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Abstract

In this paper we present a definition of weighted Sobolev spaces on curves and find general conditions
under which the spaces are complete for non closed compact curves. We also prove the density of the
polynomials in these spaces and, finally, we find conditions under which the multiplication operator is
bounded in the space of polynomials.

1. Introduction.

In very different areas of mathematics ranging from the partial differential equations to approximation
theory we find the topic of weighted Sobolev spaces (see e.g. [HKM], [K], [Ku], [KO], [KS] and [T]). Some
particular cases of Sobolev spaces with respect to measures instead of weights are studied in [ELW1], [EL]
and [ELW2], where we find some examples of Sobolev spaces related to ordinary differential equations and
Sobolev orthogonal polynomials. We presented a very deep study of Sobolev spaces with respect to general
measures in the real line in the papers [RARP1], [RARP2], [R1], [R2] and [R3]. Now we are interested in
Sobolev spaces with respect to general measures along curves in the complex plane.

What we understand by a Sobolev norm on a Borel set E ⊆ C is the following: for µ = (µ0, . . . , µk)
a vectorial Borel measure in E, the Sobolev norm in W k,p(E,µ) of a function f which is holomorphic on a
neighbourhood of E is defined by

‖f‖W k,p(E,µ) :=
( k∑

j=0

‖f (j)‖p
Lp(E,µj)

)1/p

.

Sobolev orthogonal polynomials on the unit circle and, more generally, on curves is a topic of recent and
increasing interest in approximation theory; see, for example, [CM] and [FMP] (for the unit circle) and
[BFM] and [M-F] (for the case of Jordan curves). If E = γ is a simple and locally absolutely continuous
curve, it is clear that the set of holomorphic functions whose norm in W k,p(γ, µ) is finite is not a Banach
space except when the support of µ is finite. In order to obtain a complete space we have to deal with
functions which are not holomorphic. Consequently, we need to define f (j) when f is not holomorphic; the
precise definition is presented in Section 2. In this context we talk about a Sobolev norm although it can be
a seminorm; if this were the case we would take equivalence classes, as usual. When every polynomial has
finite W k,p(γ, µ)-norm, we denote by P k,p(γ, µ) the completion of polynomials with that norm.

The zeroes of the Sobolev orthogonal polynomials with respect to the scalar product in W k,2(γ, µ) have
been studied in [LP] in the case of a segment on the real line. There it is proved that they are contained
in the disk {z ∈ C : |z| ≤ 2‖M‖}, where (Mf)(x) = x f(x) is the multiplication operator, considered
in the space P k,2([a, b], µ). Consequently, the set of the zeroes of the Sobolev orthogonal polynomials is
bounded if the multiplication operator is bounded. The location of these zeroes allows one to obtain results
on the asymptotic behaviour of Sobolev orthogonal polynomials (see [LP]). In [LP] they prove something
more when they consider only sequentially dominated measures, i.e. measures such that #suppµ0 = ∞
and dµj = fj dµj−1 with fj bounded for 1 ≤ j ≤ k. They prove that if µ is a finite sequentially dominated
measure in [a, b], then M is a bounded operator on P k,2([a, b], µ). Recently, these results have been improved
for measures on compact sets in C (see [LPP]).

It is not difficult to see that the multiplication operator can also be bounded when the vectorial measure
is not sequentially dominated. In Section 8 below other conditions are given in order to have the boundedness
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of M even on compact sets in C. In [R1] one of the authors obtains a characterization of the boundedness
of the operator M for measures in R. Also, in Section 8 (see Theorem 8.1 below) this result is generalized
for measures on compact sets in C; therefore this theorem is useful in the study of orthogonal polynomials.

Though we do not have yet the definitions, we state the main theorems here. The results are numbered
according to the section where they are proved. The first one gives a sufficient condition under which one
obtains a complete Sobolev space. The condition is a bit technical although it is very general, so we prefer
to state the theorem in a short version where this condition is denoted by: (γ, µ) ∈ C. The definition of the
class C is in Section 4, Definition 4.2. The theorem is as follows:

Theorem 5.1. Let us consider 1 ≤ p ≤ ∞ and µ = (µ0, . . . , µk) a p-admissible vectorial measure in γ with
(γ, µ) ∈ C. Then the Sobolev space W k,p(γ, µ) is complete.

Our main result on the density of polynomials in these spaces is Theorem 6.2. Now, the conditions we
need are more restrictive than in Theorem 5.1, but we have found five general types of measures for which it
is true. We simply name them by types 1, 2, 3, 4 and 5 and the definitions are in Section 6. These measures
include the most usual examples like Jacobi-type weights (that are measures of type 2).

Theorem 6.2. Let us consider 1 ≤ p < ∞ and µ = (µ0, . . . , µk) a p-admissible vectorial measure in a
non-closed compact curve γ : I → C. Assume that γ′ ∈ W k−1,∞(I) if k ≥ 2. If µ is a measure of type
1, 2, 3, 4 or 5, then P is dense in the Sobolev space W k,p(γ, µ).

The last result we present here is Theorem 8.1. It gives a necessary and sufficient condition so that the
multiplication operator is bounded on the space P k,p(E,µ). The kind of measures that appear here, ESD,
is a generalization of sequentially dominated measures. The definition is in Section 5, Definition 5.1.

Theorem 8.1. Let us consider 1 ≤ p < ∞ and µ = (µ0, . . . , µk) a finite vectorial measure in a compact set
E. Then, the multiplication operator is bounded in P k,p(E,µ) if and only if there exists a vectorial measure
µ′ ∈ ESD such that the Sobolev norms in W k,p(E,µ) and W k,p(E,µ′) are comparable on P . Furthermore,
we can choose µ′ = (µ′0, . . . , µ

′
k) with µ′j := µj + µj+1 + · · ·+ µk.

We also answer (see Theorem 4.1) to the following main question: when the evaluation functional of f
(or f (j)) in a point is a bounded operator in W k,p(γ, µ)?

We also obtain results which partially generalize the classical result on density of polynomials in Lp of
the unit circle to the context of Sobolev spaces (see Section 7).

Notation. We only consider simple curves which have a locally absolutely continuous parametrization. In
the paper k ≥ 1 denotes a fixed natural number; zi are points along a curve γ ⊂ C. All the measures we
consider are Borel and positive, and all the weights are non-negative Borel measurable functions. We can
split µj as dµj = d(µj)s + wj ds, where (µj)s is singular with respect to the arc-length measure, wj is a
weight on γ and ds is the differential of arc-length. We always use this terminology for the Radon-Nikodym
decomposition of µj . We identify a weight w on γ with the measure w ds. We denote by supp ν the support
of the measure ν. If A is a Borel set in γ, |A|, χ

A
, A, intA and #A denote, respectively, the length, the

characteristic function, the closure, the interior and the cardinality of A (the interior and the closure of A
are considered in the relative topology in γ). P and Pn denote, respectively, the set of all polynomials and
the set of polynomials with degree less than or equal to n.

If γ : I −→ C is a non-closed curve and t0 ∈ I, by a right (respectively, left) neighbourhood of z0 = γ(t0)
in γ we mean the image by γ of [t0, t0 + ε] (respectively, [t0 − ε, t0]) for some ε > 0. If t0 is the maximum
(respectively, minimum) of I we also have left (respectively, right) neighbourhoods of γ(t0).

If γ : I −→ C is a closed curve and t0 ∈ I, we can consider its periodic extension γ0 : R −→ C, and
define left and right neigbourhoods of γ(t0) in a similar way.

Finally, the constants (denoted by c or ci) in the formulae can change from line to line and even in the
same line.

The outline of the paper is as follows. Sections 2, 3 and 4 contain the definitions and some technical
results we need. In sections 5, 6 and 7 we prove respectively the results on completeness, density and density
in closed curves. We prove the results on the multiplication operator in Section 8.
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2. Derivatives along curves.
In this section we introduce a definition of derivative along a curve extending the usual complex deriva-

tive, which will be crucial in the future. As far as we know this concept is new. Recall that every curve is
simple and has a locally absolutely continuous parametrization.
Definition 2.1. a) Let I ⊆ R be any interval and γ : I −→ C be a curve. If z1, z2 are two distinct points
of γ(I), we denote by

∫ z2

z1
g(ζ)dζ the complex integral of the function g along the arc of γ joining z1 and

z2, (which we denote by [z1, z2]). We also can consider arcs where one or the two extremal points are not
included, as (z1, z2), [z1, z2) or (z1, z2]. If γ is a closed curve we take the arc of γ joining z1 and z2 in the
positive sense (according to the parametrization).

b) Let z0 be a fixed point in γ. If γ is compact we say that f ∈ ACk(γ) if f can be written as

(2.1) f(z) = q(z) +
∫ z

z0

h(ζ)
(z − ζ)k−1

(k − 1)!
dζ ,

for some h ∈ L1(γ, ds) and some polynomial q ∈ Pk−1. If γ is a closed curve we require also the function
h ∈ L1(γ, ds) to verify

∫
γ

h(ζ) ζi dζ = 0, for 0 ≤ i < k. When γ is not compact, we say that f ∈ ACk
loc(γ) if

it can be split as in (2.1) with h ∈ L1
loc(γ, ds).

c) If f ∈ ACk
loc(γ) and z0 ∈ γ, we define its derivative f ′ along γ as

f ′(z) = q′(z) +
∫ z

z0

h(ζ)
(z − ζ)k−2

(k − 2)!
dζ ,

where q′(z) means the classical derivative of q(z) and
∫ z

z0
h(ζ)(z − ζ)−1/(−1)! dζ means h(z).

Obviously, if γ is a compact real interval, the space AC1(γ) is the set of absolutely continuous functions
in γ. If γ is a closed curve and f ∈ ACk(γ), we have

∫
γ

h(ζ) (z− ζ)k−1 dζ = 0 for every z ∈ γ. This property
is equivalent to f (j) being continuous in γ for 0 ≤ j < k, where f (j) denotes the j-th derivative (according
to the previous definition) of f .

We also notice that it is natural to define the derivative along γ in this way, since this is the “inverse”
of integration:∫ z

z0

∫ ξ

z0

h(ζ)
(ξ − ζ)k−2

(k − 2)!
dζ dξ =

∫ z

z0

∫ z

ζ

h(ζ)
(ξ − ζ)k−2

(k − 2)!
dξ dζ

=
∫ z

z0

h(ζ)
[ (ξ − ζ)k−1

(k − 1)!

]ξ=z

ξ=ζ
dζ =

∫ z

z0

h(ζ)
(z − ζ)k−1

(k − 1)!
dζ .

Remark. Observe that if f is holomorphic in a region containing γ, then f ′ is the usual complex derivative
of f at almost every point of γ.

Next, we prove that the definition of derivative is independent of the representation of f we are using.
Without loss of generality we can assume that γ′ 6= 0 almost everywhere since the definition of f ′ does not
depend on the parametrization. In fact, we shall see that the representation is unique. Let us suppose that

f(z) = q(z) + Hk(z) = r(z) + Gk(z) ,

where q(z) and r(z) are polynomials with degree at most k − 1 and

Hk(z) =
∫ z

z0

h(ζ)
(z − ζ)k−1

(k − 1)!
dζ , Gk(z) =

∫ z

z0

g(ζ)
(z − ζ)k−1

(k − 1)!
dζ .
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We want to see that q = r and g = h. Observe that∫ z

z0

(g − h)(ζ)
(z − ζ)k−1

(k − 1)!
dζ = (q − r)(z) .

We proceed now by induction. Let us denote v = g − h. For k = 1, the function V (z) =
∫ z

z0
v(ζ) dζ is

constant. It follows that
∫ t2

t1
v(γ(t)) γ′(t) dt = 0 for all t1, t2 ∈ I and this implies that v(γ(t)) = 0 almost

everywhere in I. Therefore v = 0, i.e., g = h and q = r.
Suppose now that ∫ z

z0

v(ζ)
(z − ζ)n

n!
dζ

is a polynomial of degree at most n if and only if v = 0, and consider the function V ∈ Pn+1 defined by

V (z) =
∫ z

z0

v(ζ)
(z − ζ)n+1

(n + 1)!
dζ .

If z0 = γ(t0), z = γ(T ), then

W (T ) := V (γ(T )) =
∫ T

t0

v(γ(t))
(γ(T )− γ(t))n+1

(n + 1)!
γ′(t) dt ,

and therefore

V ′(z) γ′(T ) = W ′(T ) =
∫ T

t0

v(γ(t))
(γ(T )− γ(t))n

n!
γ′(t) γ′(T ) dt .

As γ′ 6= 0 almost everywhere it follows that

V ′(z) =
∫ z

z0

v(ζ)
(z − ζ)n

n!
dζ

almost everywhere and so everywhere by continuity. Since V ′ ∈ Pn, the induction hypothesis implies that
v = 0.

We need to prove now that this definition does not depend on the choice of the point z0. To see this,
let us denote

Hk,z0(z) =
∫ z

z0

h(ζ)
(z − ζ)k−1

(k − 1)!
dζ .

If z1 is another point in γ, then

(2.2) Hk,z0(z) =
∫ z1

z0

h(ζ)
(z − ζ)k−1

(k − 1)!
dζ +

∫ z

z1

h(ζ)
(z − ζ)k−1

(k − 1)!
dζ = Qk(z) + Hk,z1(z) ,

where Qk ∈ Pk−1. Observe that (2.2) is true for a closed curve γ since then
∫

γ
h(ζ)(z−ζ)k−1dζ = 0 for every

z ∈ γ. Consequently, H ′
k,z0

= Q′
k + H ′

z,k1
. Therefore, in what follows, we can assume that z0 is arbitrary

but fixed.

Finally, we need also to prove that our definition does not depend on k. Indeed, we shall show that if
f ∈ ACk

loc(γ) then f ∈ ACk−1
loc (γ) and the corresponding definitions of derivative along γ coincide. Let us

suppose that

f(z) = q(z) +
∫ z

z0

h(ζ)
(z − ζ)k−1

(k − 1)!
dζ and f(z) = Q(z) +

∫ z

z0

H(ζ)
(z − ζ)k−2

(k − 2)!
dζ ,

with q ∈ Pk−1 and Q ∈ Pk−2. Then we can write q(z) = q0(z) + `(z − z0)k−1/(k − 1)! with q0 ∈ Pk−2 and
therefore, integrating by parts in the first integral,

u =
(z − ζ)k−1

(k − 1)!
, du = − (z − ζ)k−2

(k − 2)!
dζ ,

dv = h(ζ) dζ , v(ζ) =
∫ ζ

z0

h(ξ) dξ + ` ,

and so
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f(z) = q0(z) + `
(z − z0)k−1

(k − 1)!
+

[ (z − ζ)k−1

(k − 1)!
v(ζ)

]ζ=z

ζ=z0

+
∫ z

z0

v(ζ)
(z − ζ)k−2

(k − 2)!
dζ

= q0(z) +
∫ z

z0

v(ζ)
(z − ζ)k−2

(k − 2)!
dζ .

This means, by the unicity of the representation for the same k, that q0 = Q and v = H. On the other hand,
integrating by parts again, we have that

f ′(z) =
(
q(z) +

∫ z

z0

h(ζ)
(z − ζ)k−1

(k − 1)!
dζ

)′
= q′0(z) + `

(z − z0)k−2

(k − 2)!
+

∫ z

z0

h(ζ)
(z − ζ)k−2

(k − 2)!
dζ

= q′0(z) +
∫ z

z0

v(ζ)
(z − ζ)k−3

(k − 3)!
dζ

=
(
Q(z) +

∫ z

z0

H(ζ)
(z − ζ)k−2

(k − 2)!
dζ

)′
.

The proof of the following three results is trivial.

Lemma 2.1. If f, g ∈ ACk
loc(γ) and α, β ∈ C, then αf + βg ∈ ACk

loc(γ).

Lemma 2.2. f ∈ ACk
loc(γ) if and only if the j-th derivative f (j) along γ belongs to ACk−j

loc (γ).

Lemma 2.3. If f ∈ ACk
loc(γ) and z0 ∈ γ, then

f(z) = q(z) +
∫ z

z0

h(ζ)
(z − ζ)k−1

(k − 1)!
dζ ,

where q(z) is the (k − 1)-th Taylor polynomial of f centered at z0, i.e.,

q(z) =
k−1∑
j=0

f (j)(z0)
j!

(z − z0)j , and h(z) = f (k)(z) .

Definition 2.2. We say that f ∈ Ck(γ) if f ∈ ACk
loc(γ) and f (k) is continuous in γ.

Next, we study Leibniz’ rule.

Lemma 2.4. If F,G ∈ AC1
loc(γ) then FG ∈ AC1

loc(γ) and (FG)′ = F ′G + FG′.

Proof. We can write

F (z) = F (z0) +
∫ z

z0

f(ζ) dζ , G(z) = G(z0) +
∫ z

z0

g(ζ) dζ ,

where f, g ∈ L1
loc(γ, ds) and z, z0 ∈ γ, but,

(2.3) F (z) G(z) = F (z0)G(z0) +
∫ z

z0

(
F (z0) g(ζ) + G(z0) f(ζ)

)
dζ +

( ∫ z

z0

f(ζ) dζ
)( ∫ z

z0

g(ζ) dζ
)

and applying Fubini’s Theorem we get( ∫ z

z0

f(ξ) dξ
)( ∫ z

z0

g(ζ) dζ
)

=
∫ z

z0

∫ z

z0

f(ξ) g(ζ) dξ dζ

=
∫ z

z0

∫ ξ

z0

f(ξ) g(ζ) dζ dξ +
∫ z

z0

∫ z

ξ

f(ξ) g(ζ) dζ dξ

=
∫ z

z0

∫ ξ

z0

f(ξ) g(ζ) dζ dξ +
∫ z

z0

∫ ζ

z0

f(ξ) g(ζ) dξ dζ
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=
∫ z

z0

∫ ξ

z0

f(ξ) g(ζ) dζ dξ +
∫ z

z0

∫ ζ

z0

f(ξ) g(ζ) dξ dζ

=
∫ z

z0

f(ξ)
(
G(ξ)−G(z0)

)
dξ +

∫ z

z0

g(ζ)
(
F (ζ)− F (z0)

)
dζ .

This and (2.3) give

F (z) G(z) = F (z0)G(z0) +
∫ z

z0

(
F (ζ) g(ζ) + G(ζ) f(ζ)

)
dζ ,

with Fg + Gf ∈ L1
loc(γ, ds), i.e., FG ∈ AC1

loc(γ) and (FG)′ = F ′G + FG′ almost everywhere in γ.

Proceeding inductively we obtain that if F,G ∈ ACk
loc(γ) then (FG)(k−1) ∈ AC1

loc(γ) which implies that
FG ∈ ACk

loc(γ), that is

Lemma 2.5. Let F,G ∈ ACk
loc(γ). Then FG ∈ ACk

loc(γ) and verifies Leibniz’ rule, i.e.,

(FG)(k) =
k∑

j=0

(
k

j

)
F (j)G(k−j) .

Lemma 2.6. Let us consider γ : I → C with γ′ 6= 0 almost everywhere. Then f ∈ AC1
loc(γ) if and only if

f ◦ γ ∈ AC1
loc(I). Furthermore, if f ∈ AC1

loc(γ) we have
d

dt
f(γ(t)) = f ′(γ(t)) γ′(t) , for almost every t ∈ I .

Proof. If f ∈ AC1
loc(γ) we obtain directly f ◦ γ ∈ ACloc(I). Fix now t0 ∈ I. If f ◦ γ ∈ ACloc(I) then

d(f ◦ γ)/dt ∈ L1
loc(I) and so

f(γ(t)) = f(γ(t0)) +
∫ t

t0

1
γ′(τ)

d

dτ

(
f(γ(τ))

)
γ′(τ) dτ ,

for every t ∈ I. Therefore, for every z ∈ γ,

f(z) = f(z0) +
∫ z

z0

h(ζ) dζ , with h(ζ) =
( 1

γ′(τ)
d

dτ

(
f(γ(τ))

))
(γ−1(ζ)) .

Finally, let us introduce our last concept on derivatives:

Definition 2.3. We define the D-derivative of a function g in I, as

D[g](t) =
g′(t)
γ′(t)

, and Dk = Dk−1 ◦D .

It is natural to ask what functions belong to the class ACk
loc(γ). The following results answer this

question if γ is smooth enough.

Lemma 2.7. Let us suppose that γ ∈ ACk
loc(I) and γ′ 6= 0 in I. Then f ∈ ACk

loc(γ) if and only if
f ◦ γ ∈ ACk

loc(I). Furthermore, if f ∈ ACk
loc(γ) we have

(2.4) Dj [f ◦ γ](t) = f (j)(γ(t)) for 1 ≤ j ≤ k and almost every t ∈ I .

Proof. Assume that f ◦ γ ∈ ACk
loc(I) and fix t0 ∈ I. Lemma 2.6 gives

f(γ(t)) = f(γ(t0)) +
∫ t

t0

D[f ◦ γ](τ) γ′(τ) dτ .

Integrating by parts, we have, for 1 ≤ j < k, that∫ t

t0

Dj [f ◦ γ](τ)
(γ(t)− γ(τ))j−1

(j − 1)!
γ′(τ) dτ

= Dj [f ◦ γ](t0)
(γ(t)− γ(t0))j

j!
+

∫ t

t0

Dj+1[f ◦ γ](τ)
(γ(t)− γ(τ))j

j!
γ′(τ) dτ .

Consequently we obtain
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f(γ(t)) =
k−1∑
j=0

Dj [f ◦ γ](t0)
(γ(t)− γ(t0))j

j!
+

∫ t

t0

Dk[f ◦ γ](τ)
(γ(t)− γ(τ))k−1

(k − 1)!
γ′(τ) dτ .

Then f ∈ ACk
loc(γ) and we have (2.4).

Assume now that f ∈ ACk
loc(γ). We prove (2.4) by induction in j. Lemma 2.6 gives D[f◦γ](t) = f ′(γ(t)).

Assume that Dj [f ◦ γ](t) = f (j)(γ(t)) for some j (1 ≤ j < k). Since f (j) ∈ AC1
loc(γ) we have by Lemma 2.6

that f (j)(γ(t)) = Dj [f ◦ γ](t) ∈ AC1
loc(I) and

d

dt

(
Dj [f ◦ γ](t)

)
= f (j+1)(γ(t)) γ′(t) .

Therefore Dj+1[f ◦ γ](t) = f (j+1)(γ(t)). This gives (2.4). Now it is immediate that

(2.5) Dk−1[f ◦ γ](t) =
(f ◦ γ)(k−1)(t)

γ′(t)k−1
+

Q
[
(f ◦ γ)′, . . . , (f ◦ γ)(k−2), γ′, . . . , γ(k−1)

]
(t)

γ′(t)2k−1
,

where Q is a polynomial. Since f (k−1) ∈ AC1
loc(γ), Lemma 2.6 gives Dk−1[f ◦γ](t) = f (k−1)(γ(t)) ∈ AC1

loc(I).
This fact and (2.5) give (f ◦ γ)(k−1) ∈ AC1

loc(I).

Corollary 2.1. Assume that γ ∈ Ck(I) and γ′ 6= 0 in I. Then f ∈ Ck(γ) if and only if f ◦ γ ∈ Ck(I).

3. Sobolev spaces.

Obviously one of our main problems is to define the space W k,p(γ, µ). There are two natural definitions:
(1) W k,p(γ, µ) is the biggest space of (classes of) functions f regular enough with ‖f‖W k,p(γ,µ) < ∞.

(2) W k,p(γ, µ) is the closure of a good set of functions (e.g. C∞(γ) or P ) with the norm ‖ · ‖W k,p(γ,µ).

However both approaches have serious difficulties:
We consider first the approach (1). It is clear that the derivatives f (j) must be derivatives along γ

in order to obtain a complete Sobolev space. Therefore we need to restrict the measures µ to a class of
p-admissible measures (see Definition 3.6). Roughly speaking, µ is p-admissible if (µj)s, for 1 ≤ j ≤ k,
is concentrated in the set of points where f (j) is continuous, for every function f of the space; otherwise
f (j) is determined, up to zero-Lebesgue measure sets. Then (µk)s is identically zero. However, there is no
restriction on the support of (µ0)s.

This reasonable approach excludes norms appearing in the theory of Sobolev orthogonal polynomials.
Even if we work with the simpler case of the weighted Sobolev spaces W k,p(γ, w) (measures without singular
part) we must impose the condition that wj belongs to the class Bp (see Definition 3.2 below) in order to
have a complete weighted Sobolev space (see e. g. [KO]).

The approach (2) is simpler: we know that the completion of every normed space exists (e.g. (C∞(γ), ‖·
‖W k,p(γ,µ)) or (P, ‖ · ‖W k,p(γ,µ))), but we have two difficulties. The first one is evident: we do not get an
explicit description of the Sobolev functions as in (1) (in Section 6 there are several theorems which prove
that both definitions of Sobolev space are the same for p-admissible measures). The second problem is worse:
The completion of a normed space is by definition a set of equivalence classes of Cauchy sequences. In many
cases this completion is not a function space (see Theorem 3.1 in [R1] and its Remark).

However, since we need to work with the multiplication operator in P k,p(γ, µ), we have to choose this
second approach if µ is not p-admissible. First of all, we explain the definition of generalized Sobolev space
on a curve. Let us start with some preliminary technical definitions.

Definition 3.1. We say that two functions u, v are comparable on the set A ⊆ γ if there are positive constants
c1, c2 such that c1v(x) ≤ u(x) ≤ c2v(x) for almost every x ∈ A. Since measures and norms are functions
on measurable sets and vectors, respectively, we can talk about comparable measures and comparable norms.
We say that two vectorial weights or vectorial measures are comparable if each component is comparable.

In what follows, the symbol a � b means that a and b are comparable for a and b functions, measures
or norms.
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Obviously, the spaces Lp(A,µ) and Lp(A, ν) are the same and have comparable norms if µ and ν are
comparable on A. Therefore, in order to obtain our results we can replace a measure µ by any comparable
measure ν.

To define a Sobolev space along a curve γ we consider first a class of weights which plays an important
role in our results.
Definition 3.2. If 1 ≤ p ≤ ∞, we say that a weight w belongs to Bp([z1, z2]) if and only if

w−1 ∈ L1/(p−1)([z1, z2]) , if p < ∞ ,

w−1 ∈ L1([z1, z2]) , if p = ∞ .

Also, if J is any arc of γ we say that w ∈ Bp(J) if w ∈ Bp(J0) for every compact arc J0 ⊆ J . We say that
a weight belongs to Bp(J), where J is a union of disjoint arcs ∪i∈AJi, if it belongs to Bp(Ji), for i ∈ A.

If the curve γ is R, then Bp(R) contains the classical Ap(R) weights appearing in Harmonic Analysis
(see [Mu1] or [GR]). The classes Bp(Ω), with Ω ⊆ Rn, and Ap(Rn) (1 < p < ∞) have been used in other
definitions of weighted Sobolev spaces on Rn in [KO] and [K] respectively.
Definition 3.3. Let us consider 1 ≤ p ≤ ∞ and a vectorial measure µ = (µ0, . . . , µk) defined on the curve
γ. For 0 ≤ j ≤ k we define the open set

Ωj :=
{

z ∈ γ : ∃ an open neighbourhood V of z on the curve γ with wj ∈ Bp(V )
}

.

Remark. Observe that we always have wj ∈ Bp(Ωj) for any 1 ≤ p ≤ ∞ and 0 ≤ j ≤ k. In fact, Ωj is the
greatest open set U with wj ∈ Bp(U). Obviously, Ωj depends on µ and p, although p and µ do not appear
explicitly in the symbol Ωj . Applying Hölder inequality it is easy to check that if f (j) ∈ Lp(Ωj , wj) with
1 ≤ j ≤ k, then f (j) ∈ L1

loc(Ωj) and f (j−1) ∈ AC1
loc(Ωj).

The following definitions also depend on µ and p, although µ and p do not appear explicitly.
Let us consider 1 ≤ p ≤ ∞, a vectorial measure µ = (µ0, . . . , µk) and z0 ∈ γ. We can modify the

measure µ in a neighbourhood of z0, using the following version of Muckenhoupt inequality in curves. This
modified measure is equivalent in some sense to the original one (see Theorem 4.1).

Theorem 3.1. (Muckenhoupt inequality in curves.) Let us consider 1 ≤ p ≤ ∞, [z0, z1 ] ⊆ γ and µ0, µ1

measures in (z0, z1 ]. Assume also (µ0)s ≡ 0 if p = ∞. Then there exists a positive constant c such that

(3.1)
∥∥∥∫ z1

z

g(ζ) dζ
∥∥∥

Lp((z0,z1], µ0)
≤ c ‖g‖Lp((z0,z1], µ1) ,

for any measurable function g in (z0, z1 ], if and only if

(3.2)

sup
ζ∈(z0,z1)

µ0

(
(z0, ζ]

)∥∥w−1
1

∥∥
L1/(p−1)([ζ,z1])

< ∞ , if 1 ≤ p < ∞ ,

ess sup
ζ∈(z0,z1)

w0(ζ)
∫ z1

ζ

w1(ξ)−1 |dξ| < ∞ , if p = ∞ ,

where ess sup refers to the arc-length.

Remark. This inequality is already known if γ is contained in the real line (see [Mu2], [M, p.44] for
1 ≤ p < ∞, and [RARP1, Lemma 3.2] for p = ∞).

Proof. We only deal with the case 1 < p < ∞; the cases p = 1 and p = ∞ are similar. Consider the
arc-length parametrization γ : [a, b] → [z0, z1].

We prove first that (3.2) implies (3.1). We can define measures µ∗0, µ∗1 in (a, b ] as follows: µ∗i (D) =
µi(γ(D)) for any Borel subset D of (a, b ] and for i = 0, 1. Consequently,

∫ z2

z1
f dµi =

∫ b

a
(f ◦ γ) dµ∗i for any

f ∈ L1(γ, µi). Note that w∗
1 , the absolutely continuous part of µ∗1, is equal to w1 ◦ γ almost everywhere,

since |γ′| = 1 almost everywhere. By condition (3.2) we have
sup

t∈(a,b)

µ∗0
(
(a, t]

)∥∥(w∗
1)−1

∥∥
L1/(p−1)([t,b])

< ∞ ,

since w∗
1 = w1 ◦ γ and |γ′| = 1 almost everywhere. Muckenhoupt inequality in the real line gives∥∥∥∫ b

t

|g(γ(τ))| dτ
∥∥∥

Lp((a,b ], µ∗0)
≤ c ‖g ◦ γ‖Lp((a,b ], µ∗1) ,
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for any measurable function g defined in (z0, z1 ]. This inequality and the facts ‖g ◦ γ‖Lp((a,b ], µ∗1) =
‖g‖Lp((z0,z1 ], µ1) and

∥∥∥∫ z1

z

g(ζ) dζ
∥∥∥

Lp((z0,z1], µ0)
=

∥∥∥∫ γ(b)

γ(t)

g(ζ) dζ
∥∥∥

Lp((a,b ], µ∗0)

=
∥∥∥∫ b

t

g(γ(τ)) γ′(τ) dτ
∥∥∥

Lp((a,b ], µ∗0)
≤

∥∥∥∫ b

t

|g(γ(τ))| dτ
∥∥∥

Lp((a,b ], µ∗0)
,

give (3.1).
Assume now (3.1). Fix ζ ∈ (z0, z1) and consider the function g in (z0, z1 ] defined by

g(z) := w1(z)−1/(p−1) χ
[ζ,z1]\A

(z) γ′(γ−1(z)) ,

if w1 ∈ Bp((z0, z1 ]), where A is a set of zero length in (z0, z1 ] with (µ1)s concentrated in A. If w1 /∈
Bp((z0, z1 ]), we can consider w1 + ε instead of w1 and take the limit as ε → 0+. We have

(3.3) ‖g‖p
Lp((z0,z1], µ1)

=
∫ z1

ζ

w1(z)−1/(p−1) |dz| =
∥∥w−1

1

∥∥1/(p−1)

L1/(p−1)([ζ,z1])
,

and

(3.4)

∥∥∥∫ z1

z

g(ξ) dξ
∥∥∥p

Lp((z0,z1], µ0)
≥

∫ ζ

z0

∣∣∣ ∫ z1

z

g(ξ) dξ
∣∣∣p dµ0(z)

=
∫ ζ

z0

∣∣∣ ∫ z1

ζ

g(ξ) dξ
∣∣∣p dµ0(z) = µ0

(
(z0, ζ]

) ∥∥w−1
1

∥∥p/(p−1)

L1/(p−1)([ζ,z1])
,

since ∫ z1

ζ

g(ξ) dξ =
∫ b

t

g(γ(τ)) γ′(τ) dτ

=
∫ b

t

w1(γ(τ))−1/(p−1) γ′(τ) γ′(τ) dτ =
∫ z1

ζ

w1(ξ)−1/(p−1) |dξ| ,

if γ(t) = ζ. Now (3.1), (3.3) and (3.4) give (3.2).

Definition 3.4. A vectorial measure µ = (µ0, . . . , µk) is a right completion of a vectorial measure µ =
(µ0, . . . , µk) with respect to z0 ∈ γ in a right neighbourhood [z0, z1], if µk = µk in γ, µj = µj in the
complement of (z0, z1] and

µj = µj + µ̃j , in (z0, z1] for 0 ≤ j < k ,

where µ̃j is any measure satisfying:
(i) µ̃j((z0, z1]) < ∞ if 1 ≤ p < ∞,
(ii) (µ̃j)s ≡ 0 and w̃j ∈ L∞([z0, z1]) if p = ∞,
(iii) Λp(µ̃j , µj+1) < ∞, with

Λp(ν, σ) := sup
ζ∈(z0,z1)

ν
(
(z0, ζ]

)∥∥∥(dσ

ds

)−1∥∥∥
L1/(p−1)([ζ,z1])

, if 1 ≤ p < ∞ ,

Λ∞(ν, σ) := ess sup
ζ∈(z0,z1)

dν

ds
(ζ)

∫ z1

ζ

(dσ

ds

)−1

(ξ) |dξ| .

The Muckenhoupt inequality guarantees that if f (j) ∈ Lp(µj) and f (j+1) ∈ Lp(µj+1), then f (j) ∈
Lp(µj). If we work with absolutely continuous measures, we also say that a vectorial weight w is a completion
of µ (or of w).
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The following is an example of a completion when γ is an interval. It can be generalized to curves in
an obvious way.

Example. We choose w̃j := 0 if wj+1 /∈ Bp((y, y +ε]); if wj+1 ∈ Bp([y, y +ε]) we set w̃j(x) := 1 in [y, y +ε];
and if wj+1 ∈ Bp((y, y + ε]) \Bp([y, y + ε]) we take w̃j(x) := 1 for x ∈ [y + ε/2, y + ε], and

w̃j(x) :=
d

dx

{(∫ y+ε

x

w
−1/(p−1)
j+1

)−p+1}
=

(p− 1) wj+1(x)−1/(p−1)( ∫ y+ε

x
w
−1/(p−1)
j+1

)p , if 1 < p < ∞ ,

w̃j(x) := ‖w−1
j+1‖

−1
L∞([x,y+ε]) +

d

dx

(
‖w−1

j+1‖
−1
L∞([x,y+ε])

)
, if p = 1 ,

w̃j(x) := min
{

1,
( ∫ y+ε

x

w−1
j+1

)−1}
, if p = ∞ ,

for x ∈ (y, y + ε/2).

Remarks.
1. We can define a left completion of µ with respect to z0 in a similar way.
2. If wj+1 ∈ Bp([z0, z1]), then Λp(µ̃j , wj+1) < ∞ for any measure µ̃j with µ̃j((z0, z1]) < ∞ if 1 ≤ p < ∞

and for any bounded weight w̃j if p = ∞. In particular, Λp(1, wj+1) < ∞.
3. If µ, ν are comparable measures, ν is a right completion of ν if and only if it is comparable to a right

completion µ of µ.
4. If µ, ν are two vectorial measures with the same absolutely continuous part, then µ is a right

completion of µ if and only if it is a right completion of ν.
5. If µ is a right completion of µ with respect to z0 in (z0, z1] and z2 ∈ (z0, z1), the measure µ∗ defined

by

µ∗ =
{

µ , in [z0, z2] ,
µ , in γ \ [z0, z2] .

is a right completion of µ with respect to z0 in (z0, z2 ].
6. If µ is a right completion of µ with respect to z0 in (z0, z1 ] and z1 ∈ (z0, z2), µ is also a right

completion of µ with respect to z0 in (z0, z2 ] (it is enough to take µ̃ ≡ 0 in (z1, z2 ]).
7. Let us fix z3 ∈ (z0, z1]. If for every z2 ∈ (z0, z3] we have wj+1 /∈ Bp((z0, z2]), then there exists some

z4 ∈ (z0, z1] such that every µ̃j must be 0 in (z0, z4).

Definition 3.5. For 1 ≤ p ≤ ∞ and a vectorial measure µ, we say that a point z0 ∈ γ is right j-regular
(respectively, left j-regular), if there exist a right completion µ (respectively, left completion) of µ in [z0, z1]
and j < i ≤ k such that wi ∈ Bp([z0, z1]) (respectively, Bp([z1, z0])). Also, we say that a point z0 ∈ γ is
j-regular, if it is right and left j-regular.

Remarks.
1. A point z0 ∈ γ is right j-regular (respectively, left j-regular), if at least one of the following properties

is verified:
(a) There exist a right (respectively, left) neighbourhood [z0, z1] (respectively, [z1, z0]) and j < i ≤ k

such that wi ∈ Bp([z0, z1]) (respectively, Bp([z1, z0])). Here we have chosen w̃j = 0.
(b) There exist a right (respectively, left) neighbourhood [z0, z1] (respectively, [z1, z0]) and j < i ≤ k,

α > 0, δ < δp with δp := (i−j)p−1 if 1 ≤ p < ∞ and δ∞ := i−j−1, such that wi(z) ≥ α |z−z0|δ, for almost
every z ∈ [z0, z1] (respectively, [z1, z0]) and we have |z − z0| � |γ−1(z) − γ−1(z0)| in [z0, z1] (respectively,
[z1, z0]), when γ is the arc-length parametrization. See Lemma 3.4 in [RARP1].

2. If z0 is right j-regular (respectively, left), then it is also right i-regular (respectively, left) for each
0 ≤ i ≤ j.

3. We can take i = j +1 in this definition since by the second remark after Definition 3.4 we can choose
wl = wl + 1 ∈ Bp([z0, z1]) for j < l < i, if j + 1 < i.

4. If z0 is right j-regular, by Remark 3 there exists a right completion µ of µ with wj+1 ∈ Bp([z0, z1]).
If furthermore wk ∈ Bp((z0, z2]) with z1 ∈ (z0, z2) we can assume that wj+1 ∈ Bp([z0, z2]).
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5. If µ, ν are two vectorial measures with the same absolutely continuous part, then z0 is right j-regular
(respectively, left) with respect to µ if and only if it is right j-regular (respectively, left) with respect to ν.

When we use this definition we think of a point {z} as the union of two half-points {z+} and {z−}.
With this convention, each one of the following sets

(z0, z1) ∪ (z1, z2) ∪ {z+
1 } = (z0, z1) ∪ [z+

1 , z2) 6= (z0, z2) ,

(z0, z1) ∪ (z1, z2) ∪ {z−1 } = (z0, z
−
1 ] ∪ (z1, z2) 6= (z0, z2) ,

has two connected components, and the set

(z0, z1) ∪ (z1, z2) ∪ {z−1 } ∪ {z
+
1 } = (z0, z1) ∪ (z1, z2) ∪ {z1} = (z0, z2)

is connected.

We only use this convention in order to study the sets of continuity of functions: we want that if
f ∈ C(A) and f ∈ C(B), where A and B are union of arcs, then f ∈ C(A∪B). With the usual definition of
continuity in an arc, if f ∈ C([z0, z1)) ∩ C([z1, z2]) then we do not have f ∈ C([z0, z2]). Of course, we have
f ∈ C([z0, z2]) if and only if f ∈ C([z0, z

−
1 ]) ∩ C([z+

1 , z2]), where by definition, C([z+
1 , z2]) = C([z1, z2]) and

C([z0, z
−
1 ]) = C([z0, z1]). This idea can be formalized with a suitable topological space.

Let us introduce some more notation. We denote by Ω(j) the set of j-regular points or half-points, i.e.,
z ∈ Ω(j) if and only if z is j-regular, we say that z+ ∈ Ω(j) if and only if z is right j-regular, and we say that
z− ∈ Ω(j) if and only if z is left j-regular. Obviously, Ω(k) = ∅ and Ωj+1 ∪ · · · ∪ Ωk ⊆ Ω(j). Observe that
Ω(j) depends on p (see Definition 3.5).

Remark. If 0 ≤ j < k and J is an arc in γ, J ⊆ Ω(j), then the set J \ (Ωj+1 ∪ · · · ∪ Ωk) is discrete: If
z+ ∈ J \ (Ωj+1 ∪ · · · ∪Ωk), there exist (z, z1] ⊆ J , a right completion µ and j < i ≤ k with wi ∈ Bp([z, z1]).
Then there exist z2 ∈ (z, z1] and i ≤ l ≤ k with wl ∈ Bp((z, z2]) and consequently (z, z2) ⊆ Ωj+1 ∪ · · · ∪ Ωk

(see the seventh remark to Definition 3.4). The same is true for z− with the obvious changes.

Definition 3.6. We say that the vectorial measure µ = (µ0, . . . , µk) is p-admissible if

(µj − (wj)|Ωj )(γ \ Ω(j)) = 0, for 1 ≤ j ≤ k.

We say that µ is strongly p-admissible if supp (µj − (wj)|Ωj
) ⊆ Ω(j), for 1 ≤ j ≤ k.

We use the letter p in p-admissible in order to emphasize the dependence on p (recall that Ω(j) depends
on p).

Remarks.
1. There is no condition on µ0.
2. We have (µk)s ≡ 0 and wk = 0 in almost every z ∈ γ \ Ωk, since Ω(k) = ∅.
3. Every absolutely continuous measure w with wj(z) = 0 in almost every z ∈ γ \ Ωj for 1 ≤ j ≤ k is

p-admissible.
4. Recall that we are identifying wj with the measure wj ds.
5. This definition is more general than the definition of p-admissible measure in [RARP1]; there we

always assume wj(z) = 0 in γ \ Ωj . There exist weights which do not satisfy this reasonable condition:
Consider a Cantor set C in [0, 1] with positive length and define w1 := 1 in C and w1(x) := dist (x, C) if
x ∈ R \ C; it is clear that Ω1 = R \ C and w1 = 1 in C.

Definition 3.7 (Sobolev space). Let us consider 1 ≤ p ≤ ∞ and µ = (µ0, . . . , µk) a p-admissible vectorial
measure. We define the Sobolev space W k,p(γ, µ) as the space of equivalence classes of

V k,p(γ, µ) :=
{

f : γ → C | f (j) ∈ AC1
loc(Ω

(j)) for 0 ≤ j < k and

‖f (j)‖Lp(γ,µj) < ∞ for 0 ≤ j ≤ k
}

,
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with respect to the seminorm

‖f‖W k,p(γ,µ) :=
( k∑

j=0

‖f (j)‖p
Lp(γ,µj)

)1/p

, for 1 ≤ p < ∞ ,

and
‖f‖W k,∞(γ,µ) := max

0≤j≤k
‖f (j)‖L∞(γ,µj) ,

where
‖g‖L∞(γ,µj) := max

{
ess sup

z∈γ
|g(z)|wj(z) , sup

z∈supp (µj)s

|g(z)|
}

and we assume the usual convention sup ∅ = −∞.

Remark. It is natural to ask for f (j) ∈ AC1
loc(Ω

(j)), since when the (µj)s-measure of the set where |f (j)| is
not continuous is positive, the integral

∫
|f (j)|p d(µj)s does not make sense.

4. Technical results.

Lemma 4.1. Let 1 ≤ p ≤ ∞, I = [z0, z1] a compact arc in γ and µ = (µ0, . . . , µk) a p-admissible vectorial
measure in I, with (z0, z1] ⊆ Ω(k0−1) for some 0 < k0 ≤ k. If we construct a right completion µ of µ with
respect to the point z0, satisfying µj = µj for k0 ≤ j ≤ k, then there exists a positive constant c such that

c ‖g(j)‖Lp(I, µj)
≤

k0∑
i=j

‖g(i)‖Lp(I, µi) +
k0−1∑
i=j

|g(i)(z1)| ,

for all 0 ≤ j < k0 and g ∈ V k,p(I, µ). In particular, we have

c ‖g‖W k,p(I, µ) ≤ ‖g‖W k,p(I, µ) +
k0−1∑
j=0

|g(j)(z1)| ,

for all g ∈ V k,p(I, µ).

Proof. The fact µj = µj for k0 ≤ j ≤ k and the first inequality give the second one. Then we only need
to prove the first inequality. If g ∈ V k,p(I, µ), we have g(j) ∈ AC1

loc((z0, z1]) since (z0, z1] ⊆ Ω(j) ⊆ Ω(k0−1).
Muckenhoupt inequality gives

c ‖g(j)(z)− g(j)(z1)‖Lp(I, µ̃j) ≤ ‖g(j+1)‖Lp(I, µj+1)
,

for 0 ≤ j < k0 (we can consider the point z1 as the limit of the completion by remarks 5 and 6 to Definition
3.4). Then we have for 1 ≤ p ≤ ∞,

c ‖g(j)‖Lp(I, µ̃j) ≤ ‖g(j+1)‖Lp(I, µj+1)
+ |g(j)(z1)| ,

since µ̃j(I) < ∞ if 1 ≤ p < ∞, and w̃j ∈ L∞(I) and µ̃j is absolutely continuous if p = ∞. This inequality
gives now

c ‖g(j)‖Lp(I, µj)
≤ ‖g(j)‖Lp(I, µj) + ‖g(j+1)‖Lp(I, µj+1)

+ |g(j)(z1)| ,

for 0 ≤ j < k0. This fact and µk0
= µk0 prove the first inequality.
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Lemma 4.2. Let us consider 1 ≤ p ≤ ∞, I a compact arc in γ, z0 ∈ intI and µk an absolutely continuous
measure in I, with wk ∈ Bp(intI). Assume also that Ω(0) = I for µ = (0, . . . , 0, µk). Then, there exists a
positive constant c with∥∥∥∫ z

z0

g(k)(ζ)
(k − 1)!

(z − ζ)k−1 dζ
∥∥∥

L∞(I)
≤ c ‖g(k)‖Lp(I, µk) , for every g ∈ ACk

loc(intI) .

Furthermore, if Ij ⊆ Ω(j) is a compact arc (0 ≤ j < k), then there exists a positive constant c with∥∥∥∫ z

z0

g(k)(ζ)
(k − j − 1)!

(z − ζ)k−j−1 dζ
∥∥∥

L∞(Ij)
≤ c ‖g(k)‖Lp(I, µk) , for every g ∈ ACk

loc(intI) .

Proof. We prove the first inequality; the second one is an immediate consequence of it. Without loss of
generality we can assume that g ∈ V k,p(I, µ), since otherwise ‖g(k)‖Lp(I, µk) = ∞, and the inequality is
trivial. Assume that I = [z1, z2]. Since z1 is right 0-regular, by Remark 4 to Definition 3.5, there exists a
right completion µ of µ with respect to z1, with w1 ∈ Bp([z1, z0]). Then, by Lemma 4.1 we have that

c ‖g′‖Lp([z1,z0], µ1)
≤ ‖g‖W k,p([z1,z0], µ) +

k−1∑
j=1

|g(j)(z0)| ,

for all g ∈ V k,p([z1, z0], µ), and so

‖g‖L∞([z1,z0]) ≤ ‖g′‖L1([z1,z0]) + |g(z0)| ≤ c ‖g′‖Lp([z1,z0], µ1)
+ |g(z0)|

≤ c ‖g‖W k,p([z1,z0], µ) + c
k−1∑
j=0

|g(j)(z0)| .

A symmetric argument gives

‖g‖L∞([z0,z2]) ≤ c ‖g‖W k,p([z0,z2], µ) + c
k−1∑
j=0

|g(j)(z0)| .

Since the function

a(z) :=
∫ z

z0

g(k)(ζ)
(k − 1)!

(z − ζ)k−1 dζ

verifies a(j)(z0) = 0 for 0 ≤ j < k, the proof is finished.

Proposition 4.1. Let us consider 1 ≤ p ≤ ∞, I a compact arc in γ and µ = (µ0, 0, . . . , 0, µk) a vectorial
measure in I with µk absolutely continuous, wk ∈ Bp(intI) and #supp

(
µ0|Ω(0)∩I

)
≥ k. Define X = {f ∈

ACk
loc(I) : ‖f (k)‖Lp(I, µk) < ∞}. Then, given compact arcs Ij ⊆ Ω(j) ∩ I for 0 ≤ j < k, there exists a positive

constant c with

c
k−1∑
j=0

‖f (j)‖L∞(Ij) ≤ ‖f‖Lp(I, µ0) + ‖f (k)‖Lp(I, µk) , for every f ∈ X .

Proof. Without loss of generality we can assume that µ0(I) < ∞, since in other case the right hand side
of the inequality is greater. Without loss of generality we can assume that Ω(0) ∩ I = I, since otherwise
we can change I by I0 ∪ I1 ∪ · · · ∪ Ik−1 ∪ Λ, where Λ is any compact arc contained in Ω(0) ∩ I and with
#supp

(
µ0|Λ

)
≥ k. We can assume also ∅ 6= Ik−1 ⊆ Ik−2 ⊆ · · · ⊆ I0 = I and even Ij = I if Ω(j) ∩ I = I.

We prove first that the normed spaces (X, ‖ · ‖A) and (X, ‖ · ‖B) are complete, where

‖f‖A := ‖f‖Lp(I, µ0) + ‖f (k)‖Lp(I, µk) , ‖f‖B :=
k−1∑
j=0

‖f (j)‖L∞(Ij) + ‖f (k)‖Lp(I, µk) .
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We start now by proving the completeness of the space (X, ‖ · ‖A). Observe first that ‖ · ‖A is a norm
in X: if ‖f (k)‖Lp(I, µk) = 0, then f ∈ Pk−1; this fact and ‖f‖Lp(I, µ0) = 0 gives f = 0 in I, since ‖ · ‖Lp(I, µ0)

is a norm on Pk−1 (recall that µ0 is finite and #supp (µ0|Ω(0)∩I) ≥ k). Let us consider a Cauchy sequence
{fn} ⊂ (X, ‖ · ‖A). Each function can be written as:

fn(z) =
k−1∑
j=0

f
(j)
n (z0)

j!
(z − z0)j +

∫ z

z0

f
(k)
n (ζ)

(k − 1)!
(z − ζ)k−1 dζ ,

with z0 ∈ Ik−1. So,

fn(z)− fm(z) =
k−1∑
j=0

f
(j)
n (z0)− f

(j)
m (z0)

j!
(z − z0)j +

∫ z

z0

f
(k)
n (ζ)− f

(k)
m (ζ)

(k − 1)!
(z − ζ)k−1 dζ .

Lemma 4.2 gives

∥∥∥∫ z

z0

f
(k)
n (ζ)− f

(k)
m (ζ)

(k − 1)!
(z − ζ)k−1 dζ

∥∥∥
Lp(I, µ0)

≤ c
∥∥∥∫ z

z0

f
(k)
n (ζ)− f

(k)
m (ζ)

(k − 1)!
(z − ζ)k−1 dζ

∥∥∥
L∞(I)

≤ c
∥∥f (k)

n − f (k)
m

∥∥
Lp(I, µk)

→ 0 ,

as n, m →∞, since µ0 is finite. Using that ‖fn − fm‖Lp(I, µ0) → 0 as n, m →∞ we obtain

∥∥∥ k−1∑
j=0

f
(j)
n (z0)− f

(j)
m (z0)

j!
(z − z0)j

∥∥∥
Lp(I, µ0)

→ 0 ,

as n, m →∞. Since ‖ · ‖Lp(I, µ0) is a norm on Pk−1, we have that f
(j)
n (z0) → cj for some constants cj , with

0 ≤ j ≤ k − 1 and

(4.1)
∥∥∥ k−1∑

j=0

f
(j)
n (z0)− cj

j!
(z − z0)j

∥∥∥
Lp(I, µ0)

−→ 0 ,

as n →∞. We obviously have functions F0 ∈ Lp(I, µ0), Fk ∈ Lp(I, µk) such that

‖F0 − fn‖Lp(I, µ0) + ‖Fk − f (k)
n ‖Lp(I, µk) → 0 ,

as n →∞. Now, we can define

F̃0(z) =
k−1∑
j=0

cj

j!
(z − z0)j +

∫ z

z0

Fk(ζ)
(k − 1)!

(z − ζ)k−1 dζ .

Next we prove F̃0 = F0, µ0-almost everywhere in I; this fact gives ‖F̃0− fn‖A → 0 as n →∞. We have
this by (4.1) and

∥∥∥∫ z

z0

f
(k)
n (ζ)− Fk(ζ)

(k − 1)!
(z − ζ)k−1 dζ

∥∥∥
Lp(I, µ0)

≤ c
∥∥f (k)

n − Fk

∥∥
Lp(I, µk)

→ 0 ,

as n →∞. This gives the completeness of the space (X, ‖ · ‖A).
We prove now the completeness of the space (X, ‖ · ‖B). Let us consider a Cauchy sequence {fn} ⊂

(X, ‖ · ‖B). For each 0 ≤ j ≤ k there exists Fj with∥∥Fj − f (j)
n

∥∥
L∞(Ij)

→ 0 , for 0 ≤ j < k ,
∥∥Fk − f (k)

n

∥∥
Lp(I, µk)

→ 0 ,
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as n →∞. If we fix z0 ∈ Ik−1, we have

f (j)
n (z) =

k−1∑
i=j

f
(i)
n (z0)

(i− j)!
(z − z0)i−j +

∫ z

z0

f
(k)
n (ζ)

(k − j − 1)!
(z − ζ)k−j−1 dζ ,

for z ∈ Ij and 0 ≤ j < k. By Lemma 4.2 and the uniform convergence of f
(j)
n in Ij , we have

Fj(z) =
k−1∑
i=j

Fi(z0)
(i− j)!

(z − z0)i−j +
∫ z

z0

Fk(ζ)
(k − j − 1)!

(z − ζ)k−j−1 dζ ,

for z ∈ Ij and 0 ≤ j < k. Consequently F
(j)
0 = Fj in Ij , for 0 ≤ j < k and F

(k)
0 = Fk in I. This gives the

completeness of (X, ‖ · ‖B).
Observe that ‖f‖A ≤ c ‖f‖B for every f ∈ X. Since (X, ‖ · ‖A) and (X, ‖ · ‖B) are Banach spaces, the

open mapping theorem in Banach spaces gives ‖f‖B ≤ c ‖f‖A for every f ∈ X, and this finishes the proof.

Proposition 4.2. Let us consider 1 ≤ p ≤ ∞, I a compact arc in γ and µ = (µ0, . . . , µk) a p-admissible
vectorial measure in I, with wk ∈ Bp(intI), and #supp

(
µ0|Ω(0)∩I

)
≥ k. Then, given compact arcs Ij ⊆

Ω(j) ∩ I for 0 ≤ j < k, there exists a positive constant c with

c

k−1∑
j=0

‖f (j)‖L∞(Ij) ≤ ‖f‖W k,p(I, µ) , for every f ∈ V k,p(I, µ) .

Remark. Observe that in Proposition 4.1 the set Ω(j) only depends on wk. However, in Proposition 4.2 the
set Ω(j) depends on wj+1, . . . , wk.
Proof. By Proposition 4.1 the result holds if Ij ⊂ intI. Therefore, we only need to obtain the bounds in a
neighbourhood of ∂I. If I = [z1, z2], assume that z1 ∈ Ij for some 0 ≤ j < k (the case z2 ∈ Ij is symmetric).
Since Ij ⊆ Ω(j) ∩ I, there exist a completion µ and z0 ∈ (z1, z2) with wj+1 ∈ Bp([z1, z0]). Then Lemma 4.1
and Proposition 4.1 give

‖f (j)‖L∞([z1,z0]) ≤ ‖f (j+1)‖L1([z1,z0]) + |f (j)(z0)| ≤ c ‖f (j+1)‖Lp([z1,z0], µj+1)
+ |f (j)(z0)|

≤ c ‖f‖W k,p([z1,z0], µ) + c

k−1∑
i=0

|f (i)(z0)| ≤ c ‖f‖W k,p(I, µ) .

Definition 4.1. Let us consider 1 ≤ p ≤ ∞ and µ a p-admissible vectorial measure in γ. Let us define the
space K(γ, µ) as

K(γ, µ) :=
{

g : Ω(0) −→ C/ g ∈ V k,p
(
γ, µ|Ω(0)

)
, ‖g‖W k,p(γ, µ|

Ω(0) ) = 0
}

.

K(γ, µ) is the equivalence class of 0 in W k,p(γ, µ|Ω(0)). Therefore, ‖ · ‖W k,p(γ, µ) is a norm if and only if
K(γ, µ) = {0}. It plays an important role in the study of the multiplication operator in Sobolev spaces (see
Theorem 8.3 below) and in the following definition of classes C and C0, which will be crucial in the study of
Sobolev spaces (see theorems 4.1, 4.2 and 5.1 below).

The case in which ‖ · ‖W k,p(γ, µ) is a norm is the most interesting. However we need something more in
order to prove part (a) of Theorem 4.1 below: this additional condition is what we present in our following
definition of class C0. Roughly speaking, µ ∈ C0 if ‖ · ‖W k,p(Mn, µ) is a norm for some sequence of compact
sets {Mn} growing to γ. This condition is exactly what we need since in the proof of Theorem 4.1 we
approximate γ by compact sets.

If µ /∈ C0 we still can prove part (b) of Theorem 4.1 by adding some Dirac deltas to µ0; we only add the
exact amount that we need. This leads to the definition of class C.
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Definition 4.2. Let us consider 1 ≤ p ≤ ∞ and µ a p-admissible vectorial measure in γ. We say that (γ, µ)
belongs to the class C0 if there exist compact sets Mn, which are a finite union of compact arcs in γ, such
that

i) Mn intersects at most a finite number of connected components of Ω1 ∪ · · · ∪ Ωk,
ii) K(Mn, µ) = {0},
iii) Mn ⊆ Mn+1,
iv) ∪nMn = Ω(0).

We say that (γ, µ) belongs to the class C if there exists a measure µ′0 = µ0 +
∑

m∈D cmδzm
with cm > 0,

{zm} ⊂ Ω(0), D ⊆ N and (γ, µ′) ∈ C0, where µ′ = (µ′0, µ1, . . . , µk) is minimal in the following sense:
there exists {Mn} corresponding to (γ, µ′) ∈ C0 such that if µ′′0 = µ′0 − cm0δzm0

with m0 ∈ D and µ′′ =
(µ′′0 , µ1, . . . , µk), then K(Mn, µ′′) 6= {0} if zm0 ∈ Mn.

Remarks.
1. The condition (γ, µ) ∈ C is not very restrictive. In fact, the proof of Theorem 4.1 below gives that if

Ω(0) \ (Ω1∪· · ·∪Ωk) has only a finite number of points in each connected component of Ω(0), then (γ, µ) ∈ C.
If furthermore K(γ, µ) = {0}, we have (γ, µ) ∈ C0.

2. Since the restriction of a function of K(γ, µ) to Mn is in K(Mn, µ) for every n, then (γ, µ) ∈ C0

implies K(γ, µ) = {0}.
3. If (γ, µ) ∈ C0, then (γ, µ) ∈ C, with µ′ = µ.
4. The proof of Theorem 4.1 below gives that if for every connected component Λ of Ω1 ∪ · · · ∪ Ωk we

have K(Λ, µ) = {0}, then (γ, µ) ∈ C0. Condition #suppµ0|Λ∩Ω(0) ≥ k implies K(Λ, µ) = {0}.
The next results play a central role in the theory of Sobolev spaces in curves. The first one answers to

the following main question: when the evaluation functional of f (or f (j)) in a point is a bounded operator
in W k,p(γ, µ)?

Theorem 4.1. Let us consider 1 ≤ p ≤ ∞ and µ = (µ0, . . . , µk) a p-admissible vectorial measure in γ. Let
Kj be a finite union of compact arcs contained in Ω(j), for 0 ≤ j < k and µ a right (or left ) completion of
µ. Then:

(a) If (γ, µ) ∈ C0 there exist positive constants c1 = c1(K0, . . . ,Kk−1) and c2 = c2(µ,K0, . . . ,Kk−1)
such that

c1

k−1∑
j=0

‖g(j)‖L∞(Kj) ≤ ‖g‖W k,p(γ, µ), c2 ‖g‖W k,p(γ, µ) ≤ ‖g‖W k,p(γ, µ), ∀ g ∈ V k,p(γ, µ).

(b) If
(
γ, µ

)
∈ C there exist positive constants c3 = c3(K0, . . . ,Kk−1) and c4 = c4(µ, K0, . . . ,Kk−1) such

that for every g ∈ V k,p(γ, µ), there exists g0 ∈ V k,p(γ, µ), independent of K0, . . . ,Kk−1, c3, c4 and µ, with

‖g0 − g‖W k,p(γ, µ) = 0 ,

c3

k−1∑
j=0

‖g(j)
0 ‖L∞(Kj) ≤ ‖g0‖W k,p(γ, µ) = ‖g‖W k,p(γ, µ), c4 ‖g0‖W k,p(γ, µ) ≤ ‖g‖W k,p(γ, µ).

Furthermore, if g0, f0 are, respectively, these representatives of g, f , we have with the same constants c3, c4

c3

k−1∑
j=0

‖g(j)
0 − f

(j)
0 ‖L∞(Kj) ≤ ‖g − f‖W k,p(γ, µ), c4 ‖g0 − f0‖W k,p(γ, µ) ≤ ‖g − f‖W k,p(γ, µ).

Proof. The main ingredient in the proof is Proposition 4.2. We only need to cut in an appropriate way
the compact sets Kj in order to fulfil the hypotheses of this Proposition. To see the details we can follow
the argument in the proof of Theorem 4.3 in [RARP1] (Proposition 4.2 plays the role of Corollary 4.1 in
[RARP1]).

16



Theorem 4.2. Let us consider 1 ≤ p ≤ ∞ and µ a p-admissible vectorial measure in γ. Let Kj be a finite
union of compact arcs contained in Ω(j), for 0 ≤ j < k. Then:

(a) If (γ, µ) ∈ C0 there exists a positive constant c1 = c1(K0, . . . ,Kk−1) such that

c1

k−1∑
j=0

‖g(j+1)‖L1(Kj) ≤ ‖g‖W k,p(γ, µ), ∀ g ∈ V k,p(γ, µ).

(b) If
(
γ, µ

)
∈ C there exists a positive constant c2 = c2(K0, . . . ,Kk−1) such that for every g ∈ V k,p(γ, µ),

there exists g0 ∈ V k,p(γ, µ) (the same function as in Theorem 4.1), with

‖g0 − g‖W k,p(γ, µ) = 0 ,

c2

k−1∑
j=0

‖g(j+1)
0 ‖L1(Kj) ≤ ‖g0‖W k,p(γ, µ) = ‖g‖W k,p(γ, µ).

Furthermore, if g0, f0 are, respectively, these representatives of g, f , we have with the same constant c2

c2

k−1∑
j=0

‖g(j+1)
0 − f

(j+1)
0 ‖L1(Kj) ≤ ‖g − f‖W k,p(γ, µ).

The representatives g0, f0 are the same as in Theorem 4.1.

Proof. We only prove part (b) since (a) is simpler. Given a function g ∈ V k,p(γ, µ), let us choose g0 as
in Theorem 4.1(b). Fix 0 ≤ j < k. Since Kj ⊆ Ω(j), given any point z ∈ Kj , there exist an arc Jz and a
completion wz of w with z ∈ Jz and wz

j+1 ∈ Bp(Jz). The compactness of Kj gives that there exists a finite
set of points z1, . . . , zl with Kj ⊆ Jz1 ∪ · · · ∪ Jzl

.
If we define w∗

j+1 :=
∑l

i=1 wzi
j+1χJzi

, the second inequality in Theorem 4.1(b) gives

c ‖g(j+1)
0 ‖Lp(Kj ,w∗

j+1)
≤ ‖g0‖W k,p(γ, µ) ,

and this finishes the proof of the first inequality, since w∗
j+1 ∈ Bp(Kj). The proof of the second one is similar.

A simple modification in the proof of Theorem 4.2 gives Corollary 4.1. We use the symbol W k−m,p(γ, µ)
to denote the Sobolev space W k−m,p(γ, (µm, . . . , µk)).

Corollary 4.1. Let us consider 1 ≤ p ≤ ∞ and µ = (µ0, . . . , µk) a p-admissible vectorial measure in γ. For
some 0 < m ≤ k, assume that (γ, (µm, . . . , µk)) ∈ C0. Let K be a finite union of compact intervals contained
in Ω(m−1). Then there exists a positive constant c1 = c1(K) such that

c1 ‖g‖L1(K) ≤ ‖g‖W k−m,p(γ,µ), ∀ g ∈ V k−m,p(γ, µ).

5. Completeness.

Theorem 5.1. Let us consider 1 ≤ p ≤ ∞ and µ = (µ0, . . . , µk) a p-admissible vectorial measure in γ with
(γ, µ) ∈ C. Then the Sobolev space W k,p(γ, µ) is complete.
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Proof. Let {fn} be a Cauchy sequence in W k,p(γ, µ). For each n, let us choose a representative of the class
of fn ∈ W k,p(γ, µ) (which we also denote by fn) as in Theorems 4.1 and 4.2. Therefore, for each 0 ≤ j ≤ k,
{f (j)

n } is a Cauchy sequence in Lp(γ, µj) and it converges to a function gj ∈ Lp(γ, µj). We only need to
prove that, for each 0 ≤ j ≤ k− 1, gj is (perhaps modified in a set of zero µj-measure) a function belonging
to AC1

loc(Ω
(j)) such that g′j = gj+1 in Ω(j).

Let us consider any compact arc K ⊆ Ω(j) (K can be the whole curve γ if Ω(j) = γ and it is a compact
curve). By theorems 4.1(b) and 4.2(b) we know that there exists a positive constant c such that for every
n, m ∈ N

‖f (j)
n − f (j)

m ‖L∞(K) + ‖f (j+1)
n − f (j+1)

m ‖L1(K) ≤ c
k∑

i=0

‖f (i)
n − f (i)

m ‖Lp(γ, µi) .

As {f (j)
n } ⊂ C(K), there exists a function hj ∈ C(K) such that

c ‖f (j)
n − hj‖L∞(K) ≤

k∑
i=0

‖f (i)
n − gi‖Lp(γ, µi) .

Since we can take as K any compact arc contained in Ω(j), we obtain that the function hj can be
extended to Ω(j) and we have in fact hj ∈ C(Ω(j)). It is obvious that gj = hj in Ω(j) (except for at most
a set of zero µj-measure), since f

(j)
n converges to gj in the norm of Lp(γ, µj) and to hj uniformly on each

compact arc K ⊆ Ω(j). Therefore we can assume that gj ∈ C(Ω(j)).
Let us see now that g′j = gj+1 in K. We have for z, z0 ∈ K that

f (j)
n (z) = f (j)

n (z0) +
∫ z

z0

f (j+1)
n (ζ) dζ .

The uniform convergence of f
(j)
n in K and the L1-convergence of f

(j+1)
n in K give that

gj(z) = gj(z0) +
∫ z

z0

gj+1(ζ) dζ .

Definition 5.1. A vectorial measure µ = (µ0, . . . , µk) in the complex plane belongs to ESD (extended
sequentially dominated) if there exists a positive constant c such that µj+1 ≤ cµj for 0 ≤ j < k.

Remark. If µ ∈ ESD is a p-admissible vectorial measure in a curve γ, then (γ, µ) ∈ C0 (see Remark 4 to
Definition 4.2). A vectorial measure µ is sequentially dominated if and only if µ ∈ ESD and #suppµ0 = ∞.
If µ ∈ ESD, 0 is the unique polynomial q with ‖q‖W k,p(C,µ) = 0 if and only if #suppµ0 = ∞.

Theorem 5.2. Let us consider 1 ≤ p ≤ ∞, γ : I → C a curve with γ′ ∈ W k−1,∞(I), and µ = (µ0, . . . , µk)
a p-admissible vectorial measure in γ with (γ, µ) ∈ C. Let us assume that µ ∈ ESD if k ≥ 2. Then there
exists a p-admissible vectorial measure µ∗ in I, with (I, µ∗) ∈ C, and µ∗ ∈ ESD if k ≥ 2, such that the
spaces W k,p(I, µ∗) and W k,p(γ, µ) are isomorphic as normed spaces. Furthermore, µ∗ is finite (respectively,
locally finite) if µ is finite (respectively, locally finite).

Proof. Given the measure µj in γ we define the measure µ∗j in I by µ∗j (A) := µj(γ(A)), for all Borel
set A ⊆ I. This measure is well defined since γ is injective (if γ is a closed curve and its domain is
I = [a, b] we can consider γ : [a, b) → C in order to define µ∗j ). With this definition we have that, for any
function f ∈ L1(γ, µj),

∫
γ

f(z) dµj(z) =
∫

I
f(γ(t)) dµ∗j (t). We define now µ∗ = (µ∗0, . . . , µ

∗
k). It is clear that

µ∗ ∈ ESD if k ≥ 2, and µ∗ is finite (respectively, locally finite) if µ is finite (respectively, locally finite). We
have w∗

j = |γ′| · (wj ◦ γ); if γ is a closed curve and I = [a, b], without loss of generality we can also assume
that γ(a) = γ(b) is a (k−1)-regular point; then we have that the set of j-regular points for µ is the image by
γ of the j-regular points for µ∗. This fact gives that µ∗ is p-admissible and (I, µ∗) ∈ C. It is natural to define
the linear mapping Φ : W k,p(γ, µ) → W k,p(I, µ∗) by Φ(f) = f ◦ γ. We shall see that Φ is an isomorphism.
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Observe that Φ(f)′ = f ′(γ) γ′ and that

Φ(f)(j) =
j∑

i=1

f (i)(γ)Qi,j(γ), for 1 ≤ j ≤ k,

where Qi,j is a differential operator of degree less than or equal to j. As γ(i) ∈ L∞(I) for 1 ≤ i ≤ k, we
obtain

‖Φ(f)(j)‖Lp(I, µ∗
j
) ≤ c

j∑
i=1

‖f (i)(γ)‖Lp(I, µ∗
j
) = c

j∑
i=1

‖f (i)‖Lp(γ, µj) ≤ c

j∑
i=1

‖f (i)‖Lp(γ, µi) ≤ c ‖f‖W k,p(γ, µ) ,

since µ ∈ ESD if k ≥ 2. That is to say ‖Φ(f)‖W k,p(I, µ∗) ≤ c ‖f‖W k,p(γ, µ).
Since (γ, µ) ∈ C and (I, µ∗) ∈ C, the other inequality is a consequence of the open mapping Theorem in

Banach spaces.

6. Density.

We do not have a density theorem as general as Theorem 5.1, but Theorem 6.1 covers many important
cases. We begin with the following definitions.

Definition 6.1. Consider 1 ≤ p < ∞, a compact curve γ and a vectorial measure µ = (µ0, . . . , µk) in γ.
We say that µ is of type 1 if it is finite and p-admissible in γ and wk ∈ Bp(γ).
Definition 6.2. Consider 1 ≤ p < ∞, a non-closed compact curve γ = [z1, z2] and a vectorial measure
µ = (µ0, . . . , µk) in γ. We say that µ is of type 2 if it is finite and strongly p-admissible in γ and there exist
points along the curve z1 ≤ ζ1 < ζ2 < ζ3 < ζ4 ≤ z2 and integers k1, k2 ≥ 0 such that

(1) wk ∈ Bp([ζ1, ζ4]),
(2) if z1 < ζ1, then wj is comparable to a non-decreasing weight in [z1, ζ2], for k1 ≤ j ≤ k,
(3) if ζ4 < z2, then wj is comparable to a non-increasing weight in [ζ3, z2], for k2 ≤ j ≤ k,
(4) z1 is right (k1 − 1)-regular if k1 > 0 and z2 is left (k2 − 1)-regular if k2 > 0.

Definition 6.3. Consider 1 ≤ p < ∞, a compact curve γ and a vectorial measure µ = (µ0, . . . , µk) in γ.
We say that µ is of type 3 if it is finite and p-admissible in γ and there exist z0 ∈ γ, an open neighbourhood
V of z0 in γ, an integer 0 ≤ r < k and a positive constant c such that

(1) dµj+1(z) ≤ c |z − z0|pdµj(z) in V , for r ≤ j < k,
(2) wk ∈ Bp(γ \ {z0}),
(3) if r > 0, z0 is (r − 1)-regular.

Remark. Condition (1) means that µj+1 is absolutely continuous with respect to µj on V and its Radon-
Nikodym derivative is less than or equal to c |z − z0|p.

Definition 6.4. Consider 1 ≤ p < ∞, a compact curve γ and a vectorial measure µ = (µ0, . . . , µk) in γ.
We say that µ is of type 4 if it is finite and p-admissible in γ and there exist z0 ∈ γ, an open neighbourhood
V of z0 in γ and a positive constant c such that

(1) if p > 1, wk(z) ≤ c |z − z0|p−1 for almost every z ∈ V ; if p = 1, wk can be modified in a set of zero
length in such a way that limz→z0 wk(z) = 0,

(2) wk ∈ Bp(γ \ {z0}),
(3) if k > 1, z0 is (k − 2)-regular.

Definition 6.5. Consider 1 ≤ p < ∞, a non-closed compact curve γ = [z1, z2] and a vectorial measure
µ = (µ0, . . . , µk) in γ. We say that µ is of type 5 if it is finite and p-admissible in γ and verifies

(1) wk ∈ Bp((z1, z2)),
(2) if k > 1, z1 is right (k − 2)-regular and z2 is left (k − 2)-regular.

Remark. We want to remark that the types of measures in [RARP2] and here do not coincide.
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Lemma 6.1. Let us consider 1 ≤ p < ∞ and a finite p-admissible vectorial measure µ of type i (1 ≤ i ≤ 5).
Then there exists a finite vectorial p-admissible measure µ′ of type i such that µ′ ∈ ESD and µ′ ≥ µ.

Proof. It is easy to check that the measure µ′ = (µ′0, . . . , µ
′
k) with µ′j := µj + · · ·+ µk verifies the required

conditions.

Lemma 6.2. Let us consider 1 ≤ p < ∞, c > 0, γ : I −→ C a curve with c−1 ≤ |γ′| ≤ c and γ′ ∈ W k−1,∞(I),
and a vectorial measure µ of type i (1 ≤ i ≤ 5), with µ ∈ ESD. Then the vectorial measure µ∗ which appears
in the statement of Theorem 5.2 is of type i.

Proof. It is an immediate consequence of the following facts: w∗
j = |γ′| · (wj ◦ γ), ‖(w∗

j )−1‖L1/(p−1)(J) �
‖w−1

j ‖L1/(p−1)(γ(J)) for all arc J ⊆ I, γ is a bijection between the j-regular sets in W k,p(I, µ∗) and W k,p(γ, µ),
and |γ(t)− γ(t0)| ≤ c |t− t0|.

Theorem 6.1. Let us consider 1 ≤ p < ∞, c > 0 and µ = (µ0, . . . , µk) a p-admissible vectorial measure in
a compact curve γ : I → C. Let us assume that c−1 ≤ |γ′| ≤ c and γ′ ∈ W k−1,∞(I). If µ is a measure of
type 1, 2, 3, 4 or 5, then ACk(I) is dense in the Sobolev space W k,p(γ, µ). Furthermore, if γ ∈ C∞(I), then
C∞(γ) is dense in W k,p(γ, µ).

Proof. Assume first that γ is not a closed curve. We can replace the measure µ by a greater measure, since
then the theorem is more difficult. Therefore, by lemmas 6.1 and 6.2, we can assume µ ∈ ESD, and so the
measure µ∗ which appears in the statement of Theorem 5.2 is of type i.

We can deduce that C∞(R) is dense in W k,p(I, µ∗); this is an immediate consequence of [RARP2,
Theorem 4.1] if µ is a measure of type 1, 2 or 4. On the other hand, if µ is of type 3 (respectively, 5) this
fact follows from [R3, Theorem 3.4] (respectively, [R3, Theorem 3.3]). Recall that the types of measures in
[RARP2] and here do not coincide.

Therefore ACk(I) is dense in W k,p(I, µ∗). By Theorem 5.2 and Lemma 2.7, ACk(γ) is dense in
W k,p(γ, µ). If γ ∈ C∞(I), Theorem 5.2 gives that C∞(γ) is dense in W k,p(γ, µ). This finishes the proof in
this case.

If γ is closed the proof is similar but it is necessary to reformulate slightly the last arguments. As an
example we deal now with type 1.

Let f ∈ V k,p(γ, µ). Let g be a continuous function in γ which approximates f (k) in the Lp(γ, µk) norm.
Fix z0 ∈ γ and consider the function

h(z) :=
k−1∑
j=0

f (j)(z0)
(z − z0)j

j!
+

∫ z

z0

g(ζ)
(z − ζ)k−1

(k − 1)!
dζ .

We have, for 0 ≤ j < k, that

‖f (j) − h(j)‖Lp(γ,µj) ≤ c ‖f (k) − g‖L1(γ) ≤ c ‖f (k) − g‖Lp(γ,µk) ,

and then
‖f − h‖W k,p(γ,µ) ≤ c ‖f (k) − g‖Lp(γ,µk) , with h ∈ ACk(γ) .

Theorem 6.2. Let us consider 1 ≤ p < ∞, c > 0 and µ = (µ0, . . . , µk) a p-admissible vectorial measure in
a non-closed compact curve γ : I → C. Let us assume that c−1 ≤ |γ′| ≤ c and γ′ ∈ W k−1,∞(I). If µ is a
measure of type 1, 2, 3, 4 or 5, then P is dense in the Sobolev space W k,p(γ, µ).

Proof. Let f0 ∈ V k,p(γ, µ). By Theorem 6.1 we can approximate f0 by a function f ∈ ACk(γ). Let g be a
continuous function approximating f (k) in the Lp(γ, µk) and the L1(γ) norms (see [R3, Lemma 3.1]). Since
γ is non-closed, we can choose a polynomial q approximating g in L∞(γ) (and therefore in the Lp(γ, µk) and
the L1(γ) norms). By fixing z0 ∈ γ and considering the function

Q(z) :=
k−1∑
j=0

f (j)(z0)
(z − z0)j

j!
+

∫ z

z0

q(ζ)
(z − ζ)k−1

(k − 1)!
dζ ,

we can finish the proof as above.
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7. Density in analytic closed curves.

We deal first with the case of the unit circle ∂D.

Lemma 7.1. Let us consider 1 ≤ p < ∞, m ∈ Z+ and µ a finite scalar measure in ∂D. Then the
polynomials P are dense in Lp(∂D, µ) if and only if 1/zm belongs to the closure of P in Lp(∂D, µ).

Proof. We prove first the result for m = 1. The “only if ” direction is immediate. In order to prove the
non-trivial implication, assume that 1/z belongs to the closure of P . Then we have, for any r, n ∈ Z+,

dist(1/z, Pn)p : = min
ai∈C

∫
∂D

∣∣z−1 − (a0 + a1z + · · ·+ anzn)
∣∣p dµ(z)

= min
ai∈C

∫
∂D

∣∣z−r − (a0z
1−r + a1z

2−r + · · ·+ anzn+1−r)
∣∣p dµ(z)

= dist
(
z−r, span

{
z1−r, z2−r, · · · , zn+1−r

})p
.

This fact and an induction argument in r give that 1/zr belongs to the closure of P in Lp(∂D, µ), for every
r ∈ Z+. Since any function in Lp(∂D, µ) can be approximated by continuous functions in the norm of
Lp(∂D, µ), and that any continuous function can be approximated uniformly in ∂D by linear combinations
of integer powers of z, we have that the polynomials are dense in Lp(∂D, µ).

We prove now that 1/zm belongs to the closure of P if and only if 1/z belongs to the closure of P . The
last argument gives that 1/zm belongs to the closure of P if 1/z does. Assume now that 1/zm belongs to
the closure of P . Choose pn ∈ P with ‖pn − 1/zm‖Lp(µ) −→ 0. Then

‖zm−1pn − 1/z‖Lp(µ) = ‖pn − 1/zm‖Lp(µ) −→ 0 ,

so 1/z belongs to the closure of P , and this finishes the proof of the lemma.

Proposition 7.1. Let us consider 1 ≤ p < ∞ and µ = (µ0, . . . , µk) a finite p-admissible vectorial measure
in ∂D. If the polynomials are dense in W k,p(∂D, µ), then they are dense in Lp(∂D, µj) for any 0 ≤ j ≤ k.

Proof. Fix 0 ≤ j ≤ k. The function 1/z can be approximated by polynomials in W k,p(∂D, µ). Then the
function 1/zj+1 can be approximated by polynomials in Lp(∂D, µj). Lemma 7.1 gives now the result.

Definition 7.1. A scalar measure µ in an analytic closed curve γ with absolutely continuous part w verifies
the Szegö condition if ∫

γ

log w(z) |dz| > −∞ .

The following theorem of Kolmogorov-Krein-Szegö is well known (see e.g. [G, pp.135-137]).
Theorem A. Let us consider 1 ≤ p < ∞ and a finite scalar measure µ in ∂D. Then the polynomials are
dense in Lp(∂D, µ) if and only if µ does not verify the Szegö condition.

We have the following consequence of Proposition 7.1 and Theorem A.

Corollary 7.1. Let us consider 1 ≤ p < ∞ and µ = (µ0, . . . , µk) a finite p-admissible vectorial measure in
∂D. If for some 0 ≤ j ≤ k the measure µj verifies the Szegö condition, then the polynomials are not dense
in W k,p(∂D, µ).

Remark. One could think that the converse of Corollary 7.1 is true. However, if we consider A := {z ∈
∂D : | arg z| ≤ π/2}, B := {z ∈ ∂D : | arg z| ≥ π/4} (with arg z ∈ (−π, π]), dµ0(z) := χ

A
(z) |dz| and

dµ1(z) := χ
B

(z) |dz|, then µ0, µ1 do not verify the Szegö condition and the polynomials are not dense in
W 1,p(∂D, µ), as the following results, which are improvements of Corollary 7.1, show.

Theorem 7.1. Let us consider 1 ≤ p < ∞, µ = (µ0, . . . , µk) a finite p-admissible vectorial measure in ∂D
with (∂D, µ) ∈ C0 and µ a finite sum of completions of µ. If for some 0 ≤ j ≤ k the measure µj verifies the
Szegö condition, then the polynomials are not dense in W k,p(∂D, µ).
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Proof. Part (a) of Theorem 4.1 and the fact µ ≥ µ give that the polynomials are dense in W k,p(∂D, µ) if
and only if they are dense in W k,p(∂D, µ). Now Corollary 7.1 gives the result.

Corollary 7.2. Let us consider 1 ≤ p < ∞, a fixed integer 0 ≤ j ≤ k, µ = (µ0, . . . , µk) a finite p-admissible
vectorial measure in ∂D with (∂D, µ) ∈ C0 and K a finite union of compact arcs with K ⊆ Ω(j). If the
measure µj verifies ∫

∂D\K
log wj(z) |dz| > −∞ ,

then the polynomials are not dense in W k,p(∂D, µ).

Proof. Theorem 4.1 guarantees that we can take a measure µ, as in Theorem 7.1, such that wj(z) ≥
wj(z) + χ

K
(z). Then we only need to apply Theorem 7.1.

As positive results on density of polynomials in ∂D we have already proved the theorems in Section 6
when ∆, the union of the supports of µj , is not equal to ∂D (it is enough to consider a non-closed curve γ
with ∆ ⊆ γ).

We deal now with general analytic closed curves.

Proposition 7.2. Let us consider 1 ≤ p < ∞ and µ = (µ0, . . . , µk) a finite p-admissible vectorial measure
in an analytic closed curve γ. Let us assume that µ ∈ ESD if k ≥ 2. If for some 0 ≤ j ≤ k the measure µj

verifies the Szegö condition, then the polynomials are not dense in W k,p(γ, µ).

Proof. Let us consider a conformal map F between D and the simply connected domain E bounded by γ.
Since γ is analytic, we can extend F to ∂D with F : D −→ E biholomorphic.

Given the measure µj in γ we define the measure µ∗j in ∂D by µ∗j (A) := µj(F (A)), for all Borel set
A ⊆ ∂D. Since µ ∈ ESD if k ≥ 2, the argument in the proof of Theorem 5.2 gives that W k,p(∂D, µ∗) and
W k,p(γ, µ) are isomorphic as normed spaces. By Mergelyan and Weierstrass theorems the polynomials are
dense in W k,p(γ, µ) if and only if the holomorphic functions in E are dense in W k,p(γ, µ). Therefore P is
dense in W k,p(∂D, µ∗) if and only it is dense in W k,p(γ, µ). Since w∗

j = |F ′| · (wj ◦F ) and there is a positive
constant c with c−1 ≤ |F ′| ≤ c in ∂D, µj verifies the Szegö condition if and only if µ∗j does. These facts and
Corollary 7.1 give the result.

The same argument used in the proof of Proposition 7.2 gives the following generalization of the theorem
of Kolmogorov-Helson-Szegö.
Corollary 7.3. Let us consider 1 ≤ p < ∞ and a finite scalar measure µ in an analytic closed curve γ.
Then the polynomials are dense in Lp(γ, µ) if and only if µ does not verify the Szegö condition.

The same proof of Theorem 7.1 and Corollary 7.2 (using now Proposition 7.2) gives the following results.

Theorem 7.2. Let us consider 1 ≤ p < ∞, µ = (µ0, . . . , µk) a finite p-admissible vectorial measure in an
analytic closed curve γ, with (γ, µ) ∈ C0 and µ a finite sum of completions of µ. Let us assume that µ ∈ ESD
if k ≥ 2. If for some 0 ≤ j ≤ k the measure µj verifies the Szegö condition, then the polynomials are not
dense in W k,p(γ, µ).

Theorem 7.3. Let us consider 1 ≤ p < ∞, a fixed integer 0 ≤ j ≤ k, µ = (µ0, . . . , µk) a finite p-admissible
vectorial measure in an analytic closed curve γ, with (γ, µ) ∈ C0 and K a finite union of compact arcs with
K ⊆ Ω(j). Let us assume that µ ∈ ESD if k ≥ 2. If the measure µj verifies∫

γ\K
log wj(z) |dz| > −∞ ,

then the polynomials are not dense in W k,p(γ, µ).
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8. Multiplication operator.

First of all, some remarks about the definition of the multiplication operator. In this section we only
consider measures such that every polynomial has finite Sobolev norm. Recall that when every polynomial
has finite W k,p(E,µ)-norm, we denote by P k,p(E,µ) the completion of P with that norm. We start with a
definition which has sense for measures defined in arbitrary Borel sets (not necessarily curves).

Definition 8.1. If µ is a vectorial measure in the Borel set E ⊆ C, we say that the multiplication operator is
well defined in P k,p(E,µ) if given any sequence {sn} of polynomials converging to 0 in W k,p(E,µ), then {zsn}
also converges to 0 in W k,p(E,µ). In this case, if {qn} ∈ P k,p(E,µ), we define M({qn}) := {zqn}. If we
choose another Cauchy sequence {rn} representing the same element in P k,p(E,µ) (i.e. {qn− rn} converges
to 0 in W k,p(E,µ)), then {zqn} and {zrn} represent the same element in P k,p(E,µ) (since {z(qn − rn)}
converges to 0 in W k,p(E,µ)).

We can also think of another definition which is as natural in the case of curves:

Definition 8.2. If µ is a p-admissible vectorial measure in γ (and hence W k,p(γ, µ) is a space of classes
of functions), we say that the multiplication operator is well defined in W k,p(γ, µ) if given any function
h ∈ V k,p(γ, µ) with ‖h‖W k,p(γ,µ) = 0, we have ‖zh‖W k,p(γ,µ) = 0. In this case, if [f ] is an equivalence class in
W k,p(γ, µ), we define M([f ]) := [zf ]. If we choose another representative g of [f ] (i.e. ‖f −g‖W k,p(γ,µ) = 0)
we have [zf ] = [zg], since ‖z(f − g)‖W k,p(γ,µ) = 0.

Although both definitions are natural, it is possible for a p-admissible measure µ with W k,p(γ, µ) =
P k,p(γ, µ) that M is well defined in W k,p(γ, µ) and not well defined in P k,p(γ, µ) (see Lemma 8.1 and
Theorem 8.3). The following lemma characterizes the spaces P k,p(E,µ) with M well defined.

Lemma 8.1. Let us consider 1 ≤ p < ∞ and µ = (µ0, . . . , µk) a vectorial measure in a Borel set E ⊆ C.
The following facts are equivalent:

(1) The multiplication operator is well defined in P k,p(E,µ).
(2) The multiplication operator is bounded in P k,p(E,µ).
(3) There exists a positive constant c such that

‖zq‖W k,p(E,µ) ≤ c ‖q‖W k,p(E,µ) , for every q ∈ P .

Remark. When we say that the multiplication operator is bounded in P k,p(E,µ), we assume implicitly
that it is well defined in P k,p(E,µ), since otherwise the boundedness has no sense.

Proof. It is clear that condition (3) implies (1). If we assume (1), we have that the multiplication operator
M is continuous in 0 ∈ (P, ‖·‖W k,p(E,µ)). Since M is a linear operator in the normed space (P, ‖·‖W k,p(E,µ)),
we know that M is bounded in (P, ‖ · ‖W k,p(E,µ)), which gives (3).

We now show the equivalence between (2) and (3). Let us consider an element α ∈ P k,p(E,µ). This
element α is an equivalence class of Cauchy sequences of polynomials under the norm in W k,p(E,µ). Assume
that a Cauchy sequence of polynomials {qn} represents α. The norm of α is defined as ‖α‖P k,p(E,µ) =
limn→∞ ‖qn‖W k,p(E,µ), which obviously does not depend on the representative. Hence, condition (2) is
equivalent to

lim
n→∞

‖zqn‖W k,p(E,µ) ≤ c lim
n→∞

‖qn‖W k,p(E,µ) ,

for every Cauchy sequence of polynomials {qn}. Now the equivalence between (2) and (3) is clear.

Lemma 8.2. Let us consider 1 ≤ p < ∞ and µ = (µ0, . . . , µk) a finite vectorial measure in a compact set
E. Then, the multiplication operator is bounded in P k,p(E,µ) if and only if there exists a positive constant
c such that

‖q(j−1)‖Lp(E,µj) ≤ c ‖q‖W k,p(E,µ) ,

for every 1 ≤ j ≤ k and q ∈ P .
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Proof. If M is bounded in P k,p(E,µ), we have that

‖(zq)(j)‖Lp(E,µj) ≤ ‖M‖ ‖q‖W k,p(E,µ) ,

for every 1 ≤ j ≤ k and q ∈ P . Since

‖(zq)(j)‖Lp(E,µj) = ‖zq(j) + jq(j−1)‖Lp(E,µj) ≥ ‖q(j−1)‖Lp(E,µj) −K ‖q(j)‖Lp(E,µj) ,

with K := max{|z| : z ∈ E}, we have

‖q(j−1)‖Lp(E,µj) ≤ K ‖q(j)‖Lp(E,µj) + ‖M‖ ‖q‖W k,p(E,µ) ≤ (K + ‖M‖) ‖q‖W k,p(E,µ) ,

for every 1 ≤ j ≤ k and q ∈ P .
We now prove the converse implication. Observe that

‖(zq)(j)‖Lp(E,µj) = ‖zq(j) + jq(j−1)‖Lp(E,µj) ≤ j ‖q(j−1)‖Lp(E,µj) + K ‖q(j)‖Lp(E,µj) ,

with K as before, for every 1 ≤ j ≤ k and q ∈ P . Then

‖(zq)(j)‖p
Lp(E,µj)

≤ 2p−1
(
jp‖q(j−1)‖p

Lp(E,µj)
+ Kp‖q(j)‖p

Lp(E,µj)

)
≤ 2p−1

(
jpcp‖q‖p

W k,p(E,µ)
+ Kp‖q(j)‖p

Lp(E,µj)

)
,

for every 1 ≤ j ≤ k and q ∈ P (if j = 0 the inequality is trivial). Consequently

‖zq‖p
W k,p(E,µ)

≤ 2p−1
(
kp+1cp‖q‖p

W k,p(E,µ)
+ Kp‖q‖p

W k,p(E,µ)

)
,

and
‖zq‖W k,p(E,µ) ≤ 2(p−1)/p

(
kp+1cp + Kp

)1/p‖q‖W k,p(E,µ) ,

for every q ∈ P . Hence, Lemma 8.1 proves that M is bounded in P k,p(E,µ).

In the following we often use the next result. We omit the proof since it is elementary.

Lemma 8.3. Let us consider 1 ≤ p < ∞ and µ = (µ0, . . . , µk), µ′ = (µ′0, . . . , µ
′
k) vectorial measures in a

Borel set E ⊆ C. If the Sobolev norms in W k,p(E,µ) and W k,p(E,µ′) are comparable on P , then:
(1) P k,p(E,µ) = P k,p(E,µ′).
(2) M is bounded in P k,p(E,µ) if and only if it is bounded in P k,p(E,µ′).

Theorem 8.1. Let us consider 1 ≤ p < ∞ and µ = (µ0, . . . , µk) a finite vectorial measure in a compact set
E. Then, the multiplication operator is bounded in P k,p(E,µ) if and only if there exists a vectorial measure
µ′ ∈ ESD such that the Sobolev norms in W k,p(E,µ) and W k,p(E,µ′) are comparable on P . Furthermore,
we can choose µ′ = (µ′0, . . . , µ

′
k) with µ′j := µj + µj+1 + · · ·+ µk.

Remark. In order to apply Theorem 8.1, if E = γ is a curve, the best way to deduce that ‖ · ‖W k,p(γ,µ) and
‖ · ‖W k,p(γ,µ′) are equivalent is to prove that µ′ can be obtained by a finite number of completions of µ (in
that case we can use Theorem 4.1).

Proof. Assume that there exists a vectorial measure µ′ ∈ ESD such that the Sobolev norms in W k,p(E,µ)
and W k,p(E,µ′) are comparable on P . By lemmas 8.2 and 8.3 it is enough to show

(8.1) ‖q(j−1)‖Lp(E,µ′
j
) ≤ c ‖q‖W k,p(E,µ′) ,

for every 1 ≤ j ≤ k and q ∈ P . The hypothesis µ′ ∈ ESD gives

‖q(j−1)‖Lp(E,µ′
j
) ≤ c ‖q(j−1)‖Lp(E,µ′

j−1)
≤ c ‖q‖W k,p(E,µ′) ,
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and then we have (8.1).
Assume now that M is bounded in P k,p(E,µ) and let us consider the vectorial measures µ0, µ1, . . . , µk−1,

µk defined by
µj

i := µi , if 0 ≤ i < j ,

µj
i :=

k∑
l=i

µl , if j ≤ i ≤ k .

Observe that µk = µ and µ0 is the measure µ′ defined at the end of the statement of Theorem 8.1. These
vectorial measures verify, for 0 ≤ i ≤ k and 0 < j ≤ k,

µj−1
i := µj

i , if i 6= j − 1 ,(8.2)

µj−1
j−1 := µj

j + µj−1 = µj
j + µj

j−1 .(8.3)

Therefore we have ‖q‖W k,p(E,µj) ≤ ‖q‖W k,p(E,µj−1), for every q ∈ P and 1 ≤ j ≤ k.
Since µ0 ∈ ESD it is enough to show that the Sobolev norms in W k,p(E,µk) and W k,p(E,µ0) are

comparable on P . We prove this by showing for 1 ≤ j ≤ k that the Sobolev norms in W k,p(E,µj) and
W k,p(E,µj−1) are comparable on P and M is bounded in P k,p(E,µj−1). We prove this last statement by
reverse induction on j. Assume that the induction hypothesis holds for j + 1. Then we have that M is
bounded in P k,p(E,µj). Lemma 8.2 gives that

‖q(j−1)‖Lp(E,µj
j
) ≤ c ‖q‖W k,p(E,µj) ,

for every q ∈ P . This inequality and (8.3) show

‖q(j−1)‖p

Lp(E,µj−1
j−1)

≤ cp ‖q‖p
W k,p(E,µj)

+ ‖q(j−1)‖p

Lp(E,µj
j−1)

≤ (cp + 1) ‖q‖p
W k,p(E,µj)

,

for every q ∈ P . This fact and (8.2) show that the Sobolev norms in W k,p(E,µj) and W k,p(E,µj−1) are
comparable on P . Then Lemma 8.3 shows that M is bounded in P k,p(E,µj−1), since it is bounded in
P k,p(E,µj). The proof of the case j = k is similar. This finishes the induction argument and the proof of
Theorem 8.1.

If we consider the case of a curve E = γ, we have the following results.

Theorem 8.2. Let us consider 1 ≤ p < ∞ and a p-admissible vectorial measure µ in γ. If µ is of type 1, 2
or 3, and the multiplication operator is well defined in W k,p(γ, µ), then it is bounded in P k,p(γ, µ).

Remark. In this situation Theorem 6.2 gives P k,p(γ, µ) = W k,p(γ, µ) if γ : I → C is a non-closed curve
with c−1 ≤ |γ′| ≤ c and γ′ ∈ W k−1,∞(I). In this case the multiplication operator is bounded in W k,p(γ, µ).

Obviously the multiplication operator M is well defined in W k,p(γ, µ) if and only if it is well defined
in V k,p(γ, µ) (i.e. zf ∈ V k,p(γ, µ) for every f ∈ V k,p(γ, µ)) and ‖zf‖W k,p(γ,µ) = 0 for every f ∈ V k,p(γ, µ)
with ‖f‖W k,p(γ,µ) = 0. This second condition can be written as M(K(γ, µ)) ⊆ K(γ, µ).

Theorem 8.3. Let us consider 1 ≤ p < ∞ and a p-admissible vectorial measure µ in γ. Assume that the
multiplication operator M is well defined in V k,p(γ, µ). Then M is well defined in W k,p(γ, µ) if and only if
K(γ, µ) = {0}.

Proof. Suppose first that K(γ, µ) = {0}. Then, if f ∈ V k,p(γ, µ) with ‖f‖W k,p(γ,µ) = 0 we have
‖f‖W k,p(γ, µ|

Ω(0) ) = 0. Consequently f |Ω(0) ≡ 0 and so ‖zf‖W k,p(γ, µ|
Ω(0) ) = 0. On the other hand, we

also have ‖f‖Lp(γ,µ0) = 0, and so f(z) = 0 for µ0-almost every z ∈ γ. Then zf(z) = 0 for µ0-almost every
z ∈ γ and ‖zf‖Lp(γ,µ0) = 0. Observe that µj is concentrated in Ωj ∪ Ω(j) ⊆ Ω(0) for 1 ≤ j ≤ k. We deduce
from these facts that

‖zf‖p
W k,p(γ,µ)

≤ ‖zf‖p
Lp(γ,µ0)

+ ‖zf‖p
W k,p(γ, µ|

Ω(0) )
= 0 ,

and therefore the multiplication operator is well defined in W k,p(γ, µ).
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On the converse, let us suppose that there is f ∈ V k,p(γ, µ) such that

‖f‖W k,p(γ, µ|
Ω(0) ) = 0 ,

but f is not identically zero in Ω(0). We know that there exists an arc γ0 ⊆ Ω(0) such that f |γ0 6= 0,
and therefore there is another arc γ1 ⊆ γ0 such that γ1 ⊆ Ωi for some 1 ≤ i ≤ k and f |γ1 6= 0. If g
belongs to K(γ, µ), we have that g(i)(z) = 0 for almost every z ∈ Ωi, and therefore that g(i−1) is constant
in each connected component of Ωi. Then g|γ1 ∈ Pi−1. Let us choose now h ∈ K(γ, µ) such that deg h|γ1 ≥
deg g|γ1 for all g ∈ K(γ, µ) (we have deg h|γ1 ≥ 0 since the function f is not identically zero in γ1). Then,
deg zh|γ1 >degh|γ1 ; therefore zh /∈ K(γ, µ) and M is not well defined.

Proof of Theorem 8.2. We divide this proof into three parts; each of them will be devoted to each type
of measure. Remember that in our hypotheses we always have K(γ, µ) = {0} by Theorem 8.3. Therefore
(γ, µ) ∈ C0, since Ω(0) \ (Ω1 ∪ · · · ∪ Ωk) has at most two points (see Remark 1 after Definition 4.2).

Measures of type 1. By Theorem 4.1 we have directly

‖f (j−1)‖Lp(γ,µj) ≤ c ‖f (j−1)‖L∞(γ) ≤ c ‖f‖W k,p(γ,µ) ,

for all f ∈ V k,p(γ, µ) and 1 ≤ j ≤ k, since (γ, µ) ∈ C0. Now Lemma 8.2 gives the conclusion.

Measures of type 2. A computation (using Muckenhoupt inequality) gives that

c ‖f (j−1)‖Lp([z1,ζ2],µj) ≤ ‖f (j)‖Lp([z1,ζ2],µj) + |f (j−1)(ζ2)| ,

for k1 ≤ j ≤ k. Then Theorem 4.1 gives

(8.4) ‖f (j−1)‖Lp([z1,ζ2],µj) ≤ c ‖f‖W k,p(γ,µ) .

If k1 > 1, again by Theorem 4.1, we have

‖f (j−1)‖Lp([z1,ζ2],µj) ≤ c ‖f (j−1)‖L∞([z1,ζ2]) ≤ c ‖f‖W k,p(γ,µ) ,

for all f ∈ V k,p(γ, µ) and 1 ≤ j < k1, since z1 is right (k1−1)-regular (and then [z1, ζ2] ⊆ Ω(k1−1)). Therefore
(8.4) is true for all f ∈ V k,p(γ, µ) and 1 ≤ j ≤ k. The arc [ζ3, z2] is treated in a symmetric way and we
obtain an inequality similar to (8.4). The arc [ζ2, ζ3] needs the same argument as measures of type 1.

Measures of type 3. Condition (1) of measures of type 3 gives

‖f (j−1)‖Lp(V,µj) ≤ c ‖f (j−1)‖Lp(V,µj−1) ,

for r < j ≤ k. If r > 0, Theorem 4.1 gives

‖f (j−1)‖Lp(V,µj) ≤ c ‖f (j−1)‖L∞(V ) ≤ c ‖f‖W k,p(γ,µ) ,

for 1 ≤ j ≤ r. Consequently we have

‖f (j−1)‖Lp(V,µj) ≤ c ‖f‖W k,p(γ,µ) ,

for 1 ≤ j ≤ k. The arc γ \ V needs the same argument as measures of type 1.

Theorem 8.4. Let us consider 1 ≤ p < ∞ and a finite p-admissible vectorial measure µ in a compact curve
γ. Assume that (γ, µ) ∈ C0 and that for each 1 ≤ j ≤ k we have µj(γ \ (Jj−1 ∪Kj−1)) = 0, where Kj−1 is
a finite union of compact arcs contained in Ω(j−1), and Jj−1 is a Borel set with µj ≤ c µj−1 in Jj−1. Then
the multiplication operator is bounded in P k,p(γ, µ).
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Proof. We have by µj(γ) < ∞ and Theorem 4.1

‖g(j−1)‖Lp(Kj−1,µj) ≤ c ‖g(j−1)‖L∞(Kj−1) ≤ c ‖g‖W k,p(γ,µ) ,

for every 1 ≤ j ≤ k and g ∈ W k,p(γ, µ). The hypothesis on Jj−1 gives

‖g(j−1)‖Lp(Jj−1,µj) ≤ c ‖g(j−1)‖Lp(Jj−1,µj−1) ≤ c ‖g‖W k,p(γ,µ) .

These two inequalities imply
‖g(j−1)‖Lp(γ,µj) ≤ c ‖g‖W k,p(γ,µ) ,

for every 1 ≤ j ≤ k and g ∈ W k,p(γ, µ). Lemma 8.2 finishes the proof.
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