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ABSTRACT
We characterize the set of functions which can be approximated by continuous functions with the norm

‖f‖L∞(w) for every weight w. This fact allows to determine the closure of the space of polynomials in
L∞(w) for every weight w with compact support. We characterize as well the set of functions which can be
approximated by smooth functions with the norm

‖f‖W 1,∞(w0,w1) := ‖f‖L∞(w0) + ‖f ′‖L∞(w1) ,

for a wide range of (even non-bounded) weights wj ’s. We allow a great deal of independence among the
weights wj ’s.
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1. INTRODUCTION

If I is any compact interval, Weierstrass’ Theorem says that C(I) is the largest set of functions which
can be approximated by polynomials in the norm L∞(I), if we identify, as usual, functions which are equal
almost everywhere. There are many generalizations of this theorem (see e.g. the monographs [L], [P], and
the references therein).

In [R1] and [PQRT1] we study the same problem with the norm L∞(I, w) defined by

(1.1) ‖f‖L∞(I, w) := ess sup
x∈I

|f(x)|w(x) ,

where w is a weight, i.e. a non-negative measurable function and we use the convention 0 · ∞ = 0. Notice
that (1.1) is not the usual definition of the L∞ norm in the context of measure theory, although it is the
correct one when working with weights (see e.g. [BO] and [DMS]). In [PQRT1] we improve the theorems
in [R1], obtaining sharp results for a large class of weights. Here we also study this problem both with the
norm (1.1) for every weight w, and with the Sobolev norm W 1,∞(I, w0, w1) defined by

‖f‖W 1,∞(I,w0,w1) :=
∥∥f

∥∥
L∞(I,w0)

+
∥∥f ′

∥∥
L∞(I,w1)

,

since in many situations it is natural to consider the simultaneous approximation of a function and its first
derivative.

Considering weighted norms L∞(w) has been proved to be interesting mainly because of two reasons:
on the one hand, it allows to enlarge the set of approximable functions (since the functions in L∞(w) can
have singularities where the weight tends to zero); and, on the other one, it is possible to find functions
which approximate f whose qualitative behaviour is similar to the one of f at those points where the weight
tends to infinity.

Weighted Sobolev spaces are an interesting topic in many fields of Mathematics, as Approximation The-
ory, Partial Differential Equations (with or without Numerical Methods), and Quasiconformal and Quasireg-
ular maps (see e.g. [HKM], [IKNS1], [IKNS2], [K], [Ku], [KO] and [KS]). In particular, in [IKNS1] and
[IKNS2], the authors showed that the expansions with Sobolev orthogonal polynomials can avoid the Gibbs
phenomenon which appears with classical orthogonal series in L2. In [ELW1], [EL] and [ELW2] the au-
thors study some examples of Sobolev spaces for p = 2 with respect to general measures instead of weights,
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in relation with ordinary differential equations and Sobolev orthogonal polynomials. The papers [RARP1],
[RARP2], [R1], [R2] and [R3] are the beginning of a theory of Sobolev spaces with respect to general measures
for 1 ≤ p ≤ ∞. This theory plays an important role in the location of the zeroes of the Sobolev orthogonal
polynomials (see [LP], [LPP], [RARP2] and [R2]). The location of these zeroes allows to prove results on
the asymptotic behaviour of Sobolev orthogonal polynomials (see [LP]). The papers [APRR], [BFM], [CM],
[FMP], [LPP] and [RY] deal with Sobolev spaces on curves and more general subsets of the complex plane.

In this paper we characterize the set of functions which can be approximated by continuous functions
in L∞(I, w), for any weight w (see Theorem 2.1); as a consequence of this result, we obtain the set of
functions which can be approximated by polynomials in L∞(I, w), for any weight w with compact support.
Theorem 2.1 is an improvement over the previous result obtained in [PQRT1, Theorem 2.1]; while the
conclusion of the theorems are the same, we have completely removed the technical hypothesis on the weight
required in [PQRT1]. We also characterize the set of functions which can be approximated by C1 functions
in W 1,∞(I, w0, w1), for a wide range of (possibly unbounded) weights w0, w1, which have a great deal of
independence among them. It is a remarkable fact that this last characterization depends on the value
L(a) := ess lim supx→a |x − a|w0(x) at every singular point a of w1 (see definitions 2.4 and 2.6 below).
Depending on the value L(a) = 0, 0 < L(a) < ∞ or L(a) = ∞, theorems 4.2, 4.3 and 4.4 describe,
respectively, the set of functions which can be approximated by C1 functions in W 1,∞(I, w0, w1), when there
is just one singular point of w1. Furthermore, some of the conditions appearing in the characterizations
are not obvious at all. Besides, we would like to remark that our methods of proof are constructive. The
main result in Sobolev approximation is Theorem 4.5, which gives the characterization with infinitely many
singular points of w1 (even for non-bounded intervals), combining the results of theorems 4.2, 4.3 and 4.4.

We use these results in order to study the approximation by C∞ functions as well (see Theorem 5.2).
Some other results about weighted approximation with k derivatives can be found in [PQRT2] and

[PQRT3].

The outline of the paper is as follows: In Section 2 we find the closure of continuous functions in
L∞(I, w). Section 3 is dedicated to definitions and preliminary results. Section 4 presents the theorems on
approximation by C1 functions in W 1,∞(I, w0, w1). We prove the results on approximation by C∞ functions
in Section 5.

Acknowledgements. We would like to thank the referee for his/her careful reading of the manuscript and
for many helpful suggestions.

2. APPROXIMATION IN L∞(I, w)

Let us start with some definitions.

Definition 2.1. A weight w is a measurable function w : R −→ [0,∞]. If w is only defined in A ⊂ R, we
set w := 0 in R \A.

Definition 2.2. Given a measurable set A ⊂ R and a weight w, we define the space L∞(A,w) as the space
of equivalence classes of measurable functions f : A −→ R with respect to the norm

‖f‖L∞(A,w) := ess sup
x∈A

|f(x)|w(x) .

We always consider the space L1(A), with respect to the restriction of the Lebesgue measure on A.
The theorems in this paper can be applied to functions f with complex values, splitting f into its real

and imaginary parts. From now on, if we do not specify the set A, we are assuming that A = R; analogously,
if we do not specify the weight w, we are assuming that w ≡ 1.

Definition 2.3. Given a measurable set A, we define the essential closure of A, as the set

ess cl A :=
{
x ∈ R : |A ∩ (x− δ, x + δ)| > 0, ∀ δ > 0

}
,

where |E| denotes the Lebesgue measure of E.
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Definition 2.4. If A is a measurable set, f is a function defined on A with real values and a ∈ ess cl A,
we say that ess limx∈A, x→a f(x) = l ∈ R if for every ε > 0 there exists δ > 0 such that |f(x) − l| < ε
for almost every x ∈ A ∩ (a − δ, a + δ). In a similar way we can define ess limx∈A, x→a f(x) = ∞ and
ess limx∈A, x→a f(x) = −∞. We define the essential superior limit and the essential inferior limit on A as
follows:

ess lim sup
x∈A, x→a

f(x) := inf
δ>0

ess sup
x∈A∩(a−δ,a+δ)

f(x) ,

ess lim inf
x∈A, x→a

f(x) := sup
δ>0

ess inf
x∈A∩(a−δ,a+δ)

f(x) .

Remarks.
1. The essential superior (or inferior) limit of a function f does not change if we modify f on a set of

zero Lebesgue measure.
2. When we say that there exists a essential limit (or essential superior limit or essential inferior limit),

we are assuming that it is finite.
3. It is well known that

ess lim sup
x∈A, x→a

f(x) ≥ ess lim inf
x∈A, x→a

f(x) ,

ess lim
x∈A, x→a

f(x) = l if and only if ess lim sup
x∈A, x→a

f(x) = ess lim inf
x∈A, x→a

f(x) = l .

4. We impose the condition a ∈ ess cl A in order to have the unicity of the essential limit. If a /∈ ess cl A,
then every real number is an essential limit for any function f .

Definition 2.5. Given a weight w, the support of w, denoted by suppw, is the complement of the largest
open set G ⊂ R with w = 0 a.e. on G.

Definition 2.6. Given a weight w we say that a ∈ supp w is a singularity of w (or singular for w) if
ess lim inf

x∈supp w, x→a
w(x) = 0 .

We say that a singularity a of w is of type 1 if ess limx→a w(x) = 0.
We say that a singularity a of w is of type 2 if 0 < ess lim supx→a w(x) < ∞.
We denote by S(w) and Si(w) (i = 1, 2), respectively, the set of singularities of w and the set of

singularities of w of type i.
We say that a ∈ S+(w) (respectively a ∈ S−(w)) if ess lim infx∈supp w, x→a+ w(x) = 0 (respectively

ess lim infx∈supp w, x→a− w(x) = 0).
We say that a ∈ S+

i (w) (respectively a ∈ S−i (w)) if a verifies the property in the definition of Si(w)
when we take the limit as x → a+ (respectively x → a−).

Definition 2.7. Given a weight w, we define the right regular and left regular points of w, respectively, as
R+(w) :=

{
a ∈ supp w : ess lim inf

x∈supp w, x→a+
w(x) > 0

}
, R−(w) :=

{
a ∈ supp w : ess lim inf

x∈supp w, x→a−
w(x) > 0

}
.

The following result characterizes the set of functions which can be approximated by continuous functions
in L∞(w), for any weight w.

Theorem 2.1. Let w be any weight and
H0 :=

{
f ∈ L∞(w) : f is continuous to the right at every point of R+(w),

f is continuous to the left at every point of R−(w),
for each a ∈ S+(w), ess lim

x→a+
|f(x)− f(a)|w(x) = 0 ,

for each a ∈ S−(w), ess lim
x→a−

|f(x)− f(a)|w(x) = 0
}

.

Then:
(a) The closure of C(R) ∩ L∞(w) in L∞(w) is H0.
(b) If w ∈ L∞loc(R), then the closure of C∞(R) ∩ L∞(w) in L∞(w) is also H0.
(c) If supp w is compact and w ∈ L∞(R), then the closure of the space of polynomials is H0 as well.
(d) If f ∈ H0 ∩ L1(suppw), S+

1 (w) ∪ S+
2 (w) ∪ S−1 (w) ∪ S−2 (w) is countable and |S(w)| = 0, then f can

be approximated by functions in C(R) with the norm ‖ · ‖L∞(w) + ‖ · ‖L1(supp w).
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Remark. Recall that we identify functions which are equal almost everywhere.

As a consequence of this result and Theorem A below, we characterize the set of functions which can
be approximated by polynomials in L∞(w), for any weight w with compact support.
Definition 2.8. Given a weight w with compact support, a polynomial p ∈ L∞(w) is said to be the minimal
polynomial for w if it is 0 or it is monic, and every polynomial in L∞(w) is a multiple of p. We denote by
pw the minimal polynomial for w.

It is clear that there always exists the minimal polynomial for w (although it can be 0): it is sufficient
to consider the monic polynomial in L∞(w) of minimal degree.

Theorem A. [PQRT1, Theorem 2.2] Let us consider a weight w with compact support. If pw ≡ 0, then the
closure of the space of polynomials in L∞(w) is {0}. If pw is not identically 0, the closure of the space of
polynomials in L∞(w) is the set of functions f such that f/pw is in the closure of the space of polynomials
in L∞(|pw|w).

Remark. The weight |pw|w is bounded (since pw ∈ L∞(w)) and has compact support. Then we know
which is the closure of the space of polynomials in L∞(|pw|w) by Theorem 2.1.

In the proof of Theorem 2.1 we need the following lemma.

Lemma 2.1. Let us consider a weight w with a ∈ S+
1 (w) ∪ S+

2 (w). Let us fix η > 0 and a function f with
f ∈ L∞(w) such that ess limx→a+ |f(x)− f(a)|w(x) = 0. Then, there exists b3 ∈ (a, a + 1) such that for any
a < b1 < b2 < b3 there exist b0 ∈ (b1, b2) and a function g ∈ L∞(w) ∩ C([a, b0]), with g = f in R \ (a, b0),
‖f − g‖L∞(w) < η (and ‖f − g‖L1(supp w) < η if f ∈ L1(suppw)).

Remark. A similar result is true if a ∈ S−1 (w) ∪ S−2 (w).

Proof. Let us fix ε > 0. Since a ∈ S+
1 (w)∪S+

2 (w), ess lim supx→a+ w(x) = m ∈ [0,∞). It follows that there
exists δ1 > 0 such that w(x) ≤ m + 1, a.e. x ∈ (a, a + δ1).

If f ∈ L1(suppw), there exists δ2 > 0, such that ‖f − f(a)‖L1([a,a+δ2]∩supp w) < ε . If f /∈ L1(suppw),
we take δ2 := 1.

By hypothesis, there exists 0 < δ < min{δ1, δ2, 1} such that |f(x)− f(a)|w(x) < ε, a.e. x ∈ (a, a + δ).
Let us define b3 := a + δ and let us consider a < b1 < b2 < b3. Let us consider c := infx∈(b1,b2) |f(x)−

f(a)|. Then, there exists b0 ∈ (b1, b2) such that |f(b0)−f(a)| < ε+c ≤ ε+ |f(x)−f(a)| for every x ∈ (b1, b2).
Let us choose s > 0 small enough such that (b0 − s, b0) ⊆ (b1, b2). Then, we define the function g as

g(x) :=





f(a) , if x ∈ (a, b0 − s] ,

f(b0) + (f(b0)− f(a))(x− b0)/s , if x ∈ (b0 − s, b0) ,

f(x) , if x /∈ (a, b0) .

Let us remark that g is continuous in [a, b0] and g = f in R \ (a, b0).
It is obvious that |f(a)− g(x)| ≤ |f(a)− g(b0)| = |f(a)− f(b0)| for every x ∈ [a, b0].

‖f − g‖L∞(w) = ‖f − g‖L∞([a,b0],w) ≤ ‖f − f(a)‖L∞([a,b0],w) + ‖f(a)− g‖L∞([a,b0],w)

≤‖f − f(a)‖L∞([a,b0],w) + ‖f(a)− f(b0)‖L∞([a,b0],w)

≤ 2‖f − f(a)‖L∞([a,b0],w) + ‖ε‖L∞([a,b0],w) ≤ 2ε + (m + 1)ε = (3 + m)ε .

If f ∈ L1(suppw), we also have

‖f − g‖L1(supp w) =‖f − f(a)‖L1([a,b0−s]∩supp w) + ‖f − f(b0)− (f(b0)− f(a))(x− b0)/s‖L1([b0−s,b0]∩supp w)

≤‖f − f(a)‖L1([a,b0−s]∩supp w) + ‖f − f(a)‖L1([b0−s,b0]∩supp w)

+ 2‖f(a)− f(b0)‖L1([b0−s,b0]∩supp w)

≤‖f − f(a)‖L1([a,b0]∩supp w) + 2‖f − f(a)‖L1([b0−s,b0]∩supp w) + 2‖ε‖L1([b0−s,b0]∩supp w)

≤ 3‖f − f(a)‖L1([a,b0]∩supp w) + 2εs < 3ε + 2εs < 5ε .

This finishes the proof of the lemma. ]
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Proof of Theorem 2.1. This result is an improvement over a previous result in [PQRT1, Theorem 2.1];
this result is better because we have removed the technical hypothesis on w which was necessary in [PQRT1],
and that essentially meant that the regular points were dense in R.

Items (b), (c) and (d) are direct consequences of (a) (see the proof in [PQRT1, Proposition 2.1 and
Theorem 2.1]). The proof of the inclusion of the closure of C(R) ∩ L∞(w) in H0 is not difficult (see the
proof in [PQRT1, Proposition 2.1 and Theorem 2.1]). So far, the proof coincides with the one in [PQRT1],
since no additional hypothesis on the weight were needed there in this part of the proof.

In order to prove the other inclusion, let us fix f ∈ H0. The proof has several ingredients: Lemma 2.1
allows to modify f in a neighborhood of each singular point in S+

1 (w) ∪ S+
2 (w) ∪ S−1 (w) ∪ S−2 (w); then we

need to paste these modifications in an appropriate way.
Fix η > 0. Let us assume that a ∈ (S−1 (w)∪S−2 (w))∩(S+

1 (w)∪S+
2 (w)). Then Lemma 2.1 gives intervals

[b−0 , a], [a, b+
0 ] and functions g− ∈ L∞(w) ∩ C([b−0 , a]), g+ ∈ L∞(w) ∩ C([a, b+

0 ]), with g− = f in R \ (b−0 , a),
‖f − g−‖L∞(w) < η, g+ = f in R \ (a, b+

0 ), ‖f − g+‖L∞(w) < η. Without loss of generality we can assume
that r− := a− b−0 ≤ b+

0 − a. If b+
0 − a ≤ 21r−/20, we define r+ := b+

0 − a and g0 := g+. If b+
0 − a > 21r−/20,

Lemma 2.1 allows to find r+ ∈ [r−, 21r−/20] and a function g0 ∈ L∞(w) ∩ C([a, a + r+]), with g0 = f in
R \ (a, a + r+), ‖f − g0‖L∞(w) < η. Hence, the function g defined by

g(x) :=





g−(x) , if x ∈ [a− r−, a] ,

g0(x) , if x ∈ [a, a + r+] ,

f(x) , in other case ,

verifies g ∈ L∞(w) ∩ C([a− r−, a + r+]), g = f in R \ (a− r−, a + r+) and ‖f − g‖L∞(w) < η.
If a ∈ (S−1 (w) ∪ S−2 (w)) ∩ R+(w) (or if a ∈ (S+

1 (w) ∪ S+
2 (w)) ∩ R−(w)), we can also obtain such an

interval and such an approximating function. Using this result, we can follow the arguments of the proofs
of [PQRT1, Proposition 2.1 and Theorem 2.1] in order to obtain a way to “paste” the approximations to f
in each singular point (in these arguments it is crucial to have 20/21 ≤ r+/r− ≤ 21/20). This finishes the
proof of the theorem. ]

We have finished the proof of Theorem 2.1 following the same argument as in [PQRT1] thanks to Lemma
2.1. This is due to the fact that the hypothesis on the density of regular points that was crucial in [PQRT1]
was only necessary to get approximations of f in a neighborhood of points belonging to S+

1 (w)∪S+
2 (w) (see

[PQRT1, Lemma 2.2 and Lemma 2.3]).
Notice that whereas in [PQRT1] the point b0 used as a key tool in the construction of the approximation

has to be regular (and, hence, regular points must be dense), Lemma 2.1 does not require that hypothesis
any more.

3. SOBOLEV SPACES AND PREVIOUS RESULTS

We state here an useful technical result which was proved in [PQRT1].

Lemma A. [PQRT1, Lemma 2.1] Let us consider a weight w and a ∈ supp w. If ess lim supx→a w(x) = l ∈
(0,∞], then for every function f in the closure of C(R) ∩ L∞(w) with the norm L∞(w), we have that

ess lim
x→a, w(x)≥η

f(x) = f(a) , for every 0 < η < l .

Remark. A similar result is true if we change both limits when x → a by x → a+ (or x → a−).

In order to control a function from its derivative, we need the following version (see a proof in [RARP1,
Lemma 3.2]) of Muckenhoupt inequality (see [Mu], [M, p.44]).

Lemma B. Let us consider w0, w1 weights in [α, β] and a ∈ [α, β]. Then there exists a positive constant c
such that ∥∥∥

∫ x

a

g(t) dt
∥∥∥

L∞([α,β],w0)
≤ c ‖g‖L∞([α,β],w1)
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for any measurable function g in [α, β], if and only if

ess sup
α<x<β

w0(x)
∣∣∣
∫ x

a

1/w1

∣∣∣ < ∞ .

We deal now with the definition of Sobolev spaces W 1,∞(w0, w1).
We follow the approach in [KO]. First of all, notice that the distributional derivative of a function f in

an interval I is a function belonging to L1
loc(I). If f ′ ∈ L∞(I, w1), in order to get the inclusion

L∞(I, w1) ⊆ L1
loc(I) ,

a sufficient condition, is that the weight w1 satisfies 1/w1 ∈ L1
loc(I) (see e.g. the proof of Proposition 4.3

below). Consequently, f ∈ ACloc(I), i.e. f is an absolutely continuous function on every compact interval
contained in I, if 1/w1 ∈ L1

loc(I).
Given two weights w0, w1, let us denote by Ω the largest set (which is a union of intervals) such that

1/w1 ∈ L1
loc(Ω). We always require that supp w1 = Ω. We define the Sobolev space W 1,∞(w0, w1), as the

set of all (equivalence classes of) functions f ∈ L∞(w0) ∩ ACloc(Ω) such that their weak derivative f ′ in Ω
belongs to L∞(w1).

With this definition, the weighted Sobolev space W 1,∞(w0, w1) is a Banach space (see [KO, Section 3]).
In general, this is not true without our hypotheses (see some examples in [KO]).

4. APPROXIMATION BY C1 FUNCTIONS IN W 1,∞(I, w0, w1)

The main result of this section is Theorem 4.5, which characterizes the functions which can be approx-
imated by C1 functions in W 1,∞(w0, w1), under very weak hypotheses on w0, w1. We obtain it by means of
some auxiliary lemmas and theorems.

Lemma 4.1. Let us consider λ ∈ R and a function u defined in [a − δ0, a], such that u ∈ C([a − δ0, a))
and u(a) is finite. For each 0 < δ < δ0 there exists v ∈ C([a − δ0, a]) with v(x) = u(x) if x /∈ (a − δ, a),
|v(x)−u(a)| ≤ 2|u(x)−u(a)| for every x ∈ [a−δ0, a), and there exists η > 0 with v(x) = u(a) if x ∈ [a−η, a].
Furthermore, if we define U(x) :=

∫ x

a−δ0
u, V (x) :=

∫ x

a−δ0
v, we also have:

(i) V (a) = U(a−) and |V (x) − U(a−)| ≤ |U(x) − U(a−)| + 2|u(a)||x − a| for every x ∈ [a − δ0, a), if
there exists U(a−) := limx→a− U(x),

(ii) V (a) = λ and |V (x) − λ| ≤ |U(x) − λ| + 2|u(a)||x − a| for every x ∈ [a − δ0, a), if limx→a− U(x)
does not exist.

Remarks.
1. Notice that the value u(a) does not need to have any relation with the values of u in [a− δ0, a).
2. A similar result is true for u ∈ C((a, a + δ0]).

Proof. Our goal is to construct a function V which approximates U , which is equal to U far away from a
and whose graph is a stright line r near a. In order to do this, we will make two changes of u: the first one,
v1, will have a primitive intersecting r, and the second one, v2, will make smooth the connection with r.

It is clear that we can assume that a = 0. We only consider the case u(0) > 0; the case u(0) < 0 is
similar and the case u(0) = 0 is easier.

(i) Let us assume that there exists U(0−) := limx→0− U(x).
(1) Consider first the case U(x) > r(x) := U(0−)+u(0)x, for every point in some interval (−δ′, 0), with

δ′ < δ0. If u(x) = u(0) for every x in a left neighborhood of 0, it is sufficient to take v := u. If this is not so,
it is possible to choose 0 < δ2 < δ1 < min{δ, δ′} with u(x) 6= u(0) for every x ∈ [−δ1,−δ2]. Without loss of
generality we can assume that u(x) < u(0) for every x ∈ [−δ1,−δ2] (since the case u(x) > u(0) is similar).
So there exists a positive constant ν such that u(0) − u(x) ≥ ν for every x ∈ [−δ1,−δ2]. Let us choose a
function φ ∈ C(R) with supp φ = [−δ1,−δ2] and 0 < φ ≤ ν in (−δ1,−δ2). If we define v1 := u − φ, then
v1(x) = u(x)− φ(x) < u(x) < u(0) for every x ∈ (−δ1,−δ2), and

|v1(x)− u(0)| = u(0)− v1(x) = u(0)− u(x) + φ(x) ≤ u(0)− u(x) + ν

≤ 2
(
u(0)− u(x)

)
= 2

∣∣u(x)− u(0)
∣∣ ,

6



for every x ∈ (−δ1,−δ2). Therefore, v1 satisfies the following properties: v1(x) = u(x) if x /∈ (−δ1,−δ2),
v1(x) < u(x) if x ∈ (−δ1,−δ2), |v1(x) − u(0)| ≤ 2|u(x) − u(0)| for every x. If we define V1(x) :=

∫ x

−δ0
v1,

then V1(x) ≤ U(x) for every x. It is clear that limx→0− V1(x) < U(0−), and consequently there exists a
minimum −δ3 ∈ (−δ1, 0) with V1(−δ3) = r(−δ3); this implies that V ′

1(−δ3) = v1(−δ3) ≤ u(0) = r′(−δ3),
since V1(−δ1) = U1(−δ1) > r(−δ1).

If this is not so, it is possible to choose 0 < δ2 < δ1 < min{δ, δ′} and a function v1 ∈ C([−δ0, 0))
with v1(x) = u(x) if x /∈ (−δ1,−δ2), v1(x) < u(x) if x ∈ (−δ1,−δ2), |v1(x) − u(0)| ≤ 2|u(x) − u(0)| for
every x; then V1(x) ≤ U(x) for every x, if V1(x) :=

∫ x

−δ0
v1. It is clear that limx→0− V1(x) < U(0−), and

consequently there exists a minimum −δ3 ∈ (−δ1, 0) with V1(−δ3) = r(−δ3); this implies that V ′
1(−δ3) =

v1(−δ3) ≤ u(0) = r′(−δ3), since V1(−δ1) = U1(−δ1) > r(−δ1).

(1.1) If v1(−δ3) < u(0), let us choose 0 < ε1 < δ1 − δ3 and 0 < ε2 < δ3/2 with v1(x) < u(0) for
x ∈ [−δ3 − ε1,−δ3 + ε2].

Let us define two functions: sτ ∈ C
(
[−δ3 − ε1,−δ3 + ε2]

)
and S ∈ C

(
(0,∞)

)
as

sτ (x) :=
(x + δ3 + ε1

ε1 + ε2

)τ(
u(0)− v1(x)

)
,

S(τ) :=
∫ −δ3+ε2

−δ3−ε1

sτ .

Since v1(x) < u(0) for x ∈ [−δ3 − ε1,−δ3 + ε2], and

lim
τ→0+

sτ = u(0)− v1 , lim
τ→∞

sτ = 0 ,

in (−δ3 − ε1,−δ3 + ε2), we have

lim
τ→0+

S(τ) =
∫ −δ3+ε2

−δ3−ε1

(
u(0)− v1

)
>

∫ −δ3+ε2

−δ3

(
u(0)− v1

)
, lim

τ→∞
S(τ) = 0 <

∫ −δ3+ε2

−δ3

(
u(0)− v1

)
.

Therefore there exists τ0 > 0 such that S(τ0) =
∫ −δ3+ε2

−δ3−ε1
sτ0 =

∫ −δ3+ε2

−δ3

(
u(0) − v1

)
. If we define s := sτ0 ,

then 0 ≤ s ≤ u(0) − v1, s(−δ3 − ε1) = 0, s(−δ3 + ε2) = u(0) − v1(−δ3 + ε2) > 0, and
∫ −δ3

−δ3−ε1
s =∫ −δ3+ε2

−δ3
(u(0)− v1 − s).

If we define v2 := v1+s, then v2 ∈ C([−δ3−ε1,−δ3+ε2]) with v1 ≤ v2 ≤ u(0), v2(−δ3−ε1) = v1(−δ3−ε1),
v2(−δ3 + ε2) = u(0), and

∫ −δ3

−δ3−ε1
(v2 − v1) =

∫ −δ3+ε2

−δ3
(u(0) − v2) ≤ u(0)δ3/2. We define v(x) := v1(x) if

x < −δ3 − ε1, v(x) := v2(x) if x ∈ [−δ3 − ε1,−δ3 + ε2], and v(x) := u(0) if x > −δ3 + ε2. It is clear that
v ∈ C([−δ, 0]) and |v(x)− u(0)| ≤ |v1(x)− u(0)| ≤ 2|u(x)− u(0)| for every x.

If V (x) :=
∫ x

−δ0
v, notice that V (x) = V1(x) = U(x) if x ≤ −δ1, and V (x) = V1(x) if x ∈ [−δ1,−δ3− ε1].

It is obvious that r(x) ≤ V1(x) ≤ U(x) if x ∈ [−δ1,−δ3]; consequently

u(0)x ≤ V1(x)− U(0−) ≤ U(x)− U(0−) ,

|V1(x)− U(0−)| ≤ max{|U(x)− U(0−)|, |u(0)x|} ≤ |U(x)− U(0−)|+ |u(0)x| ,

if x ∈ [−δ1,−δ3]; now it is direct that this inequality also holds for x ∈ [−δ0,−δ3]. Therefore |V (x)−U(0−)| =
|V1(x)− U(0−)| ≤ |U(x)− U(0−)|+ |u(0)x| if x ∈ [−δ0,−δ3 − ε1].

Let us consider x ∈ [−δ3 − ε1,−δ3]; on the one hand, if x satisfies V (x) ≤ U(0−), we have that
|V (x)− U(0−)| ≤ |V1(x)− U(0−)| ≤ |U(x)− U(0−)|+ |u(0)x|, since V1(x) ≤ V (x); on the other hand, if x
satisfies V (x) > U(0−), then

−u(0)x ≥ u(0)δ3/2 ≥
∫ −δ3

−δ3−ε1

(v2 − v1) ≥
∫ x

−δ3−ε1

(v2 − v1) = V (x)− V1(x) ,
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and so

V (x)− U(0−) ≤ V1(x)− U(0−)− u(0)x ≤ U(x)− U(0−)− u(0)x ≤ |U(x)− U(0−)|+ |u(0)x| ;
it follows, in any case, that |V (x)− U(0−)| ≤ |U(x)− U(0−)|+ |u(0)x| if x ∈ [−δ3 − ε1,−δ3].

If x ∈ [−δ3,−δ3 + ε2], then V (x) ≥ V1(x); it is clear that

−u(0)x ≥ u(0)(δ3−ε2) ≥ u(0)δ3/2 ≥
∫ −δ3

−δ3−ε1

(v2−v1) = V (−δ3)−V1(−δ3) = V (−δ3)−r(−δ3) ≥ V (x)−r(x) ,

if x ∈ [−δ3,−δ3 + ε2] (since (V (x)− r(x))′ = v2(x)− u(0) ≤ 0), and hence V (x)− U(0−) ≤ 0; we also have

−u(0)x ≥
∫ −δ3+ε2

−δ3

(u(0)− v2) ≥
∫ x

−δ3

(u(0)− v2) = r(x)− r(−δ3)− V (x) + V (−δ3)

≥ r(x)− r(−δ3)− V (x) + V1(−δ3) = r(x)− V (x) ,

if x ∈ [−δ3,−δ3 + ε2], and hence V (x)− U(0−) ≥ r(x)− U(0−) + u(0)x = 2u(0)x in this interval; it follows
that |V (x)− U(0−)| ≤ 2|u(0)x| if x ∈ [−δ3,−δ3 + ε2].

If x ∈ [−δ3 + ε2, 0), then V (x) = r(x), since V ′(x) = v(x) = u(0) = r′(x) in this interval, and

r(−δ3 + ε2)− V (−δ3 + ε2) =
∫ −δ3+ε2

−δ3

(u(0)− v2) + r(−δ3)− V (−δ3)

=
∫ −δ3+ε2

−δ3

(u(0)− v2)−
(
V (−δ3)− V1(−δ3)

)

=
∫ −δ3+ε2

−δ3

(u(0)− v2)−
∫ −δ3

−δ3−ε1

(v2 − v1) = 0 .

Hence V (x)− U(0−) = u(0)x and |V (x)− U(0−)| = |u(0)x| if x ∈ [−δ3 + ε2, 0).
(1.2) If v1(−δ3) = u(0), we define v(x) := v1(x) if x ≤ −δ3 and v(x) := u(0) if x > −δ3. We can argue

as in the case v1(−δ3) < u(0).
(2) If U(x) < r(x) := U(0−) + u(0)x, for every point in a left neighborhood of 0, we can use a similar

construction of v (taking now v1 ≥ u).
(3) If U(xn) = r(xn), for a sequence xn ↗ 0, it is also possible to use a similar construction of v (taking

v1 = u and −δ3 = xn for some n large enough).
(ii) Let us assume now that limx→0− U(x) does not exist; then u /∈ L1([−δ0, 0]).
(1) Consider first the case U(x) > r(x) := λ + u(0)x, for every point in a left neighborhood of 0. The

function u0 := u(0)− |u− u(0)| verifies |u0 − u(0)| = |u− u(0)| and limx→0−
∫ x

−δ0
u0 = −∞. It is clear that

u0(x) = u(x) for any x with u(x) ≤ u(0).
If there exists some x0 ∈ (−δ, 0) with u(x0) ≤ u(0), then let us define

v1(x) :=
{

u(x) , if x ∈ (−δ, x0] ,
u0(x) , if x ∈ (x0, 0] .

If u(x) > u(0), for every x ∈ (−δ, 0), then u0(x) = 2u(0) − u(x) for every x ∈ (−δ, 0). For any
0 < δ2 < δ1 < δ, we define

v1(x) :=





u(x) , if x ∈ (−δ,−δ1] ,
x+δ1
δ1−δ2

u(x) +
(
1− x+δ1

δ1−δ2

)
u0(x) , if x ∈ (−δ1,−δ2) ,

u0(x) , if x ∈ [−δ2, 0] .

If we take δ1 := δ2 := −x0 in the first case, by the definition of v1, we obtain (in both cases) that
v1 ∈ C([−δ0, 0)), v1(x) = u(x) if x ≤ −δ1, v1(x) = u0(x) if x ≥ −δ2, and |v1(x)− u(0)| ≤ 2|u(x)− u(0)| for
every x. If V1(x) :=

∫ x

−δ0
v1, it is clear that limx→0− V1(x) = −∞, and consequently there exists a minimum

−δ3 ∈ (−δ1, 0) with V1(−δ3) = r(−δ3).
Now it is sufficient to choose the functions v2 and v as in the case (i), and do the same computations.
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(2) If U(x) < r(x) := λ+u(0)x, for every point in a left neighborhood of 0, we can repeat the argument
with u1 := u(0) + |u− u(0)| instead of u0.

(3) If U(xn) = r(xn), for a sequence xn ↗ 0, it is also possible to use a similar construction of v (taking
v1 = u and −δ3 = xn for some n large enough). ]

Definition 4.1. Let us consider a weight w1 such that S(w1) ∩ [a − δ, a + δ] = {a} for some δ > 0. We
say that w1 is left-dominated at a if there exists a constant c such that any function F ∈ C([a− δ, a]) with
0 ≤ F ≤ 1/w1 a.e. verifies

∫ a

a−δ
F ≤ c. We say that w1 is right-dominated at a if there exists a constant c

such that any function F ∈ C([a, a + δ]) with 0 ≤ F ≤ 1/w1 a.e. verifies
∫ a+δ

a
F ≤ c. We denote by D−(w1)

(respectively, D+(w1)) the set of left-dominated (respectively, right-dominated) points of w1.

Remarks.
1. Every weight w1 with 1/w1 ∈ L1([a, a + δ]) is right-dominated at a.
2. There exists weights w1 right-dominated at a, with 1/w1 /∈ L1([a, a + δ]): Let us consider a Borel

set E ⊂ [0, 1] with 0 < |E ∩ I| < |I| for every interval I ⊂ [0, 1] (see e.g. [Ru, Chapter 2]). Since∫
E

dx/x +
∫
[0,1]\E dx/x =

∫ 1

0
dx/x = ∞, without loss of generality we can assume that

∫
E

dx/x = ∞ (in
other case we can take [0, 1] \E instead of E). Then, w1(x) := xχ

E
(x) + χ

[0,1]\E (x) is right-dominated at 0
and 1/w1 /∈ L1([0, 1]).

Lemma 4.2. Let us consider a weight w1 in [a − δ, a] with S(w1) = {a}. Then a /∈ D−(w1) if and only if
there exists a function F ∈ C([a− δ, a)) with 0 ≤ F ≤ 1/w1 a.e. and

∫ a

a−δ
F = ∞.

Proof. Let us assume that there exists a function F ∈ C([a−δ, a)) with 0 ≤ F ≤ 1/w1 a.e. and
∫ a

a−δ
F = ∞.

For each n we can consider a function Fn ∈ C([a − δ, a]) with 0 ≤ Fn ≤ F ≤ 1/w1 a.e. and F = Fn in
[a− δ, a− 1/n]. Then limn→∞

∫ a

a−δ
Fn =

∫ a

a−δ
F = ∞ and a /∈ D−(w1).

Let us assume now that a /∈ D−(w1). Then, for each n there exists a function Fn ∈ C([a − δ, a]) with
0 ≤ Fn ≤ 1/w1 a.e. and

∫ a

a−δ
Fn > n. Let us choose an ∈ (a− 1/n, a) with

∫ an

a−δ
Fn > n. Since S(w1) = {a},

then 1/w1 ∈ L1
loc([a − δ, a)), and consequently

∫ x

a−δ
Fn ≤

∫ x

a−δ
1/w1 ∈ C([a − δ, a)). Therefore, there exists

a subsequence {ank
}k with

∫ ank

ank−1
Fnk

> 1, and hence we can construct a function F ∈ C([a − δ, a)) with

0 ≤ F ≤ Fnk
≤ 1/w1 a.e. in [ank−1 , ank

] and
∫ ank

ank−1
F > 1. Then

∫ a

a−δ
F = ∞. ]

Lemma 4.3. Let us consider two weights w0, w1, in [a− δ0, a] with ess limx→a− w0(x) = 0 and a /∈ D−(w1).
Then for each f ∈ W 1,∞(w0, w1)∩C1([a−δ0, a]), each δ, ε > 0, and each s ∈ R, there exists g ∈ C1([a−δ0, a])
with ‖f − g‖W 1,∞(w0,w1) < ε, g(x) = f(x) if x /∈ (a− δ, a], g′ = f ′ in some neighborhood of a, and g(a) = s.

Remark. A similar result is true for f ∈ W 1,∞(w0, w1) ∩ C1([a, a + δ0]).

Proof. By Lemma 4.2, there exists a function F ∈ C([a− δ0, a)) with 0 ≤ F ≤ 1/w1 a.e. and
∫ a

a−δ0
F = ∞.

Without loss of generality, we can assume that a = 0 and s > f(0): the case s < f(0) is similar, and the case
s = f(0) is trivial (it is sufficient to take g = f). Since ess limx→0− w0(x) = 0, then there exists 0 < δ1 < δ
with (s− f(0))w0(x) < ε/3 for almost every x ∈ (−δ1, 0).

Since F ∈ C([−δ1, 0)), F ≥ 0 and
∫ 0

−δ1
F = ∞, it is clear that we can find a function J ∈ Cc([−δ1, 0))

(i.e. J ∈ C([−δ1, 0)) and supp J ⊂ [−δ1, 0)) with 0 ≤ J ≤ εF/2 and
∫ 0

−δ1
J = s − f(0). Let us define

h(x) :=
∫ x

−δ1
J and g := f + h. Then we have 0 ≤ h(x) ≤ s− f(0). It is clear that g(x) = f(x) if x /∈ (−δ, 0],

g′ = f ′ in some neighborhood of 0, and g(0) = s. We only need to check that ‖h‖W 1,∞(w0,w1) < ε, and this
fact is a consequence of

‖h‖L∞(w0) = ess sup
x∈[−δ1,0]

h(x)w0(x) ≤ ess sup
x∈[−δ1,0]

(s− f(0))w0(x) ≤ ε

3
<

ε

2
,

‖h′‖L∞(w1) = ess sup
x∈[−δ1,0]

J(x)w1(x) ≤ ε

2
ess sup

x∈[−δ1,0]

F (x)w1(x) ≤ ε

2
. ]

Lemma 4.4. Let us consider two weights w0, w1, in [a − δ0, a] with S(w1) = {a} and a ∈ D−(w1). Let us
assume that there exists f ∈ W 1,∞(w0, w1) and {gn}n ∈ W 1,∞(w0, w1) ∩ C1([a − δ0, a]) converging to f in
W 1,∞(w0, w1). Then {g′n}n converges to f ′ in L1([a− δ0, a]) and f is continuous to the left in a.
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Remark. A similar result is true if we change [a− δ0, a] by [a, a + δ0] everywhere.

Proof. Since S(w1) = {a}, then 1/w1 ∈ L1
loc([a− δ0, a)). For any 0 < δ < δ0, we obtain

‖f ′ − g′n‖L1([a−δ0,a−δ]) =
∫ a−δ

a−δ0

∣∣f ′ − g′n
∣∣ w1

w1
≤ ‖f ′ − g′n‖L∞(w1)

∫ a−δ

a−δ0

1
w1

.

Then, {g′n}n converges to f ′ in L1([a−δ0, a−δ]), for any 0 < δ < δ0. Furthermore, {g′n}n is a Cauchy sequence
in L1([a − δ0, a]): Since a ∈ D−(w1), there exists a constant c such that any function F ∈ C([a − δ0, a])
with 0 ≤ F ≤ 1/w1 a.e. verifies

∫ a

a−δ0
F ≤ c. We have |g′n − g′m|/‖g′n − g′m‖L∞(w1) ≤ 1/w1 a.e., and hence∫ a

a−δ0

∣∣g′n − g′m
∣∣ ≤ c‖g′n − g′m‖L∞(w1). Therefore {g′n}n converges to f ′ in L1([a− δ0, a]).

Let us consider gn(x) := gn(x) − gn(a − δ0) + f(a − δ0) ∈ C1([a − δ0, a]). Then |f(x) − gn(x)
∣∣ =∣∣ ∫ x

a−δ0
(f ′ − g′n)

∣∣ ≤ ‖f ′ − g′n‖L1([a−δ0,a]), for every x ∈ [a − δ0, a]. Consequently {gn}n converges uniformly
to f in [a− δ0, a] and f is continuous to the left in a. ]

The following definition makes sense because of Lemma A.

Definition 4.2. Let us consider a weight w1. For each f with f ′ ∈ C(R) ∩ L∞(w1)
L∞(w1), let us define

uf (a) := 0 if a ∈ S1(w1), and uf (a) := ess limx→a, w1(x)≥η f ′(x) for any η > 0 small enough if a /∈ S1(w1).

Let us remark that uf (a) is finite by Lemma A. We can state now our first theorem in this section.

Theorem 4.1. Let us consider two weights w0, w1, in [α, β] such that S(w1) = {a}, and d > 0. Then every
function in

H1 :=
{
f ∈ W 1,∞(w0, w1) : f ∈ C(R) ∩ L∞(w0)

L∞(w0)
, f ′ ∈ C(R) ∩ L∞(w1)

L∞(w1)
,

f is continuous to the right if a ∈ D+(w1),
f is continuous to the left if a ∈ D−(w1),
ess lim

x→a
|f(x)− f(a)|w0(x) = 0, ess lim

x→a
uf (a)(x− a)w0(x) = 0

}
,

can be approximated by functions {gn}n in C1(R)∩W 1,∞(w0, w1) with the norm of W 1,∞(w0, w1) and with
gn(x) = f(x) if x /∈ (a− d, a + d). Furthermore, if f also satisfies ess limx→a |f ′(x)− uf (a)|w1(x) = 0, each
function gn is a polynomial of degree at most 1 in a neighborhood of a.

Remarks.
1. Notice that the hypothesis ess limx→a uf (a)(x − a)w0(x) = 0 for every function f with f ′ ∈

C(R) ∩ L∞(w1)
L∞(w1), is a consequence of any of the following conditions:

(a) ess limx→a(x− a)w0(x) = 0,
(b) a /∈ S2(w1), i.e. ess limx→a w1(x) = 0 or ess lim supx→a w1(x) = ∞ (in both cases, uf (a) = 0).

2. Either of the following conditions guarantees ess limx→a |f(x) − f(a)|w0(x) = 0 for every function

f ∈ C(R) ∩ L∞(w0)
L∞(w0):

(a) a ∈ S+(w0) ∩ S−(w0), i.e., ess lim infx→a+ w0(x) = ess lim infx→a− w0(x) = 0,
(b) a ∈ S+(w0) and w0 ∈ L∞([a− ε, a]), for some ε > 0,
(c) a ∈ S−(w0) and w0 ∈ L∞([a, a + ε]), for some ε > 0,
(d) w0 ∈ L∞([a− ε, a + ε]), for some ε > 0.

3. Either of the following conditions guarantees ess limx→a |f ′(x)− uf (a)|w1(x) = 0 for every function

f with f ′ ∈ C(R) ∩ L∞(w1)
L∞(w1):

(a) a ∈ S+(w1) ∩ S−(w1), i.e., ess lim infx→a+ w1(x) = ess lim infx→a− w1(x) = 0,
(b) a ∈ S+(w1) and w1 ∈ L∞([a− ε, a]), for some ε > 0,
(c) a ∈ S−(w1) and w1 ∈ L∞([a, a + ε]), for some ε > 0,
(d) a = α or a = β (since a ∈ S(w1)).

4. Notice that we do not have any hypothesis about the singularities of w0.
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Proof. The heart of the proof is to use Lemma 4.1 in the approximation in [α, a] and the “right version”
of Lemma 4.1 in the approximation in [a, β]. If these two approximations do not glue in a continuous way,
we must use Lemma 4.3 in order to obtain a continuous function. Without loss of generality, we can assume
that a ∈ (α, β), since the cases a = α and a = β are easier (in these cases we do not use Lemma 4.3.

If a ∈ S−(w1)∩R+(w1), then every f ∈ H1 belongs to C1([a, β]), and we only need to apply Lemma 4.1; if
a ∈ S+(w1)∩R−(w1), then every f ∈ H1 belongs to C1([α, a]), and we only need to apply the “right version”
of Lemma 4.1; then, without loss of generality, we can assume that a ∈ S+(w1) ∩ S−(w1), since the other
cases are easier. In this case a ∈ S+(w1)∩S−(w1), every f ∈ H1 satisfies ess limx→a |f ′(x)−uf (a)|w1(x) = 0
(see Theorem 2.1 and Lemma A; in the case a ∈ S1(w1) we have in fact ess limx→a |f ′(x)− λ|w1(x) = 0 for
any λ ∈ R, since ess limx→a w1(x) = 0).

Let us consider any f ∈ H1 and ε > 0. Let us define u := f ′ in [α, β] \ {a} and u(a) := uf (a). Since
f ∈ H1, it is possible to choose 0 < δ < d with

3‖f ′ − u(a)‖L∞([a−δ,a+δ],w1) <
ε

6
, 4‖f − f(a)‖L∞([a−δ,a+δ],w0) <

ε

6
, 4|u(a)| ‖x− a‖L∞([a−δ,a+δ],w0) <

ε

6
.

We also require from δ that

(4.1)
|f(x)− f(a−)| ≤ |f(x)− f(a)| for x ∈ [a− δ, a) if there exists f(a−) 6= f(a), and
|f(x)− f(a+)| ≤ |f(x)− f(a)| for x ∈ (a, a + δ] if there exists f(a+) 6= f(a).

Let us define U(x) := f(x) − f(α) =
∫ x

α
f ′ if x ∈ [α, a), and U(x) := f(x) − f(β) =

∫ x

β
f ′ if x ∈ (a, β].

Consider the function v ∈ C([α, a]) in Lemma 4.1 satisfying v(x) = u(x) if x /∈ (a − δ, a), |v(x) − u(a)| ≤
2|u(x)− u(a)| for every x ∈ [α, a),

V (a) =
{

f(a−)− f(α) , if there exists f(a−) ,

f(a)− f(α) , in other case ,

and |V (x) − V (a)| ≤ |U(x) − V (a)| + 2|u(a)||x − a| for every x ∈ [α, a), if V (x) :=
∫ x

α
v. Consider also

the function ṽ ∈ C([a, β]) in the “right version” of Lemma 4.1 satisfying ṽ(x) = u(x) if x /∈ (a, a + δ),
|ṽ(x)− u(a)| ≤ 2|u(x)− u(a)| for every x ∈ (a, β],

Ṽ (a) =
{

f(a+)− f(β) , if there exists f(a+) ,

f(a)− f(β) , in other case ,

and |Ṽ (x)− Ṽ (a)| ≤ |U(x)− Ṽ (a)|+ 2|u(a)||x− a| for every x ∈ (a, β], if Ṽ (x) :=
∫ x

β
ṽ.

Let us consider the function g0 given by g0(x) := V (x) + f(α) if x ∈ [α, a], and g0(x) := Ṽ (x) + f(β)
if x ∈ (a, β]. Notice that g0 ∈ C1([α, β] \ {a}) and g′0(a−) = g′0(a+) = u(a). In fact, g0 is a polynomial of
degree at most 1 in a left (respectively right) neighborhood of a, since g′0(x) = u(a) there (by Lemma 4.1).

This function also satisfies g0(x) = f(x) if x /∈ (a − δ, a + δ), and |g′0(x) − u(a)| ≤ 2|f ′(x) − u(a)| for
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every x ∈ [α, β] \ {a}. It follows that g0 verifies

‖f − g0‖W 1,∞(w0,w1) = ‖f − g0‖L∞(w0) + ‖f ′ − g′0‖L∞(w1)

= max
{‖U − V ‖L∞([a−δ,a],w0), ‖U − Ṽ ‖L∞([a,a+δ],w0)

}
+ ‖f ′ − g′0‖L∞([a−δ,a+δ],w1)

≤ ‖U − V (a)‖L∞([a−δ,a],w0) + ‖V − V (a)‖L∞([a−δ,a],w0)

+ ‖U − Ṽ (a)‖L∞([a,a+δ],w0) + ‖Ṽ − Ṽ (a)‖L∞([a,a+δ],w0)

+ ‖f ′ − u(a)‖L∞([a−δ,a+δ],w1) + ‖g′0 − u(a)‖L∞([a−δ,a+δ],w1)

≤ 2‖U − V (a)‖L∞([a−δ,a],w0) + 2|u(a)| ‖x− a‖L∞([a−δ,a],w0)

+ 2‖U − Ṽ (a)‖L∞([a,a+δ],w0) + 2|u(a)| ‖x− a‖L∞([a,a+δ],w0)

+ 3‖f ′ − u(a)‖L∞([a−δ,a+δ],w1)

≤ 2‖f − f(a)‖L∞([a−δ,a],w0) + 2|u(a)| ‖x− a‖L∞([a−δ,a],w0)

+ 2‖f − f(a)‖L∞([a,a+δ],w0) + 2|u(a)| ‖x− a‖L∞([a,a+δ],w0)

+ 3‖f ′ − u(a)‖L∞([a−δ,a+δ],w1)

≤ 4‖f − f(a)‖L∞([a−δ,a+δ],w0) + 4|u(a)| ‖x− a‖L∞([a−δ,a+δ],w0)

+ 3‖f ′ − u(a)‖L∞([a−δ,a+δ],w1)

<
ε

6
+

ε

6
+

ε

6
=

ε

2
,

where we have used (4.1) in the third inequality. In order to finish the proof we only need to construct a
function g ∈ C1([α, β]) with ‖g − g0‖W 1,∞([α,β],w0,w1) < ε/2, g(x) = g0(x) = f(x) if x /∈ (a − d, a + d) and
g′ = g′0 = u(a) in a neighborhood of a.

Let us recall that g0(a−) = f(a−) if there exists f(a−) and g0(a−) = f(a) in other case, g0(a+) = f(a+)
if there exists f(a+) and g0(a+) = f(a) in other case. We also have g′0(a−) = g′0(a+) = u(a). Hence,
g0 ∈ C1([α, β]) if and only if g0(a−) = g0(a+); in this case, it is sufficient to take g := g0.

We analyse now the different cases:
(1) If a ∈ D−(w1) ∩D+(w1), then f ∈ C([α, β]). Therefore we can take g := g0.
(2) Let us assume now that a /∈ D−(w1) ∩D+(w1).
(2.1) If there exist neither f(a−) nor f(a+), then we also have g0 ∈ C([α, β]).
(2.2) Let us assume that there exists f(a−) and f(a+) does not exist (the case in which there exists

f(a+) and f(a−) does not exist is similar). If f(a−) = f(a), it follows that g0 ∈ C([α, β]). If f(a−) 6= f(a),
it follows that ess limx→a− w0(x) = 0 and a /∈ D−(w1): if ess lim supx→a− w0(x) > 0, then Lemma A and
its remark imply that f(a) = ess limx→a−, w0(x)≥η f(x) = f(a−), for any η > 0 small enough, which is a
contradiction; if a ∈ D−(w1), then f is continuous to the left at a, which is a contradiction. Consequently we
can apply Lemma 4.3 to g0|[α,a] in order to obtain a function g ∈ C1([α, a]) with ‖g− g0‖W 1,∞([α,a],w0,w1) <
ε/2, g′(a−) = g′0(a−) = g′0(a+), g(a) = g0(a+) and g(x) = g0(x) = f(x) if x /∈ (a− d, a]; if we define g := g0

in (a, β], this g is the required function.
Notice that lemmas 4.1 and 4.3 guarantee that g is a polynomial of degree at most 1 in a neighborhood

of a, since g′ is constant in a neighborhood of a.
(2.3) Finally, let us assume that there exist f(a−) and f(a+). If f(a−) = f(a+), it follows that

g0 ∈ C([α, β]). If f(a−) 6= f(a+), we consider two cases:
If ess limx→a w0(x) = 0, without loss of generality, we can assume that a /∈ D−(w1) (the case a /∈ D+(w1)

is similar). Consequently we can apply Lemma 4.3 as in the case (2.2).
If ess lim supx→a w0(x) > 0, without loss of generality, we can assume that ess lim supx→a+ w0(x) >

0 (the case ess lim supx→a− w0(x) > 0 is similar). Then, Lemma A and its remark imply that f(a) =
ess limx→a+, w0(x)≥η f(x) = f(a+). It follows that ess limx→a− w0(x) = 0, since if this is not so, f(a) =
ess limx→a−, w0(x)≥η f(x) = f(a−) and hence f(a+) = f(a−), which is a contradiction. We also have
a /∈ D−(w1), since if this is not so, f is continuous to the left at a, which is a contradiction. Consequently
we can apply Lemma 4.3 as in the case (2.2).

This finishes the proof of the theorem. ]

Lemma 4.5. Let us consider a weight w0 with ess lim supx→a w0(x) = ∞ and ess limx→a |x− a|w0(x) = 0.
If f ∈ L∞(w0) and ‖f‖L∞([a−δ,a+δ],w0) ≥ c > 0 for every δ > 0, then distL∞(w0)(f, C1(R) ∩ L∞(w0)) ≥ c.
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Proof. Without loss of generality, we can assume that a = 0. If g ∈ C1(R) ∩ L∞(w0), then g(0) = 0, since
ess lim supx→0 w0(x) = ∞, and consequently limx→0 g(x)/x = g′(0). It follows that

ess lim
x→0

|g(x)|w0(x) =
(

ess lim
x→0

|g(x)|
|x|

)(
ess lim

x→0
|x|w0(x)

)
= |g′(0)| · 0 = 0 .

Therefore, given any ε > 0 there exists δ > 0 such that ‖g‖L∞([−δ,δ],w0) ≤ ε. Hence

‖f − g‖L∞(w0) ≥ ‖f − g‖L∞([−δ,δ],w0) ≥ ‖f‖L∞([−δ,δ],w0) − ‖g‖L∞([−δ,δ],w0) ≥ c− ε ,

for every ε > 0, and consequently ‖f − g‖L∞(w0) ≥ c. ]

The three following theorems describe the set of functions which can be approximated by C1 functions,
when there is just one singular point of w1.

Theorem 4.2. Let us consider two weights w0, w1, in [α, β] such that S(w1) = {a} and ess limx→a |x −
a|w0(x) = 0. Then the closure of C1(R) ∩W 1,∞(w0, w1) in W 1,∞(w0, w1) is equal to

H2 :=
{
f ∈ W 1,∞(w0, w1) : f ∈ C(R) ∩ L∞(w0)

L∞(w0)
, f ′ ∈ C(R) ∩ L∞(w1)

L∞(w1)
,

f is continuous to the right if a ∈ D+(w1),
f is continuous to the left if a ∈ D−(w1),
ess lim

x→a
|f(x)− f(a)|w0(x) = 0

}
.

Furthermore, if w0, w1 ∈ L∞([α, β]), then the closure of the space of polynomials in W 1,∞(w0, w1) is also
H2. In fact, for each f ∈ H2 and d > 0 there exist {gn}n in C1(R) with limn→∞ ‖f − gn‖W 1,∞(w0,w1) = 0
and gn(x) = f(x) if x /∈ (a− d, a + d).

Remarks.
1. It is a remarkable fact that the approximation method is constructive.
2. Notice that we require ess limx→a |f(x)− f(a)|w0(x) = 0 in H2, even if a /∈ S(w0).

Proof. If f is in the closure of C1(R) ∩W 1,∞(w0, w1) in W 1,∞(w0, w1), it follows that f ∈ W 1,∞(w0, w1),

f ∈ C(R) ∩ L∞(w0)
L∞(w0), and f ′ ∈ C(R) ∩ L∞(w1)

L∞(w1). Lemma 4.4 implies that f is continuous to
the right if a ∈ D+(w1) and f is continuous to the left if a ∈ D−(w1). If ess lim supx→a w0(x) < ∞, we can
deduce that ess limx→a |f(x)−f(a)|w0(x) = 0: We see that ess limx→a+ |f(x)−f(a)|w0(x) = 0 (the left limit
is similar); it is a consequence of Theorem 2.1 if a ∈ S+(w0), and if this is not so, f is continuous to the

right at a, as a consequence of f ∈ C(R) ∩ L∞(w0)
L∞(w0) and Theorem 2.1. If ess lim supx→a w0(x) = ∞,

we have f(a) = 0, and Lemma 4.5 implies that there not exists c > 0 with ‖f‖L∞([a−δ,a+δ],w0) ≥ c for every
δ > 0; therefore we obtain ess limx→a |f(x)− f(a)|w0(x) = 0 also in this case. Then f ∈ H2.

It is clear that H2 is contained in the closure of C1(R)∩W 1,∞(w0, w1) in W 1,∞(w0, w1), since f ∈ H1:
uf (a) is finite and we have the hypothesis ess limx→a |x−a|w0(x) = 0, and consequently ess limx→a uf (a)|x−
a|w0(x) = 0. Then it is possible to apply Theorem 4.1, which allows to choose {gn}n in C1(R) with
limn→∞ ‖f − gn‖W 1,∞(w0,w1) = 0 and gn(x) = f(x) if x /∈ (a− d, a + d).

If w0, w1 ∈ L∞([α, β]), the closure of the polynomials is H2 as well, as a consequence of Bernstein’s proof
of Weierstrass’ Theorem (see e.g. [D, p.113]), which gives a sequence of polynomials converging uniformly
up to the k-th derivative for any function in Ck([α, β]). ]

Proposition 4.1. Let us consider two weights w0, w1, in [α, β], with ess lim supx→a |x − a|w0(x) > 0 and
a ∈ S(w1).

(a) If f belongs to the closure of C1(R) ∩ L∞(w0) in L∞(w0), then for each η > 0 small enough
there exists l := ess limx→a, |x−a|w0(x)≥η f(x)/(x − a). We also have limn→∞ g′n(a) = l, for any sequence
{gn} ⊂ C1(R) ∩ L∞(w0) converging to f in L∞(w0).

(b) If f belongs to the closure of C1(R)∩W 1,∞(w0, w1) in W 1,∞(w0, w1) and a /∈ S1(w1), then uf (a) = l.
Furthermore, if there exists f ′(a), then uf (a) = f ′(a).

(c) If f ′ belongs to the closure of C(R)∩L∞(w1) in L∞(w1) and a /∈ S1(w1), then uf (a) = limn→∞ hn(a),
if {hn} ⊂ C(R) ∩ L∞(w1) converges to f ′ in L∞(w1).
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Proof. Let us fix 0 < η < ess lim supx→a |x− a|w0(x). Seeking a contradiction, suppose that

ess lim inf
x→a, |x−a|w0(x)≥η

f(x)
x− a

= c1 < c2 = ess lim sup
x→a, |x−a|w0(x)≥η

f(x)
x− a

.

If g is any function in C1(R) ∩ L∞(w0), it follows that g(a) = 0 (by ess lim supx→a w0(x) = ∞) and

‖f − g‖L∞(w0) ≥ η
∥∥∥f(x)− g(x)

x− a

∥∥∥
L∞({|x−a|w0(x)≥η})

≥ η max
{|c1 − g′(a)|, |c2 − g′(a)|} ≥ η

c2 − c1

2
.

This is a contradiction with f belonging to the closure of C1(R) ∩ L∞(w0) in L∞(w0).
Let us choose gn ∈ C1(R) ∩ L∞(w0) with ‖f − gn‖L∞(w0) ≤ 1/n. Hence

η
∣∣∣f(x)− gn(x)

x− a

∣∣∣ ≤ |f(x)− gn(x)|w0(x) ≤ ‖f − gn‖L∞(w0) ≤
1
n

,

for almost every x with |x − a|w0(x) ≥ η. Therefore, it follows that η |l − g′n(a)| ≤ 1/n, for every n, since
gn(a) = 0 (by ess lim supx→a w0(x) = ∞). Hence l is finite and limn→∞ g′n(a) = l.

Let us assume now that f belongs to the closure of C1(R) ∩W 1,∞(w0, w1) in W 1,∞(w0, w1) and a /∈
S1(w1). Notice that Lemma A gives that there exists uf (a) := ess limx→a, w1(x)≥η f ′(x), for each η > 0 small
enough, since a /∈ S1(w1). We have that there exists gn ∈ C1(R)∩W 1,∞(w0, w1) with ‖f−gn‖W 1,∞(w0,w1) ≤
1/n. Hence

η |f ′(x)− g′n(x)| ≤ |f ′(x)− g′n(x)|w1(x) ≤ ‖f ′ − g′n‖L∞(w1) ≤
1
n

,

for almost every x with w1(x) ≥ η. Consequently, it follows that η|uf (a)− g′n(a)| ≤ 1/n, for every n, and we
deduce that l = limn→∞ g′n(a) = uf (a). (The same argument allows to deduce that limn→∞ hn(a) = uf (a),
for any sequence {hn} ⊂ C(R) ∩ L∞(w1) converging to f ′ in L∞(w1). This proves (c).)

Let us assume now that there exists f ′(a). Then it follows that f ′(a) = l and consequently f ′(a) = l =
uf (a). ]

Proposition 4.2. Let us consider two weights w0, w1, in [α, β], with ess lim supx→a |x − a|w0(x) = ∞ and
a ∈ S(w1). If f belongs to the closure of C1(R) ∩W 1,∞(w0, w1) in W 1,∞(w0, w1), then uf (a) = 0.

Proof. We only need to consider the case a ∈ S(w1)\S1(w1), since uf (a) = 0 if a ∈ S1(w1) (recall Definition
4.2).

If we take gn ∈ C1(R) ∩ W 1,∞(w0, w1) with ‖f − gn‖W 1,∞(w0,w1) ≤ 1/n, then parts (a) and (b) of
Proposition 4.1 imply that limn→∞ g′n(a) = uf (a).

Since ess lim supx→a |x− a|w0(x) = ∞, for each m

m
∣∣∣gn(x)
x− a

∣∣∣ ≤ |gn(x)|w0(x) ≤ ‖gn‖L∞(w0) ≤ ‖f‖L∞(w0) +
1
n

,

for almost every x with |x− a|w0(x) ≥ m. Then m|g′n(a)| ≤ ‖f‖L∞(w0) + 1/n for every m, since gn(a) = 0.
Consequently, it follows that g′n(a) = 0 and uf (a) = 0. ]

Definition 4.3. Let us consider a weight w0 in [α, β], with ess lim supx→a |x− a|w0(x) > 0 and a ∈ S(w1),
and a function f in the closure of C1(R) ∩ L∞(w0) in L∞(w0). We define the derivative of f in a through
{|x − a|w0(x) ≥ η} as l(f, a) := ess limx→a, |x−a|w0(x)≥η f(x)/(x − a), for any 0 < η < ess lim supx→a |x −
a|w0(x).

Theorem 4.3. Let us consider two weights w0, w1, in [α, β] such that S(w1) = {a} and 0 < ess lim supx→a |x−
a|w0(x) < ∞. Then the closure of C1(R) ∩W 1,∞(w0, w1) in W 1,∞(w0, w1) is equal to

H3 :=
{
f ∈ W 1,∞(w0, w1) : f ∈ C(R) ∩ L∞(w0)

L∞(w0)
, f ′ ∈ C(R) ∩ L∞(w1)

L∞(w1)
,

f is continuous to the right if a ∈ D+(w1),
f is continuous to the left if a ∈ D−(w1),
∃ l(f, a) and ess lim

x→a
|f(x)− l(f, a)(x− a)|w0(x) = 0,

and if a /∈ S1(w1), then uf (a) = l(f, a)
}

.

In fact, for each f ∈ H3 and d > 0 there exist {gn}n in C1(R) with limn→∞ ‖f − gn‖W 1,∞(w0,w1) = 0 and
gn(x) = f(x) if x /∈ (a− d, a + d).
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Remark. Condition “if a /∈ S1(w1), then uf (a) = l(f, a)” shows the interaction that must exist between f ,
w0 and w1 in order to approximate f by smooth functions (compare with Theorem 4.2). The example after
the proof of Theorem 4.3 shows that this condition is independent of the other hypotheses in the definition
of H3.

Proof. If f is in the closure of C1(R)∩W 1,∞(w0, w1) in W 1,∞(w0, w1), we will see that it belongs to H3. It is

clear that f ∈ C(R) ∩ L∞(w0)
L∞(w0), and f ′ ∈ C(R) ∩ L∞(w1)

L∞(w1). Lemma 4.4 allows to deduce that f
is continuous to the right if a ∈ D+(w1) and f is continuous to the left if a ∈ D−(w1). Proposition 4.1 implies
that if a /∈ S1(w1), then uf (a) = l(f, a). Let us choose a sequence {gn} ⊂ C1(R)∩W 1,∞(w0, w1) converging
to f in W 1,∞(w0, w1). By Proposition 4.1 it follows that l(f, a) = ess limx→a, |x−a|w0(x)≥η f(x)/(x − a) =
limn→∞ g′n(a), for η > 0 small enough.

Let us fix ε > 0. It is clear that

ess lim
x→a, |x−a|w0(x)≥η

|f(x)− l(f, a)(x− a)|w0(x) = ess lim
x→a, |x−a|w0(x)≥η

∣∣∣ f(x)
x− a

− l(f, a)
∣∣∣|x− a|w0(x) = 0 ,

since ess lim supx→a |x− a|w0(x) < ∞; then there exists δ1 > 0 with

‖f(x)− l(f, a)(x− a)‖L∞([a−δ1,a+δ1]∩{|x−a|w0(x)≥η},w0) < ε .

Now, it is sufficient to prove that ‖f(x)− l(f, a)(x−a)‖L∞([a−δ,a+δ]∩{|x−a|w0(x)<η},w0) < ε, for some 0 < δ ≤
δ1. Proposition 4.1 allows to choose n with ‖f − gn‖L∞(w0) < ε/2 and |g′n(a)− l(f, a)|η < ε/2; hence, there
exists 0 < δ ≤ δ1 with |gn(x)/(x− a)− l(f, a)|η < ε/2 for every 0 < |x− a| < δ. Consequently

‖gn(x)−l(f, a)(x− a)‖L∞([a−δ,a+δ]∩{|x−a|w0(x)<η},w0)

=
∥∥∥gn(x)

x− a
− l(f, a)

∥∥∥
L∞([a−δ,a+δ]∩{|x−a|w0(x)<η},|x−a|w0)

≤ ε

2
.

We also have ‖f − gn‖L∞(w0) < ε/2; therefore ‖f(x)− l(f, a)(x− a)‖L∞([a−δ,a+δ]∩{|x−a|w0(x)<η},w0) < ε, and
‖f(x)− l(f, a)(x− a)‖L∞([a−δ,a+δ],w0) < ε. Then f ∈ H3.

Let us fix now f ∈ H3. The hypothesis ess lim supx→a |x − a|w0(x) < ∞ implies that there exists
0 < δ0 < d/2 such that x − a ∈ L∞([a − 2δ0, a + 2δ0], w0); if ess lim supx→a w1(x) < ∞, we also require
w1 ∈ L∞([a−2δ0, a+2δ0]). Let us fix φ ∈ C∞c ([a−2δ0, a+2δ0]) with 0 ≤ φ ≤ 1 and φ = 1 in [a− δ0, a+ δ0].
We see now that l(f, a)(x − a)φ(x) ∈ C∞c ([a − 2δ0, a + 2δ0]) ∩ W 1,∞(w0, w1): it is clear that it belongs
to L∞(w0); its derivative is in L∞(w1) if ess lim supx→a w1(x) < ∞; if this is not so, a /∈ S1(w1), and it
follows that l(f, a) = 0: if {hn} ⊂ C(R) ∩ L∞(w1) converges to f ′ in L∞(w1), part (c) of Proposition 4.1
implies that uf (a) = limn→∞ hn(a); the fact ess lim supx→a w1(x) = ∞ implies hn(a) = 0, and we have
0 = uf (a) = l(f, a), since f ∈ H3.

We consider the function g(x) := f(x)− l(f, a)(x−a)φ(x). Since l(f, a)(x−a)φ(x) is a smooth function
in W 1,∞(w0, w1), it is sufficient to show that g can be approximated by C1 functions in W 1,∞(w0, w1). We
have that f(a) = g(a) = 0 since ess lim supx→a w0(x) = ∞; then ess limx→a |g(x) − g(a)|w0(x) = 0, since
f ∈ H3. Notice that ug(a) = 0 if a ∈ S1(w1); if a /∈ S1(w1), it follows that ug(a) = ess limx→a, w1(x)≥η f ′(x)−
l(f, a) = uf (a) − l(f, a) = 0. Then Theorem 4.1 implies that g can be approximated by functions {gn}n in
C1 ∩W 1,∞(w0, w1), with gn(x) = g(x) = f(x) if x /∈ (a− d, a + d). ]

Example. There exist weights w0, w1, and a function f such that a /∈ S1(w1), uf (a) 6= l(f, a), and verifying
the other hypotheses in the definition of H3.

Let us consider the function f(x) = x2 sin(1/x) and the weights in [0, 1],

w0(x) =
1
x

, w1(x) =





1 , if x ∈
( 1

2πn + 1/(n + 1)
,

1
2πn− 1/n

]
,

1
n

, if x ∈
( 1

2πn− 1/n
,

1
2π(n− 1) + 1/n

]
.

It is clear that a = 0, a /∈ S1(w1), f ∈ C([0, 1]), f ′ ∈ C((0, 1]), l(f, 0) = f ′(0) = 0 and ess limx→0 f(x)w0(x) =
0. A direct computation shows that uf (0) = −1 and ess limx→0 |f ′(x) + 1|w1(x) = 0 (then f ′ belongs to the
closure of C(R) ∩ L∞(w1) in L∞(w1)).
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We can deduce the following result from Theorem 4.3. We say that two functions u, v are comparable
in the set A if there are positive constants c1, c2 such that c1v(x) ≤ u(x) ≤ c2v(x) for almost every x ∈ A.

Corollary 4.1. Let us consider two weights w0, w1, in [α, β] such that S(w1) = {a} and w0 is comparable
to 1/|x− a| in a neighborhood of a. Then the closure of C1(R)∩W 1,∞(w0, w1) in W 1,∞(w0, w1) is equal to

{
f ∈ W 1,∞(w0, w1) : f ∈ C(R) ∩ L∞(w0)

L∞(w0)
, f ′ ∈ C(R) ∩ L∞(w1)

L∞(w1)
,

f is continuous to the right if a ∈ D+(w1),
f is continuous to the left if a ∈ D−(w1),
∃ f ′(a) and if a /∈ S1(w1), then uf (a) = f ′(a)

}
.

Proof. It is clear that l(f, a) = f ′(a), since w0 is comparable to 1/|x−a|, and it follows that ess limx→a |f(x)−
f ′(a)(x− a)|w0(x) = 0, since f is differentiable in a. ]

We introduce now the following condition which will be essential in the characterization of the functions
f which can be approximated by smooth functions in W 1,∞(w0, w1) in the last case:

Let us consider two weights w0, w1, in [α, β] such that S(w1) = {a} and ess lim supx→a |x−a|w0(x) = ∞,
and f ∈ W 1,∞(w0, w1).

(4.2)

For some d0 > 0 and each n ∈ N ,

there exists φn ∈ C1([a− d0, a + d0]) ∩W 1,∞([a− d0, a + d0], w0, w1)
such that ess lim sup

x→a
|f(x)− φn(x)|w0(x) < 1/n .

Lemma 4.6. Let us consider two weights w0, w1, in [α, β] such that S(w1) = {a} and ess lim supx→a |x −
a|w0(x) = ∞. If f verifies condition (4.2), then for each 0 < d ≤ d0 we can choose the functions φn with
the additional property φn ∈ C1

c ((a− d, a + d)).

Proof. Let us fix 0 < d ≤ d0. We prove that we can choose φn with the additional property φn = 0 in a
neighborhood of a− d. The argument in a neighborhood of a + d is similar.

Let us assume first that ess lim supx→t w1(x) = ∞ for every t ∈ [a− d, a]. Then φ′n = 0 in [a− d, a], and
φn(a) = 0 since ess lim supx→a w0(x) = ∞. Hence, φn = 0 in [a− d, a].

In other case, there exists t ∈ [a − d, a] with ess lim supx→t w1(x) < ∞. Then, there exists a closed
interval A = [a1, a2] ⊂ (a− d, a) with w1 ∈ L∞(A). Let us fix ϕ ∈ C1(R) with ϕ = 0 in (−∞, a1] and φ = 1
in [a2,∞). It is clear that ϕφn ∈ W 1,∞([a− d, a + d], w0, w1) since w1 ∈ L∞(A). Hence, we can substitute
φn by ϕφn. ]

Theorem 4.4. Let us consider two weights w0, w1, in [α, β] such that S(w1) = {a} and ess lim supx→a |x−
a|w0(x) = ∞. Then the closure of C1(R) ∩W 1,∞(w0, w1) in W 1,∞(w0, w1) is equal to

H4 :=
{
f ∈ W 1,∞(w0, w1) : f ∈ C(R) ∩ L∞(w0)

L∞(w0)
, f ′ ∈ C(R) ∩ L∞(w1)

L∞(w1)
,

f is continuous to the right if a ∈ D+(w1),
f is continuous to the left if a ∈ D−(w1),
f satisfies (4.2) and uf (a) = 0

}
.

In fact, for each f ∈ H4 and d > 0 there exist {gn}n in C1(R) with limn→∞ ‖f − gn‖W 1,∞(w0,w1) = 0 and
gn(x) = f(x) if x /∈ (a− d, a + d).

Remarks.
1. Although (4.2) is not a condition so clean than those in H2 or H3, it simplifies notably the approxi-

mation problem, since it is a local condition and there is no reference to f ′ (we do not need to approximate
simultaneously f and f ′). Condition (5.1) below implies (4.2), and Proposition 5.2 characterizes (5.1) in
many situations.

2. Condition (4.2) shows the interaction that must exist between f , w0 and w1 in order to approximate
f by smooth functions (notice that φn ∈ C1(R) ∩W 1,∞(w0, w1)).

16



3. If f(a) ∈ W 1,∞(w0, w1) for any f ∈ C(R) ∩ L∞(w0)
L∞(w0) with f ′ ∈ C(R) ∩ L∞(w1)

L∞(w1) (in
particular, if w0 ∈ L∞([α, β])), then condition (4.2) can be removed (since ess limx→a |f(x)−f(a)|w0(x) = 0)
if we are in some of the following situations (see Remark 2 to Theorem 4.1):

(a) a ∈ S+(w0) ∩ S−(w0), i.e., ess lim infx→a+ w0(x) = ess lim infx→a− w0(x) = 0,
(b) a ∈ S+(w0) and w0 ∈ L∞([a− ε, a]), for some ε > 0,
(c) a ∈ S−(w0) and w0 ∈ L∞([a, a + ε]), for some ε > 0,
(d) w0 ∈ L∞([a− ε, a + ε]), for some ε > 0.

Therefore, in this situation, the statement of Theorem 4.4 is nicer.

Proof. It is clear that if f belongs to the closure of C1(R) ∩ W 1,∞(w0, w1) in W 1,∞(w0, w1), then f ∈
C(R) ∩ L∞(w0)

L∞(w0) and f ′ ∈ C(R) ∩ L∞(w1)
L∞(w1). Lemma 4.4 implies that f is continuous to the right

if a ∈ D+(w1) and f is continuous to the left if a ∈ D−(w1). Proposition 4.2 implies that uf (a) = 0. We
prove now that f satisfies (4.2): Seeking a contradiction, suppose that f does not satisfy (4.2); then there
exist positive constants c, d such that ess lim supx→a |f(x) − φ(x)|w0(x) ≥ c for every φ ∈ C1([a − d, a +
d]) ∩ W 1,∞([a − d, a + d], w0, w1). This means that ‖f − φ‖L∞([a−δ,a+δ],w0) ≥ c for every δ > 0. Hence,
‖f − φ‖L∞(w0) ≥ ‖f − φ‖L∞([a−δ,a+δ],w0) ≥ c for every φ ∈ C1(R) ∩ W 1,∞(w0, w1), which provides the
expected contradiction. Then f ∈ H4.

Let us see now that H4 is contained in the closure of C1(R) ∩ W 1,∞(w0, w1) in W 1,∞(w0, w1). By
Lemma 4.6, given f0 ∈ H4, d > 0 and ε > 0 we can choose φ ∈ C1

c ((a − d, a + d)) ∩ W 1,∞(w0, w1) such
that the function defined by f := f0 − φ verifies ess lim supx→a |f(x)|w0(x) < ε/24; besides, f(x) = f0(x) if
x /∈ (a− d, a+ d). Then there exists δ > 0 with 4‖f − f(a)‖L∞([a−δ,a+δ],w0) < ε/6 (recall that f(a) = 0 since
ess lim supx→a w0(x) = ∞).

Since uf (a) = 0, then applying the argument in the proof of Theorem 4.1 it is possible to find g ∈
C1(R) ∩ W 1,∞(w0, w1) with ‖f − g‖W 1,∞(w0,w1) < ε and g(x) = f(x) if x /∈ (a − d, a + d). Hence, if
g0 := g + φ, it follows that ‖f0 − g0‖W 1,∞(w0,w1) < ε and g0(x) = f0(x) if x /∈ (a− d, a + d). ]

The following result allows to reduce the global approximation problem in W 1,∞(I, w0, w1) by smooth
functions to a local approximation problem, under some technical conditions.

Theorem B. [R1, Theorem 5.2] Let us consider strictly increasing sequences of real numbers {αn}n∈J ,
{βn}n∈J (J is either a finite set, Z, Z+ or Z−) with αn+1 < βn < αn+2 for every n. Let w0, w1 be
weights in the interval I := ∪n[αn, βn]. Assume that for each n there exists an interval In ⊂ [αn+1, βn] with
w1 ∈ L∞(In) and

∫
In

w0 > 0. Then f can be approximated by functions of C1(I) in W 1,∞(I, w0, w1) if and
only if it can be approximated by functions of C1([αn, βn]) in W 1,∞([αn, βn], w0, w1) for each n. The same
result is true if we replace C1 by C∞ in both cases.

Remarks.
1. The proof of this theorem in [R1] is constructive and the main idea is natural: it suffices to consider

functions gn which aproximate f in [αn, βn] and to obtain a function g which aproximate f in I by “pasting”
{gn}n with an appropriate partition of unity. Since the pasting process occurs in ∪nIn, we have g = gn in
[βn−1, αn+1]; furthermore, if there exists a first index n1 in J , then g = gn1 in [αn1 , αn1+1], and if there exists
a last index n2 in J , then g = gn2 in [βn2−1, βn2 ]; in particular, g(αn1) = gn1(αn1) and g(βn2) = gn2(βn2).

2. Condition αn+1 < βn means that (αn, βn) and (αn+1, βn+1) overlap; (αn, βn) ∩ (αn+2, βn+2) = ∅
since βn < αn+2.

In fact, Theorem 5.2 in [R1] is a more general result, but the statement we present here is good enough
for our purposes.

Definition 4.4. The weights w0, w1 are jointly admissible on the interval I, if there exist strictly increasing
sequences of real numbers {αn}n∈J , {βn}n∈J (J is either a finite set, Z, Z+ or Z−) with αn+1 < βn < αn+2

for every n and I := ∪n[αn, βn], and verifying the following conditions:
There exists a partition J1, J2, J3 of J , such that
(a1) if n ∈ J1, then w0 ∈ L∞([αn, βn]) and 1/w1 ∈ L1([αn, βn]),
(a2) if n ∈ J2, then S(w1) ∩ [αn, βn] = {an},
(a3) if n ∈ J3, then S(w1) ∩ [αn, βn] = ∅.
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Remark. Without loss of generality we can assume that an ∈ (βn−1, αn+1) if n ∈ J2: if an ∈ (αn, βn) and
an ≤ βn−1, it suffices to take βn−1 smaller; if an ∈ (αn, βn) and αn+1 ≤ an, it suffices to take αn+1 bigger;
if an = αn, it suffices to take αn bigger (and then n ∈ J3); if an = βn, it suffices to take βn smaller (and
then we also have n ∈ J3). We always assume this property.

Now, we can state the main result of this section. Notice that we do not have any hypothesis about
the singularities of w0, that the weights w0, w1 have a great deal of independence among them, and that the
interval I is not required to be bounded.

Theorem 4.5. Let us consider two weights w0, w1 which are jointly admissible on the interval I. Then the
closure of C1(I) ∩W 1,∞(w0, w1) in W 1,∞(w0, w1) is equal to

H :=
{
f ∈ W 1,∞(w0, w1) : f ∈ C(I) ∩ L∞(w0)

L∞(w0)
, f ′ ∈ C(I) ∩ L∞(w1)

L∞(w1)
,

for each {an} = S(w1) ∩ [αn, βn], with n ∈ J2, we have
f is continuous to the right if an ∈ D+(w1),
f is continuous to the left if an ∈ D−(w1),
if ess lim

x→an

|x− an|w0(x) = 0, ess lim
x→an

|f(x)− f(an)|w0(x) = 0,

if 0 < ess lim sup
x→an

|x− an|w0(x) < ∞,

∃ l(f, an) and ess lim
x→an

|f(x)− l(f, an)(x− an)|w0(x) = 0,

and if an /∈ S1(w1), then uf (an) = l(f, an),
if ess lim sup

x→an

|x− an|w0(x) = ∞, f satisfies (4.2) and uf (an) = 0
}

.

Remarks.
1. Notice that this theorem has a wide range of application. Let us consider the particular case of Jacobi

weights: w0(x) = (1+x)s1(1−x)s2 , w1(x) = (1+x)t1(1−x)t2 , in [−1, 1]. Theorem 4.5 describes the closure
of C1([−1, 1]) ∩W 1,∞([−1, 1], w0, w1) in W 1,∞([−1, 1], w0, w1) for every possible value of the exponents; if
t1 ≤ 0 (respectively t2 ≤ 0), then −1 (respectively 1) is a regular point of w1.

It is obvious that Theorem 4.5 also describes the closure of C1 functions with weights with many singular
points, as w0(x) = |x − a1|s1 |x − a2|s2 · · · |x − am|sm , w1(x) = |x − b1|t1 |x − b2|t2 · · · |x − bn|tn . The same
is true if we change each power |x − α|β by any function with a singularity in α, and even if we consider
weights defined in some interval I such that S(w1) has no accumulation point in the interior of I.

2. Let us observe that in Theorem 4.5 we do not have as hypotheses the technical conditions which
appear in the statement of Theorem B.

In order to prove Theorem 4.5, we need two preliminary results.

Proposition 4.3. Let us consider two weights w0, w1, in A = [α, β] (−∞ ≤ α < β ≤ ∞), with w0 ∈ L∞(A)
and 1/w1 ∈ L1(A). Then

C1(A) ∩W 1,∞(A,w0, w1)
W 1,∞(A,w0,w1) =

{
f ∈ W 1,∞(A,w0, w1) : f ′ ∈ C(A) ∩ L∞(A,w1)

L∞(A,w1)}
.

Furthermore, if f ∈ C1(A) ∩W 1,∞(A, w0, w1)
W 1,∞(A,w0,w1), we can obtain a sequence of functions {Fn} ⊂

C1(A) ∩W 1,∞(A,w0, w1) converging to f in W 1,∞(A,w0, w1) with Fn(α) = f(α) and Fn(β) = f(β). The
same result is true if we replace C1(A) and C(A) by C∞(A) everywhere.

Proof. We prove the non-trivial inclusion. If f ′ ∈ C(A) ∩ L∞(A,w1)
L∞(A,w1), let us consider a sequence

{gn} ⊂ C(A) ∩ L∞(A,w1) which converges to f ′ in L∞(A,w1). Notice that f ′ ∈ L∞(A, w1) and 1/w1 ∈
L1(A) imply that f ′ ∈ L1(A) and hence f is an absolutely continuous function on A. Then the functions
Gn(x) := f(α) +

∫ x

α
gn belongs to C1(A), satisfy Gn(α) = f(α) and

∣∣f(x)−Gn(x)
∣∣ =

∣∣∣
∫ x

α

(
f ′ − gn)

∣∣∣ ≤
∫

A

∣∣f ′ − gn

∣∣ w1

w1
≤ ‖f ′ − gn‖L∞(A,w1)

∫

A

1
w1

.
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Then, ‖f −Gn‖L∞(A,w0) ≤ ‖f ′− gn‖L∞(A,w1)‖w0‖L∞(A)‖1/w1‖L1(A), and we have proved the inclusion. Let
us remark that limn→∞Gn(β) = f(β).

If ess lim supx→t w1(x) = ∞ for every t ∈ A, then any g ∈ C1(A) ∩W 1,∞(A,w0, w1) verifies g′ = 0 in
A, and therefore is constant. Hence the closure of C1(A) ∩W 1,∞(A,w0, w1) is the space of constants, and
then the last conclusion of the proposition is direct.

If we do not have ess lim supx→t w1(x) = ∞ for every t ∈ A, then there exists an interval B ⊂ A
with w1 ∈ L∞(B). Let us consider a function h ∈ C(A) with supp h ⊂ B and

∫
h = 1. In this case we

can define the functions Fn(x) := Gn(x) + (f(β) − Gn(β))
∫ x

α
h ∈ C1(A) ∩ W 1,∞(A,w0, w1), which verify

Fn(α) = f(α) and Fn(β) = f(β). Since limn→∞(f(β)−Gn(β)) = 0, we also have that {Fn} converges to f
in W 1,∞(A,w0, w1).

If we replace C1(A) and C(A) by C∞(A) everywhere in this proof, we obtain that

C∞(A) ∩W 1,∞(A,w0, w1)
W 1,∞(A,w0,w1) =

{
f ∈ W 1,∞(A,w0, w1) : f ′ ∈ C∞(A) ∩ L∞(A,w1)

L∞(A,w1)}
. ]

Proposition 4.4. Let us consider strictly increasing sequences of real numbers {αn}n∈J , {βn}n∈J (J is
either a finite set, Z, Z+ or Z−) with αn+1 < βn < αn+2 for every n. Let w0, w1 be weights in the interval
I := ∪n[αn, βn]. Let us fix f ∈ W 1,∞(I, w0, w1). Assume that for each n ess lim supx→t w1(x) = ∞ for
every t ∈ [αn+1, βn], and that there exist {gk

n}k in C1([αn, βn]) ∩W 1,∞([αn, βn], w0, w1) with limk→∞ ‖f −
gk

n‖W 1,∞([αn,βn],w0,w1) = 0, gk
n(αn) = f(αn) and gk

n(βn) = f(βn). Then f belongs to the closure of C1(I) ∩
W 1,∞(w0, w1) in W 1,∞(w0, w1). The same result is true if we replace C1 by C∞ in both cases.

Proof. For each n, let us consider {gk
n}k in C1([αn, βn]) with ‖f − gk

n‖W 1,∞([αn,βn],w0,w1) < 1/k, gk
n(αn) =

f(αn) and gk
n(βn) = f(βn). Since ess lim supx→t w1(x) = ∞ for every t ∈ [αn+1, βn], we have that (gk

n)′ =
(gk

n+1)
′ = f ′ = 0 in [αn+1, βn]. Consequently, gk

n(x) = f(x) = f(βn) for every x ∈ [αn+1, βn], and gk
n+1(x) =

f(x) = f(αn+1) for every x ∈ [αn+1, βn]. Since gk
n+1 = gk

n in [αn+1, βn], for each k we can define a function
gk ∈ C1(I) as gk = gk

n in [αn, βn] for each n, and then ‖f − gk‖W 1,∞(w0,w1) < 1/k. It is clear now that the
same result is true if we replace C1 by C∞ in both cases. ]

Proof of Theorem 4.5. Theorems 4.2, 4.3 and 4.4, and Proposition 4.3 allow to deduce that any function
in the closure of C1(I) in W 1,∞(w0, w1) belongs to H. Let us observe that the closure of C1([αn, βn]) ∩
W 1,∞([αn, βn], w0, w1) in W 1,∞([αn, βn], w0, w1) is C1([αn, βn])∩W 1,∞([αn, βn], w0, w1) if n ∈ J3, since the
closure of C([αn, βn]) ∩ L∞([αn, βn], w1) in L∞([αn, βn], w1) is C([αn, βn]) ∩ L∞([αn, βn], w1), by Theorem
2.1.

We prove now the other inclusion. Let us consider the sequences {αn}n∈J and {βn}n∈J in the definition
of jointly admissible weights. Recall that an ∈ (βn−1, αn+1) if n ∈ J2. This fact allows to take the
approximations in theorems 4.2, 4.3 and 4.4 with the same values of the approximated function in αn and
βn.

We show that each function f ∈ H can be approximated by functions of C1(I) in W 1,∞(I, w0, w1) if it
can be approximated by functions of C1([αn, βn]) in W 1,∞([αn, βn], w0, w1) for each n; then we can apply
theorems 4.2, 4.3 and 4.4, and Proposition 4.3, which show that any function in H belongs to the closure of
C1([αn, βn]) in W 1,∞([αn, βn], w0, w1) for every n. We use an argument with two steps, using Theorem B
and Proposition 4.4.

Let us assume first that for each n there exists an interval In ⊂ [αn+1, βn] with w1 ∈ L∞(In).
Let us remark that an /∈ In if n ∈ J2, since an < αn+1. Then every function f in H belongs to C(In):

if n ∈ J2 ∪ J3, then S(w1) ∩ In = ∅ and f ∈ C1(In); if n ∈ J1, then f ′ ∈ L1(In) and f ∈ AC(In). For
each f ∈ H, let us define cn := ‖f‖−1

L∞(In) if ‖f‖L∞(In) > 0 and cn := 1 in other case. Then f ∈ L∞(w∗0),
where w∗0 := w0 +

∑
n cnχ

In
, since ‖f‖L∞(w∗0 ) ≤ ‖f‖L∞(w0) + 1. We also have

∫
In

w∗0 > 0 for each n ∈ J .
Hence, theorems B, 4.2, 4.3 and 4.4, and Proposition 4.3 finish the proof of Theorem 4.5 in this case, since
the closures of C1([αn, βn]) in W 1,∞([αn, βn], w0, w1) and in W 1,∞([αn, βn], w∗0 , w1) are the same (recall that
any f in the closure of C1([αn, βn]) in W 1,∞([αn, βn], w0, w1) belongs to C(In)).

In the general case, there are some n’s with ess lim supx→t w1(x) = ∞ for every t ∈ [αn+1, βn]. The
simplified version of Theorem 4.5 which we have proved allows to joint some intervals in a single interval
(recall the first remark to Theorem B); therefore, we can assume that ess lim supx→t w1(x) = ∞ for every
t ∈ [αn+1, βn] and every n. Then, Proposition 4.4, theorems 4.2, 4.3 and 4.4, and Proposition 4.3 finish the
proof. ]
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5. APPROXIMATION BY C∞ FUNCTIONS IN W 1,∞(I, w0, w1)

We are also interested in approximation by more regular functions. With some additional hypothesis
we can use Theorem 4.1 in order to approximate by C∞ functions.

Theorem 5.1. Let us consider two weights w0, w1, in [α, β] such that S(w1) = {a} and w0, w1 ∈ L∞loc([α, β]\
{a}). Then every function in

H5 :=
{
f ∈ W 1,∞(w0, w1) : f ∈ C(R) ∩ L∞(w0)

L∞(w0)
, f ′ ∈ C(R) ∩ L∞(w1)

L∞(w1)
,

f is continuous to the right if a ∈ D+(w1),
f is continuous to the left if a ∈ D−(w1),
ess lim

x→a
|f(x)− f(a)|w0(x) = 0, ess lim

x→a
uf (a)(x− a)w0(x) = 0,

and ess lim
x→a

|f ′(x)− uf (a)|w1(x) = 0
}

,

can be approximated by functions {gn}n in C∞(R) ∩ W 1,∞(w0, w1) with the norm of W 1,∞(w0, w1), with
gn(α) = f(α) if a 6= α and with gn(β) = f(β) if a 6= β.

Remark. In the remark after Theorem 4.1 appear simple conditions which guarantee the properties which
define H5.

Proof. Let us consider f ∈ H5 and ε > 0. Theorem 4.1 implies that there exists g0 ∈ C1(R) with
‖f −g0‖W 1,∞(w0,w1) < ε/2, such that g0 is a polynomial of degree at most 1 in [a−2δ, a+2δ] for some δ > 0.

Let us choose an even function φ ∈ C∞c ([−1, 1]) with φ ≥ 0 and
∫

φ = 1. For each t > 0, we define
φt(x) := t−1φ(x/t) and gt := g0 ∗ φt; these functions satisfy φt ∈ C∞c ([−t, t]), φt ≥ 0 and

∫
φt = 1.

It is well known that gt ∈ C∞(R), and that gt (respectively g′t) converges uniformly in [α, β] to g0

(respectively g′0) when t → 0.
Notice that if h is a polynomial of degree at most 1, then h ∗ φt = h, since 1 ∗ φt =

∫
φt = 1 and

x∗φt = x: it is sufficient to notice that (x∗φt)(0) =
∫

yφt(y) dy = 0 and (x∗φt)′ = 1∗φt = 1. Consequently,
gt = g0 in [a − δ, a + δ], for 0 < t < δ, since under this hypothesis, the integral defining gt only takes into
account the values of g0 in which it is a polynomial of degree at most 1.

Since w0, w1 ∈ L∞loc([α, β] \ {a}), there exists a constant M with w0, w1 ≤ M in [α, β] \ (a − δ, a + δ).
Therefore

‖gt − g0‖W 1,∞(w0,w1) = ‖gt − g0‖W 1,∞([α,β]\(a−δ,a+δ),w0,w1) ≤ M‖gt − g0‖W 1,∞([α,β]\(a−δ,a+δ)) <
ε

2
,

if t is small enough, since gt and g′t converge uniformly in [α, β] to g0 and g′0 respectively.
Then ‖f − gt‖W 1,∞(w0,w1) < ε if t is small enough.
Let us assume that a 6= α. Fix ϕ ∈ C∞(R) with ϕ = 1 in (−∞, α] and ϕ = 0 in [a − δ,∞). Since

gt converges uniformly to g0 in [α, β], g0(α) = f(α) and w0, w1 ≤ M in [α, a − δ], we can choose t with
the additional condition |f(α) − gt(α)| ‖ϕ‖W 1,∞(w0,w1) < ε. Therefore, gt := gt + (f(α) − gt(α))ϕ verifies
gt(α) = f(α) and ‖f − gt‖W 1,∞(w0,w1) ≤ ‖f − gt‖W 1,∞(w0,w1) + |f(α)− gt(α)| ‖ϕ‖W 1,∞(w0,w1) < 2ε. If a 6= β,
we use a similar argument in a neighborhood of β. ]

Definition 5.1. We say that a weight w1 in [α, β] is balanced at a ∈ [α, β], if it verifies some of the following
conditions:

(a) a ∈ S+(w1) ∩ S−(w1), i.e., ess lim infx→a+ w1(x) = ess lim infx→a− w1(x) = 0,
(b) a ∈ S+(w1) and w1 ∈ L∞([a− ε, a]), for some ε > 0,
(c) a ∈ S−(w1) and w1 ∈ L∞([a, a + ε]), for some ε > 0,
(d) a = α or a = β.

Theorem 5.1 and Remark 3 to Theorem 4.1, give the following result.
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Corollary 5.1. Let us consider two weights w0, w1, in [α, β] such that S(w1) = {a}, w1 is balanced at
a, and w0, w1 ∈ L∞loc([α, β] \ {a}). Then every function in H1 can be approximated by functions {gn}n in
C∞(R)∩W 1,∞(w0, w1) with the norm of W 1,∞(w0, w1), with gn(α) = f(α) if a 6= α and with gn(β) = f(β)
if a 6= β.

We introduce now the following condition which plays the same role that (4.2) in the approximation by
functions in C∞:

Let us consider two weights w0, w1, in [α, β] such that S(w1) = {a} and ess lim supx→a |x−a|w0(x) = ∞,
and f ∈ W 1,∞(w0, w1).

(5.1)

For some d0 > 0 and each n ∈ N ,

there exists φn ∈ C∞([a− d0, a + d0]) ∩W 1,∞([a− d0, a + d0], w0, w1)
such that ess lim sup

x→a
|f(x)− φn(x)|w0(x) < 1/n .

Remarks.
1. We will see in propositions 5.1 and 5.2 that condition (5.1) can be substituted in many cases by

simpler conditions which only involve f .
2. The same argument as that in the proof of Lemma 4.6 allows to deduce that if f verifies condition

(5.1), then for each 0 < d ≤ d0 we can choose the functions φn with the additional property φn ∈ C∞c ((a−
d, a + d)).

Let us assume that w0, w1 ∈ L∞loc([α, β] \ {a}), S(w1) = {a}, and w1 is balanced at a. The argument in
the proof of Theorem 4.2 (using Corollary 5.1) gives that if ess limx→a |x− a|w0(x) = 0, then the closure of
C∞(R) ∩W 1,∞(w0, w1) in W 1,∞(w0, w1) is H2. In a similar way, if 0 < ess lim supx→a |x − a|w0(x) < ∞,
then the closure of C∞(R)∩W 1,∞(w0, w1) in W 1,∞(w0, w1) is H3. We also have that, if ess lim supx→a |x−
a|w0(x) = ∞, then the closure of C∞(R) ∩ W 1,∞(w0, w1) in W 1,∞(w0, w1) is H4, if we change (4.2) by
(5.1). We also obtain that if f ∈ Hj (2 ≤ j ≤ 4), then it can be approximated by functions {gn}n in
C∞(R)∩W 1,∞(w0, w1) with the norm of W 1,∞(w0, w1), with gn(α) = f(α) if a 6= α and with gn(β) = f(β)
if a 6= β.
Definition 5.2. The weights w0, w1 are strongly jointly admissible on the interval I, if they verify the
conditions in the definition of jointly admissible (Definition 4.4), with J3 = ∅ and replacing (a2) by

(a2′) if n ∈ J2, then S(w1) ∩ [αn, βn] = {an}, w0, w1 ∈ L∞loc([αn, βn] \ {an}), and w1 is balanced at an.
Remark. We choose J3 = ∅, since in this context we must require w0, w1 ∈ L∞([αn, βn]) additionally in
(a3), and these facts imply the hypothesis in (a1). Hence, J1 plays here the role of J1 ∪ J3 in Definition 4.4.

The following is the main result of this section.

Theorem 5.2. Let us consider two weights w0, w1 which are strongly jointly admissible on the interval I.
Then the closure of C∞(I) ∩W 1,∞(w0, w1) in W 1,∞(w0, w1) is equal to

H6 :=
{
f ∈ W 1,∞(w0, w1) : f ∈ C(I) ∩ L∞(w0)

L∞(w0)
, f ′ ∈ C(I) ∩ L∞(w1)

L∞(w1)
,

f ′ ∈ C∞([αn, βn]) ∩ L∞([αn, βn], w1)
L∞([αn,βn],w1)

, for any n ∈ J1,
for each {an} = S(w1) ∩ [αn, βn], with n ∈ J2, we have
f is continuous to the right if an ∈ D+(w1),
f is continuous to the left if an ∈ D−(w1),
if ess lim

x→an

|x− an|w0(x) = 0, ess lim
x→an

|f(x)− f(an)|w0(x) = 0,

if 0 < ess lim sup
x→an

|x− an|w0(x) < ∞,

∃ l(f, an) and ess lim
x→an

|f(x)− l(f, an)(x− an)|w0(x) = 0,

and if an /∈ S1(w1), then uf (an) = l(f, an),
if ess lim sup

x→an

|x− an|w0(x) = ∞, f satisfies (5.1) and uf (an) = 0
}

.

Remark. In Theorem 2.1 and in [PQRT1] we characterize C∞ ∩ L∞(w)
L∞(w)

for a general kind of weights.
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Proof. We only need to follow the argument in the proof of Theorem 4.5, replacing the functions in C
or C1, by functions in C∞. This is the reason why we need to require that f ′ belongs to the closure of
C∞([αn, βn]) ∩ L∞([αn, βn], w1) in L∞([αn, βn], w1) for any n ∈ J1. ]

In many situations we can simplify condition (5.1).

Proposition 5.1. Let us consider two weights w0, w1, in [α, β] such that S(w1) = {a}, and ess lim supx→a |x−
a|w0(x) = ∞. Let us assume that for some function s verifying 0 < m ≤ |s(x)| ≤ M < ∞ a.e., there exists
ess limx→a φ(x)s(x)w0(x) for every φ ∈ C∞(R)∩W 1,∞(w0, w1). Let us denote by D(w0, a) the set of values
of these limits when we consider every φ ∈ C∞(R)∩W 1,∞(w0, w1) (D(w0, a) is either {0} or R). Then (5.1)
is equivalent to the following: for any f ∈ W 1,∞(w0, w1) the limit ess limx→a f(x)s(x)w0(x) there exists and
belongs to D(w0, a).

Remarks.
1. By Remark 2 behind (5.1), the functions in C∞(R) ∩W 1,∞(w0, w1) can be substituted by C∞([a−

d, a + d]) ∩W 1,∞([a− d, a + d], w0, w1) everywhere in Proposition 5.1, for some (or for every) d > 0.
2. The conclusion of Proposition 5.1 also holds if we substitute (5.1) by (4.2) and C∞ by C1 everywhere.
3. A natural choice for s is s(x) := 1 or s(x) := sgn (x− a) (see the proof of Proposition 5.2).

Proof. Let us fix f ∈ W 1,∞(w0, w1). If the limit d := ess limx→a f(x)s(x)w0(x) exists and belongs to
D(w0, a), we have (5.1) with φn := φ, where φ is a function in C∞(R)∩W 1,∞(w0, w1) with ess limx→a φ(x)s(x)w0(x) =
d, since then ess limx→a |f(x) − φ(x)|w0(x) ≤ m−1 ess limx→a |f(x)s(x)w0(x) − φ(x)s(x)w0(x)| = 0. If d /∈
D(w0, a), then D(w0, a) is {0}, and consequently d 6= 0; hence, ess lim supx→a |f(x)−φ(x)|w0(x) ≥ |d|/M >
0, for every φ ∈ C∞(R)∩W 1,∞(w0, w1). If the limit ess limx→a f(x)s(x)w0(x) does not exist, a similar argu-
ment implies that there exists a constant c = c(f, M) > 0 such that ess lim supx→a |f(x)−φ(x)|w0(x) ≥ c > 0,
for every φ ∈ C∞(R) ∩W 1,∞(w0, w1). ]

Definition 5.3. We say that a weight w0 has potential growth at a, if ess lim supx→a |x − a|mw0(x) < ∞,
for some natural number m. If w0 has potential growth at a, we say that the degree of w0 at a is m, if m is
the minimum natural number with ess lim supx→a |x− a|mw0(x) < ∞.

Proposition 5.2. Let us consider two weights w0, w1, in [α, β] such that S(w1) = {a}, ess lim supx→a |x−
a|w0(x) = ∞ and w0 has potential growth at a. Let us assume that m is the degree of w0 at a.

(1) If ess limx→a |x− a|mw0(x) = 0, then (5.1) is equivalent to ess limx→a |f(x)|w0(x) = 0.
(2) If ess lim supx→a |x−a|mw0(x) > 0 and ess lim supx→a |x−a|m−1w1(x) < ∞, then we can substitute

(5.1) by the following condition: there exists lm(f, a) := ess limx→a,|x−a|mw0(x)≥η f(x)/(x − a)m for η small
enough, and ess limx→a |f(x)− lm(f, a)(x− a)m|w0(x) = 0.

(3) If w0(x) is comparable with |x−a|−m in a neighborhood of a, for some positive integer m, then (5.1)
is equivalent to the existence of ess limx→a f(x)/(x− a)m.

Proof. (1) Let us fix f ∈ W 1,∞(w0, w1) with ess limx→a |f(x)|w0(x) = 0; then (5.1) holds with φn := 0.
In order to see the other implication, let us fix f ∈ W 1,∞(w0, w1) satisfying (5.1). Let us consider

φ ∈ C∞(R) ∩ W 1,∞(w0, w1). Condition ess lim supx→a |x − a|m−1w0(x) = ∞ implies φ(a) = φ′(a) =
· · · = φ(m−1)(a) = 0; then φ(x) ≈ φ(m)(a)/m!(x − a)m, and condition ess limx→a |x − a|mw0(x) = 0
gives ess limx→a φ(x)w0(x) = 0 for every φ ∈ C∞(R) ∩W 1,∞(w0, w1). Hence ess lim supx→a |f(x)|w0(x) =
ess lim supx→a |f(x)− φn(x)|w0(x) < 1/n for every n.

(2) Let us fix f ∈ W 1,∞(w0, w1) satisfying (5.1). An argument similar to the one in the proof of part
(a) of Proposition 4.1 implies that there exists lm(f, a) for 0 < η < ess lim supx→a |x − a|mw0(x), and that
φ

(m)
n (a)/m! −→ lm(f, a) as n → ∞. In order to finish the proof of this implication, it is sufficient to follow

the argument in the proof of the first part of Theorem 4.4, taking the function lm(f, a)(x − a)m instead of
l(f, a)(x− a).

We deal with the other implication. Let us consider f ∈ W 1,∞(w0, w1) such that there exists lm(f, a)
for η small enough, and ess limx→a |f(x)− lm(f, a)(x−a)m|w0(x) = 0. In order to verify (5.1), it is sufficient
to take as φn = φ the function lm(f, a)(x− a)m multiplied by an appropriate smooth function with compact
support which is equal to 1 in a neighborhood of a (φ belongs to W 1,∞(w0, w1) by hypothesis).

(3) It is sufficient to apply Proposition 5.1 with s(x) := (x− a)−m/w0(x). ]
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[RARP1] Rodŕıguez, J. M., Alvarez, V., Romera. E., Pestana, D., Generalized weighted Sobolev spaces and
applications to Sobolev orthogonal polynomials I, Acta Appl. Math. 80 (2004), 273-308.
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VENEZUELA

e-mail: yquintana@usb.ve

24


