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A b s t r a c t  

Empirical research has provided evidence supporting the existence of arbitrage op- 
portunities in real financial markets although market imperfections are often the 
main reason to explain these empirical deviations. Consequently, recent l i terature 
has turned the at tention to imperfect markets in order to extend the most sig- 
nificant results on asset pricing. This paper develops several stochastic measures 
providing relative arbitrage earnings available in a financial market. The measures 
allow us to take into account different type of frictions. They are introduced by 
means of several dual pairs of vector optimization problems. Primal problems per- 
mit us to characterize the arbitrage absence even in an imperfect market and they 
also provide optimal arbitrage portfolios if the arbitrage absence fails. Dual ones 
allow us to extend the risk-neutral valuation methodology for imperfect and no- 
arbitrage free markets and provide new interpretations for the measures in terms 
of "frictions effect" or "committed errors" in the valuation process. 
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not totally fulfilled in practice. Consequently, some of the empirical re- 
search presents discrepancies with respect to some theoretical results. So 
for instance, concerning the arbitrage absence, Protopapadakis and Stoll 
(1983) identify situations where the Law of One price is violated in dealing 
with spot and fhture prices, and Kamara and Miller (1995) tests of the 
put-call parity lead them to conclude that arbitrage opportunities exist and 
are available for some traders. Focusing on market integration, Lee and 
Nayar (1993), Chen and Knez (1995) and Kempf and Korn (1998) show the 
existence of some kind of segmentation when the absence of cross-market 
arbitrage is being empirically tested. 

Market imperfections (bid-ask spread, other transaction costs, illiquidity 
that makes a continuous trading rather difficult, etc.) are often (but not 
always) the main reason to explain these empirical deviations, and previous 
literature has already focused on them. For instance, Toft (1996) analyzes 
how to replicate a call option in a model with transaction costs. 

Concerning the arbitrage absence in the imperfhct market case, Jouini 
and Kallal (1995) paper is a very interesting contribution. The authors con- 
sider sublinear pricing rules instead of linear ones, and extend the classical 
results on risk-neutral valuation and the martingale property for models 
without free lunches. Another important papers related to pricing methods 
in imperfhct markets are due to Chateauneuf et al. (1996) and De Wage- 
naere and Wakker (2001), where sublinear pricing rules are considered once 
more, and they are represented by means of Choquet integrals. 

The present paper focuses on two main objectives. First, we will pro- 
vide some stochastic measures of the degree of violation of the arbitrage ab- 
sence that allow us to incorporate several alternative hypotheses on market 
fl'ictions. Therefore, the measures characterize the absence of arbitrage or 
yield concrete arbitrage strategies even in the imperfect market case. Later, 
we will develop a risk-neutral valuation methodology that also applies for 
imperfect markets and, fhrthermore, generates proxies of risk-neutral prob- 
ability measures in no arbitrage free models. The approach provides, not 
only the existence of risk-neutral probability measures, but also a procedure 
to compute them. 

A purpose of this paper is to define measures in a dynamic setting. 
Attention is directed to measure in a discrete (finite or infinite) time model. 
We start with the idea that there is an arbitrage opportunity in the model if 
there exist two consecutive dates such that there is an arbitrage opportunity 



Stochastic Measures of ArbitTuge 291 

in this period, in the line of Balb~s et al. (2002b). 

Another purpose of this paper is to measure arbitrage opportunities in 
monetary terms, following the approach of Balb~s and Mufioz-Bouzo (1998). 
Although there are very interesting treatments of the arbitrage measure- 
ment in a static framework (see for instance Chen and Knez (1995), Kempf 
and Korn (1998) or Balb~s and Mufioz-Bouzo (1998)) and all of them might 
be extended for dynamic models, the Balb~s and Mufioz-Bouzo approach 
seems to be flexible enough when dealing with empirical tests or applica- 
tions. This is pointed out in Balb&s et al. (1999) and Balb&s et al. (2000). 
The first paper shows the interest of an arbitrage measurement when pricing 
in markets whose illiquidity makes it difficult to apply standard procedures, 
while the second draws on the Balb&s and Mufioz-Bouzo measure to empir- 
ically analyze the level of integration among several markets. 

Measuring the arbitrage in monetary terms seems to reflect another 
advantages. So, Balb~s et al. (2002a) shows that traders' objectives may 
be usually incorporated to the measure, and Jaschke (1998) illustrates how 
the sequential arbitrage measurement in bonds markets may be an useful 
tool when computing proxies for the term structure of interest rates. 

We will look for relative arbitrage profits. We proceed in two ways. The 
first assumes the absence of short sale restrictions. The central idea of the 
stochastic measure / is to test in each period the minimum initial investment 
over the price of the exchanged assets, needed to purchase a portfolio that 
generates nonnegative payoff in almost every state of nature. 

The second way takes place in the presence of short sale restrictions. 
We first introduce for each period an infinite dimensional linear optimiza- 
tion problem. A solution to this problem yields to the maximum expected 
arbitrage profit obtained by an agent in presence of short sale restrictions 
in all the assets, i.e, the agent cannot sell what he/she does not have. We 
then consider the maximum of the found maxima among all the portfolios 
of the bounds of short position with price one at the first date of the period. 
This leads to a measure 9T~ which depends only on the period. 

The results show that some introduced optimization problems reflect 
very interesting properties. An optimal arbitrage portfolio x leading to the 
maximum expected relative profit 97~ also leads to a stochastic measure m. 
This measure can be interpreted as the maximum arbitrage profit relative 
to the price of the sold assets in almost every state of nature. To show this, 
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we prove that x solves a vector optimization problem in which the objective 
function is non differentiable and takes values in an infinite-dimensional L 2- 
space. Finally, we prove that x also solves the multiobjective optimization 
problem introduced to define I. This allows us to relate l, rn and 9)I. 

The measures m and 9)I can be also obtained from a dual approach, 
useful tbr several reasons. First, it provides a proxy fbr discount factors (or 
equivalent concepts, like the risk neutral probabilities or the state prices) 
in no-arbitrage free economies, and thus, we extend the methodology of 
risk-neutral valuation and can compute "right prices" for the assets and the 
errors committed by the agents. Second, in a context of imperI>ct markets, 
the arbitrage may be only apparent but  not real, and a theory that  provides 
discount factors under not ideal assumptions makes the models more flexible 
and realistic. Finally and besides, we obtain some results on the absence 
of duality gaps for some vector optimization problems that do not hold 
for general vector problems (see %r instance Khanh (1995) or BalbAs and 
Guerra (1996)). This might be interesting in Optimization Theory. 

This article is organized as follows. Section 2 introduces the optimiza- 
tion programs leading to define the measures 1 and 9)I. In Section 3 we 
prove the solvability of the programs associated to the measure 9)I and de- 
fine the stochastic measure m. Section 4 provides some dual optimization 
problems such that  their solutions lead to the measures rn and 9)I. This 
allows us to relate rn and 9)I with the stochastic discount factors, and there- 
fore, with some dynamic results of the existing literature. We provide other 
interpretations of the measure rn in Section 5. We also state the solvability 
of the optimization problem leading to the measure l and relate both  mea- 
sures rn and 1. The concluding section contains miscellaneous remarks and 
extensions of the main results. 

2 Measurement of the arbitrage opportunities 

Consider a market for trading n securities at a countable number of 
times 0, 1, . . . .  As usual, there is some finite or infinite set [~ of states of 
the world. For each date t, a a-algebra Et of subsets of ~ denotes the set of 
events corresponding to the information available at time t. We adopt the 
usual convention that Et C_ Es whenever t _< s. Finally, P is a probabili ty 
measure defined on a a-algebra of subsets of [~ containing all the a-algebras 
Et . A strategy trading at time t is z = ( Z l , Z 2 , . . . , z ~ )  E (L2(Et)) ~. This 
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restriction of attention to square integrable random variables is made for 
expositional and mathematical  ease. Let pt (pl,t  P 2 , " ' , t  pn)t E ( L 2 ( E t ) )  n 

the prices vector at time t. Then, for a strategy trading at time t, the 
ft X t value at date t is the sum }-~i 1 iPi and the value at date t ÷ 1 is the sum 

n X ~,t+l  
~ i  1 ilJi • 

D e f i n i t i o n  2.1. The portfolio x E (L2(Et)) ~ is said to be an arbitrage 
opportunity (second type) at date t if there exists A E Et with P(A)  > 0 

n X ~,t+l  n such that  }-~i 1 itJi ~ 0 a.e. in A and }-~i 1 XiP~ ~ 0 a.e. in A. 

If x E (L2(Et)) ~ is an arbitrage opportunity at date t, it allows an agent 
to increase with positive probability consumption at date t, and increase 
(or at least not decrease) consumption at date t ÷ 1. The latter definition 
extends the notion of arbitrage opportunity of the second type (Ingersoll 
(1987)).We will extend the analysis in the concluding section in order to 
incorporate the opportunities of the first type which can be introduced as 
the portfolios x E (L2(Et)) ~, with nonnegative price at time t ÷ 1 that  are 
positive with positive probability, and with zero price at time t. 

In the existing literature, the notion of absence of arbitrage in the differ- 
ent models varies fl'om some authors to others. Under very natural  assump- 
tions and for a finite number of dates, it may be proved that  the absence of 
arbitrage of both types at every date is equivalent to the absence of simple 
fl'ee lunches in the sense of Harrison and Kreps (1979). However, for an 
infinite number of trading dates the absence of free lunches is a stronger 
property (see Clark (1993) for a general t reatment  on this point). From an 
economic viewpoint the absence of arbitrage is much more intuitive than 
the absence of free lunch, but fl'om a theoretical point of view the second 
concept may be characterized in very general frameworks by the existence 
of equivalent martingale measures. Anyway, in this paper we turn our at- 
tention to measure relative profits fl'om arbitrage strategies of the second 
type because we retrieve the economic interpretation, and recent literature 
has shown that  arbitrage free models may be also characterized by a mar- 
tingale approach (see Balb~s et al. (2002)). Thus we adopt the following 
definition. 

D e f i n i t i o n  2.2. We say that  the model is arbitrage fl'ee if there are no 
arbitrage opportunities at every date. 

We are interested in defining two stochastic processes to analyze at- 
tainable relative arbitrage profits in each date and in almost every state of 
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nature. For expositional reasons, a brief synopsis of these approaches to 
measure arbitrage opportunities follows. Most technical details have been 
left to sections below, so all definitions stated in this synopsis are subject 
to results to be proved. 

From now on, fix the period t, t + 1. Let us introduce the following 
assumptions: 

A.1  For every i 1 , . . . ,  n, p~ E L2(Et) and there exists ki E IR such that  
> ki > o 

_ , t+ l  A.2 For every i 1 , . . . ,  r~, Pi E L~(Et+I), and there exists k E IR such 
that  pt+l (w) > k > 0. 

Previous assumptions will be relaxed in future sections (see for instance 
Section 6). The assumptions imposed to Pl are verified if we assume that  
the first security is a riskless asset. As Harrison and Kreps (1979) show, 
this is not a very restrictive assumption. In fact, assuming that  one of the 
securities always has strictly positive price, we can use the price of this 
security as the numeraire (see Section 6). 

FIRST MEASURE. 

Consider for every x E (L2(Et)) n the function, 

i 1 

0 

if ¢ o 

if x(w) = o 

If x is an arbitrage opportunity at date t and A E Et is as in Definition 1, 
then 9(x, w) is the quotient whenever w E A between the profit generated 
by x and the price of all exchanged assets, both computed at date t. 

Since I9(x,w)I _< 1 holds fbr every w E ~ and every portfolio x, and 
9(x, ) is Et-measurable, it follows that  9(x, ) E L2(Et) for every x E 
(L2(Et)) ~. Consider the following non-diffbrentiable vector optimization 
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problem: 
Tt 

~, ~ , t +  1 m xg(x, ) s.t _>0 (I) 
i 1 

Problem (I) describes the process of identifying the portfolio which maxi- 
mizes in almost every state of nature the arbitrage profit at date t in relation 
to the price of all interchanged assets. 

D e f i n i t i o n  2.3. Assume that  Problem (I) is solvable. We define the first 
measure of the level of arbitrage opportunities by 

where x E (L2(Et)) n is an optimal solution in (1). 

It is important  to point out that  1 t gives an information useful to analyze the 
absence of arbitrage in markets with transaction costs. Therefore, we have 
an alternative to the approach of Prisman (1986). In fact, if we assume that  
transaction costs are a.e. determined by the price V(w)  ~.irzl [Xi(CO)[p~(CO) 
of the exchanged assets, then, once (I) has been solved, we can subtract  
costs from the maximum profit an investor can obtain. Furthermore, it will 
be shown that  market imperfections proposed by Jouini and Kallal (1995) 
can be incorporated in our model too (see Section 6). 

We must prove the consistency of the above definition or, equivalently, 
that  Problem (I) is solvable. From a point of view of Optimization Theory, 
Problem (I) presents some difficulties. Notice that  the objective function is 
non linear and non differentiable. Moreover, it is an L2(Et)-valued function 
and we are looking for a strong maximum, i.e., an upper bound for the usual 
partial order in L2(Et). In sharp contrast to the vast body of literature on 
efficiency in multiobjective optimization, see for instance Khanh (1995), 
little is known about strong optimality. There are some conditions for the 
existence of strong optima in vector optimization problems, see for instance 
Zowe (1975), but they usually do not apply in practical situations. In much 
of the cases, an strong optimum does not necessarily exist. However, we 
prove in Section 5 that  there exists an optimal strong solution of Problem 

(5 .  

SECOND MEASURE. 

We now assume that  we are in presence of short sale restrictions. We 
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introduce a couple of combined optimization programs to analyze arbitrage 
profits. The first one is a pair of primal-dual programs fbr each short sale 
restriction h ( h i , . . .  hn) E (L2+(Et))n: 

f t  

max - ~ ./~i xip~ dP 
i 1 

s . t . ~ i p i  _> 0 
{ 1 

xi _> - h i  i = 1 , . . . , n  

Xi E L2(Et)  i =  1 , . . . , r t  

(H,,) 

and its dual problem, 

f t  

rain ~ ~ i  hili dP 
i 1 

S't'E(f/)~ +1 I r t )  @ li = p~ 

f E L%(rt+l) ,  li E L 2 ( r t )  for every i 1 , . . . , r~  

(UZh) 

where f and li, i 1 , . . . ,  n are decision variables and E(fp~ +1 I Et) denotes 
the conditional expectation of fp~+l relative to ~t. 

The problem (IIh) describes the process of identifying the portfblio (con- 
strained by the bounds in a short position hi _~ O) which minimizes the 
initial expected investment needed to purchase a portfblio that  generates 
a nonnegative payoff in almost every state of nature. Thus, a non zero 
optimal value in (IIh), provided its existence, represents the maximum ex- 
pected profit obtained by an agent implementing arbitrage in such a way 
that  he/she cannot sell more than hi units in each asset i. 

Problems (IIh) and (IIIh) avoid some difficulties encountered when 
dealing with problem (I) since their objective flmctions are linear and real 
valued. However, the variables take values in an L2-space, with an empty 
interior of the positive cone unless Et is a finite or-algebra. So, most of the 
usual conditions do not apply to establish the absence of duality gap. In 
Section 4 we establish conditions on Et under which there is no duality gap. 
These conditions are fulfilled in practical situations. When this absence of 
duality gap could not be stated, some considerations in Section 3 prove that  
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we can consider an equivalent formulation in which the primal constraint 
space is an L~-space;  this is the only one of the LP-spaces to have a positive 
cone with interior points (in its norm topology), hi this case the dual 
variable space must be the dual Banach space fbr L ~ ,  and thus will not be 
a function space. Nevertheless, the absence of duality gap can be always 
stated. This is the reason fbr considering in Section 6 such a topological 
fl'amework fbr the pair dual (IIh) and (IIIh).  

We denote by ~(h) the opt imum value in (IIh). We try to define a 
measure as the maximum attainable expected profit fl'om an arbitrage op- 
por tuni ty  among all the possible investors holding portfolios h priced one. 
Then we look fbr h (hl~. . .  hn) E (L2+(Et)) n so as to solve 

max ~(h) 

Tt 

s.t. Z 1 (Iv) 
i 1 

hi_>0 i 1 , . . . , n  

D e f i n i t i o n  2.4. We define the second measure 9)I t of the level of arbitrage 
opportunities as the opt imum value achieved in problem (IV).  

Note first that  9)I t is scalar fbr every t. The consistency of this definition 
relies on the solvability of Problem ( IV) .  We prove it in Section 3. 

3 Measuring with  short sale restrictions 

In this section we prove the solvability of problem (IV),  and hence the 
consistency ofg:R t. Furthermore, if h* is an optimal solution in problem (IV)  
and a* is a corresponding optimal solution in problem (IIh,) we prove that  
the function }-~i 1 * t -- ~ a i p  i does not depend on the chosen optimal solutions 
h* and a*. Thus, such a function defines a third measure of the arbitrage 
opportunities. 

From now on, we adopt the fbllowing notations: ~ t  denotes the set 
n h t {h E (L2+(Et)) n [ E i  1 iPi E L2(Et)} and Fh tile feasible set in (IIh). 

L e m m a  3.1. Problem (IIh) is solvable for every h E ?-t t. 
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Pro@ The proof of the lemma relies on the fact that  we do not need to 
bound the whole feasible set, but only a subset of it containing the optimal 
solution. 

Fix h E "H t. First note that  the feasible set Fh is non void since x 0 E 
Fh. Furthermore, the value of (IIh) is bounded by E~L1 f~ h@~ dP  and 
hence finite. Moreover, it is nonnegative. 

For every x E Fh, let A {cu E [~ [ -- ~-~.in 1Xi(Cd)p~(~) ) 0} and 
x t XXA, where XA denotes the characteristic function of A. 

Then, x' E Fh and ~ i  l f~? t t ~z x ' t  - ~ xip i dP  > - ~ - ~  1 f~  iiOi dP. Con- 
sequently we can take as feasible set for (IIh) the subset F£ {x 
Fh I ~ i n l  Xi@d)pi@ d) ~ 0} of F h. F£ is an order bounded set since 
-h~ _< x~ _< (2 j c~h jp} )  / p~ whenever x ~ F~. Thus, F£ is a weakly- 
compact set. Then, the weak-continuity of the objective thnction guarantees 
the solvability of Problem (IIh). [] 

The lemma above allows us to properly define (p(h) as the optimal value 
in (IIh) , that  is, 

It is easily verified that  

+ h I) > + and  (5h) 5 (h) 

for every h, h t E 7-t t and ~ > 0, so ~ is a concave thnction. 

Also, ~(h) _> ~(h  r) if h _> h / in the usual partial order of L2(Et). 

Finally, ~(h) <_ ~in l ff~ h~p~ dE  since - ~ Z 1  f~? xip~ dE  < ~"~1 f~? h~p~ dE  
for every tbasible x. 

L e m m a  3.2. Suppose that x E (L2(Et)) ~ is an arbitrage opportunity and 
n X ~,t+ 1 let be A E Et with P(A)  > 0 and such that ~ i  1 itJi R 0 a.e. in A and 

n X t ~-~i 1 iPi < O a.e. in A. Then for every c > O there exists B 6 Et, 1 3 c A  
with P ( A  - 13) < c such that ~ x.XB E (L~(Et ) )  ~ , z~iv'~ 1 ~it"i~t+l > 0 and 

n ~ t ~-~i 1 iPi < O a.e. in B.  

Proof. For every k E N t a k e  Ak {w E A I Ixi(w)I -< k i - -  1 , 2 . . .  ,n}. 
Since limk P(Ak)  P(A) ,  then for every s > O, there exists k' E N such 
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that  P ( A - A k )  < c whenever k _> k'. 
subset. 

Then B Ak, is the required 
[] 

P r o p o s i t i o n  3.1. No arbitrage opportunity exists at date t i f  and only if  
qo(h) 0 for every h E 7-t t. 

Pro@ Suppose there exists an arbitrage porCblio x ¢ (L2(Et)) n and let 
n X ~,t+l A E Et such that  P(A)  > O, ~ i  1 ipi >_ 0 a.e. in A and ~ 1  2~i[)~ < 0 

a.e. in A. 

From Lemma 3.2, let be B and 

j x if w E / 3  
2(w) / 0 otherwise 

Ixilpi E L2(Zt+I) .  such that  P ( B )  > 0 and 2 E (L~(Et ) )  n. Hence, }-~i 1 - t 

Set h (l: ll, . . .  , G I). Then, 2 E Fh and consequently 

_ 2 t x t qo(h) >_ iPi dP  = - iPi dP  > 0 
i 1 

Assume now that  no arbitrage opportunity exists. Then for every h E 
(L~(Et))  n and x E Fh one has that,  

f t  

1 1 

Consequently ~(h) 0 for every h E 7-t t. [] 

In order to prove that  Problem ( IV)  is solvable, we introduce the fol- 
lowing optimization program, 

f t  

IllaX - -  

i 1 

s.t. 

i xip~ dP  

T t  

~, ~,t+ 1 

i 1 

i 1 

xi >_ - h i  

Xi E L2(~t)~ 

i: l,...,n 

hi • L~+(r ~) i 1 ~ . . . ~  

(v) 
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Note that Problem (V) is equivalent to the combined problem from (IIh) 
and (IV). Furtherlnore, Problem (V) is just a linear program where the 
decision variable (z, h) takes values in (L2(Et)) '~ × (L~(Et)) ~. 

T h e o r e m  3.1. Problem (V) is solvable. Consequently, Problem (IV) is 
also solvable. 

Pro@ Just proceed as in the proof of Lemma 3.1 to choose a subset F of 
the feasible set of V, such that ( -1)  / Pi _< - h i  _< xi _< 1 / P,i whenever 
(x, ll,) E F. Then Problem (V) is solvable in a such weakly compact feasib]e 
region. However, the choice of F yields an optimal solution tbr Problem 
(V) in the whole feasible set. 

Finally, note that an optimal solution (z*, h*) of Problem (V) yields an 
optimal solution h* of Problem (IV) and an optimal solution z* of Problem 
(Hh*). [] 

R e m a r k  3.1. In empirical applications an optimal solution of (IV) may 
be obtained by solving (V) (see Balbas et al. (1999), Balbas et al. (2000), or 
Pardo et al. (2002), where it is illustrated how the Balb~s and Mufioz-Bouzo 
(1998) static measure may be computed in empirical analysis). Problem (V) 
is just a linear program which can be solved by the classical optimization 
techniques (see Anderson and Nash (1987)). Furthermore, in some specially 
interesting situations, the a-algebras Et and ~t+l will be finite and then 
(V) can be solved by the simplex method. 

R e m a r k  3.2. It can be deduced from the proof of Theorem 3.1 that an 
optimal solution (z*, h*) of Problem (V) verifies 

( - 1 ) / >  _<-hl _< z; _< 1 / > .  

Thus, assuming A1, one gets that (x*, h*) E (L°°(Et)) 2~. So, programs 
(IIh), (IV) and (V) can be refbrmulated in such a way that all the spaces 
involved are L°°-spaces. 

R e m a r k  3.3. Finally, it should be noted that assumption As has not been 
needed for the prooN of Lemma 3.1 and Theorem 3.1. More precisely, 
the condition ~,t I-1 Pi E L~(Et+I)  can be relaxed to pt+l E L2(Et+I) without 
modifying the results about the solvability of programs (IIt~), (IV) and (V). 
The condition ~ , t + l  oo p~ E L+ (Et+l) is only needed for the results obtained in 
Section 4. 
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Recall that  we denote by 9)I t the optimum value achieved in (IV) (see 
Definition 2.4 or (V), and therefbre, it follows from Proposition 3.1 that  
9)I t 0 if and only if there are no arbitrage portfolios at date t. 

Our next purpose is to prove that  an optimal solution h* which maxi- 
mizes an attainable expected payment~ also maximizes an attainable profit 
in almost every state of nature. 

Let ¢h E /:h be a solution where the opt inmm value g)(h) is achieved. 
We first prove that  ¢h solves a nmltiobjective optimization problem. For 
every A E Et consider the restricted optimization problems: 

~ t  P 

- d P  m a x  

i 1 

~ t  

~, ~ , t + l  (IIhA) s.t. ~ , i p i  _>0 a.e. i n A  
i 1 

x i _ > - h i  a.e. i n A ,  i 1 , . . . , n  

L e m m a  3.3.  Suppose that x h solves (IIh) ]'or h E ~t. Then, x h solves 
(II ) for every A • 

Proof. Proceeding by contradiction suppose there exists a feasible in ( I I  A) 
such that  

Tt  Tt  

i 1 i 1 

Define 
x' ~ xh if w ~ A 

[ x if c c E A .  

T h e o r e m  3.2. Suppose that x h solves (IIh) ]'or h E ~ t .  

Obviously a'  is f>asible in (IIh) and -~-~. /rz  1 ft~ X/])~ dP  > ~(h) and the 
proof is concluded. [] 
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Then x h solves the following vector optimization program: 

ma - 
i 1 

s.t. ~ ~ ~,t+l • ':i~i >_ 0 

i = 1  

xi _> - h i  i 1 , . . .  ,n  

(v h) 

Furthermore, - ~ h t xi Pi is a strong maximum in (VIh),  i.e., an upper bound 
i 1 

for (Vlh),  and not only a mazimat value. 

Proof. It follows immediately from Lelnma 3.3. [] 

Theorem above allows us to define %r every h E ~ t  a function T of 
the maximum arbitrage profit obtained by an agent holding a portfolio h. 
Concretely T(h,  ) is the strong maximum in (VIh) and 

f t  

i 1 

h > - h i  it follows that  T(h,  ) takes values in L2(Et) whenever From x i _ 
h E T-t t. 

Hereafter, we denote by H t the feasible set in ( IV) ,  i.e., 

f t  

H {hcn l ZhiP  
i 1 

It follows from A1 that  H t is a subset of (L°C(Et)) n. 

T h e o r e m  3.3. Let h* E H t such that 9)I t ~(h*). 
,,following vector" optimization problem 

Then, h* solves the 

maxT(h,  ) s.t. h E H t (vii) 

Furthermore, T(h*, ) is a strong maximum in ( V I I ) .  
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P r o @  Let x* E Fh, such that  qo(h*) = - ~ i L 1  f~2 ~r~ x* dP. FroIn TheoFeEl 
3.2 we get that  

f t  

i = l  

Proceeding by contradiction suppose that T(h*, ) is not a strong maximum 
in (vz;).  
such that  

f t  

Then, there exist h e H t, 2 • F h and A • Et with P ( A )  > 0 

= T(L > T(h*, 
i 1 

for every w E A. Setting, 

then, 

2i(w) i f c d e A  and { hi(cd) i f c d • A  
xi(cc) x~(cc) otherwise hi(w) h~(cc) otherwise 

h is fbasible in ( I V )  and x ~ Fh and consequently, 

_ _  X t ~(h )  > - i P i  d P  - 
i 1 = 

~z 

iPi d P  - • • 
i 1 

f t  

> - x i p  i d P  ~(h*)  
i 1 

This strict inequality is in contradiction with the choice of h* as a solution 
in problem ( I V ) .  [] 

Theorem 3.3 shows that  n _,_t+l - ~i=1 ~iPi does not depend on the optimal 
solution (x*, h*) of (V) and consequently, leads to the following definition. 

De f in i t i on  a.1. The measure m t of the level of arbitrage opportunities is 
defined by 

f t  

i=1 

where h* E H t, and x* E Fh* are such that 

f t  

= - xi  Pi dP. 
i = l  
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T~ T~ 

Observe that  0 _< rnt(cu) - ~  x*(cu)p~(cu)_< ~ h*(cu)p~(cu) 1 and 
i 1 i 1 

hence m t E L2(Et) .  

The measure rn t, therefbre, reflects in almost every state of nature the 
maximum attainable profit from an arbitrage opportunity, obtained among 
all the investors holding a priced one portfolio. Theorem 3.3 shows that  rn ~ 
is obtained as a strong opt imum in a multiobjective optimization program 
(Problem (VH)) .  

One can check that,  with this definition, rn ~ verifies the first requirement 
to be a measure of the level of arbitrage opportunities, that  is, 

T h e o r e m  3.4. The following conditions are equivalent. 

i) No arbitrage opportunity exists on the market.  

ii) 92;t t O. 

iii) m t O. 

The nonexistence of arbitrage opportunities is thus made testable by 
estimating m t directly. The closer the value of 9J{ t f~ m t dP  to zero, 
the lower the maximum expected quotient between the profit and the total 
price of short-selling restrictions. 

Such a test is also valid for a measurement  of market integration: ~br two 
or more not integrated markets, t reated as parts of one combined market, 
0Jr t also indicates the level of arbitrage opportunities across the markets. 
More concretely, take as given two markets A and B. Then, we treat them 
as parts of one combined market C. We compute m t and 0Jr t on the global 
market C to size the level of integration of both markets. However, the 
maximizing profits given by m t and 9J{ t englobe the profits derived from 
the cross-market arbitrage and also the profits derived from the arbitrage 
opportunities in each market separately. Hence, in order to capture which 
part  of these profits comes from the cross-market arbitrage opportunities , 
we can consider the measures and mt -max(mt , mt ) 
whenever there are arbitrage opportunities on A or B (or both). Balbfls 
et al. (2000) and Pardo el al. (2002) illustrate how to implement these 
techniques when dealing with static models and the measure of Balbgs and 
Mufioz-Bouzo (1998). 
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4 T h e  s t a t e  pr ices  a n d  t h e  d u a l  a p p r o a c h  

In this section we turn our attention to the dual problem (IIIh). Before 
starting our discussion of duality theory we shall study some properties of 
the dual problem ([IIh). 

Problem (IIIh) is consistent since (f, 1) (0,p) is feasible. Further- 
more, problem (IHh) has a finite value since problem (IIh) is consistent. 
Nevertheless, solvability of (IIIh) presents a problem: its feasible set is not 
bounded and solvability cannot be settled by using Alaoglu's theorem. This 
is easily overcome by re-posing the problem as 

rain ~ hili dP s.t. 1 E A (VIIIh) 
{ 1 

where 

E .pt+l t a {lE(L2+(Et))~ I (] ~ IEt)+l{ irk, i 1 , . . . , n ,  f E L ~ ( E t + I ) }  

and A denotes its closure (in any topology consistent with the duality since 
A is a convex set). It is easy to prove that  (IIIh) and (VIIIh) have the 
same value and Problem (VIIIh) is solvable since A is a weakly-compact 
set. 

The dual problem also presents an associated vector optimization prob- 
lem with strong solutions. 

P r o p o s i t i o n  4.1. Suppose that 1 E A solves (VIIIh). Then, 1 solves the 
following optimization problem 

mn~ ~ h& s.t l E X (Ix~) 
i 1 

Proof. Proceeding by contradiction suppose there exists t '  E A such that  
P(A) > 0 where A = {w E f~ I ~ i r z l  hi(cd)~{(cd) < ~ i r z l  hi(O3)~i(Cd)} • Take 

tt.XA + t.Xf~-A. It is easily proved that  t E A. Besides, the inequality 

Z / i h i £ i  1 i =l £hi : dP@ i 1 -Ahi i dP {=1  hi i dP 

holds and yields a contradiction. [] 
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In particular, Proposition 4.1 states that  an optimal solution of (VIIIh)  
also solves the restricted program to every A E Et, that  is, 

Tt 

rain dR s.t. l c (vHI / 
i 1 

where 

AA {l E (L2+(Et A A)) ~ I E(fP~ +1 I Et A A) + li p~ 

inA, i = l , . . . , n ,  f E L ~ ( E t + I ) } .  

From the weak-duality relation between (IIh A) and ( I I I  A) one gets that  

- x~p~ dP <_ l ih i  dP 
i 1 = 

for every A E Et and for every l E A. Then, this inequality remains true 
for every 1 E A. Consequently a weak-duality relation can be stated for the 
associated vector optimization problems. ?,lore precisely, one has that  

i 1 i = 1  

for every x t~asible in (IIh) and for every l E A. 

For a finite linear program the values of the primal and dual programs 
are always equal. This is not the case for infinite-dimensional linear pro- 
grams. The usual conditions under which this property holds do not apply 
here. This leads us to assume in the remainder of this section the nonexis- 
tence of duality gap for (IIh) and its dual (HIh) .  To motivate this assump- 
tion, we begin by proving that  there is no duality gap when the or-algebra 
Et is generated by a finite or countable partition of t~. This is an important  
case since in particular it contains most of the practical situations where Et 
can be thought of as a finite or-algebra. 

T h e o r e m  4.1. Suppose that Ao, 
of ~2 generating the a-algebra Et. 
and (IIIh). 

A1, . . .  is a finite or countable partition 
Then, there is no duality gap ]'or (IIt~) 
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Pro@ Let us prove that  there is no duality gap for (IIh) and (VIIIh). 
Consider the restricted optimization programs to each Aj. Note that  every 
Et-measurable function must have some constant value over Aj. In partic- 

ular, p~, hi have a constant value over Aj, say p~ and h~. The restricted 
problems to each Aj can be posed as 

T~ 

max- ~xip~ 
i 1 

f g  

s.t. ~ ~ipi _> 0 a.e in Aj 
i 1 

xi _> -h~  i 1 , . . . , n  

xi E N  i 1 , . . . , n  

and 

rain h li s.t. 1 S A--7 
i 1 

(viii ) 

i 1 i 1 

~ J J  J J  Pi xi - hili. 

where 

Aj ( 1 E ~  , /Ajfp~+l dP+li p~, i 1,...,n, f E L2+(Et+I)}. 

In the inequality-constrained program (IITi) the associated positive cone P 
is ~ while the inequality constraints take values in L2(Et+I) × ~ n  where 
the associated positive cone Q is L~(Et+I)  × ~ .  

P is a cone with compact sole (since B {x E ~ ] ]]x]] 1} is a 
compact set in P such that  0 is not in B and B spans P).  Besides, if x E 

n _ n X J X ~ , t + l  X) E Q and ~-~i 1 iPi 0 ,  then x 0. is such that  (~-~i 1 itai ' 

These two facts allow us to ensure that  

D' ~,, _ t+l  j n xipi , x - y ,  xiPi [ x E ~**, y E ~+ 
i 1 

is a closed set (see Theorem 3.19 of Anderson and Nash (1987)). Now, from 
Theorem 3.10 of Anderson and Nash (1987) it can be deduced that  for every 
j E N there exists 1J E A-~ and x J fbasible in (IITi) such that  

T~ T~ 
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Define now for every q E N and every i 1 , . . . , n  the Et-measurable 
functions, 

J i f w E A j a n d j < q  
x (q) (w) 

i 0 otherwise 

and 
l} q) (w) { l~ if w E Ajandj  < q 

p~(w) otherwise 

It is easily checked that  x (q) is feasible in (IIh) and 1 (q) E -A. 
denoting by A q q Uj 1 Aj, one has that  the relation 

Besides, 

~t  ~ t  ~ t  

~ t  ~ t  

- pixi d P +  iPi dP 
q - A q  

• i 1 

- pixi d P +  iPi dP 
- A q  

holds tbr every q E N. Finally, since liIIlq___~oc ~ . i n l  f~2-Aq hii)~ dP 0 it 
follows that  ~iL1 f~2 hili dP - ~iL1 f~2 xi[)~ dP, which concludes the 
proof of the theorem. [] 

Next theorem ensures that  in absence of duality gap tbr (IIh) and (IIIh),  
the stochastic measure m t can be tbrmulated in terms of the optimal solution 

a of (vIIIh). 

T h e o r e m  4.2. Assume that there is not duality gap between (IIh) and 
(IIIh) ]'or every h E H t. Then, the equality - ~ i  1 h t n n X i P i  ~ i  1 lihi holds 
whenever x h solves (IIh) and l solves (VI I Ih) .  In particular, one has that 

i 1 

~t  

i 1 

where h* E H t, x* E Fh, are as in Definition 5 and l* E -A solves Problem 
( V l I Ih ,  ). 

Proof. Just  apply Proposition 4.1 and the weak-duality relation stated for 
the vector optimization problems (VIh) and (VII Ih) .  [] 
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The latter theorem points out that the optimization problems intro- 
duced in this paper have very special and, in some sense surprising proper- 
ties. First, both problems, (VIh) and (IXh), have a strong solution. Second, 
we can conclude that there is no duality gap for (VIh) and (IXh) whenever 
there is no duality gap for the scalar problems (IIh) and (IIIh). However, 
(IXh) is not the dual problem of (VIh) since its dual variables must be 
an element of the space of all bounded linear operators from L2(Et) into 
itself (see for instance Sawaragi et al. (1985), Kuk et al. (1996) or Balbgs 
and Guerra (1996)). Furthermore, the absence of duality gap for scalarized 
dual vector problems does not guarantee in general the absence of duality 
gap for the vector problems. This is not our case even considering that in 
(IXh) the t>asible set is a strong simplification (and then a subset) of the 
feasible set of the dual of (VIh). Finally, since Problem (IXh) also has 
a strong solution, the primal sensitivity (given by 1) can be easily studied, 
what would be far more difficult without strong solutions (see the references 
above). 

In absence of duality gap, ¢(h), the optimal value of (IIh), can be 
obtained as 

Tt Tt 

Hence, the problem of finding 9Jr t can be expressed by a max-min problem 

9Jr t max inf U(A, h),  
h c H  ~ ACA 

T t  

where U is defined by U(),, h) ~ ~ i  
i 1 

now established. 

hi)~i dP. A min-max theorem is 

T h e o r e m  4.3. The equality max inf U(1, It) inf max U(1, It) holds. 
h C H  t ICA ICA h C H  

Pro@ Note that  H t and A are convex subsets, H t is a weak-compact set, 
U(1, .) is quasiconcave and weakly upper-semicontinuous tbr every 1 E A, and 
U(., h) is quasiconvex and weakly below-semicontinuous for every h E H. 
Now, just proceed as in Sion's theorem (Moulin (1979)) to get the result. [] 
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In absence of duality gap for ( I Ih )  and ( I I I h )  for every h E H t, the 
above theorem states that 

max inf u t l ,  h) inf max ut l ,  h). 
hcH ~ ICA ICA hCH ~ 

In game theoretic terminology latter equality expresses a two-person zero- 
sum game of the investor against the "market". Since li P~-E(ft)~ +1 I ~t) 
could be interpreted as the error committed by the "market" in the price 
of each asset for the state prices f ,  the s u m  Einl f~ hili would be the ex- 
pected payment from the "market" to the investor due to h and 1. Thus, the 
investor chooses a priced one portfolio of short-selling bounds in such a way 
that  it maximizes the minimal expected payment desired by the "market"  
and solves m a x h c m  inflca U(1, h). The problem, inflcA maxhcH~ U(1, h) de- 
scribes the process by which the "market" counteracts the goal of the in- 
vestor by choosing the feasible 1 which minimizes the maximal expected 
payment desired by the investor. 

Finally note that, under the assumptions of Theorem 4.2, we can also 
conclude that there is no duality gap for the scalar problem (V) and its 
dual, 

rain/~i a(w) d P  

s.t.E(fi)~ +1 I ~ t )  @ li p~ i 1 , . . . ,~% 

c~p~ ~_ li i 1, . . . , n 

L ~ ( r  t+l) i 1 , . . . , ,  

as well as there is no duality gap for the corresponding vector problems. 
Thus, for a f>asible f ,  consider it as a possible proxy for discount factors, 

~,t E(e~.t+l 
E ( f P [  +1 ] E t )  becomes the "right price" of the i th-security,  "{-  vJ,{ I Zt) p[ 
the relative (per dollar) "committed error" and ~ is their maximum. So, 
latter problem and its corresponding vector problem try to find discount 
factors in order to minimize the expected, respectively random variable, 
"maximum relative committed error". 
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5 Measuring wi thout  short sale restrictions 

The purpose of this section is to prove that  the measure m t tests diff>r- 
ent relative arbitrage profits in ahnost every state of nature without short 
selling restrictions. Of special interest is the equality between the maximum 
expected profit with short-selling restrictions with total price one at the first 
date of the period and the maximum arbitrage profit obtained relative to 
the price of the sold assets. 

From now on, denote by [21 {CO Efe I  zt(co) ¢ 0} and by g)A(h) 
the optimal value at tained in (II  A) for every A E Et. Note that  from 
Theorem 3.3 one can deduce that  an optimal solution h* also maximizes 

n h t ~A in HtA {h E (L2+(rt))rz I E i  1 iPi la.e. inA}. 

L e m m a  5.1. Let h* E H t and x* E Fh* such that 

Then, 

9Jr t ~(h*) ~ j~i * t 
- xi Pi dP 

i 1 

P({co E ~11 x$(co) > -h$(co) ¢ o}) o 

for every i 1,. . .  ,n 

Pro@ In order to simplify the notation and without loss of generality, we 
will prove tbr i n. 

Proceeding by contradiction, suppose that  P({w E [21 [ X~(CO) > -h~(co)  ¢ 
0}) > 0. Then, setting A {co E [21 I h*(co) /~ 0},/3 {co E A I x*(co ) ~> 0} 
and C {co ¢ A I 0 > x~(co) > -h~(co)}, one has P(/3) > 0 or P(C) > 0 
and /3 ,  C c_ ~1. 

.. * O) and First assume that  P(/3) > 0, and let ho (h~, . ,  h ' n -1 ,  7 
n--1 
Zv <. 
i 1 

The inequality ~B(ho) _< ~B(h*) holds, since the feasible set of (IIhBo) 
is a subset of the feasible set of (I/hB,). 

Since x* is feasible in (IIt~) we get that  ~B(h*) ~B(ho). 

Besides, P(E) 0 holds, where E {co E /3 I P~(co)h&(co) 1}, since 
~z(ho) ~z(h*) f~? m t dP 0 and E C_ [21. Then, 7 > 0 in/3 .  Taking 
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into account that  h* > 0 and p~ > 0 in B , we get 7 < 1 in B. Then, there 
exists D c_ B, D E Et such that  P(D) > 0 a n d 0  < b < T ( w )  < a < 1 in 

1 LOC 1 :;ho D and consequently S E (Et) and hence (L~(Et))~L Finally, we 
have 

qoD(h*) qoD(ho) a~l)( ho) < ~D( ho) <_ qoD(~ho) <_ qoD(h*) (5.1) 

1 where the last inequality tbllows from the fact that  ~ho E H~). Since (5.1) 
leads to a contradiction, we get P(B) = O. 

Assume now that  P(C) > 0 and let h ° . . . .  (h~, , hn_l ,* ix* D and 5 
rt--1 

E t * t * p~h~ + p~lx~l. As above, we get 0 < 5 < 1 and G c_ C, G E Et 
i 1 
such that  P(G) > 0 and 0 < b < 5(w) < a < 1 in G and consequently 
~E1 L°C(~t) and hence ½ho E (L2+(Et))'~: Thus, we derive that  

~G(h*) ~G(h °) a~G( h °) < ~c( h °) _< ~G(~h ) _< ~G(h*) 

and we get again a contradiction. [] 

Lemlna 5.1 says basically that  the portfolio where the maximum ex- 
pected profit is achieved either sells all the stock or purchases in each asset. 

Given a portfblio x E (L2(Et)) ~, we denote by x~-(w) max( -x i (w) ,  0) 
and we define the function 

Tt 

_~ 1 _ _ _ _ _  if ~;(~>~(~) # o  

o if ~x; (~)p~(~)  o 
i=1 

If x is an arbitrage opportunity at date t and A E Et is as in Definition 
2.1, the thnction f(x, ) is the quotient in A between the profit generated 
by x and the price of all the sold assets, both computed at date t. We now 
consider the following non difi~rentiable optimization problem 

Tt 

t + l  maxf(~, ) s.t y~x~(~)p~ (~) _> 0 (X) 
i=1 



Stochastic Measures of Arbitrage 313 

T h e o r e m  5.1. Assume that the market satisfies A1 and A2 and let x* E 
( L 2 ( ~ t ) )  n s~tch that mr(w) - ~-].in l X*(Cd)p~(Cd). The~t~ x* solves proble~Tt 

(x) f(x*,w) almost eve y he 'e. 

Proof. We first prove that  for every x feasible in (X) one has that  f (x ,  w) <_ 
mr(w) a.e. in ~. 

Proceeding by contradiction suppose that  P(D) > 0, where D {w E 
~ I f (x ,  cu) > mt(cJ)}. Note that  f (x ,  cu) _< 1 whenever cu E D. Set 

~t  

c(w) ~ x ~ ( w ) p ~ ( w )  > 0. Then, c > 0 in D since f ( x ,~ )  > 0 in D and 
i 1 

C E LI(Et) ,  from where it is deduced the existence of C c D, C E Et such 
that  P(C) > 0 and 0 < a < c(a:) < b in C. Consequently, the functions 

1 
yi - x i  E L2(Et). Define h' (htl, h~. . .  h~) by h~ sup(-y~,  0) y~- for 

g 
every i 1 , . . . ,  n. 

It is easily verified that  ~pc(h') <_ f c  m diP. 

Besides, from y feasible in (II2;) we get 

~t  

i 1 

Thus, combining both inequalities, we obtain a contradiction. Then, 
f (x ,  a:) <_ mr(a:) a.e. in A. 

~ t  

Assume now that  x = x*. Since mt(cu) - ~ x~(w)p{(w), and the fact 
/ 1 

that  x*(w) -h i (w)  whenever / E S~,~ and hi(w ) 0 otherwise B a.e., 
we get 

n f t  

i=1 i 1 

Consequently, f(x*, w) = mr(w) [] 

Finally, the tbllowing theorem states that  the same portfolio x* leading 
to the measures 9)I t and m t also leads to the measure 1 t. 
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T h e o r e m  5.2. Let x* E (L2(Et)) ~ be such that 

T~ 

i 1 

Then, x* yields a strong maximum in problem (I) and the equality 

l (w) 2 - m (w) 

holds. 

Proof. We may assume without loss of generality that  x*(w) 0 whenever 
~ i  l(Xi)-(w)P~(w) 0. Manipulating 9 it is easy to prove that  

for every x E (L2(Et)) ** and whenever ~irzl  X~(CO)p~(CO) ¢ O. hi particular, 
9(x*, w) f(x*, w) / (2 - f(x*, w)) holds for almost every w E f~. Let x 
be feasible in problem (I). If ~i**lX~](w)p~(w) 0 and x(w) /~ O, then 

If ~i~1 x~] (w)p~(w) /~ 0 then, fl'om Theorem 5.1 the inequality f(x, w) < 
f(x*, w) holds. Besides, ~ is a increasing continuous function in ( - o c ,  1] 
(f(x,w), f(x*,w) <_ 1). Thus, 9(x,w) <_ 9(x*,w) Finally, the equality 
lt(w) mr(w) / (2 -mr  (w)) comes from the equality 9(x*, w) f(x*, w) / ( 2 -  
f(x*,w)). [] 

6 R e m a r k s  a n d  c o n c l u s i o n s  

R e l a x i n g  s o m e  a s s u m p t i o n s  

It is of interest to ask how the results given here must be modified if the 
model does not verify some of the assumptions. 

As we noticed in Section 2, the assumptions imposed to p~ (t E N) 
can be replaced by the assumption that  one of the securities always has 
strictly positive price. We can then measure in the security market model 
with prices so normalized. Passing from the original to the primed model 
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involves only a change in units  on the prices. Since these changes do not 
affect Problems (I) and X,  the same measures are obtained for both  models. 

We also noticed in Section 3 (see Remark 3.3 after Theorem 3.1) tha t  we 
can relax the constraints imposed to p~+l. If we only assume that  p~+l E 
L2(Et+l)  for i 2 , . . . n ,  all the results s ta ted here extend to this new 
setting except for those derived from the established duali ty (Section 4). 

Suppose now that  in A1 we relax the constraint  p~(w) > ki > 0 assuming 
only that  p~(w) > 0. 

For every k E N d e n o t e  by 

A k {co E [~ I t 1 > g, i 1 , . . .  

Obviously, limk P(A k) 1. 

Set (P~)k Pit'XAk and consider the programs (II~), (III~) and ( IV I~) 
where each p~ is replaced by (P~)k. Choose corresponding zero valued in 
~ - A  k functions h~*k, l~*k, x~* k and rn~. It follows from Theorem 3.3 tha t  

t ~Ttj.XAk ~t~ fbr every j _> k. Hence (rrt~)keN is an a.e. pointwise conver- 
gent sequence such that  0 _< rn~ _< 1. Then,  

m t l imm~ E L2(Et). 
kCN 

Note tha t  fa  rnt d P  is the op t imum value in Program (IV), but  this opti- 
m u m  is not necessarily a t ta ined in H t. Nevertheless, for every c > 0 there 
exist d E Et such tha t  P(A) >_ 1 - c ,  h~ E H such tha t  Program (IV) 
restricted to A achieves its op t imum fA rn dP in h~ and z~ E Fh~ such tha t  
Program ( I I~)  achieves its op t imum in z~. 

State  prices in a L ~ - s p a c e s  framework 

The dual approach taken in Section 4 is subject  to the absence of duality 
gap tbr (IIh) and (IIIh). Whenever  this absence of duality gap cannot be 
stated, Problem (IIh) can be reformulated to avoid this problem. 

As already said, see Remark 3.2 after Theorem 3.1, an optimal  solution 
(z*, h*) leading to fia t verifies that  (z*, h*) E (L~(Et ) )  2~. Then,  program 
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(IIh) can be reformulated as 

~t 

max - iPi dP 
i 1 

~t 
~ ~, t+l  s.t. ~ ~ipi _> 0 

i 1 

xi _> - h i  i 1 , . . . , n  

xi E L°C(Et) i 1 , . . . , n  

for every h E (L~(~t) )  n. 
problem 

rain 
ft 

i 1 
t + l  s. t .P(p i ) + P i  

In this topological framework, we get its dual 

o o  ! 
F E ( L  ( ~ t + l ) ) + ,  F i  E ( L ° C ( ~ t ) ) t +  for every i 1 , . . .  ,n  

where (L°C(Et+l))~ and (L°C(Et))~ denote the positive cones of the as- 
sociated dual Banach spaces. The  dual constraints must  be unders tood 
as equalities in (L°C(Et))t+. More precisely, we identify each p[ and each 

t + l  r ( p  i ) with the elements of (L~(Et))t+ such that  fn zPi dP and 
F(p[+l)(z) F(zp[ +1) for every z E L°C(Et). 

The interest of a such topological framework in which to pose our prob- 
lems is tha t  the conditions of Lagrange duali ty theorem (see Luenberger 
(1969)) hold for (IIt~) and ( I I I~ ) .  Consequently, there is no duali ty gap 
for (ZIt~) and (ZZI~). Moreover, (ZZI~) is solvable. 

The  absence of duali ty gap allows us to characterize the absence of 
arbitrage by the existence of state prices tha t  belong to (L°C(~t+l))t. 

T h e o r e m  6.1. No arbitrage opportunity exists at date t if and only if there 
t+l t for every i 1 , . . . ,  exists F E (L°C(~t+l))~ such that F(p i ) Pi n .  

Pro@ From Lemma 3.2 and Proposi t ion 3.1 it follows tha t  no arbitrage 
oppor tuni ty  exists if and only if ~(h)  0 for every h E (L~(E t ) )  ~. From 
the absence of duali ty gap between (IIt~) and (IIIt~) we conclude tha t  

F ~ for every h E (L~(Et ) )  ~ there exists ( i)i 1 fhasible in ( I I I ~ )  such tha t  
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E i n l  Pi(hi) O. Take an arbitrary interior point h of (L~(Et ) )  n. Then, 
r ~Z • • • the associated ( i)i 1 verifies that  Fi(hi) 0 for every i 1, n. Conse- 

quently, Fi 0 since hi is an interior point of L ~ ( E t )  and Fi E (L°°(Et))~. 
Thus, Fi 0 i 1~... n is t>asible in ( I I I~ °) and Theorem 6.1 is proved. [] 

From the absence of duality gap and solvability for both programs when 
working in L°°-spaces, not only the absence of arbitrage portfolios can be 
characterized by state prices or dual variables but also the tunction ~ and 
the measure 9/t t. 

Market s  w i th  fr ict ions 

There is an important  body of literature on asset pricing under different 
points of view which takes into account transaction costs, among others, 
Prisman (1986), Davis et al. (1993), Jouini and Kallal (1995), Toft (1996), 
Chateauneuf  et al. (1996), Pham and Touzi (1999) or De Wagenaere and 
Wakker (2001). Our aim is to incorporate some of their ideas on the trans- 
action costs (bid-ask spread, taxes, . . .  ), to derive how do these transaction 
costs affect to our measures. We will assume three alternative hypotheses 
on the transaction costs: linear taxes, bid-ask spreads, and a combination 
of both. 

First we assume that  we are in presence of linear taxes depending on the 
total price of all interchanged assets. More precisely, if an investor trades 
the portfolio x at date t, we assume that  the transaction costs are given 
by C(x,  co) Co E i n l  [X~(CO)[p~(CO), where the constant Co > 0 may depend 
on the specific market and the arbitrageur. It is then clear that  there is 
an arbitrage opportunity at date t after discounting the transaction costs if 
and only if 

P({co I z (co) > co}) > 0. 

We now follow the approach of aouini and Kallal (1995) incorporating bid- 
ask spreads. As them, we assume that  there are two different IR~;-valued 
adapted stochastic processes v t and c t such that  the inequalities 0 _< v~(co) _< 
c~(co) hold a.e. for every t. For a given portfolio x at date t, the price of x is 
determined by llt(x~ co) ~ i  1 t t qit (CO) C it ~ xi(w)q i(co), where (co) whenever 
xi(co) _> 0 and qt(co) vi(co)t otherwise. So, the function II is sublinear and 
convex. Definition 2.1 needs some minor modifications. 
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D e f i n i t i o n  6.1. The portfolio x E (L2(Et)) n is said to be an arbitrage 
opportunity (second type) at date t if there exists A E Et with P ( A )  > 0 
such that  II t (x ,  co) < 0 a.e. in d and [ I t+ l ( -x~  co) < 0 a.e. in d .  

It is worthwhile to mention that  comments before Definition 2.2 also 
apply here, and consequently, the definition above may be understood as a 
definition of dynamic arbitrage, not necessarily equivalent to the concept of 
fl'ee lunch. 

The main results of Sections 2 and 3 can be easily generalized and thus 
we only summarize the main modifications. The fhnctions g and f become 
respectively 

n ~ ( x ,  co) n~(x, co) 
9b~(x, co) n~(x+,co)-n~(-x- ,co)  a .d£~(x ,  co) n~(-x-,co) 

with the convention that  f 0 or g 0 if denominators vanish. The 
measure 1~ is now defined as the strong solution of the readapted problem 

rnaxgba(X, co)s.t[It+l(--x, co) < 0 

while rn~  is the strong solution of 

max fba(X, CO)s.t[I t+l (--X, CO) < 0. 

The linear problems under short-selling restrictions leading to the measures 
m t and g)I t become respectively the following concave problems 

ma× -1I t (x, co) 

s.t.[I t+l (--X, CO) < 0 

Zh < 1 
i 1 

xi > - h i  i 1 , . . . , n  

x ~ L ~ ( r ~ ) ,  h ~ L ~ ( r  ~) i 1, ,~ 
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and 

max - /IIt (x, w) dP 

s.t.[I t + l ( - x ,  Cg) < 0 
~z 

i 1 
xi _> - h i  i 1 , . . . , n  

x~ ~ L2(~%, h~ ~ L~(~ ') i 1 , . . . ,~  

and yield the measures r r~  and 9Jt~. As in the frictionless case, it can be 
proved that, if the portfolio x* solves the problem leading to 9Jt[~, then x* 
also solves all the problems leading to ra[~ and l~. Furthermore, a duality 
theory can be also stated under bid-ask spread assumptions. Since latter 
problems are concave, applying the theory of duality in convex program- 
ming, see for instance Khanh (1995), Balb~s and Guerra (1996) or Nuk et 
al. (1996), we obtain similar results to Theorem 4.2 for the corresponding 
problems 

s.t.v~ < E(fc~ +1 I zt)  + li i 1 , . . . , ,  
t E(fv~ +1 I ~t) + li _< C i i 1 , . . . , n  

~v~>li i 1 , . . . ,n  
~L~(r'),  l ~ L ~ ( r ' )  f ~L~(r  '÷1) i 1 , . . . ,~  

and 

rain ~ c~(co) dP 

s.t.vt -~ E(fc~ +1 I ~t) + li i 1, . . . ,7t  

E(fv~ +1 I r t )  @li ~__ 4 i 1 , . . . ,7 t  

av~>li  i 1 , . . . ,n  
(~ E L2+(rt), li E L2+(r t) f E L2~(r t+l) i 1, . . . ,7t  

Dual problems provide an interpretation in terms of state prices as in the 
frictionless case and also the main procedure to compute the measures in 
practice since both problems are lineal'. 
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Finally we can introduce a third assumption on the fi'ictions combining 
linear taxes on the total value of trade (e.g., t>es paid to brokers) and bid- 
ask spreads. It is easily deduced a measure 1}r of the level of arbitrage 
opportunities as 

1}r(w) ,~a , :{o,  l ~ ( ~ )  - co}. 

Measuring the arbitrage of the first type 

The measures introduced above are useful to analyze arbitrage portfblios 
of the second type but there might be situations where the measures vanish 
in presence of arbitrage of the first type. To solve this difficulty one only 
has to consider an optimization problem such that the objective function 
incorporates the arbitrage earnings attainable at date t + 1. There are 
several possibilities and, so fbr instance, we can maximize the expected 
value and the conditional expectation of 

~t  

Z X ~ , t+ l  
i P i  

i 1 

among the arbitrage portfolios providing at t the random relative profit 
mr(w). Concretely, we consider the vector optimization problem 

T~ 

I l l a x  ~ E(xif)~+l [rt ) 
i 1 

T~ 

s.t. ~ x~p~ - m  ~ ~.~. 
i 1 

T~ 

~, ~ , t+ l  Z ~ i p i  _> 0 a.e. 
i 1 

T~ 

i 1 

xi _> - h i  

~i ~ L~(~),  hi ~ L ~ ( ~ )  

a . e ,  

a.e., i 1 , 2 , . . . , n  

i 1 , 2 , . . . , n  
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and the scalar problem 

Tt 

[flaX 

i 1 

s.t. 

~i ~'~t+l dP ~zPi 

f t  

i 1 
f t  

~ X  ~,t+l ii, i _> 0 a.e. 
i 1 

f t  

1 

i 1 

xi  >_ - h i  a . e ,  i 1 , 2 , . . . , n  

It may be easily proved that the solution for both  problems is at tained at 
the same portfolio, and it is also important  to point out that  this solution is 
a strong one for the vector problem and also solves problem ( I V ) .  Denoting 
by k t and K t the optimal values respectively , we consider the stochastic 
and numerical measures m t + k t and 9Y¢ t + K t. It trivially follows that both 
measures vanish if and only if there are no arbitrage opportunit ies (of any 
kind) between t and t ÷ 1. 

7 C o n c l u s i o n s  

The paper has developed three new measures, 9Tt, m and l, in order to 
quantify in monetary terms the lack of the absence arbitrage in a financial 
market. They vanish if" and only if" the arbitrage absence holds and they 
increase from 0 to 1 as the relative arbitrage profit grows. The theory 
is built in a very general setting and applies for static and discrete time 
dynamic asset pricing models. Thus, all the measures become stochastic. 

Many empirical papers analyze the existence of arbitrage by testing 
concrete well known strategies (violations of the put-call parity for Euro- 
pean options, the relationship between spot and fhtures prices etc.). The 
measures introduced here provide a more genera] methodology. In fact, by 
computing the measures one is incorporating all the available assets and all 
the possible arbitrage portfolios are being tested. 
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Many sort of Dictions may be discounted and, thus, the measures seem 
to be very adequate to analyze the imperfect market case. In particular 
the theory also applies when we assume that  market Dictions depend on 
the total volume of trade, or when we consider the case proposed by Jouini 
and Kallal (1995) which, as pointed out by these authors, contains many 
different possibilities on market Dictions. Furthermore, our measures also 
permit us to incorporate combinations of both type of Dictions. 

The measures are introduced by means of several dual pairs of vector 
optimization problems. Thus, Dora a practical viewpoint, concrete (an opti- 
mal) arbitrage portfolios are obtained (if they exist) when testing the mea- 
sures. This may be very use~hl to traders and researchers when empirically 
testing real markets. 

From a theoretical viewpoint, primal problems allow us to interpret the 
measures in terms of arbitrage gains and provide necessary and sufficient 
conditions to guarantee the arbitrage absence in the imper~>ct case. If we 
assume the absence of duality gaps then dual problems also characterize the 
arbitrage absence in the imperfect case, permit us to interpret the measures 
in terms of "Dictions effect" or "committed errors" in the valuation process 
and provide pricing rules and risk-neutral probabilities (or a proxy for them) 
even for no-arbitrage Dee imper~>ct markets. 

Some new properties appeared in the paper may be also interesting in 
Vector Optimization Theory since a procedure to solve a special kind of 
non-dii~>rentiable problem is provided, and results on its sensitivity and 
the absence of duality gap are obtained too. 

References 

Anderson E.J. and Nash P. (1987). Linear Programming in Infinite-Dimensional 
Spaces. John Wiley. 

Balb~s A. and Guerra P.J. (1996). Sensitivity Analysis for Convex Multiobjec- 
tire Programming in Abstract Spaces. Journal of Mathematical Analysis and 
Applications 202, 645-658. 

Balb;ts A., Guerra P.J. and Mufioz-Bouzo M.J. (2002a). The Balance Space Ap- 
proach in Optimization with Riesz Spaces Valued Objectives. An Application 
to Financial Markets. Computers and Mathematics with Applications 44, 887- 
897. 



Stochastic Measures of ArbitTuge 323 

Balb~s A., Longarela I.R. and Lucia J. (1999). How Financial Theory Applies to 
Catastrophe-Linked Derivatives: An Empirical Test of Several Pricing Models. 
Journal of Risk and Insu~unce 66, 551-582. 

Balbgts A., Longarela I.R. and Pardo A. (2000). Integration and Arbitrage in 
the Spanish Financial Markets: An Empirical Approach. Journal of Fatures 
Markets 20, 321-344. 

Balbgts A., Mires M. and Mufioz-Bouzo M.J. (2002b). Projective System Approach 
to the Martingale Characterization of the Absence of Arbitrage. Journal of 
Mathematical Economics 37, 311-323. 

Balb£s A. and Mufioz-Bouzo M.J. (1998). Measuring the Degree of Fulfillment of 
the Law of One Price. Applications to Financial Markets Integration. Inves- 
tigaciones Econdmicas 22, 19-44. 

Chateauneuf A., Kast R. and Lapied A. (1996). Choquet Pricing for Financial 
Markets with Frictions. Mathematical Finance 6, 323-330. 

Chen Z. and Knez P.J. (1995). Measurement of Market Integration and Arbitrage. 
The Review of Financial Studies 8, 287-325. 

Clark S.A. (1993). The Valuation Problem in Arbitrage Price Theory. Journal of 
Mathematical Economics 22, 463-478. 

Davis M.H.A., Panas V.G. and Zariphopoulou T. (1993). European Option Pricing 
with Transaction Costs. SIAM Journal of Control and Optimization 31,470- 
493. 

De Wagenaere A. and Wakker P.P. (2001). Nonmonotonic Choquet Integrals. 
Journal of Mathematical Economics 36, 45-60. 

Harrison J. and Kreps D. (1979). Martingales and Arbitrage in Multiperiod Secu- 
rities Markets. Journal of Economic Theory 20,381-408. 

Ingersoll J.E., Jr (1987). Theory of Financial Decision Making. Rowman and 
Littlefield Publishers, Inc. 

Jaschke S.R. (1998). Arbitrage Bounds for the Term Structure of Interest Rates. 
Finance and Stochastics 2, 29-40. 

Jouini E. and Kallal H. (1995). Martingales and Arbitrage in Securities Markets 
with Transaction Costs. Journal of Economic Theory 66, 178-197. 

Kamara A. and Miller T.W., Jr (1995). Daily and Intradaily Tests of European 
Put-Call Parity. Journal of Financial and Quantitative Analysis 30, 519-541. 

Kempf A. and Korn O. (1998). Trading System and Market Integration. Journal 
of Financial Intermediation 7, 220-239. 

Khanh P.O. (1995). Sufficient Optimality Conditions and Duality in Vector Op- 



324 A. Balbds and M.J. Mudoz-Bouzo 

timization With Invex-Convexlike Functions. Journal of Optimization Theory 
and Applications 87, 359-368. 

Kuk H., Tanino J. and Tanaka M. (1996). Sensitivity Analysis in Vector Opti- 
mization. Journal of Optimization Theory and Applications 89, 713-730. 

Lee J.H. and Nayar N. (1993). A Transactions Data Analysis of Arbitrage between 
Index Options and Index Futures. The Journal of Futures Markets 13, 889- 
902. 

Luenberger D.G. (1969). Optimization by Vector Spaces Methods. John Wiley. 

Moulin H. (1979). Fondation de la Thdorie de Jeux. Hermann. 

Pardo A., BalbAs A. and Meneu V. (2002). The Effectiveness of Several Market In- 
tegration Measures When Facing a Market Turmoil. Derivatives Use, Trading 
and Regulation (to appear). 

Pham H. and Touzi N. (1999). The Fundamental Theorem of Asset Pricing with 
Cone Constraints. Journal of Mathematical Economics 31,265-279. 

Prisman E.Z. (1986). Valuation of Risky Assets in Arbitrage Free Economies with 
Frictions. The Journal of Finance, 41,545-56. 

Protopapadakis A. and Stoll H.R. (1983). Spot and Future Prices and the Law of 
One Price. The Journal of Finance, 38, 1431-1455. 

Sawaragi Y., Nakayama H. and Tanino T. (1985). Theory of Multiobjective Opti- 
mization. Academic Press. 

Toft K.B. (1996). On the Mean-Variance Trade-off in Option Replication with 
Transaction Costs. Journal of Financial and Quantitative Analysis 31, 233- 
263. 

Zowe S. (1975). A Duality Theorem for a Convex Programming Problem in Order 
Complete Vector Lattices. Journal of Mathematical Analysis and Applications 
50, 283-287. 


