�)) jh0(�)j d� :Using Lemma 3.5 and the positivity of the integrand we have that(3.9) J � Z A0 e�q� g(h(�)) jh0(�)j d�� Cm3n�2��2 Z A0 e�q� �4n�4��2 d�� Cm3n�2��2 �(4n� 4� � 1)q4n�4��1 ;where we have used the elementary fat thatlimq!1 Z A0 e�q� �4n�4��2 d�Z 10 e�q� �4n�4��2 d� = 1 :Finally, realling that I � C m2n�2 q2n�1 J , and using (3.9), we obtain that(3.10) I � C 1mn�2� 1q2n�4� = C(p q)n�2� :Finally, (3.10) and Proposition 3.1 give Theorem 2.1. Q.E.D.16



4. Proof of Theorem 2. Seond part.To �nish the proof of Theorem 2, we need only to prove the reverse inequality.Theorem 2.2. There exists a positive onstant C, depending only on n and �, suh that for all nonnegativeintegers p; q; n (n � 1) and for all �, 0 < � < n=2, we haveI = Z 10 �F (z)F (1)�2 zp+q+��1(1� z)n�2��1dz � C �(p+ �)�(q + �)�(p+ n� �)�(q + n� �) :In order to prove Theorem 2.2 we will need some lemmas.Lemma 4.1. For p; q; n; z as in Theorem 2, we have�B(q; p+ n)F (p; q; p+ q + n; z)�2 � B(q; n)B(q; 2p+ n)F (2p; q; 2p+ q + n; z) :Proof. We have ([S, p. 20℄, [L, p. 99℄) thatB(q; p+ n)F (p; q; p+ q + n; z) = Z 10 tq�1(1� t)p+n�1(1� zt)�p dt= Z 10 t(q�1)=2(1� t)(n�1)=2t(q�1)=2(1� t)p+(n�1)=2(1� zt)�p dt ;and so, using the Cauhy-Shwarz inequality,�B(q; p+ n)F (p; q; p+ q + n; z)�2 � �Z 10 tq�1(1� t)n�1 dt��Z 10 tq�1(1� t)2p+n�1(1� zt)�2p dt�= B(q; n)B(q; 2p+ n)F (2p; q; 2p+ q + n; z) : Q.E.D.We will denote by 3F2(a; b; ; d; e; z) the following generalized hypergeometri funtion3F2(a; b; ; d; e; z) = 1Xk=0 (a)k(b)k()k(d)k(e)k zkk! :We have thatLemma 4.2. There exist onstants C1, C2, depending only on n and � suh thatC1 � 3F2(2p; q; p+ q + �; 2p+ q + n; p+ q + n� �; z)F (2p; q; 2p+ q + 2n� 2�; z) � C2 :Proof. By omparing the k-th terms of eah series we have thatQk � (2p)k(q)k(p+ q + �)k(2p+ q + n)k(p+ q + n� �)k zkk!(2p)k(q)k(2p+ q + 2n� 2�)k zkk!= (2p+ q + 2n� 2�)k(2p+ q + n)k (p+ q + �)k(p+ q + n� �)k= �(2p+ q + 2n� 2� + k) �(p+ q + � + k)�(2p+ q + n+ k) �(p+ q + n� � + k) �(2p+ q + n) �(p+ q + n� �)�(2p+ q + 2n� 2�) �(p+ q + �) :17



If we denote A(p; q) � �(2p+ q + n) �(p+ q + n� �)�(2p+ q + 2n� 2�) �(p+ q + �) ;using again Proposition 3.1, we have thatA(p; q) � (p+ q)n�2�(2p+ q)n�2� ; if p+ q !1 ;and so there exists a onstant C = C(n; �) suh thatC�1 � A(p; q) � C ; for all p; q � 0 :Also C�1 � A(p; q + k) � C ; for all p; q; k � 0 :Therefore, C�2 � Qk = A(p; q)A(p; q + k) � C2 ; for all k � 0 ;and this implies the lemma.Proof of Theorem 2.2. Gauss summation formula ([S, p. 28℄, [L, p. 99℄) givesF (1) = �(p+ q + n) �(n)�(p+ n) �(q + n) = B(q; n)B(q; p+ n) ;and thereforeI = 1B(q; n)2 Z 10 �F (z)B(q; p+ n)�2zp+q+��1(1� z)n�2��1 dz�Lemma 4.1 B(q; 2p+ n)B(q; n) Z 10 F (2p; q; 2p+ q + n; z) zp+q+��1(1� z)n�2��1 dz= B(q; 2p+ n)B(q; n) Z 10 1Xk=0 (2p)k(q)k(2p+ q + n)k k! zk+p+q+��1(1� z)n�2��1 dz= B(q; 2p+ n)B(q; n) 1Xk=0 (2p)k(q)k(2p+ q + n)k k! �(k + p+ q + �) �(n� 2�)�(k + p+ q + n� �)= B(q; 2p+ n)B(q; n) B(p+ q + �; n� 2�) 3F2(2p; q; p+ q + �; 2p+ q + n; p+ q + n� �; 1)�Lemma 4.2C �(2p+ n) �(q + n)�(2p+ q + n) �(p+ q + �)�(p+ q + n� �) F (2p; q; 2p+ q + 2n� 2�; 1)= C �(2p+ n) �(q + n) �(p+ q + �)�(2p+ q + n) �(p+ q + n� �) �(2p+ q + 2n� 2�)�(2p+ 2n� 2�) �(q + 2n� 2�)� C (2p+ q + 1)n�2�(2p+ 1)n�2�(q + 1)n�2�(p+ q + 1)n�2�� C(p+ 1)n�2�(q + 1)n�2�� C �(p+ �) �(q + �)�(p+ n� �) �(q + n� �) ;where we have used again Gauss summation formula and twie Proposition 3.1. Q.E.D.18



5. An open question.In this setion we formulate an open question whih refers to estimates of the square of an hypergeometrifuntion:Is true that �F (p; q; p+ q + n; z)�2 � F (2p; 2q; 2p+ 2q + 2n� 1=2; z) ;for p, q, n positive integers, 0 � z � 1 ?We know three ases in whih this is true: if n = 1=2 (though 1=2 is not an integer!) as a onsequeneof Clausen formula, see e.g. [S, p. 75℄; if z = 1 (using Gauss summation formula) or z = 0; if p or q is zero.On the other hand, we have a formal argument based on the asymptoti behaviour of the hypergeometrifuntion stated in Theorem 1, whih would give a positive answer to the question above.If this question would be true, this would simplify onsiderably the proof of Theorem 2 by using theideas ontained in the proof of Theorem 2.2.Referenes.[FP1℄ Fern�andez, J. L., Pestana, D., Distortion of boundary sets under inner funtions and appliations.Indiana J. Math. 41 (1992), 439-448.[FP2℄ Fern�andez, J. L., Pestana, D., Radial images by holomorphi mappings. To appear in Pro. Amer.Math. So.[FPR1℄ Fern�andez, J. L., Pestana, D., Rodr��guez, J. M., Distortion of boundary sets under inner funtions (II).To appear in Pai� J. Math.[FPR2℄ Fern�andez, J. L., Pestana, D., Rodr��guez, J. M., Capaity distortion by inner funtions in the unit ballof Cn. In preparation.[F℄ Folland, G. B., Spherial harmoni expansion of the Poisson-Szeg�o kernel for the ball. Pro. Amer.Math. So. 47 (1975), 401-408.[L℄ Luke, Y. L., The speial funtions and their approximations. Aademi Press, New York, 1969.[O℄ Olver, F. W. J., Asymptotis and speial funtions. Aademi Press, New York, 1974.[S℄ Slater, L. J., Generalized hypergeometri funtions. Cambridge University Press, Cambridge, 1966.[W℄ Watson, G. N., Asymptoti expansions of hypergeometri funtions. Trans. Cambridge Phil. So. 22(1918), 277-308.[Wo℄ Wong, R., Asymptoti approximation of integrals. Aademi Press, New York, 1989.Domingo Pestana and Jos�e M. Rodr��guezDepartamento de Matem�atiasUniversidad Carlos III de MadridButarque, 15Legan�es, 28911 Madrid, SPAINdomingo�dulinea.u3m.esrodrig�dulinea.u3m.es
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