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Isoperimetric inequalities in

Riemann surfaces of in�nite type

Venancio Alvarez, Domingo Pestana and Jos�e M. Rodr��guez

1. Introduction.

By S we denote a hyperbolic Riemann surface, i.e. a (open and

connected) Riemann surface whose universal covering space is the unit

disk D = fz 2 C : jzj < 1g, endowed with its Poincar�e metric (also

called the hyperbolic metric), i.e. the metric obtained by projecting

the Poincar�e metric of the unit disk

ds =
2 jdzj
1� jzj2 :

With this metric, S is a complete Riemannian manifold with constant

curvature �1. The only Riemann surfaces which are left out are the

sphere, the plane, the punctured plane and the tori.

It is convenient to remark that this de�nition of hyperbolic Rie-

mann surface is not universally accepted, since sometimes the word

hyperbolic refers to the existence of Green's function.

We say that S satis�es the hyperbolic isoperimetric inequality (HII)

if S is a hyperbolic Riemann surface and there exists a constant h > 0

such that for every relatively compact domain (an open and connected

set) G with smooth boundary one has that

(1.1) AS(G) � hLS(@G) ;

where AS(G) denotes the (hyperbolic) area of G and LS(@G) the (hy-

perbolic) length of its boundary. An approximation argument gives
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that if S satis�es HII, then (1.1) is also true for domains with �nite

area. We denote by h(S) the best constant in (1.1)

It is clear that a �nite area hyperbolic Riemann surface does not

satisfy HII.

A Riemann surface S is said to be of �nite type if its fundamental

group �1(p;S), p 2 S, is �nitely generated. In other case we say that S
is of in�nite type. It is well known that every Riemann surface of �nite

type can be obtained from a compact Riemann surface by deleting p

points (the punctures of S) and n closed disks (whose boundaries repre-

sent the ideal boundaries of S). It is also a known fact that a Riemann

surface of �nite type has HII if and only if n > 0 or, equivalently, if

S has in�nite area. Therefore, in spite of most of our results are true

independently of the type of the considered Riemann surface, we will

be interested in Riemann surfaces of in�nite type.

There are a number of natural questions concerning the HII-proper-

ty of Riemann surfaces. Particularly interesting are the stability under

quasiconformal maps, its relation with other conformal invariants and

its characterization for plane domains. Here the word conformal refers

to holomorphic homeomorphisms.

Concerning the study of the stability of HII, in [FR, Theorem 1] it

was proved that if two Riemann surfaces are quasiconformally equiva-

lent and one has HII, the other has too.

One of the conformal invariants related with the HII-property is

the bottom of the spectrum of the Laplace-Beltrami operator, b(S),
which can be de�ned in terms of Rayleigh's quotients as

b(S) = inf
'2C1

c
(S)

ZZ
kr'k2 dwZZ
'
2
dw

;

where k � k, r and dw refer to the Poincar�e metric of S.
The number b(S) belongs to [0; 1=4] and a celebrated theorem of

Elstrodt, Patterson and Sullivan [Su, p. 333] relates it with other im-

portant conformal invariant of S, its exponent of convergence �(S) (see
e.g. [N, p. 21] for basic background), which can be de�ned as

�(S) := inf ft : Ut(p) <1; for some p 2 Sg ;

where

Ut(p) :=
X

[]2�1(p;S)

exp
�� t LS([])

�
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and

LS([]) := inffLS(g) : [] = [g]g :
It is easy to check that if Ut(p) < 1 for some p 2 S, then Ut(q) < 1
for all q 2 S.

It is a well known fact that 0 � �(S) � 1 (see e.g. [N, p. 21]).

The theorem of Elstrodt, Patterson and Sullivan asserts that

b(S) =

8><
>:

1

4
; if 0 � �(S) � 1

2
;

�(S) (1� �(S)) ; if
1

2
� �(S) � 1 :

It is also well known (see e.g., [Ch1, p. 95], [Che], [FR, Theorem 2])

that
1

4
� b(S)h(S)2 and b(S)h(S) � C <

3

2
;

where C is an absolute constant.

Therefore S has the HII-property if and only if b(S) > 0 or, equiv-

alently, �(S) < 1.

A theorem of Myrberg [T, p. 522] states that if �(S) < 1 then S has

Green's function, or equivalently, that it possesses non-constant positive

superharmonic functions (see [AS, p. 204] or [T, p. 434]). Therefore if

S has �nite genus, S has non-constant harmonic functions with �nite

Dirichlet integral [AS, p. 208], [SN, p. 332]. In the general case, the

conclusion is also true with additional hypothesis [Ro1]. However, there

exists a Riemann surface S0 having in�nite genus and HII such that

the constants are the unique positive harmonic functions in S0 [Ro2].

Recall that if there exists a non-constant harmonic function with �nite

Dirichlet integral, then there exists a non-constant positive (in fact,

bounded) harmonic function.

It is also known that �(S) coincides with the Hausdor� dimension

of the conical limit set of the covering group of S (see e.g. [N, p. 154]).

This says us that the HII-property must be also related with the size

of the \boundary" of S.
At the moment no characterization of the HII-property is known for

hyperbolic plane domains (i.e. subsets of the Riemann sphere whose

boundary has at least three points) in euclidean terms of the size of

its boundary. In [FR, Theorems 3 and 4] a su�cient condition and a

necessary condition were obtained so that a hyperbolic plane domain

satis�es HII, but none of them constitutes a characterization of the

HII-property, although these conditions are quite close.
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As an example of the di�culties involving the problem, recall

that a plane domain 
 has Green function if and only if its bound-

ary has positive logarithmic capacity (see [AS, p. 249], [T, p. 440] or

[SN, p. 332-333]). But, for example, D n f0g n f1=2ng1
n=1 has not HII,

while D nf1�1=2ng1
n=0 has it (these facts are consequence of [FR, Theo-

rems 3 and 4] or Theorem 1 below). Hence, this shows that the problem

of deciding whether a hyperbolic plane domain has the HII-property or

not is delicate. Observe that if 
 is a hyperbolic plane domain and @


has zero logarithmic capacity, then 
 has not HII.

The main results of this paper are Theorems 1, 3, 5, 9 and 10. The-

orem 1 shows that for any hyperbolic Riemann surface the HII-property

is preserved by removing a su�ciently separated set. Theorem 3 relates

simple euclidean conditions with the HII-property in Denjoy domains.

Theorem 5 gives an euclidean characterization of Denjoy domains sat-

isfying the HII-property. Finally, Theorems 9 and 10 give localization

results for the HII-property in general planar domains.

In the next section we give some de�nitions needed to state our

results.

2. The main results.

We say that a domain G � Ĉ is modulated if there is an upper

bound for the modulus of every doubly connected domain contained

in G which separates the boundary of G. In particular, every simply

connected domain is modulated (since in this case there are not such

doubly connected domains). Also, if the boundary of G consists of a

�nite number of continua, G is modulated. On the other hand, if the

boundary of G has an isolated point, G is not modulated.

These are the domains in the plane that as far as Function The-

ory is concerned behave almost like simply connected domains (see for

example [BP] and the references therein).

In [FR, Theorem 3] it was proved that if G � Ĉ is modulated (and

therefore G has HII) then H = G n fang has also HII if the sequence

fang is uniformly separated in the hyperbolic metric of G, i.e. if there

exists a positive constant c such that

dG(an; am) > c ; for all n 6= m;

where dG denotes the hyperbolic distance in G. This result is not true

if G is not modulated (see Theorem 1 below). Obviously, every �nite
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sequence is uniformly separated, and a sequence converging to a point

of G is not uniformly separated.

Conversely, also in [FR, Theorem 4], it was proved that if H � Ĉ

has HII, and G = H [ I, where I is the set of isolated points of @H,

then I is uniformly separated in the hyperbolic metric of G.

In this work we reduce the study of the HII-property of H to that

of G, not only for hyperbolic plane domains, but for general hyperbolic

Riemann surfaces.

To state our result, we need a previous de�nition.

De�nition. A subset I of a hyperbolic Riemann surface S is strongly

uniformly separated in S, if there exists a positive constant r0 such that

the hyperbolic balls BS(p; r0), where p 2 I, are simply connected and

pairwise disjoint.

Theorem 1. Let S be a hyperbolic Riemann surface, let I be a closed

and countable subset of S and R = S n I. Then, R has HII if and only

if S has HII and I is strongly uniformly separated in S.

We also have obtained a relationship between the isoperimetric

constants on R and S (see Section 3 below).

We want to remark that Theorem 1 is a new result even in the case

of plane domains.

Corollary 1. Let S be a hyperbolic Riemann surface, let I be a closed

and countable subset of S and let R = S n I. If I has an accumulation

point in S, then R has not HII.

Observe that Theorem 1 and [FR, Theorem 3] give that every dis-

crete set which is uniformly separated in a modulated domain G is also

strongly uniformly separated in G.

As we mentioned above, at the moment no characterization of the

HII-property is known for hyperbolic plane domains in euclidean terms

of the size of its boundary. In [FR] it was obtained a necessary condition

and a su�cient condition so that a hyperbolic plane domain has HII,

but we know that none of them is, in fact, a characterization of the HII-

property for this type of Riemann surfaces. In this paper we obtain a

characterization of the HII-property for the case of Denjoy domains,

i.e. hyperbolic plane domains whose boundary is contained in R̂ , in

euclidean terms of the size of their boundaries.
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Since the HII-property is a quasiconformal invariant between gen-

eral Riemann surfaces [FR, Theorem 1] our results characterize the HII-

property for subsets of Ĉ whose boundary is contained in a quasicircle.

In fact we can prove a more general result (see Section 7).

De�nition. Let 
 be a plane domain, let I be the set of isolated points

of @
 and 
0 = 
[I. We say that 
 is admissible if 
0 is a hyperbolic

plane domain and I is strongly uniformly separated in 
0.

Observe that if 
 is admissible, then there are no isolated points in

@
0; therefore @
0 has in�nitely many points and 
 has in�nite area.

Now we can restate Corollary 1 for hyperbolic plane domains.

Corollary 2. If a hyperbolic plane domain is not admissible, then it

has not HII.

In what follows 
 � Ĉ will usually be a Denjoy domain. In order to

establish our characterization of the HII-property for Denjoy domains

(Theorem 5) we need some preliminary background.

For � < �, (�; �) denotes the set fx 2 R : x < � or x > �g[f1g.
Also we mean that (1; �) = fx 2 R : x < �g and as usual (�;1) =

fx 2 R : x > �g. Along the paper we mean that the point at in�nity is

the greatest of the numbers in R̂ .

De�nition. We say that a �nite subset A = fa1; : : : ; a2ng (n � 2) of

points of @
 � R̂ is a border set of @
 if A veri�es the following two

conditions:

i) A is \ordered " in R̂ , i.e. there exists j 2 Z2n = Z=(2nZ) such

that aj+1 < � � � < aj+2n, where the subscripts belong to Z2n.

ii) The open set [n
k=1(a2k�1; a2k) is contained in 
.

Obviously every �nite subset A = fa1; : : : ; a2ng of R̂ can be \or-

dered" in such a way that the condition i) is satis�ed. So ii) is the

signi�cant condition in the de�nition above.

Example. Let us consider the Denjoy domain 
 whose boundary is

@
 = f1g [ ([1
n=1[2n � 1; 2n]). It is clear that the ordered sets

f2; 3; 6; 7; 10; 11g and f4; 5;1; 1g are border sets of @
, but f1; 4; 5;1g
is not. In fact, the ordered set of real numbers fa1; : : : ; a2ng is a border
set if and only if a2k = 1 + a2k�1 and a2k�1 2 2Z for k = 1; : : : ; n. On
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the other hand, the ordered set fa1; : : : ; a2n�1;1g never is a border

set. The ordered set fa1; : : : ; a2n�2;1; a2ng, with n � 3 and a1 <

� � � < a2n�2 is a border set if and only if fa1; : : : ; a2n�2g is a border set
and a2n = 1.

Observe that the set of four \consecutive points", fa2k�1; a2k;
a2k+1; a2k+2g with k 2 Z2n, of a border set of 
 is also a border set

of 
. Besides, observe that if @
 has not any border set, then 
 is

some of the three following trivial domains (up conformal equivalence):

C nf0; 1g (which has not HII), C n [0; 1] (which has HII), Ĉ n [0; 1] (which
has HII).

If B = fb1; b2; b3; b4g, we denote by r(B) the cross ratio

(2.1) r(B) =
(b2 � b1)(b4 � b3)

(b3 � b2)(b4 � b1)
:

In the following by �1;�2 : (0;1) �! (0;1) we denote any �xed

continuous functions satisfying the following properties:

a) �1(r) � �2(r) � 1

log r
as r �!1,

b) �1(r) � log
1

r
and �2(r) � log log

1

r
as r �! 0.

After these preliminaries we can state the following partial result

which gives a necessary condition and a su�cient condition for the HII-

property of a Denjoy domain 
. In many cases these conditions give

an answer to the question of whether or not 
 has HII, since they are

very close.

Theorem 3. Let 
 be an admissible Denjoy domain, let I be the set

of isolated points of @
 and 
0 = 
 [ I.

a) If 
 has HII, then there exists a positive constant c such that

for any border set of @
0, B = fb1; : : : ; b2ng with n � 3, we have that

1

n

nX
j=1

�1(r(fb2j�1; b2j; b2j+1; b2j+2g)) > c :

b) If there exists a positive constant c such that for any border set

of @
0, B = fb1; : : : ; b2ng with n � 3, we have that

1

n

nX
j=1

�2(r(fb2j�1; b2j; b2j+1; b2j+2g)) > c ;
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then 
 has HII.

Besides, we have a characterization of the Denjoy domains with HII

in euclidean terms of the size of their boundaries. This characterization

has the disadvantage that the function which appears instead of �1 and

�2 (in Theorem 3) is more complicated and depends on the domain.

Theorem 5. Let 
 be a Denjoy domain, let I be the set of isolated

points of @
 and let 
0 = 
 [ I. Then, 
 has HII if and only if 


is admissible and there exists a positive constant c such that for any

border set of @
0, B = fb1; : : : ; b2ng with n � 3, we have that

1

n

nX
j=1

	
0(fb2j�1; b2j; b2j+1; b2j+2g) > c ;

where 	
0 is the function appearing in Theorem 4 (see Section 5).

Roughly speaking, this function 	
0 \counts" in some sense the

number of annuli which intersect @
0.

If S2 is a hyperbolic Riemann surface, we will consider (open and

connected) subsurfaces S1 � S2, endowed with its own hyperbolic met-

ric (recall that any subsurface of a hyperbolic Riemann surface is also

hyperbolic). Of course, with this metric S1 is a complete Riemannian

manifold.

As a direct consequence of Corollary 7 (see Section 7 below) we

obtain two localization theorems.

Theorem 9. Given a closed subset E of Ĉ with in�nitely many points,

the following conditions are equivalent:

1) Ĉ nE satis�es HII.

2) 
 n E satis�es HII, for any subdomain 
 of Ĉ of �nite type

such that E is contained in 
.

3) 
 n E satis�es HII, for some subdomain 
 of Ĉ of �nite type

such that E is contained in 
.

Theorem 10. Let E1; : : : ; En be pairwise disjoint closed subsets in

Ĉ with in�nitely many points such that 
 = Ĉ n [kEk is connected.

Then, we have that 
 satis�es HII if and only if Ĉ n Ek satis�es HII

for k = 1; : : : ; n.
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In fact, we prove in Section 7 a general version of theorems 9 and

10 about Riemann surfaces (see Theorem 7). We should remark that

we have also obtained other results on localization (see for example

Lemmas 3.1 and 7.1 or Corollary 5).

2.1. Notations and background.

As usual, R and R̂ will denote the real line and the extended real

line. Similarly, C and Ĉ will denote, respectively, the complex plane

and the Riemann sphere. The simbol A n B denotes the di�erence of

the sets A and B. The expression A(r) � B(r) will mean that there

exists a positive constant C such that

C
�1 � A(r)

B(r)
� C ;

for the values of r indicated in each case. We denote by [x] the greatest

natural number which is less or equal than x.

By dS and BS we shall denote, respectively, the distance and the

balls in the Poincar�e metric of S. By d and B we shall denote, re-

spectively, the distance and the balls in the euclidean metric of C .

B
�
S and B

� will denote the corresponding balls without its centers.

If 
 is a hyperbolic plane domain, �
(z) will be the euclidean dis-

tance of z to the boundary of 
. By �
 we shall denote the confor-

mal density of the Poincar�e metric in 
, i.e. the function such that

ds = �
(z) jdzj is the Poincar�e metric in 
. For � < �, (�; �) de-

notes the set fx 2 R : x < � or x > �g [ f1g. Also we mean that

(1; �) = fx 2 R : x < �g and as usual (�;1) = fx 2 R : x > �g. We

de�ne the corresponding closed intervals in a similar way. Along the

paper we mean that the point at in�nity is the greatest of the numbers

in R̂ .

Finally, we denote by c positive constants which can assume dif-

ferent values from line to line and even in the same line. On the other

hand, the constants t0 and r0 will have always the same value.

In order to prove our results we shall need some well known facts

concerning the Poincar�e metric:

1) A conformal map between two hyperbolic Riemann surfaces is

an isometry.

2) If S1 is a subsurface of the hyperbolic Riemann surface S2, then
dS1(p; q) � dS2(p; q), for all p; q 2 S1.
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3) Let S1 be a subsurface of the hyperbolic Riemann surface S2
and let � be a simple closed curve in S1. Denote by j the simple

closed geodesic (if exists) freely homotopic to � in Sj (j = 1; 2). Then

LS1(1) � LS2(2).

4) If 
 is a hyperbolic plane domain, 
 � C , then �
(z) � 2=�
(z),

for all z 2 
 (recall that �
(z) denotes the euclidean distance of z to

the boundary of 
).

5) A hyperbolic plane domain 
, 
 � C , is modulated if and only

�
(z) �
(z) � 1, for z 2 
 (see [BP, Corollary 1]). The constant in �
depends on 
.

6) For 
 � C , de�ne �
(z) as the function

(2.2) �
(z) = inf
n��� log ���z � a

b� a

��� ��� : a; b 2 @
; jz � aj = �
(z)
o
:

In [BP, Theorem 1] it was proved that

(2.3) �
(z) �
(z) (1 + �
(z)) � 1 ; for z 2 
 ;

up to universal constants. See (6.1) below for a precise estimate.

7) If F : D �! 
 is a universal covering map, then we have

�
(F (z)) jF 0(z)j = �D (z) ; for all z 2 D :

The organization of the paper is as follows. In sections 3 and 4 we

prove, respectively, theorems 1 and 3. Theorems 4 and 5 will be proved

in Section 5. Section 6 contains a proposition relating balls and collars

of punctures. In Section 7 we develop some useful technology to prove

theorems 9 and 10 and other further results. In Section 8 we discuss

the relationship between the HII-property, polarization and circular

symmetrization. Finally we discuss about the possibility to improve

Theorem 5 in sections 9 and 10.

3. Proof of Theorem 1.

Theorem 1. Let S be a hyperbolic Riemann surface, let I be a closed

and countable subset of S and R = S n I. Then, R has HII if and only

if S has HII and I is strongly uniformly separated in S.
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More precisely, if r0 is a positive number such that fBS(p; r0)gp2I
is a family of pairwise disjoint and simply connected balls in S, then we

have that

h(R) � h(S)
tanh2

�
r0

4

� +
2�

r0 log
tanh r0

tanh
�
r0

4

� :

The di�cult implication in this theorem is to prove that R has

HII. Our proof of this consists of �nding a relationship between the

Poincar�e metrics of R and S. Far from the points in I both metrics

are comparable (see Lemma 3.1 below). Close to these isolated points

they are not comparable but, in fact, there exists a very precise relation

between the S-balls centered at points in I and its corresponding collars
in R (see Proposition 1 in Section 6).

We start by studying the relationship between the Poincar�e metrics

of R and S.

Lemma 3.1. Let S be a hyperbolic Riemann surface, let C be a closed

non-empty subset of S and S� = S n C. Let us consider a positive

number ". Then we have that

(3.1) tanh
"

2
<

LS()

LS�()
< 1 ;

for every curve  � S with �nite length in S such that dS(; C) � ",

and

(3.2)
�
tanh

"

2

�2
<

AS(D)

AS�(D)
< 1 ;

for every domain D � S with �nite area in S such that dS(D;C) � ".

Proof. We prove Lemma 3.1 in local coordinates.

Let us �x p 2 S with dS(p; C) � " and let us consider a local chart

� : V �! C with �(p) = 0.

Let F : D �! S be a universal covering map with F (0) = p. The

set C 0 = F
�1(C) is a closed subset of the unit disk. Obviously the

euclidean ball B(0; tanh ("=2)) = BD (0; ") is a connected component of

F
�1(BS(p; ")); it is contained in D nC 0 and the mapping F : D nC 0 �!

S� is a covering map with F (0) = p. Let G : D �! D n C 0 be a
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universal covering map with G(0) = 0. We have that F �G : D �! S�
is a universal covering map with (F �G)(0) = p.

Let us consider the Poincar�e metrics �S(z) jdzj and �S�(z) jdzj in
local coordinates (z 2 �(V )). Then

�S((� � F )(0)) j(� � F )0(0)j = �D (0) ;

�S�((� � F �G)(0)) j(� � F �G)0(0)j = �D (0) ;

and this gives

�S(0) j(� � F )0(0)j = 2 ; �S�(0) j(� � F )0(0)j jG0(0)j = 2 :

These last equalities give Lemma 3.1 if we prove that tanh ("=2) <

jG0(0)j < 1 since this is the in�nitesimal version of (3.1) and (3.2).

Observe that G : D �! D satis�es G(0) = 0. Schwarz's Lemma

gives the inequality jG0(0)j < 1.

Recall that the simply connected set B(0; tanh ("=2)) is contained

in D n C 0. Therefore, there exists a well de�ned local inverse G
�1 :

B(0; tanh ("=2)) �! D verifying G
�1(0) = 0. Using again Schwarz's

Lemma we obtain that

j(G�1)0(0)j = 1

jG0(0)j < cotanh
�
"

2

�
:

This �nishes the proof of Lemma 3.1.

Proof of Theorem 1. We begin with the proof that if R has HII

then S has it and I is strongly uniformly separated in S.
We shall prove �rst that I is a discrete set. In fact, if this is not

the case, then I is not strongly uniformly separated and, as we shall

see, this implies that R has not HII, a contradiction.

Let us assume that I is not a discrete set. Let F : D �! S be

a universal covering map and let J be the preimage of I by F . Then

F : D n J �! R is a covering map. Therefore, �(D n J) � �(R) (see,
for example [FR, p. 181]). Obviously, J is a closed, countable and

non discrete subset of D . Let z0 be an accumulation point of J in D .

Then, we have that B(z0; r) \ @(D n J) = B(z0; r) \ J is countable, for

0 < r < 1 � jz0j, and therefore it has zero logarithmic capacity. [FR,

Theorem 4] implies that 1 = �(D n J) � �(R) � 1. But, if �(R) = 1, a

fortiori, R has not HII.
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A theorem of Patterson [P2, Theorem 4.1] gives that �(S) � �(R),
since I is discrete. Therefore �(S) < 1 and S has HII.

Suppose that the discrete set I is not strongly uniformly separated.

Let us see that, then, R has not HII, a contradiction. Denote again by

F : D �! S a universal covering map and by J the preimage of I

by F . As before F : D n J �! R is a covering map and therefore,

�(D nJ) � �(R) (see, for example again [FR, p. 181]). We have that for

each " > 0, there exist points p; q 2 I such that either dS(p; q) < " or

BS(p; ") is not simply connected. This implies that there exist z; w 2 J

such that dD (z; w) < ", i.e. that J is not uniformly separated in D .

[FR, Theorem 4] implies again that �(R) � �(D n J) = 1.

Let us assume now that S has HII and I is strongly uniformly

separated in S. We want to prove that then R has also HII.

Let D be an open subset of R with �nite area. In order to check

(1.1) for D, we can assume without loss of generality that D is not

simply or doubly connected since this particular type of subsets always

satisfy HII with constant 1 [FR, Lemma 1.1]. We can also suppose

that @D = 1 [ 2 [ � � � [ k where the simple closed curves j are not

homotopic to the trivial loop and does not \surround" only a puncture.

In fact, if this would be the case for j, say, we could join to D the

simply or doubly connected open set whose boundary is j, obtaining

by this way a new domain with greater area and whose boundary had

less length.

Let us consider a positive number r0 such that the balls BS(p; r0)

with p 2 I are simply connected and pairwise disjoint. Let ~S be the

subset of R given by ~S = S n [p2IBS(p; r0=2). Let J; J1; J2; be the

subsets of I de�ned by

J = fp 2 I : D \ BS(p; r0=2)
� 6= ?g ;

J1 = fp 2 J : BS(p; r0=2)
� � Dg ;

J2 = fp 2 J : @D \ BS(p; r0=2)
� 6= ?g :

It is obvious that fJ1; J2g is a partition of J .

First of all we remark that

(3.3) LS(@D \BS(p; r0)) � r0 ; for all p 2 J2 :

To see this, suppose that LS(@D \ BS(p; r0)) < r0 for some p 2 J2.

Then, we have that there exists a boundary curve j with LS(j) < r0;

such a curve must verify that j � BS(p; r0) since

dS

�
@BS(p; r0); @BS

�
p;
r0

2

��
=

r0

2
:
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But, if j � BS(p; r0), then j is homotopic in R to zero or to p, and

this is not possible.

Claim. There exists a constant c, which only depends on r0 and neither

on S nor I, such that

(3.4) AR

�
BS

�
p;
r0

2

���
� c ; for every p 2 I :

Then we have that

(3.5) AR

�
BS

�
p;
r0

2

���
� c

4� sinh2
�
r0

4

� AS�BS�p; r0
2

��
;

for every p 2 J1; since BS(p; r0=2) is simply connected and then

AS

�
BS

�
p;
r0

2

��
= AD

�
BD

�
0;
r0

2

��
= 4� sinh2

�
r0

4

�
;

and by (3.3)

(3.6) AR

�
BS

�
p;
r0

2

���
� c

r0
LS(@D \ BS(p; r0)) ;

for every p 2 J2. Using (3.2), (3.5) and (3.6), we have that

AR(D) � AR(D \ ~S)+
X
p2J1

AR

�
BS

�
p;
r0

2

���
+
X
p2J2

AR

�
BS

�
p;
r0

2

���

� 1

tanh2
�
r0

4

� AS(D \ ~S)

+
c

4� sinh2
�
r0

4

� X
p2J1

AS

�
BS

�
p;
r0

2

��
+

c

r0
LS(@D) :

Let H be

H = max

(
1

tanh2
�
r0

4

� ; c

4� sinh2
�
r0

4

�
)
:

Therefore

AR(D) � H

�
AS(D \ ~S) +

X
p2J1

AS

�
BS

�
p;
r0

2

���
+

c

r0
LS(@D)

� H AS(D) + c

r0
LS(@D)

� H h(S)LS(@D) + c

r0
LS(@D)

�
�
H h(S) + c

r0

�
LR(@D) :
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Then we have that R has HII with constant

(3.7) h(R) � H h(S) + c

r0
:

To �nish the proof of Theorem 1 we only need to prove (3.4) with

c =
2�

log
tanh r0

tanh
�
r0

4

� ;

since we will see below that, with this value of c, we have that

H =
1

tanh2
�
r0

4

� :

Lemma 3.2. Let S be a hyperbolic Riemann surface and fBS(p; r0)gp2I
be a disjoint family of simply connected balls in S. If R = S n I, then
we have that

AR(BS(p; r)
�) � 2�

log
tanh r0

tanh
�
r

2

� ; for 0 < r � r0 :

Proof. Let us �x a point p 2 I. Let us consider a universal covering

map F : D �! S such that F (0) = p. Let J be the preimage of I

by F . The intersection of the ball F�1(BS(p; 2 r0)) = BD (0; 2 r0) =

B(0; tanh r0) with the set J is exactly f0g. Since F : D n J �! R is a

covering map, it follows that for 0 < r � r0

AR(BS(p; r)
�) = ADnJ (BD (0; r)

�)

� AB(0;tanh r0)�(BD (0; r)
�)

= AB(0;tanh r0)�

�
B

�
0; tanh

�
r

2

����

= AD�

 
B

 
0;
tanh

�
r

2

�
tanh r0

!�!

=

Z
B(0;tanh(r=2)= tanh r0)�

dx dy

(jzj log jzj)2

=
2�

log
tanh r0

tanh
�
r

2

� :
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This �nishes the proof of Lemma 3.2.

The estimate (3.4) follows now from Lemma 3.2 with

(3.8) c =
2�

log
tanh r0

tanh
�
r0

4

� ;

and therefore (3.7) and (3.8) give the inequality in Theorem 1, if

H =
1

tanh2
�
r0

4

� :

In order to prove this, we only need to check that

1

tanh2
�
r0

4

� � 1

2 sinh2
�
r0

4

�
log

tanh r0

tanh
�
r0

4

� ;

and this follows from the fact that

G(x) = 2 log
tanhx

tanh
�
x

4

� � 1

cosh2
�
x

4

� � 0 ; for x > 0 :

This inequality is a consequence of the fact that

G
0(x) =

4

2 sinhx coshx
� 1

2 sinh
�
x

4

�
cosh3

�
x

4

�
=

4

sinh (2x)
� 4

2 sinh
�
x

2

�
+ sinh x

� 0 ;

and

lim
x!1

G(x) = 0 :

Remark. The inequality (3.4) can be obtained alternatively from

Proposition 1. This proposition will be stated and proved in Section
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6. We have used here Lemma 3.2 since it gives best estimates in this

context.

4. Proof of Theorem 3.

Theorem 3. Let 
 be an admissible Denjoy domain, let I be the set

of isolated points of @
 and 
0 = 
 [ I.

a) If 
 has HII, then there exists a positive constant c such that

for any border set of @
0, B = fb1; : : : ; b2ng with n � 3, we have that

1

n

nX
j=1

�1(r(fb2j�1; b2j; b2j+1; b2j+2g)) > c :

b) If there exists a positive constant c such that for any border set

of @
0, B = fb1; : : : ; b2ng with n � 3, we have that

1

n

nX
j=1

�2(r(fb2j�1; b2j; b2j+1; b2j+2g)) > c ;

then 
 has HII.

Theorem 3 is a direct consequence of Theorem 1 and the following

result.

Theorem 2. Let 
 be a Denjoy domain such that @
 has no isolated

points. Then

1) If 
 has HII, then there exists a positive constant c such that

for any border set of @
, B = fb1; : : : ; b2ng (n � 3), we have that

1

n

nX
j=1

�1(r(fb2j�1; b2j; b2j+1; b2j+2g)) > c :

2) If there exists a positive constant c such that for any border set

of @
, B = fb1; : : : ; b2ng (n � 3), we have that

1

n

nX
j=1

�2(r(fb2j�1; b2j; b2j+1; b2j+2g)) > c ;
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then 
 has HII.

The proof of Theorem 2 has three main ideas. The �rst one (see

Lemma 4.1) is to reduce dramatically the set of domains in which we

must check (1.1). Secondly, we will establish a bijective correspondence

between these domains and border sets (see Lemma 4.2). Finally, we

relate the length of each boundary curve of these domains with the

length of some curves in some extremal domains which is given by the

functions �1 and �2 (see Lemmas 4.3 and 4.5).

A geodesic domain in a Riemann surface S is a domain G � S
(which is not simply or doubly connected) such that @G consists of

�nitely many simple closed geodesics, and AS(G) is �nite. G does not

have to be relatively compact since it may \surround" �nitely many

punctures (isolated points in @S in the case that S � Ĉ ). We can think

of a puncture as a boundary geodesic of zero length. Recall that if  is

a closed curve in S and [] denotes its free homotopy class in S, then
there is a unique simple closed geodesic of minimal length in the class,

unless  is homotopic to zero or surrounds only a puncture; in these

cases it is not possible to �nd such geodesic because there are curves in

the class with arbitrary small length.

In [FR, Lemma 1.2] it was proved that if S veri�es (1.1) for geodesic

domains, then it veri�es HII. In fact, if hg(S) is the in�mum of the

constants h such that the inequality

AS(G) � hLS(@G) ;

is true for any geodesic domain G, we have that

h(S) � hg(S) + 2 :

We shall prove now that if a Denjoy domain 
 veri�es (1.1) for

geodesic domains which are symmetric with respect to the real axis (SG-

domains), then 
 veri�es (1.1) for any geodesic domain and therefore

it veri�es HII.

In fact, we have the following result, which is true even if @
 has

isolated points.

Lemma 4.1. Let 
 be a Denjoy domain satisfying the inequality

A
(G) � hL
(@G) ;

for every SG-domain G in 
 and for a positive constant h.
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Then 
 satis�es HII with

hg(
) � 2h and h(
) � 2h+ 2 :

Proof. Let G be a geodesic domain in 
. Without loss of generality

we can suppose that G contains the point at in�nity. Let us consider

the family F1 of subarcs of @G which joins two points of the real axis

and are contained either in fz : Im z � 0g or in fz : Im z � 0g and

reect each of them with respect to the real axis. We obtain in this way

a family of closed curves F2. Let F3 be the family constituted by all

simple closed geodesics in 
 which are freely homotopic to some curve

of F2. We construct now a new family F4 from F3 in the following

way: a curve  of F3 belongs to F4 if and only if the bounded (in the

euclidean sense) Jordan domain J such that @J =  does not contain

any other curve in F3 and J \ @
 is not a �nite set. Observe that

the negative curvature implies that any two geodesics 1; 2 in F3 are

disjoint; therefore either J1 and J2 are disjoint, either J1 � J2 or

J2 � J1. Let G0 be the SG-domain whose boundary is constituted by

the curves in F4.

To illustrate this construction, let us consider for example the

geodesic domain G shown as the exterior of the curves in this picture.

Then, the family of curves F2 looks like the following

The family of simple closed geodesics F3 is shown by
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Note that the dotted curves in the last picture represent the free homo-

topy classes without geodesics; they are not in F3. Finally, the geodesic

domain G0 is the exterior of the geodesics in

It is clear that

L
(@G0) � 2L
(@G) :

Let now n; p be, respectively, the number of simple closed geodesics

limiting G and the number of punctures in G. Let also n0; p0 be the

corresponding numbers for G0. Observe that n0 + p0 � n+ p. To see

this, let us consider the set �(G) of generalized geodesics limiting G,

i.e. the union of the set of n geodesics in @G and the set of p punctures

\surrounded" by G. We want to show that

card �(G) � card �(G0) :

If a puncture is surrounded by G it is also surrounded by G0. On the

other hand, given a geodesic  of @G let us consider the bounded (in

the euclidean sense) Jordan domain J with @J = ; if the intersection

of J with the real axis has m connected components, the geodesic 

\generates" at least m generalized geodesics of @G0. This gives that

n0 + p0 � n+ p.

Gauss-Bonnet theorem gives that

A
(G0) = 2� (n0 + p0 � 2) � 2� (n+ p� 2) = A
(G) ;

since the hyperbolic metric of 
 has curvature �1.
Therefore

A
(G) � A
(G0) � hL
(@G0) � 2hL
(@G) ;

and so we have proved the �rst inequality in Lemma 4.1. The second

inequality is a consequence of the �rst one and [FR, Lemma 1.2].
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Given a border set of @
 with four points, B = fb1; b2; b3; b4g, we
denote by (B) the unique simple closed geodesic in 
 which separates

[b2; b3] from [b4; b1].

Lemma 4.2. A Denjoy domain 
 such that @
 has no isolated points

has HII if and only if there exists a positive constant c such that for

any border set of @
, B = fb1; : : : ; b2ng with n � 3, we have that

1

n

nX
j=1

L
((fb2j�1; b2j; b2j+1; b2j+2g)) > c :

Proof. Observe that we can establish a one to one correspondence

between border sets of @
 with n � 3 and SG-domains in 
. Given

a border set B of @
, B = fb1; : : : ; b2ng, let us consider the set of n

geodesics (n � 3)

G = f(fb2j�1; b2j; b2j+1; b2j+2g) : j = 1; : : : ; ng :

The curves in G limit a geodesic domain G associated to B. Observe

that if n = 2, both geodesics are the same and then obviously they do

not limit a geodesic domain.

It is clear that this process has a well de�ned inverse. Gauss-

Bonnet theorem gives that A(G) = 2� (n� 2). Therefore, we have that

A(G) � n. This fact and Lemma 4.1 give Lemma 4.2.

It is clear that if we de�ne


1 = Ĉ n ([b2j; b2j+1] [ [b2j+2; b2j�1]) ;


2 = Ĉ n fb2j�1; b2j; b2j+1; b2j+2g ;

then we have

L
2((fb2j�1; b2j; b2j+1; b2j+2g)) � L
((fb2j�1; b2j; b2j+1; b2j+2g))
� L
1((fb2j�1; b2j; b2j+1; b2j+2g)) ;

since 
1 � 
 � 
2.

In order to prove Theorem 2 we only need to relate the length in


1 and 
2 of the geodesic

(fb2j�1; b2j; b2j+1; b2j+2g)



374 V. Alvarez, D. Pestana and Jos�e M. Rodr��guez

with the functions �1 and �2 (see their de�nitions after (2.1)).

The following result gives an estimate of the hyperbolic length of

the imaginary axis in some normalized Denjoy domains. This curve is

important because it is the geodesic (in many symmetric cases (see, e.g.

Lemma 4.5)) whose length we want to estimate.

We recall that [x] denotes the greatest natural number which is

less or equal than x.

Lemma 4.3. Let us �x a number 0 < a < 1 and let 0 < t < 1. For

each natural number m such that

(4.1) m � N =

2
64 log

a

t

log
1

a

3
75 ;

let us consider the closed set

Dm = Dm(t) = fz 2 C : am+1 � jz+tj � a
m or am+1 � jz�tj � a

mg :

Let 
 be a Denjoy domain such that f�1;�t; t; 1g � @
 � [�1;�t] [
[t; 1].

Let n1 < n2 < � � � < n`�1 be all the natural numbers in (0; N)

satisfying Dnj
\ @
 6= ?, n0 = 0 and n` = N .

Then we have that there exists a universal constant 0 < t0 < 1

such that if we denote by � the imaginary axis with the point at in�nity

included, then

L
(�) �
`X

j=1

(1 + log (nj � nj�1)) ; for 0 < t � t0 :

Here the constant in � depends only on a but neither on 
 nor t.

Proof. The idea of the proof is to estimate the length of \dyadic"

segments of the curve. Over each one of these segments we shall have

a precise estimate of the distance to the boundary of the domain and

the function �
 (see (2.2)). These facts and [BP, Theorem 1] will give

the lemma up to a technical detail involving the point at in�nity which

we solve in Lemma 4.4.
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Let Im = � \Dm, 0 � m � N . We are going to estimate L
(Im),

the length in 
 of Im, under the assumptions that

(Dm�k [Dm+k) \ @
 6= ? ;

(Dm�k+1 [Dm�k+2 [ � � � [Dm�1

[Dm [Dm+1 [ � � � [Dm+k�1) \ @
 = ? ;

for 0 � k � min fm;N �mg (obviously the second condition does not

appear if k = 0).

Let 
� := 
 n f1g; the computations in 
� are easier than in 


because we can apply [BP, Theorem 1] since 
� � C .

Let us consider a point b 2 (Dm�k [ Dm+k) \ @
. We have four

possibilities:

i) b 2 Dm+k and a
m+k+1 � jb+ tj � a

m+k,

ii) b 2 Dm+k and a
m+k+1 � jb� tj � a

m+k,

iii) b 2 Dm�k and a
m�k+1 � jb+ tj � a

m�k,

iv) b 2 Dm�k and a
m�k+1 � jb� tj � a

m�k.

We consider now the case i). If z 2 Im, it satis�es inequalities

a
m+1 � jz+tj � a

m (in fact, z satis�es both inequalities in the de�nition

of Dm), and then

1

ak�1
=

a
m+1

am+k
� jz + tj
jb+ tj �

a
m

am+k+1
=

1

ak+1
:

This implies that

(4.2) 1 + �
�(z) � (k + 1) log
1

a
:

The same result can be deduced, with similar arguments, in the cases

ii), iii) and iv).

Using (4.2) and [BP, Theorem 1] we obtain that

(4.3) �
�(z) � 1

am(k + 1)
; for k � 0 :

Next we are going to estimate the euclidean length of Im

(4.4)

jImj =
p
a2m � t2 �

p
a2m+2 � t2

=
a
2m (1� a

2)p
a2m � t2 +

p
a2m+2 � t2

:
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Observe that (4.1) gives t2 � a
2m+2. This fact and (4.4) imply that

jImj � a
m, and therefore

(4.5) L
�(Im) =

Z
Im

�
�(z) jdzj �
Z
Im

jdzj
am (k + 1)

� 1

k + 1
:

In order to estimate L
(Im) we only need to prove that �
�(z) � �
(z)

for jzj � 1.

This last relation would be easy to prove (see Lemma 3.1 with C =

f1g) if we were not interested in obtaining constants independent of 


and t. But, to obtain universal constants, we need a more sophisticated

argument.

Lemma 4.4. Let E be a closed subset of the closed unit disk such that

f�1;�t; t; 1g � E. Then, for each � > 1 there exist constants t0 2 (0; 1)

and c > 0 which only depend on � such that

�
ĈnE(z) � c �CnE (z) ;

for every 0 < t � t0 and jzj � �.

Proof. By [He, Theorem 1] we have that

�
Ĉnf�1;�t;t;1g(z) �! �

Ĉnf�1;0;1g(z) ; as t �! 0 ;

uniformly over compact subsets of Ĉ n f�1; 0; 1g. Therefore, for each

� > 1, there exist constants t0, c1 which only depend on �, such that if

0 < t � t0 and  is a curve contained in fw 2 Ĉ : jwj � �g, then

L
Ĉnf�1;�t;t;1g() � c1 LĈnf�1;0;1g() :

On the other hand, by [Br, Theorem 1], the set fw 2 Ĉ : jwj � �g is
hyperbolically convex in every hyperbolic plane domain containing it.

Hence,

(4.6) d
Ĉ nE(w;1) � d

Ĉnf�1;�t;t;1g(w;1) � c1 dĈ nf�1;0;1g(w;1) ;

if jwj � �. Now, it is clear that there exists a positive constant r which

only depends on � such that

B
Ĉnf�1;0;1g

�
1;

r

c1

�
� fw 2 Ĉ : jwj > �g :
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This fact and (4.6) says that

B
ĈnE(1; r) � fw 2 Ĉ : jwj > �g ;

and so, if jzj � �, we have that d
ĈnE(1; z) � r. Therefore Lemma 3.1

(with C = f1g) gives that

c = tanh
�
r

2

�
<

�
ĈnE(z)

�CnE (z)
< 1 :

This �nishes the proof of Lemma 4.4.

In what follows we will take the �xed value � = 2 and we will

consider the corresponding c and t0. This t0 is the constant that works

in Lemma 4.3.

Now Lemma 4.4 and (4.5) give

L
(Im) � 1

k + 1
; if 0 < t � t0 :

Therefore

L
(Inj�1[� � �[Inj ) � 2
�
1+

1

2
+
1

3
+� � �+ 2

nj � nj�1

�
� 1+log (nj�nj�1)

and

L
(I0 [ � � � [ IN ) �
`X

j=1

(1 + log (nj � nj�1)) :

In order to �nish the proof of Lemma 4.3 it is enough to check that

L
(�) � L
(I0 [ � � � [ IN ) ;

where the constant in � depends only on a.
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This is a consequence of the following facts.

L
(� \ fw 2 Ĉ : jwj �
p
a2N+2 � t2 g)

� L
Ĉn[t;�t](� \ fw 2 Ĉ : jwj � a

N+1g)

� L
Ĉn[t;�t]

�
� \

n
w 2 Ĉ : jwj � t

a

o�

= L
Ĉn[1;�1]

�
� \

n
w 2 Ĉ : jwj � 1

a

o�
;

L
(� \ fw 2 Ĉ : jwj �
p
1� t2 g)

� L
Ĉn[�1;1]

�
� \ �w 2 Ĉ : jwj �

q
1� t20

	�
;

`X
j=1

(1 + log (nj � nj�1)) � 1 + log N � log log
�1
t

�
;

� � I0 [ � � � [ IN [ fw 2 Ĉ : jwj �
p
a2N+2 � t2 g

[ fw 2 Ĉ : jwj �
p
1� t2 g :

This �nishes the proof of Lemma 4.3.

For a border set B = fb1; b2; b3; b4g, in order to obtain a more

symmetric situation, as in Lemma 4.3, we consider the M�obius trans-

formations

(4.7)

T (z) = TB(z) =
(b2 � b1)(z � b3)

(b3 � b2)(z � b1)
;

T
�1
B

(z) =
b1(b3 � b2)z � b3(b2 � b1)

(b3 � b2)z � (b2 � b1)
;

S(z) = SB(z) =
z + 1�

p
1 + r(B)

z + 1 +
p
1 + r(B)

;

S
�1
B

(z) =
�2

1� t(B)

z + t(B)

z � 1

=
(�1�

p
1 + r(B) ) z + 1�

p
1 + r(B)

z � 1
;

U(z) = UB(z) = (T�1 � S�1)(z) ;



Isoperimetric inequalities in Riemann surfaces of infinite type 379

where r(B) is de�ned by (2.1) (observe that r(B) = TB(b4)) and t(B)

is de�ned by

(4.8) t(B) =

p
1 + r(B)� 1p
1 + r(B) + 1

; r(B) =
4 t(B)

(1� t(B))2
:

Observe that the images by T of b1; b2; b3; b4 are 1;�1; 0; r in this

order, the images by S of 1;�1; 0; r are 1;�1;�t; t also in this order

and therefore the images by U of 1;�1;�t; t are b1; b2; b3; b4.

Lemma 4.5. For r > 0 let Tr be the Teichm�uller annulus, i.e. Tr = C n
([�1; 0][ [r;1)) and Sr = C n f�1; 0; rg. Then we have that the simple

closed geodesic �r which surrounds f�1; 0g and does not surround frg
is equal to fz 2 C : jz + 1j = p

1 + rg in both domains. Moreover,

LTr (�r) � �1(r) ; LSr (�r) � �2(r) ; r > 0 :

Proof. Let us consider the images of the domains Tr and Sr un-

der the M�obius transformation S(z) (see (4.7)) which maps the points

�1; 0; r;1 to �1;�t; t; 1 in this order (if r and t are related by (4.8)).

It is clear, by symmetry, that the simple closed geodesic in S(Tr) and

S(Sr) corresponding to �r is in both cases the imaginary axis (with

the point at in�nity included). Therefore, �r = S
�1(fw 2 C : Rew =

0g [ f1g) = fz 2 C : jz + 1j = p
1 + rg.

To �nish the proof we have to prove the following four facts:

1) LTr (�r) � log (1=r) as r �! 0,

2) LSr (�r) � log log (1=r) as r �! 0,

3) LTr (�r) � 1= log r as r �!1,

4) LSr (�r) � 1= log r as r �!1.

1) follows as a direct consequence of Lemma 4.3 by observing that

fn0; n1; : : : ; n`g = f0; 1; 2; : : : ; Ng and ` = N � log (1=t) � log (1=r).

Similarly, 2) follows also as a direct consequence of Lemma 4.3 since in

this case ` � 3.

3) is a well-known fact (see sections 1 and 2 of [LV, Chapter II],

where 1) is also proved; recall that the product of the modulus of an

annulus by the length of its simple closed geodesic is constant). 4)
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follows from 3), [BP, Theorem 1] and the fact that, as r � 3, the �-

functions de�ned by (2.2) verify

�Tr (z) = �Sr (z) ; for all z 2 �r :

Lemma 4.5 has been proved.

Proof of Theorem 2. Let us consider a border set of @
, B =

fb1; : : : ; b2ng (n � 3). We have that Ĉ n ([b2j; b2j+1] [ [b2j+2; b2j�1]) �

 � Ĉ n fb2j�1; b2j; b2j+1; b2j+2g. Therefore, if we denote by r the

positive number

r = r(fb2j�1; b2j; b2j+1; b2j+2g) ;

Lemma 4.5 gives that

c2�2(r) � L
Ĉnf0;r;1;�1g((f0; r;1;�1g))

= L
Ĉnfb2j�1;b2j ;b2j+1;b2j+2g

((fb2j�1; b2j; b2j+1; b2j+2g))
� L
((fb2j�1; b2j; b2j+1; b2j+2g)) ;

where we should remark that in the second line of the last display,

(fb2j�1; b2j; b2j+1; b2j+2g) refers to the geodesic in the domain Ĉ n
fb2j�1; b2j; b2j+1; b2j+2g, but the same symbol in the third line refers to

the geodesic in the domain 
.

Lemma 4.5 also gives that

L
((fb2j�1; b2j; b2j+1; b2j+2g))
� L

Ĉnf[b2j;b2j+1][[b2j+2;b2j�1]g
((fb2j�1; b2j; b2j+1; b2j+2g))

= L
Ĉn([�1;0][[r;1])

((f0; r;1;�1g))
� c1�1(r) ;

where we should make a remark similar to the one in the last paragraph.

These inequalities and Lemma 4.2 prove Theorem 2.
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5. Length of geodesics and characterization of the HII-proper-

ty in Denjoy domains.

In order to state the characterization of the HII-property for Den-

joy domains we need a good estimate of the length of the simple closed

geodesic (B) associated to any border set B of @
 with four points.

This estimate, which is interesting by itself, is the statement of Theorem

4.

Let us �x a number 0 < a < 1 and denote by Dm the closed set

Dm = Dm(B) = U(fz 2 C : am+1 � jz + t(B)j � a
m

or am+1 � jz � t(B)j � a
mg) ;

m 2 N . The intersection of Dm with the real axis is, in fact, a union of

at most four closed intervals. Observe that the de�nition of Dm above

is consistent with the one in Lemma 4.3.

We need also to de�ne the following natural number

N = NB :=

2
64 log

a

t(B)

log
1

a

3
75 ;

where [x] is the greatest natural number which is less or equal than x.

Theorem 4. Let 
 be a Denjoy domain, 0 < a < 1 and B =

fb1; b2; b3; b4g be a border set of @
.

Let n1 < n2 < � � � < n`�1 be the list of the natural numbers in

(0; N) satisfying Dnj
\ @
 6= ?, n0 = 0 and n` = N .

Then there exists a universal constant 0 < r0 < 1 such that

L
((B)) � 	
(B)

:=

8>>>>>><
>>>>>>:

1

log r(B)
; if r(B) > e ;

1 ; if r0 < r(B) � e ;

`X
j=1

(1 + log (nj � nj�1)) ; if r(B) � r0 :

Here the constant in � depends only on a and neither on 
 nor B.
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Observe that Theorem 4 gives a general procedure to obtain the

length of a symmetric simple closed geodesic in a Denjoy domain. This

theorem is a useful tool in order to study the asymptotic behaviour of

the length of geodesics in domains which depend on a parameter. Also,

note that the condition of admissibility of 
 does not appear in the

hypotheses.

In the proof of Theorem 5 we use Theorem 4 and some of the

ingredients of the proof of Theorem 2. Theorem 4 allows to relate the

previous ideas with euclidean conditions on the size of @
; this is the

most delicate part of our argument.

We start proving an analogue of Lemma 4.3 but now for the \au-

thentic" geodesics. This result will be the basic tool in the proof of

Theorem 4.

Lemma 5.1. Let us �x a number 0 < a < 1 and let 0 < t < 1. For

each natural number m such that

m � N =

2
64 log

a

t

log
1

a

3
75 ;

let us consider the closed set

Dm = Dm(t) = fz 2 C : am+1 � jz+tj � a
m or am+1 � jz�tj � a

mg :

Let 
 be a Denjoy domain such that B = f�t; t; 1;�1g � @
 �
[�1;�t] [ [t; 1].

Let n1 < n2 < � � � < n`�1 be all the natural numbers in (0; N)

satisfying Dnj
\ @
 6= ?, n0 = 0 and n` = N .

Then we have that there exists a universal constant 0 < t0 < 1 (the

same constant that in Lemma 4:3) such that

L
((B)) �
`X

j=1

(1 + log (nj � nj�1)) ; for 0 < t � t0 :

Here the constant in � depends only on a and neither on 
 nor t.

The main ideas of the proof of this lemma are the following. First,

we shall use a polarization argument (see below) in order to reduce our

problem to some extremal cases (Lemma 5.2). Secondly, observe that
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we do not know where is the geodesic (B). So, in order to obtain lower

bounds for its length, we shall study the length of any curve in the same

homotopy class in 
 by using again a \dyadic" argument (Lemma 5.3).

We should remark that we have already upper bounds of the length of

(B) (Lemma 4.3).

In order to prove Lemma 5.1 it is convenient to introduce some

concepts.

If z is a complex number, we consider its symmetric point with

respect to the imaginary axis z# = ��z, with1# =1. The symmetric

A
# of a set A � Ĉ is de�ned as A# = fz# : z 2 Ag. The positive and

negative parts of A are

A
+ = A \ fz : Re z � 0g ; A

� = A \ fz : Re z � 0g :

Let us consider a domain 
 as in Lemma 5.1. The polarization 
p of

the Denjoy domain 
 is de�ned as


p = (
 [ 
#)+ [ (
 \ 
#)�

and the antisymmetric 
as of the domain 
 as


as =
�fz : Re z � 0g n ft; 1g� [ (
 \ 
#)� :

Observe that (
p)p = 
p, (
as)as = 
as, (
p)as = (
as)p = 
as and


p � 
as.

The concept of polarization appeared in a paper by Wolontis [W],

who proved results on the behavior of certain extremal lengths under

polarization and also symmetrization results by repeated application of

polarization.

We shall need the following result about polarization [So, Theo-

rem 9]

(5.1) �
p
(z) � min f�
(z); �
(z#)g ; if Re z � 0 :

In particular, we have that

(5.2) �
p
(z) � �
p

(z#) ; �
as
(z) � �
as

(z#) ; if Re z � 0 :

This last result is well-known [M, Theorem 3].

The results concerning the Poincar�e metric that appear in [M] and

[So] use as symmetry axis the real axis instead of the imaginary one,
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but it is obvious (as Solynin comments in [So]) that the result is true

for polarization with respect to any �xed straight line.

We can prove now

Lemma 5.2. In order to prove Lemma 5:1 it is enough to consider the

sets 
as instead of 
.

Proof. If � denotes the imaginary axis with the point at in�nity, we

have that

L
as
(�) � L
p

(�) � L
(�) ; for 0 < t � t0 ;

where t0 is the constant in Lemma 4.3. This fact is a direct consequence

of Lemma 4.3, since the expression
P`

j=1(1+log (nj�nj�1)) is exactly

the same for 
as;
p and 
.

Let us consider now the simple closed geodesic , (respectively

p; as) in 
 (respectively 
p;
as) which is freely homotopic to �. By

the de�nition of geodesic it follows that

L
() � L
(�) ; L
p
(p) � L
p

(�) ; L
as
(as) � L
as

(�) :

We also have that �
as
(z) � �
p

(z) for all z 2 
p, since 
p � 
as.

Therefore L
as
(as) � L
p

(p).

In order to �nish the proof of Lemma 5.2, it is enough to see that

L
p
(p) � L
().

Let us consider the curve ~ = 
+ [ (�)#. Obviously, ~ is freely

homotopic to  in 
. Therefore

L
p
(p) � L
p

(~) � L
() ;

where the �rst inequality follows from the fact that ~ is also freely

homotopic to p in 
p, and we have the second one by (5.1).

This �nishes the proof of Lemma 5.2.

Lemma 5.3. Let us �x a number 0 < a < 1. Let 
 be a Denjoy domain

such that f�1;�t; t; 1g � @
 � [�1;�t] [ [t; 1], with 0 < t � t0, where

t0 is the constant in Lemma 4:3. Let us consider the antisymmetric set


as of 
. Let �m be a curve contained in Bm = fz 2 C : 0 � Re z �
(1+t)=2; am+1 � jz�tj � a

mg which joins Sm = fz 2 C : jz�tj = a
mg
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with Sm+1. Then, there exists a positive constant c, which only depends

on a, such that if

(Dm�k [Dm+k) \ @
as 6= ? ;

(Dm�k+1 [Dm�k+2 [ � � � [Dm�1

[Dm [Dm+1 [ � � � [Dm+k�1) \ @
as = ? ;

then we have

L
as
(�m) � c

k + 1
;

for 0 � k � min fm;N �mg (obviously the second condition over @
as

does not appear if k = 0).

Proof. Let 
�
as

:= 
as n f1g; the computations in 
�
as

are easier

than in 
as because we can apply [BP, Theorem 1] since 
�
as
� C . We

are going to �nd bounds for �
�
as
(z), in order to estimate �
�

as
(z) for

z 2 Bm.

We have that �
�
as
(z) = jz � tj and (4.1) gives that

(5.3) t � a
m+1 � jz � tj ; for all z 2 Bm and m � N :

Let us consider a point b 2 (Dm�k [ Dm+k) \ @
�as. We have four

possibilities:

i) b 2 Dm+k and a
m+k+1 � jb+ tj � a

m+k,

ii) b 2 Dm+k and a
m+k+1 � jb� tj � a

m+k,

iii) b 2 Dm�k and a
m�k+1 � jb+ tj � a

m�k,

iv) b 2 Dm�k and a
m�k+1 � jb� tj � a

m�k.

We consider �rst the cases ii) and iv). The conditions which de�ne

these possibilities and (5.3) give that

1

ak�1
=

a
m+1

am+k
� jz � tj
jb� tj �

a
m

am+k+1
=

1

ak+1
;

in the case ii), and

a
k+1 =

a
m+1

am�k
� jz � tj
jb� tj �

a
m

am�k+1
= a

k�1
;
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in the case iv). In both cases, this implies that

�
�
as
(z) � (k + 1) log

1

a
:

We consider now the cases i) and iii). If b = 1 or b = t we can take �b
instead of b (since �b also belongs to (Dm�k [Dm+k) \ @
�as) and we

are in the cases ii) or iv); obviously, b 6= �t. Therefore, without loss of
generality we can assume that b < �t. In both possibilities i) and iii)

we have that

(5.4) jb� tj � jb+ tj :

In order to obtain upper bounds for jb � tj, we study separately the

cases i) and iii).

In the case iii) we have that

jb� tj = 2 t+ jb+ tj � 2 am+1 + a
m�k � 3 am�k ;

and
a
k+1

3
=

a
m+1

3 am�k
� jz � tj
jb� tj �

a
m

am�k+1
= a

k�1
:

This fact implies that

�
�
as
(z) � log 3 + (k + 1) log

1

a
:

In the case i) the condition m+ k � N gives that

jb� tj = 2 t+ jb+ tj � 2 am+k+1 + a
m+k � 3 am+k

;

and
1

3 ak�1
=

a
m+1

3 am+k
� jz � tj
jb� tj �

a
m

am+k+1
=

1

ak+1
:

This fact implies that

�
�
as
(z) � max

n��� log 1

3 ak�1

���; log 1

ak+1

o
:

Therefore, there is a constant c1, only depending on a, such that

�
�
as
(z) � c1 (k + 1) :
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Consequently, we have in any case

�
�
as
(z) � c2 (k + 1) :

Therefore [BP, Theorem 1] gives that

�
�
as
(z) � c3

jz � tj (k + 1) log
�1
a

� ;

and we deduce that

L
�
as
(�m) =

Z
�m

�
�
as
(z) jdzj

�
Z
�m

c3 jdzj
jz � tj (k + 1) log

�1
a

�

�
Z

a
m

am+1

c3 dr

r (k + 1) log
�1
a

�
=

c3

k + 1
:

Observe that jz�tj � a
m � 1 and t < 1. These facts imply that jzj < 2.

Lemma 4.4 (recall that we have chosen � = 2) gives that

L
as
(�m) � c

k + 1
; if 0 < t � t0 :

This �nishes the proof of Lemma 5.3.

Proof of Lemma 5.1. As Lemma 5.2 states, we only need to prove

Lemma 5.1 for the domains 
as.

Let us consider any curve � freely homotopic to (B) in 
as.

We want to prove that there exists a positive constant c1, which

only depends on a, such that

L
as
(�) � c1

`X
j=1

(1 + log (nj � nj�1)) :
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If we prove this inequality, then Lemma 5.1 is true since (B) is one of

the curves � above. The upper bound of L
as
(�) is a consequence of

Lemma 4.3, since

L
as
((B)) � L
as

(�) � c2

`X
j=1

(1 + log (nj � nj�1)) ;

and the nj 's are the same for 
as and 
.

Let us consider now the curve ~� = �
+ [ (��)#. Obviously ~� is

freely homotopic to � in 
as, and (5.2) gives that L
as
(~�) � L
as

(�).

Let �
0 be a connected component of ~� contained in fz : 0 �

Re z � (1 + t)=2g which joins the interval [0; t) with fz : Re z =

(1 + t)=2; Im z � 0g. The curve �0 meets the vertical line fz : Re z =

(1 + t)=2g at a point with the form i b2 + (1 + t)=2. We have that

���1 + t

2
+ i b2 � t

��� � 1� t

2
� 1� t0

2
:

If m satis�es

log
2

1� t0

log
1

a

� m �
log

a

t

log
1

a

then we have that am � (1� t0)=2 and a
m+1 � t and so �m = �

0 \fz :
a
m+1 � jz � tj � a

mg joins Sm = fz : jz � tj = a
mg with Sm+1.

Therefore Lemma 5.3 and the same argument used at the end of the

proof of Lemma 4.3 give that

L
as
(�) � L
as

(�0) � c1

`X
j=1

(1 + log (nj � nj�1)) ;

since the terms in the last sum corresponding to

0 � m �
log

2

1� t0

log
1

a

have bounded length.
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Proof of Theorem 4. If we apply the M�obius transformation U
�1

(which preserves the hyperbolic metric) to 
 we obtain a new domain


0 with

(5.5) f�1;�t; t; 1g � @
0 � [�1;�t] [ [t; 1] :

Therefore, without loss of generality we can assume that 
 satis�es

(5.5) and so

Dm = fz 2 C : a
m+1 � jz + tj � a

m or am+1 � jz � tj � a
mg :

Let  be the simple closed geodesic in 
 given by  = (f�t; t; 1;�1g).
Let us consider �rst the case 0 < t � t0. Lemma 5.1 gives that

L
() �
`X

j=1

(1 + log (nj � nj�1)) :

For t0 � t < 1, observe that 
1 = Ĉ n ([�1;�t] [ [t; 1]) � 
 � 
2 =

Ĉ n f�1;�t; t; 1g. Then we have that

�
1(z) � �
(z) ; for all z 2 
1 ;

�
(z) � �
2(z) ; for all z 2 
 ;

and consequently Lemma 4.5 gives that

�1(r) � L
1(�) � L
() � L
2(�) � �2(r) ; with r =
4 t

(1� t)2
;

and we have that

�1(r) � �2(r) �
8<
:

1

log r
; if r > e ;

1 ; if r0 � r � e ;

with r0 = 4 t0=(1� t0)
2. Here the constant in � depends only on a but

neither on 
 nor r. This �nishes the proof of Theorem 4.

Theorem 5. Let 
 be a Denjoy domain, let I be the set of isolated

points of @
 and let 
0 = 
 [ I. Then, 
 has HII if and only if 




390 V. Alvarez, D. Pestana and Jos�e M. Rodr��guez

is admissible and there exists a positive constant c such that for any

border set of @
0, B = fb1; : : : ; b2ng with n � 3, we have that

1

n

nX
j=1

	
0(fb2j�1; b2j; b2j+1; b2j+2g) > c :

Proof of Theorem 5. If @
0 has isolated points, then 
 is not

admissible and Theorem 1 gives that 
 has not HII. Let us assume

now that @
0 has not isolated points. Theorem 1 reduces the proof of

Theorem 5 to the following:


0 has HII if and only if there exists a positive constant c such that

for any border set of @
0, B = fb1; : : : ; b2ng with n � 3, we have that

1

n

nX
j=1

	
0(fb2j�1; b2j; b2j+1; b2j+2g) > c :

This fact is a consequence of Lemma 4.2 and Theorem 4.

6. Collars and balls.

Let R be a hyperbolic Riemann surface with a puncture p. A collar

in R about p is a doubly connected domain in R \bounded" by p and

a Jordan curve (called the boundary curve of the collar) orthogonal to

the pencil of geodesics emanating from p. It is well known that the

length of the boundary curve is equal to the area of the collar.

A collar in R about p of area � will be called an �-collar and it will

be denoted by CR(p; �). A theorem of Shimizu [S] gives that for every

puncture in any hyperbolic Riemann surface, there exists an �-collar

for every 0 < � � 1 (see also [K, p. 60-61]).

Next, we will prove a relationship (involving universal constants)

between collars in R and balls in R [ fpg.

Proposition 1. Let S be a hyperbolic Riemann surface and let

fBS(p; r0)gp2I be a family of simply connected and pairwise disjoint

balls. Let us denote by R the Riemann surface R = S n I. Let k = 4:76

and K = e
k.
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a) We have that

CR

�
p;

2�

k � log (1� e�r)

�
� BS(p; r)

�
;

for p 2 I and

0 < r < min
n
log

1

1�K e�2�
; log

2

1 + e�2r0

o
:

b) We have that

BS(p; r)
� � CR

�
p;

2�

log (1� e�2r0)� log (er � 1)

�
;

for p 2 I and

0 < r < log (1 + (1� e
�2r0) e�2�) :

Observe that, in both cases, the conditions on r imply that 0 <

r < r0.

Proof. Let F : U �! S be a universal covering map and J = F
�1(I).

The balls in fBU(z; r0)gz2J = fF�1(BS(p; r0))gp2I are obviously sim-

ply connected (every ball in U is simply connected). We also remark

that these balls are pairwise disjoint. If we have that for some z; w 2 J

BU(z; r0) \BU(w; r0) 6= ? ;

this implies that BS(F (z); r0) is not simply connected (if F (z) = F (w))

or BS(F (z); r0) \ BS(F (w); r0) 6= ? (if F (z) 6= F (w)), and both con-

clusions contradict the hypothesis on fBS(p; r0)gp2I .
Since

F (BU(z; r)) = BS(F (z); r) ; for z 2 J , 0 < r � r0 ;

and

F (CUnJ(z; �)) = CSnI(F (z); �) ; for z 2 J , 0 < � < 1 ;

we have that Proposition 1 is true for all hyperbolic Riemann surface

S if and only if it is true for the case S = U (with the same constants).
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Therefore, without loss of generality we can assume that S = U.

Let V be the Riemann surface V = U n I.
In the following we need a precise version of (2.3). It is well known

that if 
 � C is a hyperbolic plane domain then

(6.1) �
(z) � 1

�
(z) (4:76 + �
(z))
; for z 2 
 :

Lemma 6.1. Let r > 0, z1; z2 2 U. If dU(z1; z2) � 2 r and z 2
BU(z1; a(r)), we have that

(6.2) jz � z1j < jz � z2j ;

where

a(r) = log
2

1 + e�2r
:

Proof. Since this statement is invariant under conformal automor-

phisms of U, we can assume without loss of generality that z1 = i and

dU(i; z2) = 2 r.

A computation gives that Lemma 6.1 is true if (6.2) holds for z2 =

i e
�2r and z belongs to the segment joining i e

�a(r) with i (this is the

worse case) and this follows from our election of a(r).

Using (6.1) and Lemma 6.1 we can prove the following result.

Lemma 6.2. Let fBU(p; r0)gp2I be a family of pairwise disjoint balls.

Then we have, for p 2 I, that

(6.3) �V(z) � �B(p;(1�e�2r0 ) Im p)�(z) ;

for z 2 B(p; (1� e
�2r0) Imp)�, and

(6.4) �B(p;K Imp)�(z) � �V(z) ; for z 2 BU(p; a(r0)) ;

where a(r) is the function de�ned in Lemma 6.1.

Proof. The following relationship between hyperbolic and euclidean

balls is well-known.

BU(x+ i y; r) = B(x+ i y cosh r; y sinh r) ; for x 2 R ; y; r > 0 :
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This implies that

(6.5) B(z; (1� e
�r) Im z) � BU(z; r) � B(z; (er � 1) Im z) ;

for z 2 U, r > 0. We deduce that

B(p; (1� e
�2r0) Im p) � BU(p; 2 r0) ; for p 2 I :

Since dU(p; q) � 2 r0 for all p; q 2 I; p 6= q, we have that B(p; (1 �
e
�2r0) Imp)� � V. This implies (6.3).

Using again that dU(p; q) � 2 r0 for all p; q 2 I, p 6= q, and Lemma

6.1 we deduce that

(6.6) jz � pj < jz � qj ; for z 2 BU(p; a(r0)) :

A computation gives that

(6.7) jz � pj � Im z ; for z 2 BU(p; a(r0)) ;

since ea(r0) < 2. Hence, (6.6) and (6.7) imply that

�V(z) = jz � pj ; for z 2 BU(p; a(r0)) :

Consequently,

(6.8) �V(z) � min
n��� log ��� z � p

w � p

��� ��� : w 2 @V

o
� log

Im p

jz � pj ;

since jz � pj � Im p, for z 2 BU(p; a(r0)) (to see this it is enough to

change the roles of z and p in (6.7)).

Now, (6.1) and (6.8) imply that

�V(z) � 1

jz � pj log K Im p

jz � pj
; for z 2 BU(p; a(r0)) :

This inequality and the well known fact

�B(w;c)�(z) =
1

jz � wj log c

jz � wj
; for z 2 B(w; c)� ;



394 V. Alvarez, D. Pestana and Jos�e M. Rodr��guez

give (6.4). This �nishes the proof of Lemma 6.2.

Next we will prove Proposition 1, part a). First of all we observe

that K e
�2�

< 1, since k < 2�. Secondly, the condition r < � log (1�
K e

�2�) implies that

0 <
2�

k � log (1� e�r)
< 1

and then we can assure that there exists the collar in R [K, p. 60-61].

On the other hand, (6.4) and (6.5) give, for p 2 I, that

(6.9) �B(p;K Imp)�(z) � �V(z) ;

for z 2 B(p; (1 � e
�a(r0)) Im p)� � BU(p; a(r0))

�. A straightforward

computation shows that, for w 2 C and � > 0,

(6.10)

CB(w;�)�(w;�) = B(w; � e�2�=�)� ; for � > 0 ;

B(w; r)� = CB(w;�)�

�
w;

2�

log �� log r

�
; for 0 < r < � :

Therefore (6.9) and (6.10) imply that

CV(p; �) � CB(p;K Im p)�(p; �) = B(p;Ke
�2�=� Imp)� ;

if

B(p;K e
�2�=� Imp)� � B(p; (1� e

�a(r0)) Im p)� � BU(p; a(r0))
�
:

If we choose

� =
2�

k � log (1� e�r)
;

we obtain that

CV

�
p;

2�

k � log (1� e�r)

�
� B(p;K e

�2�=� Im p)�

= B(p; (1� e
�r) Im p)�

� BU(p; r)
�

� BU(p; a(r0))
�
;
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if

r � a(r0) = log
2

1 + e�2r0
:

This �nishes the proof of Proposition 1, part a).

Finally, to prove part b), observe that the condition r < log (1 +

(1� e
�2r0) e�2�) implies that

0 <
2�

log (1� e�2r0)� log (er � 1)
< 1 ;

and then, as above, we can assure that there exists the collar in R.
Now, for any p 2 I, (6.10) and (6.3) give that

B(p; (1� e
�2r0) e�2�=� Imp)� = CB(p;(1�e�2r0 ) Im p)�(p; �) � CV(p; �) ;

for 0 < � < 1. In particular, if we choose

� =
2�

log (1� e�2r0)� log (er � 1)

we obtain that

B(p; (er � 1) Imp)� � CV

�
p;

2�

log (1� e�2r0)� log (er � 1)

�
:

Therefore (6.5) gives that

BU(p; r)
� � CV

�
p;

2�

log (1� e�2r0)� log (er � 1)

�
:

This �nishes the proof of Proposition 1.

We de�ne a generalized collar in a hyperbolic Riemann surface R
about a puncture p as a domain (not necessarily doubly connected) inR
\bounded" by p and a �nite number of curves (if the collar is not equal

to R) orthogonal to the pencil of geodesics emanating from p. Observe

that if R is a punctured compact surface (with only a puncture p),

when the collar \grows" it is eventually equal to R and then there are

not such boundary curves.

In the punctured disk, R = B(z; r)� we have that

dR(@CR(z; �1); @CR(z; �2)) =
��� log �1

�2

��� :
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Then, we can de�ne for � � 1 the generalized �-collar in R about p as

the set

CR(p; �) = CR

�
p;
1

2

�
[
n
q 2 R : dR

�
q; @CR

�
p;
1

2

��
< log (2�)

o
:

Obviously this de�nition coincides with the original one if there exists

the �-collar. The number 1=2 can be changed for any number 0 < � < 1,

if log (2�) is substituted by log (�=�).

If R is not a punctured disk, it is obvious that there exists an �0

such that there is an �-collar only for 0 < � � �0. However there

always are generalized �-collars.

With this de�nition we can extend part b) of Proposition 1.

Corollary 3. Let S be a hyperbolic Riemann surface and let

fBS(p; r0)gp2I be a family of simply connected and pairwise disjoint

balls. Let us denote by R the Riemann surface R = S n I. If we denote

the generalized �-collar by CR(p; �), then we have that

BS(p; r)
� � CR

�
p;

2�

log(1� e�2r0)� log(er � 1)

�
;

for p 2 I and

0 < r < min flog(2� e
�2r0); r0g :

The proof of Corollary 3 is the same as the proof of Proposition

1, part b). We do not need now the condition � < 1 but we also need

� > 0; the condition on r guarantees this fact.

A computation and (6.10) give that

BB(w;�)(w; r)
� = B

�
w; � tanh

�
r

2

���
= CB(w;�)�

�
w;

2�

log cotanh
�
r

2

�� ;
for w 2 C and �, r > 0.

We want to remark that Proposition 1 is sharp for r ! 0 in the

following sense

lim
r!0+

2�

k � log (1� e�r)

2�

� log tanh
�
r

2

� = lim
r!0+

2�

log (1� e�2r0)� log (er � 1)

2�

� log tanh
�
r

2

� = 1 :
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Proposition 1 also gives the following result.

Corollary 4. Let S be a hyperbolic Riemann surface and let

fBS(p; r0)gp2I be a family of simply connected and pairwise disjoint

balls. Let us denote by R the Riemann surface R = S n I. Let k = 4:76

and K = e
k.

a) We have that

CR(p; �) � BS

�
p; log

1

1�K e�2�=�

��
;

for p 2 I, 0 < � < 1 and

� � 2�

k + log
2

1� e�2r0

:

b) If we denote the generalized �-collar by CR(p; �), then we have

that

BS(p; log (1 + (1� e
�2r0) e�2�=�))� � CR(p; �) ;

for p 2 I and

0 < � � 2�

log (1 + e�r0)� r0
:

7. Further results.

We will generalize theorems 3 and 5 in this section. To do this, we

shall comment some remarks:

1) If the set I in theorems 3 and 5 is not contained in R̂ , these the-

orems are also true since Theorem 1 is a general result about hyperbolic

Riemann surfaces.

2) If @
0 is contained in a quasicircle Q (the image of a straight

line by a quasiconformal mapping of the Riemann sphere onto itself)

our characterization of the HII-property for Denjoy domains can be yet

applied (if we know the quasiconformal mapping which applies R̂ in Q)

since the HII-property is preserved by quasiconformal mappings [FR,

Theorem 1].

We can de�ne in an obvious way a border set of a closed subset of

a quasicircle. In this context we can generalize Theorem 3.
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Theorem 6. Let 
0 be a hyperbolic plane domain whose boundary is

contained in a quasicircle and has not isolated points, let I be a strongly

uniformly separated set in 
0, and let 
 = 
0 n I. Then
a) If 
 has HII, then there exists a positive constant c such that

for any border set of @
0, B = fb1; : : : ; b2ng with n � 3, we have that

1

n

nX
j=1

�1(r(fb2j�1; b2j; b2j+1; b2j+2g)) > c :

b) If there exists a positive constant c such that for any border set

of @
0, B = fb1; : : : ; b2ng with n � 3, we have that

1

n

nX
j=1

�2(r(fb2j�1; b2j; b2j+1; b2j+2g)) > c ;

then 
 has HII.

Observe that Theorem 6 follows directly from Theorem 3, [FR,

Theorem 1] and the following facts: a) a quasiconformal map quasi-

preserves cross ratios; b) �i(s) � �i(r) for s � r, with 0 < r <1 and

i = 1; 2.

Theorem 6 gives a necessary and a su�cient condition for 
 to

have HII. We shall improve this result in the remainder of the section.

If @
0 is contained in a �nite union of quasicircles, we can also

characterize the HII-property of 
 in many cases. We give now the

details:

Let fEjgnj=1 be a collection of pairwise disjoint closed subsets of

Ĉ such that each Ej is contained in a quasicircle and 
0 = Ĉ n [jEj is

connected. Let I be a strongly uniformly separated set in 
0 and let


 = 
0 n I. A necessary and su�cient condition for 
 to have HII is

that each Ĉ n Ej has HII (see Theorem 8 below). By using remark 2)

or Theorem 6 as a test, we can verify if each one of these last domains

has HII or not.

Although we are interested in plane domains and closed subsets of

quasicircles, many results in this section are true for general Riemann

surfaces instead of Ĉ and general closed sets Ej. We start with some

de�nitions.
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De�nition. Let S be a Riemann surface and " > 0. Let E1; E2 be

two closed disjoint subsets of S. We say that E1 and E2 are weakly

"-separated in S if S1 = S nE1, S2 = S nE2 are (connected ) hyperbolic

Riemann surfaces and the two following subsets are disjoint:

E1;" = fq 2 S2 : dS2(q; E1) < 2 "g ;

E2;" = fq 2 S1 : dS1(q; E2) < 2 "g :
We say that E1 and E2 are weakly separated in S if they are weakly

"-separated in S for some " > 0.

We say that the closed sets E1; E2; : : : ; En are weakly separated in

S if the n� 1 pairs of sets (E1; E2), (E1 [E2; E3); : : : ; (E1 [E2 [ � � � [
En�1; En) are weakly separated in S.

Remark 1. It is clear that if E1; E2 are disjoint closed subsets of S, E2

is compact and S n (E1 [E2) is connected, then E1; E2 are weakly sep-

arated in S. It is also clear that if E1; E2; : : : ; En are pairwise disjoint

compact subsets of S and S n[n
j=1Ej is connected, then E1; E2; : : : ; En

are weakly separated in S.

Remark 2. If E1; E2 are disjoint closed subsets of a plane domain 
,

it is possible that they are not weakly separated in 
. Let 
 be the

plane domain 
 = C n f0g. Let us consider as E1 a sequence fxng of

real numbers decreasing to 0. Let E2 be a sequence fyng such that:

a) 0 < xn+1 < yn < xn,

b) limn!1(xn�yn)=(yn�xn+1) = limn!1(xn�yn)=(yn�1�xn) =
0.

Then E1; E2 are not weakly separated in C n f0g.

Remark 3. Let E1; E2 be closed sets in a domain 
 � C n fz0g. Let
us assume that there is a positive constant �0 such that

jz1 � z2j � �0 jz1 � z0j ; for all z1 2 E1 ; z2 2 E2 :

Then E1; E2 are weakly separated in 
.

Proof of Remark 3. Without loss of generality we can suppose

z0 = 0. For w 2 C n f0; 1g, we de�ne the function
e(w) := max

�
" > 0 : BCnf0;1g(w; ") \BCnf0;wg(1; ") = ?

	
:
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Observe that @BCnf0;1g(w; ") and @BCnf0;wg(1; ") vary continuously

with w, since

�Cnf0;wg(z) = �Cnf0;1g

�
z

w

� 1

jwj
is a real analytic function on w.

Therefore, e is a continuous function e : C n f0; 1g �! (0;1). On

the other hand, we can deduce of (6.1) that

�Cnf0;1g(z) �
1

jzj (k +
�� log jzj��) ; for z 2 C n f0; 1g ;

where k = 4:76 is the constant in Section 6. This is a bad estimate

if z is near 1, but it is good for z in a neighborhood of 0 or 1. This

inequality gives

BCnf0;1g(w; ") � fjzj > exp
�
(k + log jwj) e�" � k

�g ;
and consequently,

BCnf0;wg(1; ") � fjzj < jwj exp �k � (k + log jwj)e�"�g ;
for

jwj > 1 and 0 < " � log
k + log jwj

k
:

Therefore, BCnf0;1g(w; ") \ BCnf0;wg(1; ") = ? for

jwj > 1 and 0 < " � log
k + log jwj
k +

1

2
log jwj

:

Then, for anyM > 1, there is a positive constant c0 such that e(w) � c0

if jwj �M .

Observe that e(1=w) = e(w) since the conformal map T (z) = 1=z

is an isometry of C n f0; 1g onto itself. Consequently, e(w) � c0 if

jwj � 1=M . These facts imply that, for any � > 0, there exists " > 0

such that e(w) � " if jw � 1j � �.

For z1; z2 2 C n f0g with z1 6= z2, we de�ne now the function

E(z1; z2) := maxf" > 0 : BCnf0;z1g(z2; ") \ BCnf0;z2g(z1; ") = ?g :

It is clear that

E(z1; z2) = E

�
1;
z2

z1

�
= e

�
z2

z1

�
:
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The hypothesis on E1 and E2 give that there is �0 > 0 such that

jz2 � z1j � �0jz1j for all z1 2 E1 and z2 2 E2, i.e., jz2=z1 � 1j � �0 for

all z1 2 E1 and z2 2 E2. Consequently, there is "0 > 0 such that

E(z1; z2) � "0 ; for all z1 2 E1 and z2 2 E2 :

Then we have that

BCnf0;z1g(z2; "0)\BCnf0;z2g(z1; "0) = ? ; for all z1 2 E1 and z2 2 E2 :

In the following we will use the notation B
(A; r) := [p2AB
(p; r) for

a set A and a positive number r.

Let us �x z1 2 E1. We have that

BCnf0;z1g(E2; "0) := [z22E2BCnf0;z1g(z2; "0)

and

BCnf0;E2g(z1; "0) � \z22E2BCnf0;z2g(z1; "0) :

Therefore

BCnf0;z1g(E2; "0) \ BCnf0;E2g(z1; "0) = ? ; for all z1 2 E1 :

Now, we have that

BCnf0;E1g(E2; "0) � \z12E1BCnf0;z1g(E2; "0)

and

BCnf0;E2g(E1; "0) = [z12E1BCnf0;E2g(z1; "0) :

Then

BCnf0;E1g(E2; "0) \ BCnf0;E2g(E1; "0) = ? :

Remark 4. Let E1; E2 be closed sets in a domain 
 � C with z0 2 @
.

Let C1; C2 be closed sets in C , such that each Cj is a �nite union of

cones with vertex in z0, Ej � Cj and C1 \ C2 = fz0g. Then

jz1 � z2j � �0 jz1 � z0j ; for all z1 2 E1 ; z2 2 E2 ;

and therefore, E1; E2 are weakly separated in 
.

In order to prove Theorem 8 we shall state some previous results.
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Lemma 7.1. Let S be a Riemann surface and " > 0. Let E1; E2 be two

closed weakly "-separated subsets in S. Let Sk = S nEk be (connected )

hyperbolic Riemann surfaces for k = 1; 2 and let R be a connected

component of S1 \ S2 = S n (E1 [ E2). Then,

b(R) � 1

2
tanh2 "min fb(S1); b(S2)g :

Proof. Let ' 2 C
1
c (R). Obviously ' 2 C

1
c (S1) \ C

1
c (S2) andZZ

Sk

kr'k2 dwkZZ
Sk

'
2
dwk

� b(Sk) ; k = 1; 2 ;

where dw1 and dw2 denote, respectively, the area element in S1 and S2.
Recall that k �k and r refer also to the corresponding Poincar�e metrics.

Let us consider now the open sets

E1;" = fq 2 S2 : dS2(q; E1) < 2 "g ;

E2;" = fq 2 S1 : dS1(q; E2) < 2 "g :
By hypothesis we have that E1;" \ E2;" = ? and therefore (S nE1;") [
(S n E2;") = S. On the other hand, we also have as a consequence of

(3.2) that ZZ
SnE1 "

'
2
dw � cotanh2"

ZZ
SnE1 "

'
2
dw2

and ZZ
SnE2 "

'
2
dw � cotanh2"

ZZ
SnE2 "

'
2
dw1 ;

where dw is the area element in R.
Therefore, we deduce that

(7.1)

ZZ
R

'
2
dw �

ZZ
SnE1 "

'
2
dw +

ZZ
SnE2 "

'
2
dw

� cotanh2"
�ZZ

SnE1 "

'
2
dw2 +

ZZ
SnE2 "

'
2
dw1

�

� cotanh2"
�ZZ

S2

'
2
dw2 +

ZZ
S1

'
2
dw1

�
:
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Recall that
RR kr'k2 dw is a conformal invariant, i.e.

(7.2)

ZZ
R

kr'k2 dw =

ZZ
S1

kr'k2 dw1 =

ZZ
S2

kr'k2 dw2 :

We obtain from (7.1) and (7.2) that

ZZ
R

kr'k2 dwZZ
R

'
2
dw

� 1

2
tanh2 "

ZZ
S1

kr'k2 dw1 +

ZZ
S2

kr'k2 dw2ZZ
S1

'
2
dw1 +

ZZ
S2

'
2
dw2

� 1

2
tanh2 "min fb(S1); b(S2)g ;

for every ' 2 C
1
c (R). This �nishes the proof of Lemma 7.1.

As a consequence of this lemma one obtains the following results.

Proposition 2. Let S be a Riemann surface. Let E1; E2; : : : ; En be

weakly separated closed sets in S such that Sk = S n Ek (k = 1; : : : ; n)

are (connected ) hyperbolic Riemann surfaces and let R be a connected

component of \kSk = S n [kEk. Then there exists a positive constant

c such that

b(R) � c min
k

b(Sk) :

Lemma 7.2. Let S be a hyperbolic Riemann surface. Let E1; E2 be two

disjoint closed subsets of S such that Sk = SnEk are connected surfaces

for k = 1; 2, let R be a connected component of S1 \S2 = S n (E1 [E2)

and let 4 " = dS(E1; E2). Then,

b(R) � 1

2
tanh2 " min fb(S1); b(S2)g :

Lemma 7.2 is a direct consequence of Lemma 7.1, since dS(E1; E2)

= 4 " implies that E1; E2 are weakly "-separated in S.

Proposition 3. Let S be a hyperbolic Riemann surface. Let fEkgnk=1 be
a collection of pairwise disjoint closed subsets of S such that Sk = SnEk
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(k = 1; : : : ; n) are connected surfaces, let R be a connected component

of \kSk = Sn[kEk and let " = minj 6=k dS(Ej; Ek). Suppose that " > 0.

Then, there exists a positive constant c, which only depends on " and n

(but not on S), such that

b(R) � c min
k

b(Sk) :

Remark. Let fEkgnk=1 be a collection of pairwise disjoint closed sub-

sets of Ĉ such that Ĉ nEk is a (connected) hyperbolic plane domain for

k = 1; : : : ; n. Let 
0 = Ĉ n [kEk. Let also I be a strongly uniformly

separated set in 
0 and let 
 = 
0 n I. A su�cient condition for 
 to

have HII is that each Ĉ nEk has HII.

De�nition. Let S be a hyperbolic Riemann surface and let 1; : : : ; k be

simple closed geodesics in S. We say that G is a quasigeodesic domain

in S, relatively to 1; : : : ; k, if G is a domain of �nite area in S and @G

consists of �nitely many simple closed curves �1; : : : ; �r, where each �i
is either a simple closed geodesic or a �nite union of subarcs of simple

closed geodesics such that if two arcs meet at a point, one of these arcs

is a subarc of some j. We de�ne @0G as @0G = @G n f1 [ � � � [ kg.

Obviously, we can have @0G = ?.

Quasigeodesic domains appear in a natural way as intersection of

geodesics domains: If G1; G2 are geodesic domains in S, then G1 \G2

is a quasigeodesic domain relatively to @G1.

We need to talk about collars of geodesics in any hyperbolic Rie-

mann surface S.
Given a simple closed geodesic  in S, a collar about  is a dou-

bly connected domain on S bounded by two simple closed curves (the

boundary curves of the collar) each point of which has the same dis-

tance d from . The distance d is called the width of the collar. A collar

about  of area 2 � is called a �-collar.

Randol [R] proved that there exists a collar C of  with width d0,

such that

cosh d0 � coth
LS()

2
; AS(C) � 2LS() cosech

LS()

2
:

Moreover, if 0 is a geodesic such that  \ 
0 = ?, we also have that

C \ 
0 = ?.
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Randol [R] states the Collar Lemma under the hypothesis that the

surface is compact, but the same proof, without any change, works for

any hyperbolic Riemann surface.

Lemma 7.3. Let S be a hyperbolic Riemann surface satisfying HII

and let f1; : : : ; kg be a collection of pairwise disjoint simple closed

geodesics in S. Then, there exists a positive constant c such that

(7.3) AS(G) � c LS(@0G) ;

for any quasigeodesic domain G in S, relatively to 1; : : : ; k, with

LS(@0G) > 0.

Proof. By the isoperimetric inequality of S, we only need to check

(7.3) for quasigeodesic domains G in S, such that 0 < LS(@0G) <

LS(@G).

First of all, let us consider the compact sets Ct;i = fp 2 S :

dS(p; i) � tg for positive t and i 2 f1; : : : ; kg. Given a geodesic i we

choose a positive and a negative side of i, denoted respectively by 
+
i

and 
�
i
. We denote by C

+
t;i

(respectively C
�
t;i
) the set of points in S

which are in some geodesic of length t which starts orthogonally to +
i

(respectively 
�
i
). Obviously, we have that Ct;i = C

+
t;i
[ C

�
t;i
. It can

happen that C+
t;i
\C�

t;i
6= i if the Riemann surface S has positive genus

(of course, if S n  is connected).

Let G+
t;i

(respectively G
�
t;i

) be the geodesic domain \correspond-

ing" to C
+
t;i

(respectively C
�
t;i
): each puncture or boundary curve of

G
+
t;i

is freely homotopic to a boundary curve of C+
t;i
. Denote by Gt;i

the union Gt;i = i [G+
t;i
[G�

t;i
. If for some i 2 f1; : : : ; kg we have that

Gt;i = i for all positive t (the two boundary curves of Ct;i are freely

homotopic to i), then k = 1 and S is a doubly connected domain (an

annulus), and (7.3) is true since there are not quasigeodesic domains in

S. Therefore we can assume without loss of generality that Gt;i is not

empty for t � t0 and i 2 f1; : : : ; kg. Observe that G+
t;i

is non decreasing

in t. In fact, if t1 < t2 are such that AS(G
+
t1;i

) < AS(G
+
t2;i

), the con-

stant curvature �1 and Gauss-Bonnet theorem give AS(G
+
t1;i

) + 2� �
AS(G

+
t2;i

). The same is true for G�
t;i
.

This implies that for each i 2 f1; : : : ; kg either there exists a posi-
tive number T+

i
such that G+

t;i
= G

+

T
+

i
;i
for all t � T

+
i
, or AS(G

+
t;i
)!1

as t!1. The same is true for G�
t;i

with T
�
i
.
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Now, let G be a quasigeodesic domain in S, such that 0 < LS(@0G)

< LS(@G). Therefore, there exists j 2 f1; : : : ; kg with @G \ j 6= ?.

We consider three possibilities:

Case 1. AS(G) � 2h(S) `, with ` :=
P

k

i=1 LS(i). In this case,

2h(S) ` � AS(G) � h(S)LS(@G) � h(S) �LS(@0G) + `
�

and we obtain that

` � LS(@0G) :

Therefore,

AS(G) � 2h(S)LS(@0G) :
Case 2. AS(G) < 2h(S) `.

For each i 2 f1; : : : ; kg, let ti be a positive number verifying the

two following conditions:

a) ti � T
+
i

(if there exists T+
i
) or AS(G

+
ti;i

) � 2h(S) `,
b) ti � T

�
i

(if there exists T�
i
) or AS(G

�
ti;i

) � 2h(S) `.
Let 
i be the geodesic domain 
i := Gti;i

. We de�ne the following

positive numbers

a := min
�
LS() :  simple closed geodesic;  � [i
i

	
;

b := max
�
LS() :  simple closed geodesic;  � [ki=1fi [ @
ig

	
:

Recall that @G\ j 6= ?. This fact, the inequalities, AS(G) < 2h(S) `,
LS(@0G) > 0, and the de�nition of tj give that one of the two next

possibilities holds:

Case 2.1. There exists a simple closed geodesic  � 
j \ @0G. Then

LS(@0G) � LS() � a :

Case 2.2. here exists a geodesic arc � in @0G which meets some simple

closed geodesic  � @
j [ ([k
i=1i).

Observe that if G is not a geodesic domain we are in this situation;

in fact, there is a geodesic arc � in @G0 which meets some i.

Collar Lemma [R] says that LS(�) � d0, where d0 (the width of

the collar C) satis�es

cosh d0 � coth
LS()

2
� coth

b

2
;
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and

d0 � D := Arg cosh
�
coth

b

2

�
(recall that if a geodesic 0 does not intersect  then 0 does not intersect

C).

Therefore,

LS(@0G) � LS(�) � D :

In both cases (2.1 and 2.2) LS(@0G) � minfa;Dg =: c0. Then

AS(G) � h(S)�LS(@0G) + `
� � h(S)

�
LS(@0G) + `

LS(@0G)

c0

�

and

AS(G) � h(S)
�
1 +

`

c0

�
LS(@0G) :

Obviously, ` � a � c0 and 1 + `=c0 � 2. Therefore, in any case,

AS(G) � h(S)
�
1 +

`

c0

�
LS(@0G) :

Consequently, Lemma 7.3 is true with

c = h(S)
�
1 +

`

c0

�
:

If S is a hyperbolic Riemann surface, we have considered (open

and connected) subsurfaces S1 � S, endowed with its own hyperbolic

metric. Of course, S1 is a geodesically complete Riemannian manifold

with this metric. In the following we will consider also bordered (con-

nected) Riemann subsurfaces S2 � S, endowed with the restriction to

S2 of the hyperbolic metric of S. Therefore S2 is not a geodesically

complete Riemannian manifold with this metric.

Lemma 7.3 and [FR, Lemma 1.2] have the following consequences.

Corollary 5. Let S1; : : : ;Sm be hyperbolic Riemann surfaces satisfying

HII. For j = 1; : : : ;m, let S0
j
be a bordered subsurface of Sj whose border

is a set of nj (1 � nj < 1) pairwise disjoint simple closed geodesics.

Let us assume that we can paste S01 ; : : : ;S0m along their boundaries,

obtaining a complete (without boundary) hyperbolic Riemann surface R
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(recall that we can join two surfaces identifying two boundary geodesics

if and only if they have the same length). Then, R satis�es HII if and

only if there exists 1 � j � m such that ASj (S0j ) =1.

Proof. If ASj (S0j ) is �nite for j = 1; : : : ;m, then R also has �nite

area (since AR(S0j ) = ASj (S0j )) and therefore, it does not satisfy HII.

Let us assume now that AS1(S01 ) = 1. Let � be the union (for

j = 1; : : : ;m) of the nj geodesics in the boundary of S0
j
.

Let G be a geodesic domain in R. If G was already a geodesic

domain in some S0
j
, it satis�es (1.1) with constant

h1 = max fhg(S1); : : : ; hg(Sm)g :

In other case, we consider the sets Gj = G \ S0
j
, for j = 1; : : : ;m. Let

@0G = @G n � and @jG = @0G \ S0
j
, for j = 1; : : : ;m. Let us consider

now the set J of the indices j 2 f1; : : : ;mg such that LR(@jG) > 0.

If J = ? then @G is contained in �, and there are only a �nite

number of such G. These domains satisfy (1.1) with a �xed constant

h2, which only depends on R.
If j 2 J , then Lemma 7.3 gives that

(7.4) AR(Gj) � cj LR(@jG) � h3 LR(@jG) ;

where

h3 := maxfc1; : : : ; cmg ;
since AR(Gj) = ASj (Gj) and LR(@jG) = LSj (@jG).

Otherwise, Gauss-Bonnet theorem gives that

(7.5)
X
j2J

AR(Gj) � 2� :

Consequently, (7.4) and (7.5) give that

(7.6) LR(@G) �
X
j2J

LR(@jG) � 1

h3

X
j2J

AR(Gj) � 2�

h3
:

Let

A :=
X

AR(S
0
j
)<1

AR(S
0
j
) :
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As a consequence of (7.4) and (7.6), one deduces that

AR(G) � A+
X
j2J

AR(Gj) � Ah3

2�
LR(@G) + h3 LR(@0G) :

Therefore,

hg(R) � min
n
h1; h2; h3

�
1 +

A

2�

�o
:

Now [FR, Lemma 1.2] �nishes the proof of Corollary 5.

Corollary 6. Let S be a hyperbolic Riemann surface satisfying HII.

Let 1; : : : ; k be pairwise disjoint simple closed geodesics in S. Let S1
be any connected component of S n f1 [ � � � [ kg with AS(S1) = 1,

and let S0 be the Schottky double of S1. Then, S0 satis�es HII.

The Schottky double of S1 is the union of S1 and its \reection"

with respect to @S1. See [AS, p. 26] for a precise de�nition.
This corollary was proved in [Ro1, p. 245-248] with similar argu-

ments that those in Lemma 7.3. However, we need the precise state-

ments of Lemma 7.3 and Corollary 5, which are more general than

Corollary 6.

We need some additional results. The �rst one is well-known (see

e.g. [Be]).

Lemma 7.4. Let S be a hyperbolic Riemann surface with a puncture

p. Then, we have that

CS(p; 1) \  = ? ;

for any simple closed geodesic  in S.

We say that a function f is in the class Ck(F ), where 1 � k � 1
and F is a closed set, if the derivatives of f up to the order k are

continuous in F where we de�ne the derivative of f in a point z 2 F as

the usual limit when we approach to z by taking points in F . We just

consider with this purpose closed sets F which are closures of open sets

with smooth boundaries.

Lemma 7.5. Let S be a Riemann surface and let J be a simply con-

nected domain in S whose boundary is an analytic simple closed curve
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�. Given a compact subset K of J , an open subset V of J and a point

q 2 V , there exists a quasiconformal automorphism f of S such that

f jSnJ is the identity map, f(K) � V and f(q) = q.

Proof. Let us consider a universal covering map � : D �! S. Let J0
be a connected component of ��1(J ). In what follows by ��1 we mean

the inverse function of �jJ0 . Let F1 (respectively F2) be a conformal

map of Ĉ n J0 (respectively J0) on fz 2 Ĉ : jzj > 1g (respectively D ).
Observe that F1 and F2 have an analytic extension in a neighbourhood

of �0 = @J0 since �0 and @D are analytic curves. Therefore h = F2�F�11

is a homeomorphism of @D on itself which has an analytic extension.

It is well known that in this case there is a quasiconformal automor-

phism H of Ĉ such that H(D ) = D , Hj@D = h and H 2 C
1(D ). This

fact is a consequence of the Beurling-Ahlfors theorem (see [BA] or [A,

p. 69], where they construct a quasiconformal extension H0 : Ĉ �! Ĉ

of a quasisymmetric map h0 : R̂ �! R̂ , which preserves the di�erentia-

bility properties of h0).

We de�ne a bijection u of Ĉ on itself by

u(z) :=

(
F2(z) ; z 2 J0 ;
(H � F1)(z) ; z =2 J0 :

This function is continuous in Ĉ since

H � F1j�0 = Hj@D � F1j�0 = h � F1j�0 = F2 � F�11 � F1j�0 = F2j�0 ;
and we have that u 2 C

1(Ĉ n �0) \ C(Ĉ ). The regularity properties

of F2 and H � F1 in �0 gives that the distributional derivatives of u

in a neighborhood of �0 are equal to the classical derivatives (we use

the di�erentiability properties only for this argument). Therefore u is

a quasiconformal map on Ĉ with the same quasiconformality constant

than H.

Let M be a M�obius map which �xes D , and such that M(0) =

u(��1(q)) 2 D . For any � > 0, let us consider the following quasicon-

formal automorphism of Ĉ

v�(z) =

�
z ; z =2 D ;

z jzj��1 ; z 2 D :

Let f� be the following homeomorphism from S on itself.

f�(p) =

�
p ; p =2 J ;

(� � u�1 �M � v� �M�1 � u � ��1)(p) ; p 2 J :
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Obviously, f�jSnJ = idjSnJ . Observe that f� is continuous in S, since
v�j@D = idj@D implies that

(� � u�1 �M)j@D � v�j@D � (M�1 � u � ��1)j� = idj� :

The same argument used to see that u is a quasiconformal map gives

that f� is a quasiconformal automorphism of S for any � > 0. Observe

that f�(q) = q since (M�1 � u � ��1)(q) = 0.

For a small " > 0 we have that (��u�1�M)(fz 2 C : jzj � "g) � V

since (� � u�1 �M)(0) = q 2 V . Given the compact set K � J we can

choose � such that (v� �M�1 � u � ��1)(K) � fz 2 C : jzj � "g, since
(M�1 � u � ��1)(K) is a compact subset of D .

Therefore we obtain that f�(K) � V for this �.

Lemma 7.6. Let w be a C
1 homeomorphism of @D on itself. For

each 0 < r < 1 there exists a quasiconformal automorphism f of A =

fr � jzj � 1g such that f jfjzj=rg is the identity map, f j@D = w and

f 2 C
1(A).

Proof. For each 0 < r < 1, let us consider the positive number

a =
1

2�
log

1

r

and the universal covering map

� : B = f0 � Im z � ag �! A ; �(z) = r e
�2�iz

:

The map � is a periodic function with period 1 and satis�es

�(fz : Im z = 0g) = fz : jzj = rg ; �(fz : Im z = ag) = fz : jzj = 1g :

Therefore, we only need to prove that if v is a C
1 homeomorphism of

fz : Im z = ag on itself with

v(x+ 1 + i a) = v(x+ i a) + 1 ; x 2 R ;

then there exists a C
1 quasiconformal automorphism g of B on itself

such that

gjfImz=0g = idjfIm z=0g ; gjfImz=ag = v ;
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and

g(z + 1) = g(z) + 1 ; z 2 B :

Such a function g can be constructed explicitly. For example, let us

consider

g(x+ i y) = x

�
1� y

a

�
+
y

a
v(x+ i a) :

It is clear that g(z + 1) = g(z) + 1 for z 2 B, that g satis�es the

boundary conditions, and that g is a C
1 homeomorphism from B on

itself. It is easy to check that g is a quasiconformal map since it is a

C
1 sense-preserving map and g(z + 1) = g(z) + 1 for z 2 B.

In order to state the following lemma we need a de�nition. Re-

call that any bordered Riemann surface S with a �nitely generated

fundamental group may be obtained from a compact Riemann sur-

face of genus g by removing p distinct points (the punctures of S),
n closed disks (whose boundaries represent the ideal boundaries of S)
and m open disks (whose boundaries are the border of S). The vector
(g; p; n;m) is called the quasiconformal type of S. It is well known that

there exists a quasiconformal mapping between two bordered Riemann

surfaces with the same quasiconformal type.

Lemma 7.7. Let S be a hyperbolic Riemann surface. Let fg1; : : : ; gNg
be a family of pairwise disjoint simple closed curves such that each gi

is not homotopic to zero or to a puncture in S and they are pairwise

not homotopic.

Let S1; : : : ; Sr; Sr+1; : : : ; Sk (1 � r � k � 1) be the connected com-

ponents of S n (g1[ � � � [ gN ), where Sr+1; : : : ; Sk are (open) surfaces of

�nite type. We also require that each gj is contained in the boundary

of Sn and S` with n � r and ` > r.

If gj � Sm, let j be the unique simple closed geodesic in Sm freely

homotopic to the ideal boundary gj.

Let Rm (m = 1; : : : ; r) be the bordered surface obtained by deleting

from Sm the open funnel Fj bounded by j and the ideal curve gj, for

every j � Sm.

Let Rm (m = r + 1; : : : ; k) be a bordered surface with the same

quasiconformal type than Sm such that the border of Rm is constituted

by simple closed geodesics with the following condition: if gj is an ideal

boundary curve of Sn and Sm (n � r) and �i is a boundary curve of

Rm corresponding to gj, we have that

LRm
(�i) = LSn(j) :
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Let R be a surface obtained by pasting R1; : : : ; Rk following the

design of S1; : : : ; Sk (identifying geodesics of equal length).

Then S and R are quasiconformally equivalent.

Proof. Let us �x m > r and let gj1 ; : : : ; gji be the boundary curves

of Sm. Let us consider Mm = Sm [ Fj1 [ � � � [ Fji � S.

It is well-known that there is a C1 quasiconformal map fm of Rm

on Mm, since Rm and Mm have the same quasiconformal type.

If j is contained in Sn (n � r), let us consider a �xed closed collar

Cj about j in Sn and let Kj be the set Kj = Cj \ Rn. The curve j
is contained in the border of Rn and Mm for some m > r.

Lemma 7.6 gives that there exists a C
1 quasiconformal automor-

phism hj of Kj such that hj jj = fmjj and hj j@Kjnj = idj@Kjnj .

Let us consider the homeomorphism f of R on S given by f jRm
=

fm for m > r, f jKj
= hj for 1 � j � N , and f = id otherwise.

It is easy to check that f is a quasiconformal map.

We will need the two following well known facts (see for example

[C, Theorem 5.1] or [FR, Lemma 4.2]).

Proposition A. Let S be a Riemann surface and let I and J be closed

subsets of S such that S n I is a hyperbolic Riemann surface and every

connected component of J has a non-empty intersection with I. If R is

a connected component of S n (I [J) then we have that �(R) � �(S nI).

Proposition B. Let S1;S2 be two hyperbolic Riemann surfaces such

that S1 � S2 and �1(q;S1) � �1(q;S2) for some q 2 S1. Then we have

that �(S1) � �(S2).

Observe that Proposition A is a particular case of Proposition B.

The proof of this last one is elementary; it is enough to remark that in

S1 there are fewer curves and they are longer.

Proposition 4. Let S be a hyperbolic Riemann surface with in�nite

area. Let C1; : : : ; Cn be pairwise disjoint compact simply connected sub-

sets of S. Then S satis�es HII if and only if S n (C1[� � �[Cn) satis�es
HII.

Remark. It is easy to �nd examples showing that the conclusion of

Proposition 4 is not true if some Cj is not compact.
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Proof. We can assume without loss of generality that n = 1. Let p

be a point in C1. Theorem 1 gives that the statement of Proposition

4 is equivalent to the following one: S n fpg satis�es HII if and only if

S n C1 satis�es HII.

This is trivially true if C1 = p. Therefore, we can assume that C1

has in�nitely many points.

Let us assume that S nfpg satis�es HII. Observe that S nC1 � S n
fpg and that the fundamental groups of the two surfaces are isomorphic.

Therefore, Proposition B implies that S n C1 satis�es HII.

Let us assume now that S n C1 satis�es HII. Let �1 be the simple

closed geodesic freely homotopic in S n C1 to the ideal boundary @C1.

Let F1 be the open funnel in S n C1 bounded by �1 and the ideal

boundary @C1, and let J1 be the open set J1 = C1 [ F1 � S. Observe
that @J1 = �1 is an analytic curve.

Let us consider (in S) the open set V = (fpg[CSnfpg(p; 1=4))\J1
and the compact set C1. Lemma 7.5 gives that there exists a quasicon-

formal automorphism f of S such that C = f(C1) � V , f jSnJ1 = idjSnJ1
and f(p) = p. Therefore, f is a quasiconformal map of S nC1 on S nC.
[FR, Theorem 1] implies that S n C satis�es HII. We will prove that

S n fpg also satis�es HII.
Let � be the simple closed geodesic freely homotopic in S n C to

the ideal boundary @C. Let F be the open funnel in S nC bounded by

� and the ideal boundary @C, and let J be the open set J = C[F � S.
Let us consider a geodesic domain G in S n fpg and let G0 be the

corresponding geodesic domain in S n C: each boundary curve of G is

freely homotopic in S n fpg to a boundary curve of G0; if G contains

a collar about the puncture p, the curve � is a boundary curve of G0

(observe that � is freely homotopic to p in S n fpg).
Gauss-Bonnet theorem gives that

(7.7) ASnfpg(G) = ASnC(G
0) :

Lemma 7.3 gives that there exists a positive constant c, indepen-

dent of G, such that

(7.8) ASnC(G
0) � c LSnC(@G

0 n �) ;

since S n C satis�es HII and @G
0 6= �: We have that @G0 6= � since

there are only two domains in S n C whose boundary is exactly �: F

and S n F , and both have in�nite area in S n C. This last fact is a

consequence of the hypothesis AS(S) =1.
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We have that @G0 � S n J � S n C. Lemma 7.4 implies that

@G � S nCSnfpg(p; 1=2) � S nC. These facts give that @G0 and @G are

far from C.

Then, (3.1) implies that the hyperbolic metrics of S nfpg and S nC
are comparable in (S n J) [ (S n CSnfpg(p; 1=2)), since p 2 C.

Therefore, LSnC(@G
0 n �) and LSnfpg(@G) are comparable. This

fact, (7.7) and (7.8) give that there is a constant c0 > 0, independent

of G, such that

ASnfpg(G) � c0 LSnfpg(@G) ;

and then, [FR, Lemma 1.2] gives that S n fpg satis�es HII.

De�nition. We will say that a closed and connected subset C of a

Riemann surface S is of �nite type if C is a compact simply connected

set or, if it has �nitely generated fundamental group and @C is a union

of simple closed curves.

Proposition 5. Let S be a hyperbolic Riemann surface with in�nite

area. Let C1; : : : ; Cn be pairwise disjoint closed connected subsets of

�nite type of S. Then, we have the following facts:

a) If S0 is a connected component of S n (C1 [ � � � [ Cn) and S
satis�es HII, then S0 satis�es HII.

b) If S n (C1 [ � � � [ Cn) is connected and satis�es HII, then S
satis�es HII.

Remark. It is easy to construct examples showing that b) is not true

if some Cj is not of �nite type.

Proof. We can assume without loss of generality that n = 1 and C1

is not a simply connected set (by Proposition 4).

Observe that Proposition 5 is trivial if S is either a simply or a

doubly connected surface. Therefore, without loss of generality we can

assume that S is neither a simply nor doubly connected surface.

Let us assume that S satis�es HII. Let p be a point in C1. Theorem

1 gives S n fpg also satis�es HII.
We have that S0 � S n fpg and the fundamental group of S0 is a

subgroup of the fundamental group of S n fpg. Therefore, Proposition
B implies that S0 satis�es HII since S n fpg satis�es HII.

Let us assume now that S nC1 satis�es HII. Let g1; : : : ; gN be the

simple closed curves in @C1.
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Without loss of generality we can assume that each gj is not ho-

motopic to zero. In other case, we have that S nC1 is simply connected,

since S nC1 is connected and C1 is not simply connected. Therefore, S
is of �nite type, since C1 is of �nite type; then S satis�es HII, since it

has in�nite area.

Without loss of generality we can assume that each gj is not ho-

motopic to a puncture pj in S. In other case, Theorem 1 allows us to

consider the surface S1 = S [ fpjg instead of S. Therefore, we would
have that gj is homotopic to zero in S1. Using again the last argument

we obtain that S1, and consequently S, satis�es HII.
Let us assume now that there exist two di�erent curves gi, gj, freely

homotopic in S. In this case, there is a doubly connected domain D in

S such that @D = gi [ gj. Then we have that N = 2, since S nC1 and

C1 are connected. Therefore, we have that either the set C1 is equal to

D or S n C1 is equal to D.

The second possibility implies that S n C1 is a doubly connected

domain and therefore, S is of �nite type, since C1 is of �nite type; then

S satis�es HII, since it has in�nite area.

If C1 = D, we can take a closed subset C of �nite type of S such

that C1 � C and C is not a doubly connected set (remember that S is

neither a simply nor a doubly connected surface). Proposition B gives

that S n C satis�es HII, since S n C1 satis�es HII.

Therefore, we can assume without loss of generality that there are

not two di�erent curves in @C1 freely homotopic.

Let 1; : : : ; N be the simple closed geodesics in S n C1 such that

j is freely homotopic to the ideal boundary gj .

Then, we can apply to S the construction of the surface R of

Lemma 7.7, relative to fg1; : : : ; gNg (with r = 1 and k = 2).

Corollary 5 implies that R satis�es HII since S has in�nite area

and S nC1 satis�es HII. Finally, S satis�es HII since Lemma 7.7 implies

that R and S are quasiconformally equivalent.

We can state now the following general version of theorems 9 and

10.

Theorem 7. Let S be a Riemann surface and let E be a closed subset

of S such that SnE is a hyperbolic Riemann surface with ASnE(SnE) =
1. Then, the following conditions are equivalent:

1) S nE satis�es HII.
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2) S0 n E satis�es HII, for any subsurface S0 of S such that E is

contained in S0, S0 n E is connected, and S n S0 is a �nite union of

closed sets of �nite type.

3) S0 n E satis�es HII, for some subsurface S0 of S such that E

is contained in S0, S0 n E is connected, and S n S0 is a �nite union of

closed sets of �nite type.

4) S n (E [ F ) satis�es HII for any closed subset F of S verifying:

a) S n F satis�es HII; b) there exists a set M , which is a �nite union

of pairwise disjoint closed sets of �nite type, such that F � M and

E \M = ?.

5) S n (E[F ) satis�es HII for some closed subset F of S verifying:

a) S n F satis�es HII; b) there exists a set M , which is a �nite union

of pairwise disjoint closed sets of �nite type, such that F � M and

E \M = ?.

Remark. If E and F are closed subsets of a Riemann surface S and

there exists a set M which is a �nite union of pairwise disjoint closed

sets of �nite type such that F �M and E \M = ?, then E and F are

weakly separated in S.

Proof. Proposition 5 gives that 1), 2) and 3) are equivalent. Lemma

7.1 and the latest remark give that 1) implies 4). Therefore, since 5)

follows directly from 4), we only need to prove that 5) implies 3). But

this is a consequence of propositions B and 5: Proposition B gives that

(S nE)nM satis�es HII and then Proposition 5 gives that S nE satis�es

HII.

Patterson proved in [P1, Theorem 4] a related result for Riemann

surfaces S of �nite area and discrete closed subsets E.

As a consequence of Theorem 7 we obtain the following result.

Corollary 7. Given a closed subset E of Ĉ with in�nitely many points,

the following conditions are equivalent:

1) Ĉ nE satis�es HII.

2) 
nE satis�es HII, for any subdomain 
 of Ĉ of �nite type such

that E is contained in 
.
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3) 
 n E satis�es HII, for some subdomain 
 of Ĉ of �nite type

such that E is contained in 
.

4) Ĉ n (E [ F ) satis�es HII for any closed subset F of Ĉ such that

Ĉ n F satis�es HII and E \ F = ?.

5) Ĉ n (E[F ) satis�es HII for some closed subset F of Ĉ such that

Ĉ n F satis�es HII and E \ F = ?.

Finally, if we apply n � 1 times Corollary 7 (and Theorem 1), we

obtain the following result which was announced at the beginning of

this section.

Theorem 8. Let E1; : : : ; En be pairwise disjoint closed subsets in Ĉ

with in�nitely many points such that 
0 = Ĉ n [kEk is connected. Let

I be a strongly uniformly separated set in 
0 and let 
 = 
0 n I. Then,
we have that 
 satis�es HII if and only if Ĉ n Ek satis�es HII for

k = 1; : : : ; n.

8. Isoperimetric inequality, polarization and symmetrization.

In general, symmetrization arguments are at the heart of isoperi-

metric inequalities in Riemannian manifolds of constant sectional cur-

vature, which is the case of hyperbolic Riemann surfaces (see e.g. [Ch2,

Chapter 6] and the references therein).

On the other hand, the ideas used in the proof of Theorem 4 (see

Section 5) can suggest that there is a relation between the HII-property

of a hyperbolic plane domain 
 and this property for its polarization 
p.

A similar question can be proposed for its circular symmetrization 
cs

(see [B] or [H] for the de�nition and basic background), since polariza-

tion and circular symmetrization are very regular processes. Therefore

one could expect that some of the following relations would be true:

a) If 
 satis�es HII, then 
p also satis�es HII.

b) If 
p satis�es HII, then 
 also satis�es HII.

c) If 
 satis�es HII, then 
cs also satis�es HII.

d) If 
cs satis�es HII, then 
 also satis�es HII.

In this section we will show that all these conjectures are false even

for Denjoy domains.
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1) Let us consider E = fang and F = fbng two increasing se-

quences of positive numbers converging to 1 such that E \ F = ?. Let


 = C n ((�1;�1] [ [1;1) [ E [ (�F )), where �F = f�bng. We

have that 
p = C n ((�1;�1] [ [1;1) [ (�E) [ (�F )) and 
cs =

C n ((�1;�1] [ (�E) [ (�F )). Let us assume also that E and F are

strongly uniformly separated in C n ((�1;�1][ [1;1)) and that E[F
is not. Theorem 1 gives that 
 satis�es HII but 
p and 
cs do not

satisfy HII. This example shows that a) and c) are not true.

2) Let us consider E = [1
k=0[1� 2�2k; 1� 2�2k�1] [ f1g and F =

[1
k=0Ik [ f�1g, where each Ik is a closed interval centered in �1 +

3 � 2�2k�3 and contained in (�1 + 2�2k�2;�1 + 2�2k�1). Let 
 =

Ĉ n (E [ F ). If limk!1 22kjIkj = 0, one can check that 
 does not

satis�es HII: It is enough to apply Theorem 2 to geodesic domains

\surrounding" In and In+1.

If �E = [1
k=0[�1+2�2k�1;�1+2�2k][f�1g, we have that 
cs =

Ĉ n ((�E) [ F ) and 
p = 
cs n f1g. The following argument as in

the proof of Proposition 6 (see Section 9) gives that 
cs satis�es HII:

Ĉ n (�E) satis�es HII since it is a modulated domain. Let ak be a

point in Ik for k � 0. Theorem 1 gives that Ĉ n �(�E) [ ([1
k=0fakg)

�
satis�es HII. Therefore Proposition A implies that 
cs = Ĉ n�(�E)[F �
satis�es HII. Theorem 1 gives that 
p = 
cs n f1g also satis�es HII.

This example shows that b) and d) are not true.

9. Geodesic domains.

One can think that Theorem 5 could be improved by studying only

border sets with six points, in the following way.

Let 
 be a Denjoy domain, let I be the set of isolated points of @


and let 
0 = 
[ I. Then, 
 has HII if and only if 
 is admissible and

there exists a positive constant c such that for any border set of @
0

with six points, B = fb1; : : : ; b6g, we have that

(9.1)

3X
j=1

	
0(fb2j�1; b2j; b2j+1; b2j+2g) > c :
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This statement seems to be reasonable since if we want to study a

border set B = fb1; : : : ; b2ng, we can \divide" it in border sets with six

points.

We prove now by an example that this statement is not true.

Example. Let 
 be the Denjoy domain de�ned as the complement of

a dyadic Cantor set, 
 = Ĉ nK, where K is constructed as follows.

Let E0 := [0; 1] and suppose that En has been de�ned and consists

of 2n closed disjoint subintervals of E0, say Jj , each of them with length

dn = r1 � � � rn, with

rn :=

8><
>:

1

3
; for odd n ;

1

n+ 1
; for even n :

We divide each subinterval Jj in three intervals, obtaining two closed

subintervals J1
j
and J

2
j
(the children of Jj), each of them with length

dn+1 = dn rn+1 and removing the central interval with length dn �
2 dn+1. If we denote by En+1 the union of the intervals with length

dn+1, the Cantor set K is de�ned as K := \nEn.

Let us consider an interval J of En and the unique simple closed

geodesic n which \surrounds" J in 
.

For odd n we have

(9.2) L
(n) � L
Ĉnf0;1=3;2=3;1g() ;

where  is the geodesic in Ĉ nf0; 1=3; 2=3; 1g given by  := fRe z = 1=2g.
We also have

L
(n) � LCnf(�1;�1=3][[0;1=3][[2=3;1)g(�) ;

where � is the simple closed geodesic in C n f(�1;�1=3] [ [0; 1=3] [
[2=3;1)g.

If B := f�1=3; 0; 1=3; 2=3g, we have that r(B) = 1=3. Therefore

Lemma 4.5 gives

(9.3)
L
(n) � LCnf(�1;�1=3][[0;1=3][[2=3;1)g(�)

= LCnf[�1;0][[1=3;1)g(�) ;

where � is the simple closed geodesic in C n f[�1; 0] [ [1=3;1)g.
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For even n we have

L
(n) � L
Cnf(�1;2�r

�1
n ][[0;1][[r

�1
n �1;1)g(�n)

= LCnf(�1;1�n][[0;1][[n;1)g(�n) ;

where �n is the simple closed geodesic in C nf(�1; 1�n][[0; 1][[n;1)g.
If Bn := f1� n; 0; 1; ng, we have that

r(Bn) =
(n� 1)2

2n� 1
� n :

Therefore Lemma 4.5 gives

(9.4)

L
(n) � LCnf(�1;1�n][[0;1][[n;1)g(�n)

= LCnf[�1;0][[r(Bn);1)g(�n)

� �1(r(Bn))

� 1

logn
;

where �n is the simple closed geodesic in C n f[�1; 0] [ [r(Bn);1)g.
We say that a border set B of @
 is n-basic if it has six points

and the three simple closed geodesics associated with it surround an

interval J � En and their two children J
1
; J

2 � En+1. We say that a

border set B of @
 is basic if it is n-basic for some n.

For a n-basic border set B, we always have (9.1) since one (respec-

tively two) of the three geodesics associated with B veri�es (9.2) if n is

odd (respectively even).

Inequalities (9.3) and (9.4) give that there is a �nite upper bound

l for the length of the geodesics associated with any basic border set.

Then, Collar Lemma [R] gives that every geodesic which intersects a

geodesic  associated with any basic border set has length at least twice

the width w of the collar C and

w � Arg cosh
�
cotanh

�
l

2

��
:

Therefore, (9.1) is satis�ed by every border set B of @
 with six points,

since at least one of the three geodesics associated with B intersects a

geodesic associated with a basic border set.
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However, 
 does not satisfy HII. To see this, let us consider the

geodesic domain Gk in 
 bounded by the 22k geodesics which surround

each interval of E2k.

Gauss-Bonnet theorem gives A
(Gk) = 2� (22k � 2). Inequality

(9.4) gives, for some positive constant c0,

L
(@Gk) � c0
22k

log (2 k)
:

Therefore

L
(@Gk)

A
(Gk)
� c1

log (2 k)
�! 0 ; as k �!1 ;

and this fact gives that 
 does not satisfy HII.

10. An open problem.

In this section we want to discuss about the possibility to �nd a

simpler characterization of the HII-property. In fact, we would like to

have a result of the following type:

Conjecture. Let 
 be a Denjoy domain, let I be the set of isolated

points of @
 � Ĉ and let 
0 = 
 [ I. There exists a function �,

independent of 
, such that 
 has HII if and only if 
 is admissible

and there exists a positive constant c such that for any border set of

@
0, B = fb1; : : : ; b2ng with n � 3, we have that

1

n

nX
j=1

�(r(fb2j�1; b2j; b2j+1; b2j+2g)) > c :

We can say something about this function �, if it exists.

Proposition 6. Let � be a function verifying the following condition:

If a Denjoy domain 
 has HII then there exists a positive constant

c such that for any border set of @
0, B = fb1; : : : ; b2ng with n � 3, we

have that
1

n

nX
j=1

�(r(fb2j�1; b2j; b2j+1; b2j+2g)) > c :
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Then � must verify

lim sup
r!0

�(r)

log
�1
r

� > 0 :

Proof. Let us consider the following closed subset E of [0; 1]

E = [1n=0f[2�2n�1; 2�2n] [ Ing [ f0g ;

where In is the set of 2n + 1 points fxn;kgnk=�n in (2�2n�2; 2�2n�1),

with xn;�k = (3� (1� 2�k))2�2n�3, for k = 0; 1; : : : ; n.

Let I be the discrete set I = [1
n=0In. Let 
1; 
2 be the Denjoy

domains 
1 = Ĉ nE and 
2 = 
1 [ I.

First we will see that 
1 and 
2 have HII:

The set 
2 is modulated and so [FR, Theorem 3] implies that 
2

has HII.

Therefore, [FR, Theorem 3] gives also that in order to prove that


1 has a HII, we only need to check that I is uniformly separated in


2:

The hyperbolic metrics in 
2 and 

�
2 = 
2[f1g are comparable in

each euclidean ball of the complex plane. We also have [BP, Corollary

1] that there is a positive constant c such that

2

d(x;E n I) � �
�
2
(x) � c

d(x;E n I) ; for x 2 [0; 1] \ 
2 :

These two facts give that

�
2(x) �
1

d(x;E n I) ; for x 2 [0; 1] \ 
2 :

Then we have that

d
2(xn;k; xn;k+1) �
Z xn k+1

xn k

dx

2�2n�1 � x

= log
2�2n�1 � xn;k

2�2n�1 � xn;k+1

= log 2 :
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A similar argument gives the same estimate for d
2(xn;�k; xn;�k�1).

This implies that I is uniformly separated in 
2, and consequently,

that 
1 has HII.

For each point xn;k2I, let us consider the interval Jn;k=[an;k; bn;k]

such that xn;k 2 Jn;k and Jn;k does not meet any interval of the form

[2�2m�1; 2�2m] or another Jm;l. We also choose an;�n = xn;�n and

bn;n = xn;n. Let J = [n;kJn;k and 
 = 
1 n J . The length of these

intervals Jn;k have been chosen so small in such a way that the length

of the geodesics n;k in 
 which surrounds only Jn;k tends to zero as

n �!1 (uniformly in k).

The domain 
 has HII (in fact �(
) � �(
1) < 1) as a consequence

of Proposition A (see Section 7).

Let us consider now the border set Bn in 
 given by

Bn = f2�2n�2; an;�n; bn;n; 2�2n�1g :
We have that

r(Bn) = r(f2�2n�2; xn;�n; xn;n; 2�2n�1g) = 2�2n

1� 2�n
:

Since 
 has HII, the property of �, with the border set

f2�2n�2; an;�n; bn;�n; : : : ; an;0; bn;0; : : : ; an;n; bn;n; : : : ; 2�2n�1g ;
implies

1

2n+ 2
�
� 2�2n

1� 2�n

�
+ o (1) > c ; for all n 2 N :

Then we have

lim sup
n!1

�
� 2�2n

1� 2�n

�
log

1� 2�n

2�2n

= lim sup
n!1

�
� 2�2n

1� 2�n

�
2n log 2

� c

log 2
:

This �nishes the proof of Proposition 6.

Proposition 6 implies that the conjecture is not true for any func-

tion � satisfying

lim sup
r!0

�(r)

log
�1
r

� = 0 :
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In particular it is not true for the function �2 in Theorem 2, but it

could be true for �1.

In any case, if the conjecture would be true for � = �1, the proof

should be more sophisticated that our arguments, because it is not true

that

�1(r(B)) � L
((B))

for any border set B of any Denjoy domain 
 as r ! 0 (if 
 = C n
([�1;�1 + r] [ [�r; 0] [ [r; 2 r] [ [2;1)) and B = f0; r;1;�1g, then

r = r(B) ;

�1(r) � log
�1
r

�

and Theorem 4 gives that L
((B)) � log log (1=r)).
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