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Abstract. K. Mahler introduced the concept of perfect systems in the general theory he de-
veloped for the simultaneous Hermite-Padé approximation of analytic functions. We prove that

Nikishin systems are perfect providing, by far, the largest class of systems of functions for which

this important property holds. As consequences, in the context of Nikishin systems, we ob-
tain: an extension of Markov’s theorem to simultaneous Hermite-Padé approximation, a general

result on the convergence of simultaneous quadrature rules of Gauss-Jacobi type, the logarith-

mic asymptotics of general sequences of multiple orthogonal polynomials, and an extension of
the Denisov-Rakhmanov theorem for the ratio asymptotics of mixed type multiple orthogonal

polynomials.
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1. Introduction

1.1. Some historical remarks. In 1873, Charles Hermite publishes in [28] his proof of the tran-
scendence of e making use of simultaneous rational approximation of systems of exponentials. That
paper marked the beginning of the modern analytic theory of numbers.

The formal theory of simultaneous rational approximation for general systems of analytic func-
tions was initiated by K. Mahler in lectures delivered at the University of Groningen in 1934-35.
These lectures were published years later in [32]. Important contributions in this respect are also
due to his students J. Coates and H. Jager, see [12] and [29]. K. Mahler’s approach to the simulta-
neous approximation of finite systems of analytic functions may be reformulated in the following
terms.

Let f = (f0, . . . , fm) be a family of analytic functions in some domain D of the extended complex
plane containing ∞. Fix a non-zero multi-index n = (n0, . . . , nm) ∈ ℤm+1

+ , ∣n∣ = n0 + . . . , nm.
There exist polynomials an,0, . . . , an,m, not all identically equal to zero, such that

i) deg an,j ≤ nj − 1, j = 0, . . . ,m (deg an,j ≤ −1 means that an,j ≡ 0),

ii)
∑m
j=0 an,j(z)fj(z)− dn(z) = O(1/z∣n∣), z →∞,

for some polynomial dn. Analogously, there exists Qn, not identically equal to zero, such that

i) degQn ≤ ∣n∣,
ii) Qn(z)fj(z)− Pn,j(z) = O(1/znj+1), z →∞, j = 0, . . . ,m,

for some polynomials Pn,j , j = 0, . . . ,m.
Initially, the polynomials an,0, . . . , an,m were called latin and Qn german polynomials, due to

the letters employed in denoting them (see the papers of Mahler, Coates and Jager cited above).
The polynomials dn and Pn,j , j = 0, . . . ,m, are uniquely determined from ii) once their partners are
found. Later, the two constructions have been called type I and type II polynomials (approximants)
of the system (f0, . . . , fm). Algebraically, they are closely related. This is clearly exposed in
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2 FIDALGO AND LÓPEZ

[12], [29], and [32]. When m = 0 both definitions coincide with that of the well-known Padé
approximation in its linear presentation.

Apart from Hermite’s result, type I, type II, and a combination of the two (called mixed type),
have been employed in the proof of the irrationality of other numbers. For example, in [7] F. Beukers
shows that Apery’s proof (see [1]) of the irrationality of �(3) can be placed in the context of mixed
type Hermite-Padé approximation. See [47] for a brief introduction and survey on the subject.
More recently, mixed type approximation has appeared in random matrix and non-intersecting
brownian motions theories (see, for example, [6] and [13]).

In applications in the areas of number theory, convergence of simultaneous rational approxima-
tion, and asymptotic properties of type I and type II polynomials, a central question is that of
uniqueness, to within a constant factor.

Definition 1.1. A multi-index n is said to be normal for the system f for type I approximation
(respectively, for type II,) if deg an,j = nj − 1, j = 0, . . . ,m (respectively, degQn = ∣n∣). A system
of functions f is said to be perfect if all multi-indices are normal.

It is easy to see that under normality (an,0, . . . , an,m) and Qn are uniquely determined to within
a constant factor.

Considering the construction at the origin (instead of z = ∞ which we chose for convenience),
the system of exponentials considered by Hermite, (ew0z, . . . , ewmz), wi ∕= wj , i ∕= j, i, j = 0, . . . ,m,
is known to be perfect for type I and type II. A second example of a perfect system for both types is
that given by the binomial functions (1−z)w0 , . . . , (1−z)wm , wi−wj ∕∈ ℤ. All multi-indices n such
that n0 ≥ ⋅ ⋅ ⋅ ≥ nm are known to be type I and type II normal for (logm(1− x), . . . , log(1− x), 1).
When normality occurs for multi-indices with decreasing components the system is said to be
weakly perfect. Except for systems formed by Cauchy transforms of measures, basically these
are the only examples known of perfect or weakly perfect systems.

1.2. Markov systems and orthogonality. Let s be a finite Borel measure with constant sign
whose compact support consists of infinitely many points and is contained in the real line. In the
sequel, we only consider such measures. By Δ we denote the smallest interval which contains the
support, supp s, of s. We denote this class of measures by ℳ(Δ). Let

ŝ(z) =

∫
ds(x)

z − x
denote the Cauchy transform of s. Obviously, ŝ ∈ ℋ(ℂ ∖Δ); that is, it is analytic in ℂ ∖Δ. If we
apply the construction above to the system formed by ŝ (m = 0), it is easy to verify that Qn turns
out to be orthogonal to all polynomials of degree less than n ∈ ℤ+. Consequently, degQn = n, all
its zeros are simple and lie in the open convex hull Co(supp s) of supp s. Therefore, such systems
are perfect. Let us see two other examples much more illustrating.

1.2.1. Angelesco systems. In [2], A. Angelesco considered the following systems of functions. Let
Δj , j = 0, . . . ,m, be pairwise disjoint bounded intervals contained in the real line and sj , j =
0, . . . ,m, a system of measures such that Co(supp sj) = Δj .

Fix n ∈ ℤm+1
+ and consider the type II approximant of the so called Angelesco system of

functions (ŝ0, . . . , ŝm) relative to n. It turns out that∫
x�Qn(x)dsj(x) = 0, � = 0, . . . , nj − 1, j = 0, . . . ,m.

Therefore, Qn has nj simple zeros in the interior (with respect to the euclidean topology of ℝ)
of Δj . In consequence, since the intervals Δj are pairwise disjoint, degQn = ∣n∣ and Angelesco
systems are type II perfect. Type I perfectness for Angelesco systems has not been studied.

Unfortunately, Angelesco’s paper received little attention and such systems reappear many years
later in [34] where E.M. Nikishin deduces some of their formal properties.

Though type II normality for Angelesco systems is so easy to deduce, the multiple orthogonal
polynomials and the rational approximations associated with them do not have good asymptotic
behavior. In [25] and [3], their logarithmic and strong asymptotic formulas, respectively, are given.
In this respect, a different system of Markov functions turns out to be much more interesting and
foundational from the geometric and analytic points of view.
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1.2.2. Nikishin systems. In an attempt to construct general classes of functions for which normality
takes place, in [35] E.M. Nikishin introduced the concept of MT-system. Let Δ�,Δ� be two non
intersecting bounded intervals contained in the real line and �� ∈ ℳ(Δ�), �� ∈ ℳ(Δ�). With
these two measures we define a third one as follows (using the differential notation)

d⟨��, ��⟩(x) = �̂�(x)d��(x);

that is, one multiplies the first measure by a weight formed by the Cauchy transform of the second
measure. Certainly, this product of measures is non commutative.

Above, �̂� denotes the Cauchy transform of the measure �� . The reader may argue, and we
agree, that the appropriate notation is �̂� . However, throughout the paper, we will need Cauchy

transforms of measures with several sub-indices and supra-indices; for example ŝ2
1,j (and much

more extended). The correct notation causes space consumption and aesthetic inconveniences. So,
be cautious, ŝ2

1,j is not the Cauchy transform of s sub-indexed with 1, j and then squared, but

precisely the Cauchy transform of a measure denoted s2
1,j . The good news is that powers rarely

appear in the paper and they are clear from the context (for example, (−1)j or z2).

Definition 1.2. Take a collection Δj , j = 0, . . . ,m, of intervals such that

Δj ∩Δj+1 = ∅, j = 0, . . . ,m− 1.

Let (�0, . . . , �m) be a system of measures such that Co(supp�j) = Δj , �j ∈ℳ(Δj), j = 0, . . . ,m.
We say that (s0, . . . , sm) = N (�0, . . . , �m), where

s0 = �0, s1 = ⟨�0, �1⟩, . . . , sm = ⟨�0, ⟨�1, . . . , �m⟩⟩
is the Nikishin system of measures generated by (�0, . . . , �m).

Fix n ∈ ℤm+1
+ and consider the type II approximant of the Nikishin system of functions

(ŝ0, . . . , ŝm) relative to n. It is easy to prove that∫
x�Qn(x)dsj(x) = 0, � = 0, . . . , nj − 1, j = 0, . . . ,m.

All the measures sj have the same support; therefore, it is not immediate to conclude that degQn =
∣n∣. Nevertheless, if we denote

sj,k = ⟨�j , �j+1, . . . , �k⟩, j < k, sj,j = ⟨�j⟩ = �j ,

the previous orthogonality relations may be rewritten as follows∫
(p0(x) +

m∑
k=1

pj(x)ŝ1,k(x))Qn(x)d�0(x) = 0, (1)

where p0, . . . , pm are arbitrary polynomials such that deg pk ≤ nk − 1, k = 0, . . . ,m.

Definition 1.3. A system of real continuous functions u0, . . . , um defined on an interval Δ is
called an AT-system on Δ for the multi-index n ∈ ℤm+1

+ if for any choice of real polynomials (that
is, with real coefficients) p0, . . . , pm,deg pk ≤ nk − 1, the function

m∑
k=0

pk(x)uk(x)

has at most ∣n∣ − 1 zeros on Δ. If this is true for all n ∈ ℤm+1
+ we have an AT system on Δ.

In other words, u0, . . . , um forms an AT-system for n on Δ when the system of functions

(u0, . . . , x
n0−1u0, u1, . . . , x

nm−1um)

is a Tchebyshev system on Δ of order ∣n∣−1. From the properties of Tchebyshev systems (see [30,
Theorem 1.1]), it follows that given x1, . . . , xN , N < ∣n∣, points in the interior of Δ one can find
polynomials ℎ0, . . . , ℎm, conveniently, with deg ℎk ≤ nk − 1, such that

∑m
k=0 ℎk(x)uk(x) changes

sign at x1, . . . , xN , and has no other points where it changes sign on Δ.
In [35], Nikishin stated without proof that the system of functions (1, ŝ1,1, . . . , ŝ1,m) forms

an AT-system for all multi-indices n such that n0 ≥ ⋅ ⋅ ⋅ ≥ nm (he proved it when additionally
n0 − nm ≤ 1). Due to (1) this implies that Nikishin systems are type II weakly perfect.
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The proof of Nikishin’s assertion is a consequence of [15, Theorem 4.1]. Actually, Driver and
Stahl proved normality for the wider class of multi-indices

ℤm+1
+ (⊛) = {n ∈ ℤm+1

+ : 0 ≤ j < k ≤ m⇒ nk ≤ nj + 1}

(see also [26]). In [15, Theorem 4.2], for the same class of multi-indices, the authors also proved
type I weak perfectness for Nikishin systems. In the same paper (see remark on page 171), it is
shown that when m = 1 Nikishin systems are type II perfect. Improvements are also contained in
[9, Theorem 1] (see also [22, Theorem 2]) where normality is proved for all multi-indices in

ℤm+1
+ (∗) = {n ∈ ℤm+1

+ :∕ ∃ 0 ≤ i < j < k ≤ m such that ni < nj < nk}

and [19, Theorem 1] containing the proof that for m = 2 Nikishin systems are type II perfect.
Ever since the appearance of [35], a subject of major interest for those involved in simultaneous

approximation was to determine whether or not Nikishin systems are perfect. The main result of
this paper gives a positive answer to this question. Moreover, we will prove perfectness for mixed
type Nikishin systems, containing type I and type II as particular cases. The proof is based on
the reduction of the problem to the case of multi-indices with decreasing components (that is, to
weak perfectness). In the sequel,

ℤm+1
+ (∙) = {n ∈ ℤm+1

+ : n0 ≥ ⋅ ⋅ ⋅ ≥ nm}.

Notice that

ℤm+1
+ (∙) ⊂ ℤm+1

+ (⊛) ⊂ ℤm+1
+ (∗) ⊂ ℤm+1

+ .

When m = 0 these sets are equal. For m = 1 the last two coincide. If m ≥ 2 they are all distinct.
The proof of the main result relies on interesting reduction formulas concerning products and

ratios of Cauchy transforms of measures. We will see numerous consequences of the perfectness of
Nikishin systems in: convergence of simultaneous Padé approximation, convergence of simultaneous
quadrature rules, and asymptotic properties of multiple orthogonal polynomials.

1.2.3. Mixed type Nikishin systems. In [42], Sorokin introduced the following construction. Let

F = (fj.k),

be an (m2 + 1) × (m1 + 1) dimensional matrix of analytic functions in some domain D of the
extended complex plane containing ∞. Fix a multi-index n = (n1;n2) ∈ ℤm1+1

+ × ℤm2+1
+ , such

that ∣n1∣ = ∣n2∣ + 1. We denote ni = (ni,0, . . . , ni,mi), i = 1, 2. There exists a vector polynomial
An = (an,0, . . . , an,m1

), such that

a) An ∕≡ 0,deg an,k ≤ n1,k − 1, k = 0, . . . ,m1,
b) (FAtn − Dtn)(z) = (O(1/zn2,0+1), . . . ,O(1/zn2,m2

+1)t =: O(1/zn2+1), z →∞.
for some m2 + 1 dimensional vector polynomial Dn (the super-index t means taking transpose and
0 denotes the zero vector). Finding An reduces to solving a linear homogeneous system of ∣n2∣
equations determined by the conditions b) on ∣n1∣ unknowns (the total number of coefficients of
the polynomials an,k, k = 0, . . . ,m1). Since ∣n2∣+ 1 = ∣n1∣ a non trivial solution exists.

Definition 1.4. A non zero vector An satisfying a)-b) is called mixed type vector polynomial
relative to F and n ∈ ℤm1+1

+ × ℤm2+1
+ . If deg an,k = n1,k − 1, k = 0, . . . ,m1, the multi-index n is

called mixed type normal. F is mixed type perfect when all multi-indices in ℤm1+1
+ × ℤm2+1

+ are
normal.

This construction has as particular cases type I (m2 = 0) and type II (m1 = 0) polynomials.

Let S1 = (s1
0,0, . . . , s

1
0,m1

) = N (�1
0 , . . . , �

1
m1

), S2 = (s2
0,0, . . . , s

2
0,m2

) = N (�2
0 , . . . , �

2
m2

), �1
0 =

�2
0 , be two given Nikishin systems generated by m1 + 1 and m2 + 1 measures, respectively. We

underline the fact that both Nikishin systems stem from the same basis measure �1
0 = �2

0 , but
there is no other restriction on them. Let us introduce the row vectors

U = (1, ŝ2
1,1, . . . , ŝ

2
1,m2

), V = (1, ŝ1
1,1, . . . , ŝ

1
1,m1

)

and the (m2 + 1)× (m1 + 1) dimensional matrix function

W = UtV.
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Define the matrix Markov type function

Ŝ(z) =

∫
W(x)d�2

0(x)

z − x

understanding that integration is carried out entry by entry on the matrix W. We say that Ŝ is a
mixed type Nikishin system of functions.

In the rest of the paper, we will study mixed type Nikishin systems and their mixed type
polynomials. Occasionally, we reduce the study to type II (m1 = 0). In such cases, for simplicity,
we reduce the notation. Namely, n = (n0, . . . , nm), the vector function will be f = (ŝ0, . . . , ŝm),
where m = m2, and (s0, . . . , sm) = N (�0, . . . , �m). The mixed type polynomials An will then be
denoted Qn.

1.3. Statement of the main results. Mixed type Nikishin systems and their associated mixed
type polynomials satisfy many interesting properties. Let us begin with

Theorem 1.1. Let (s1,1, . . . , s1,m) = N (�1, . . . , �m) be given. Then, the system (1, ŝ1,1, . . . , ŝ1,m)
forms an AT-system on any interval Δ disjoint from Δ1 = Co(supp�1). Moreover, for each
n ∈ ℤm+1

+ , and arbitrary polynomials with real coefficients pk,deg pk ≤ nk − 1, k = 0, . . . ,m, the

linear form p0 +
∑m
k=1 pkŝ1,k, has at most ∣n∣ − 1 zeros in ℂ ∖Δ1.

From here, we can prove

Theorem 1.2. The matrix Ŝ is mixed type perfect. For each n ∈ ℤm1+1
+ × ℤm2+1

+ , ∣n1∣ = ∣n2∣+ 1,
the vector polynomial An is uniquely determined up to a constant factor.

In particular, this means that Nikishin systems are type I and type II perfect.
An easy consequence of Theorem 1.2 (more precisely, of Lemma 2.3 below) is that the linear

form

An := an,0 +

m1∑
k=1

an,kŝ
1
1,k,

has at least ∣n2∣ sign changes in the interior (with respect to the euclidean topology of ℝ) of the
interval Δ0. In particular, for any n ∈ ℤm+1

+ , the type II polynomial Qn(= an,0) has all its zeros
located inside Co(supp�0). This has a striking consequence in terms of the convergence of type II
rational approximation of Nikishin systems.

In [35], it was proved that for (s0, s1) = N (�0, �1)

lim
n→∞

Pn,k

Qn
= ŝk, k = 0, 1,

uniformly on compact subsets of ℂ ∖ Co(supp�0), where the limit is taken along the sequence
n = (n, n), n ∈ ℤ+. When m2 = 0 the corresponding result is Markov’s classical theorem on the
convergence of Padé approximants, see [33]. The extension to diagonal sequences for arbitrary
m and n ∈ Λ ⊂ ℤm+1

+ (∙) such that ∣n∣ → ∞ and max{n0 − nm : n ∈ Λ} < ∞ is contained in
[11, Corollary 1] (which also includes the case when the measures have unbounded support and a
Carleman type condition is satisfied). Combining Theorem 1.2 and [21, Theorem 1] we obtain

Corollary 1.1. Let (s0,0, . . . , s0,m) = N (�0, . . . , �m) and Λ ⊂ ℤm+1
+ be given. Assume that

there exist constants c > 0, � < 1, such that

nj ≥
∣n∣

m+ 1
− c∣n∣�, j = 0, . . . ,m.

Then,

lim
n∈Λ

Pn,k

Qn
= ŝ0,k K ⊂ ℂ ∖ Co(supp�0), k = 0, . . . ,m.

Moreover,

lim sup
n∈Λ

∥ŝ0,k −
Pn,k

Qn
∥1/2∣n∣K ≤ �K < 1, k = 0, . . . ,m,

where ∥ ⋅ ∥K denotes the uniform norm on K,

�K = max{∣'t(z)∣ : z ∈ K, t ∈ Co(supp�1) ∪ {∞}},
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and 't represents conformally ℂ ∖ Co(supp�0) onto the unit circle with 't(t) = 0, '′t(t) > 0.

Throughout the paper, the notation

lim
n∈Λ

gn(z) = g(z), K ⊂ Ω,

stands for uniform convergence of the sequence of functions {gn}, n ∈ Λ, to the function g on each
compact subset K contained in the indicated region (in this case Ω).

This result gives a very general extension of Markov’s theorem. Notice that the sequences are
not required to be close to diagonal (equal components in the multi-indices).

Since the zeros xn,j , j = 1, . . . , ∣n∣, of Qn are simple, we can decompose Pn,k/Qn as follows

Pn,k(z)

Qn(z)
=

∣n∣∑
i=1

�n,k,i
z − xn,i

, �n,k,i = lim
z→xn,i

(z − xn,i)
Pn,k(z)

Qn(z)
=
Pn,k(xn,i)

Q′n(xn,i)
.

The following analogue of the Gauss-Jacobi quadrature formula takes place.

Corollary 1.2. Let (s0,0, . . . , s0,m) = N (�0, . . . , �m) and n = ℤm+1
+ be given. Then, for each

k = 0, . . . ,m and every polynomial p,deg p ≤ ∣n∣+ nk − 1∫
p(x)ds0,k(x) =

∣n∣∑
i=1

�n,k,ip(xn,i).

If n = (n, n+ 1, . . . , n+ 1), then

sign(�n,k,i) = sign(s0,k), i = 1, . . . , ∣n∣.

Consequently, for the sequence of multi-indices {(n, n+1, . . . , n+1)}n∈ℤ+ ⊂ ℤm+1
+ , for any bounded

Riemann-Stieltjes integrable function f on Co(supp�0) and each k = 0, . . . ,m∫
f(x)ds0,k(x) = lim

n→∞

∣n∣∑
i=1

�n,k,if(xn,i).

This result provides convergence of the quadrature formulas simultaneously for all the measures
in the Nikishin system taking the same nodes in all the quadrature formulas. Simultaneous quad-
rature formulas were studied in [8] in connection with certain application to computer graphics
illuminating bodies. Whenever feasible, simultaneous quadrature formulas are more efficient, from
the computational point of view, compared with the use of Gauss-Jacobi quadrature indepen-
dently on each measure. In [22], a more detailed study of simultaneous quadrature formulas for
Nikishin systems of measures may be found. We wish to point out that for the class of multi-indices
considered in Corollary 1.2 all the statements in [22, Corollary 2] hold true for all k = 0, . . . ,m.

Theorem 1.1 follows easily from

Theorem 1.3. Let (s1,1, . . . , s1,m) = N (�1, . . . , �m) and n = (n0, . . . , nm) ∈ ℤm+1
+ be given.

Then, there exists a permutation � of (0, . . . ,m) which reorders the components of n decreasingly,
n�(0) ≥ ⋅ ⋅ ⋅ ≥ n�(m), and an associated Nikishin system S(�) = (r1,1, . . . , r1,m) = N (�1, . . . , �m)
such that for any real polynomials pk,deg pk ≤ nk − 1, there exist real polynomials qk such that

p0 +
m∑
k=1

pkŝ1,k = (q0 +
m∑
k=1

qkr̂1,k)ŝ1,�(0), deg qk ≤ n�(k) − 1, k = 0, . . . ,m.

We wish to point out that here ŝ1,0 denotes the function identically equal to 1; this is relevant
when �(0) = 0. There may be several permutations � for which the statement holds, each one with
an associated S(�). We do not know if there is an S(�) for each � which reorders the components
of n decreasingly. As reference, we can say that there exists S(�) (but not exclusively) for that �
which additionally satisfies that for all 0 ≤ j < k ≤ n with nj = nk then also �(j) < �(k).

Theorem 1.4. Suppose that S1 = (s1
0,0, . . . , s

1
0,m1

) = N (�1
0 , . . . , �

1
m1

), S2 = (s2
0,0, . . . , s

2
0,m2

) =

N (�2
0 , . . . , �

2
m2

), �1
0 = �2

0 , and n = (n1;n2) ∈ ℤm1+1
+ ×ℤm2+1

+ , ∣n1∣ = ∣n2∣+ 1, be given. Let �2 and

S(�2) = N (�2
1, . . . , �

2
m2

) be a permutation and a Nikishin system associated with N (�2
1 , . . . , �

2
m2

)
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and n2 by Theorem 1.3. Construct (r2
0,0, . . . , r

2
0,m2

) = N (�2
0, . . . , �

2
m2

), where �2
0 = ŝ2

1,�2(0)�
2
0.

Then ∫
x�An(x)dr2

0,k(x) = 0, � = 0, . . . , n2,�2(k) − 1, k = 0, . . . ,m2.

Using Theorem 1.4 and results from [23], we can obtain logarithmic and ratio asymptotics
for sequences {An}n∈Λ,Λ ⊂ ℤm1+1

+ × ℤm2+1
+ under appropriate assumptions on the measures

generating S1, S2, and Λ.
A positive measure � is said to be regular if

lim
n→∞

�1/n
n = 1/cap(supp�),

where cap(⋅) denotes the logarithmic capacity of the Borel set (⋅) and �n denotes the leading
coefficient of the n-th orthonormal polynomial with respect to �. A negative measure � is regular if
−� is regular. In either cases we write � ∈ Reg. For equivalent forms of defining regular measures,
see sections 3.1 to 3.3 in [45] (in particular Theorem 3.1.1). For short, we write (S1, S2) ∈ Reg to
mean that all the measures which generate both Nikishin systems (S1, S2) are regular.

A region Ω of the extended complex plane which has a compact complement E is said to
be regular if the Dirichlet problem has a solution on Ω for any continuous function defined on
∂U = ∂E. This is equivalent to proving that the Green’s function on Ω with singularity at ∞ can
be extended continuously to all ℂ (for details on Green’s function and regular domains see [27,
Theorem 10.12]). In this case it is usual to say also that E is a regular compact set.

Definition 1.5. We say that a compact set E is quasi-regular when E = Ẽ ∪ e, where Ẽ is a

regular compact set and e is at most a denumerable set whose accumulation points lie in Ẽ.

Let Λ = Λ(p1,0, . . . , p1,m1
; p2,0, . . . , p2,m2

) ⊂ ℤm1+1
+ × ℤm2+1

+ be an infinite sequence of distinct
multi-indices such that for each n = (n1,n2) ∈ Λ, ∣n1∣ = ∣n2∣+ 1, and

lim
n∈Λ

n1,j

∣n1∣
= p1,j ∈ (0, 1), j = 0, . . . ,m1, lim

n∈Λ

n2,j

∣n2∣
= p2,j ∈ (0, 1), j = 0, . . . ,m2.

The following two results require some normalization on the sequence of linear forms under
consideration. By Theorem 1.2, for each n ∈ ℤm1+1

+ × ℤm2+1
+ , An is uniquely determined except

for a constant factor.

Definition 1.6. Let min{n1,0, . . . , n1,m1
} ≥ 1. We say that An is monic if the leading co-

efficient of an,j is 1, where j is either m1 when n1,m1
= min{n1,0, . . . , n1,m1

}, or if n1,m1
>

min{n1,0, . . . , n1,m1
} it is such that n1,j = min{n1,0, . . . , n1,m1

} and n1,j < n1,k, j < k ≤ m1.

We do not need to normalize An when n1 has components equal to zero. We have

Theorem 1.5. Let Λ = Λ(p1,0, . . . , p1,m1
; p2,0, . . . , p2,m2

) ⊂ ℤm1+1
+ × ℤm2+1

+ , (S1, S2) ∈ Reg,
S1 = N (�1

0 , . . . , �
1
m1

), and S2 = N (�2
0 , . . . , �

2
m2

) be given. Assume that the supports of the

measures which generate S1, S2 are quasi-regular. Then, the associated sequence of monic mixed
type multiple orthogonal linear forms {An},n ∈ Λ, satisfies

lim
n∈Λ
∣An(z)∣1/∣n1∣ = G(z), K ⊂ ℂ ∖ (Δ1

0 ∪Δ1
1),

where Δ1
i = Co(supp�1

i ), i = 0, 1.

A formula for G is given in (49) during the proof of Theorem 1.5. It is expressed in terms of the
solution of a vector equilibrium problem for the logarithmic potential. The matrix governing the in-
teraction between the different potentials in the system depends on (p1,0, . . . , p1,m1 ; p2,0, . . . , p2,m2).

By allowing quasi-regularity of the supports, this theorem is already novel for standard orthog-
onal polynomials (m1 = m2 = 0) (see Lemma 5.3 below). Theorem 1.5 unifies the study of the
logarithmic asymptotics of type I and type II multiple orthogonal polynomials under the most
general conditions on the measures, their supports, and the behavior of the sequence of multi-
indices on which the limit is taken. It is motivated by the results of [10], [26] and [36] where type
I and type II were considered separately, and the generating measures are supported on intervals
on which their Radon Nikodym derivative is positive almost everywhere. In [23, Theorem 1.3] an
analogue was obtained assuming that the components of n1,n2 are decreasing and the supports of
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the generating measures are regular sets. The first study of the logarithmic asymptotics of mixed
type multiple orthogonal polynomials of Nikishin systems was carried out in [43].

For the next result, we assume that supp(�ij) = Δ̃i
j ∪ eij , j = 0, . . . ,mi, i = 1, 2, where Δ̃i

j is

a bounded interval of the real line, ∣(�ij)′∣ > 0 a.e. on Δ̃i
j , and eij is at most a denumerable set

without accumulation points in ℝ ∖ Δ̃i
j . We denote this writing

S1 = N ′(�1
0 , . . . , �

1
m1

), S2 = N ′(�2
0 , . . . , �

2
m2

).

Notice the “prime” on N . In the context of this paper, this condition is the analogue of the one
imposed by S. A. Denisov (see [14]) in his extension of E. A. Rakhmanov’s celebrated theorem
on ratio asymptotics of orthogonal polynomials. The original proof of Rakhmanov’s theorem is in
[39]-[40]. An improved and reduced version of the proof by the author may be found in [41].

Fix a vector l := (l1; l2) where 0 ≤ l1 ≤ m1 and 0 ≤ l2 ≤ m2. We define the multi-index

nl := (n1 + el1 ;n2 + el2) = (nl11 ;nl22 ), where eli denotes the unit vector of length mi + 1 with all
components equal to zero except the component (li + 1) which equals 1.

Fix two permutations �1, �2, of (0, . . . ,m1) and (0, . . . ,m2), respectively, and a positive number
C. By Λ(�1, �2, C) we denote the set of all multi-indices n = (n1;n2) ∈ ℤm1+1

+ ×ℤm2+1
+ such that

a) ∣n1∣ = ∣n2∣+ 1,
b) �1, S(�1), and �2, S(�2), are solutions given by Theorem 1.3 to n1,N (�1

1 , . . . , �
1
m1

), and

n2,N (�2
1 , . . . , �

2
m2

), respectively.
c) ni,�i(0) − ni,�i(mi) ≤ C, i = 1, 2,

Any sequence Λ ⊂ ℤm1+1
+ × ℤm2+1

+ of distinct multi-indices satisfying a) and

sup{max{ni,0, . . . , ni,mi} −min{ni,0, . . . , ni,mi} : n ∈ Λ, i = 1, 2} <∞
is contained in ∪�1,�2Λ(�1, �2, C) for some sufficiently large C, where the union is taken over all
possible pairs of permutations. Thus, any such Λ can be partitioned in a finite number of sequences
of indices satisfying a)-c) for the same pair �1, �2 of permutations, plus a set containing a finite
number of multi-indices.

Theorem 1.6. Let S1 = N ′(�1
0 , . . . , �

1
m1

), S2 = N ′(�2
0 , . . . , �

2
m2

) and �1, �2, be given. Fix l =

(l1; l2), 0 ≤ l1 ≤ m1, 0 ≤ l2 ≤ m2. Let Λ ⊂ ℤm1+1
+ × ℤm2+1

+ be an infinite sequence of distinct

multi-indices such that for all n ∈ Λ, n,nl ∈ Λ(�1, �2, C) for some sufficiently large C. Then, the
associated sequence of monic mixed type multiple orthogonal linear forms {An},n ∈ Λ, verifies

lim
n∈Λ

Anl(z)

An(z)
= A(l)(z), K ⊂ ℂ ∖ (supp�1

0 ∪ Co(supp�1
1)) ,

where A(l) is a one to one analytic function in ℂ ∖ (Δ̃1
0 ∪ Δ̃1

1).

An expression for A(l) will be given in (50) at the end of the proof of this result. The answer is
given in terms of a conformal representation of an associated Riemann surface with m1 +m2 + 2
sheets and genus zero onto the extended complex plane. It also depends on l, �1, and �2. We wish
to point out that if Λ ⊂ Λ(�1, �2, C), taking l1 = �1(0) and l2 = �2(0) then nl ∈ Λ(�1, �2, C + 1),
for all n ∈ Λ. Therefore, for any sequence Λ ⊂ Λ(�1, �2, C) we can always find at least one pair
(l1; l2), for which ratio asymptotics can be proved. In general, (l1; l2) is admissible if �1 and �2

applied to nl11 and nl22 , respectively, are also decreasing for all n ∈ Λ except at most a finite number
of multi-indices.

For type II multiple orthogonal polynomials, with generating measures supported on intervals,
and multi-indices in ℤm+1

+ (∙), ratio asymptotics was proved in [5]. Different extensions followed in
[31] and [23]. Theorem 1.6 is an immediate consequence of Theorem 1.4 and [23, Theorem 6.4].

Let M be the least common multiple of m1 + 1 and m2 + 1. Denote ñ = (ñ1; ñ2) which is
obtained adding M/(m1 + 1) to each component of n1 and M/(m2 + 1) to each component of n2.
We have

Corollary 1.3. Let S1 = N ′(�1
0 , . . . , �

1
m1

), S2 = N ′(�2
0 , . . . , �

2
m2

) be given. Let Λ ⊂ ℤm1+1
+ ×

ℤm2+1
+ be an infinite sequence of distinct multi-indices such that ∣n1∣ = ∣n2∣+ 1 for all n ∈ Λ and

sup{max{ni,0, . . . , ni,mi} −min{ni,0, . . . , ni,mi} : n ∈ Λ} <∞, i = 1, 2.
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Then

lim
n∈Λ

Añ(z)

An(z)
= A(z), K ⊂ ℂ ∖ (supp�1

0 ∪ Co(supp�1
1)).

An expression for A appears in (51).
The strong asymptotics of type II multiple orthogonal polynomials for Nikishin systems was

given by A. I. Aptekarev in [4] for diagonal sequences of multi-indices and systems of generating
measures formed by weights satisfying Szegő’s condition. It remains the best result in this respect.
To conclude the Introduction, we call the reader’s attention to the excellent survey by J. Nuttall
[38] on Hermite–Padé polynomials. Here, in the form of a general conjecture, the author draws
the general picture of the asymptotic behavior of Hermite–Padé polynomials in terms of functions
which are solutions of boundary value problems on associated Riemann surfaces. Our asymptotic
results once more confirm his (at that time somewhat bold) predictions.

2. Proof of Theorems 1.1, 1.2 and Corollary 1.1

We begin with some auxiliary Lemmas.

Lemma 2.1. Let sk, k = 1, . . . ,m, be finite signed Borel measures with compact support such that
Co(supp sk) = Δ ⊂ ℝ. Let F (z) = f0(z) +

∑m
k=1 fk(z)ŝk(z) ∈ ℋ(ℂ ∖ Δ), where fk ∈ ℋ(V ), k =

0, . . . ,m, and V is a neighborhood of Δ. If F (z) = O(1/z2), z →∞, then

m∑
k=1

∫
fk(x)dsk(x) = 0, (2)

whereas F (z) = O(1/z), z →∞, implies that

F (z) =

m∑
k=1

∫
fk(x)dsk(x)

z − x
. (3)

Proof. Let Γ ⊂ V be a positively oriented closed smooth Jordan curve that surrounds Δ. If
F (z) = O(1/z2), z →∞, from Cauchy’s theorem, Fubini’s theorem and Cauchy’s integral formula,
it follows that

0 =

∫
Γ

F (z)dz =
m∑
k=1

∫
Γ

fk(z)ŝk(z)dz =
m∑
k=1

∫ ∫
Γ

fk(z)dz

z − x
dsk(x) = 2�i

m∑
k=1

∫
fk(x)dsk(x),

and we obtain (2). On the other hand, if F (z) = O(1/z), z → ∞, and we assume that z is in the
unbounded connected component of the complement of Γ, Cauchy’s integral formula and Fubini’s
theorem render

F (z) =
1

2�i

∫
Γ

F (�)d�

z − �
=

1

2�i

m∑
k=1

∫
Γ

fk(�)ŝk(�)d�

z − �
=

m∑
k=1

∫
1

2�i

∫
Γ

fk(�)d�

(z − �)(� − x)
dsk(x) =

m∑
k=1

∫
fk(x)dsk(x)

z − x

which is (3). □

Lemma 2.2. Let (s1,1, . . . , s1,m) = N (�1, . . . , �m) and n ∈ ℤm+1
+ be given. Consider the linear

form

ℒn = p0 +
m∑
k=1

pkŝ1,k, deg pk ≤ nk − 1, k = 0, . . . ,m,

where the polynomials pk have real coefficients. Assume that n0 = max{n0, n1− 1, . . . , nm− 1}. If
ℒn had at least ∣n∣ zeros in ℂ ∖Δ1 the reduced form p1 +

∑m
k=2 pkŝ2,k would have at least ∣n∣ − n0

zeros in ℂ ∖Δ2.

Proof. The function ℒn is symmetric with respect to the real line ℒn(z) = ℒn(z); therefore, its
zeros come in conjugate pairs. Thus, if ℒn has at least ∣n∣ zeros in ℂ∖Δ1, there exists a polynomial
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wn,degwn ≥ ∣n∣, with real coefficients and zeros contained in ℂ∖Δ1 such that ℒn/wn ∈ ℋ(ℂ∖Δ1).
This function has a zero of order ≥ ∣n∣−n0 + 1 at∞. Consequently, for all � = 0, . . . , ∣n∣−n0−1,

z�ℒn

wn
= O(1/z2) ∈ ℋ(ℂ ∖Δ1), z →∞,

and

z�ℒn

wn
=
z�p0

wn
+

m∑
k=1

z�pk
wn

ŝ1,k .

From (2), it follows that

0 =

∫
x�(p1 +

m∑
k=2

pkŝ2,k)(x)
d�1(x)

wn(x)
, � = 0, . . . , ∣n∣ − n0 − 1,

taking into consideration that s1,1 = �1 and ds1,k(x) = ŝ2,k(x)d�1(x), k = 2, . . . ,m.
These orthogonality relations imply that p1 +

∑m
k=2 pkŝ2,k has at least ∣n∣ − n0 sign changes in

the interior of Δ1. In fact, if there were at most ∣n∣ − n0 − 1 sign changes one can easily construct
a polynomial p of degree ≤ ∣n∣ −n0− 1 such that p(p1 +

∑m
k=2 pkŝ2,k) does not change sign on Δ1

which contradicts the orthogonality relations. Therefore, already in the interior of Δ1 ⊂ ℂ ∖Δ2,
the reduced form would have the number of zeros claimed. □

Using induction, this lemma already allows to prove the AT property for multi-indices in
ℤm+1

+ (⊛). That result is due to Driver and Stahl (see [16, Theorem 2.4.1]).
We reduce the general case to the one with n0 = max{n0, n1 − 1, . . . , nm − 1} with

Lemma 2.3. Let (s1,1, . . . , s1,m) = N (�1, . . . , �m),m ≥ 1, and n ∈ ℤm+1
+ be given. Consider the

linear form ℒn defined in Lemma 2.2. Assume that nj = max{n0 + 1, n1, . . . , nm}. Then, there

exist a Nikishin system (s∗1,1, . . . , s
∗
1,m) = N (�∗1 , . . . , �

∗
m), a multi-index n∗ = (n∗0, . . . , n

∗
m) ∈ ℤm+1

+

which is a permutation of n with n∗0 = nj, and polynomials with real coefficients p∗k,deg p∗k ≤
n∗k − 1, k = 0, . . . ,m, such that

ℒn = p0 +

m∑
k=1

pkŝ1,k = (p∗0 +

m∑
k=1

p∗kŝ
∗
1,k)ŝ1,j = ℒ∗nŝ1,j .

The proof is quite intricate and we leave it to the next section. Instead let us prove Theorem
1.1 assuming that the Lemma 2.3 is true.

Proof of Theorem 1. Obviously, the first statement of the theorem follows from the second.
We prove the second one using induction on m. For m = 0 the linear form reduces to a polynomial
of degree ≤ n0 − 1 and thus has at most n0 − 1 zeros in the complex plane as claimed.

Assume that the result is true for any Nikishin system with m − 1(≥ 0) measures and let us
show that it is also valid for Nikishin systems with m measures. To the contrary, let us suppose
that ℒn has at least ∣n∣ zeros on ℂ ∖Δ1.

Should n0 = max{n0, n1, . . . , nm}, by Lemma 2.2 the linear form p1 +
∑m
k=2 pkŝ2,k would have

at least ∣n∣ − n0 zeros in ℂ ∖Δ2. Now, ∣n∣ − n0 is the norm of the multi-index (n1, . . . , nm) which
together with the Nikishin system N (�2, . . . , �m) define the reduced form. This contradicts the
induction hypothesis.

Suppose that nj = max{n0 + 1, n1, . . . , nm}. According to Lemma 2.3, the linear form ℒ∗n has
the same zeros as ℒn in ℂ ∖Δ1, since s1,j is never zero on that region. The multi-index n∗ which
determines ℒ∗n has the same norm as n and its first component satisfies the assumptions of Lemma
2.2. Following the same arguments as before we arrive to a contradiction. The proof is complete.
□

For the proof of Theorem 2 and Corollary 1, we also use

Lemma 2.4. Let Ŝ and n ∈ ℤm1+1
+ × ℤm2+1

+ , ∣n1∣ = ∣n2∣+ 1, be given. Then An satisfies∫
ℒn2

(x)An(x)d�2
0(x) = 0, (4)
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for any linear form

ℒn2
(x) = p0(x) +

m2∑
j=1

pj(x)ŝ2
1,j(x),

where the pj , j = 0, . . . ,m2, denote arbitrary polynomials such that deg pj ≤ n2,j − 1. An has
exactly ∣n2∣ zeros in the ℂ ∖ Co(supp�1

1), they are simple, and lie in the interior of Co(supp�1
0).

Proof. In fact, from the condition b) of Definition 1.4 it follows that there exists a polynomial
dn,j such that for any polynomial pj ,deg pj ≤ n2,j − 1, j ∈ {0, . . . ,m2},

pj(z)

(
m1∑
k=0

an,k(z)

∫
ŝ2

1,j(x)ŝ1
1,k(x)d�2

0(x)

z − x
− dn,j(z)

)
= O

(
1/z2

)
, z →∞,

(here ŝ2
1,0 ≡ 1) and the function on the left hand side is holomorphic in ℂ ∖ Co(supp�2

0). Using
Lemma 2.1, it follows that∫

pj(x)ŝ2
1,j(x)

m1∑
k=0

an,k(x)ŝ1
1,k(x)d�2

0(x) = 0.

Adding these relations for j = 0, . . . ,m2, we obtain (4).
From Theorem 1.1, we know that An has at most ∣n1∣ − 1 = ∣n2∣ zeros on ℂ ∖ Co(supp�1

1).
From (4) it follows that this form has at least ∣n2∣ sign changes in the interior of Co(supp�2

0) =
Co(supp�1

0). Therefore, the last statement is obtained. □

Let us prove Theorem 1.2 assuming that Lemma 2.3 (Theorem 1.1) is true.

Proof of Theorem 1.2. Suppose that for some n,An is not normal. That is, some component
an,k of An has deg an,k ≤ n1,k − 2. According to Theorem 1.1, An can have on the interval
Co(supp�2

0) at most ∣n1∣ − 2 = ∣n2∣ − 1 zeros. Consequently, this function can have in the interior
of Co(supp�2

0) at most N ≤ ∣n2∣−1 sign changes. Suppose this is the case and let x1, . . . , xN be the
points where it changes sign. According to Theorem 1.1, (1, ŝ2

1,1, . . . , ŝ
2
1,m2

) is also an AT system.
Using the properties of Tchebyshev systems, we can find polynomials p0, . . . , pm2 , with deg pj ≤
n2,j−1, such that ℒn(x) = p0(x)+

∑m2

j=1 pj(x)ŝ2
1,j(x) changes sign at x1, . . . , xN , and has no other

points where it changes sign in the interior of Co(supp�2
0). Therefore, the function ℒn(x)An(x)

has constant sign on Co(supp�2
0) but this contradicts (4) since �2

0 is a measure with constant sign
whose support contains infinitely many points. Thus, deg an,k = n1,k − 1, k = 0, . . . ,m1, and
perfectness has been established.

Let us assume that there are two non collinear solutions An,A∗n, to a)-b). Then, there exists a
real constant C ∕= 0 such that An − CA∗n ∕≡ 0 and at least one of the components of An − CA∗n
satisfies deg(an,k − Ca∗n,k) ≤ n1,k − 2. This is not possible since An − CA∗n also solves a)-b) and
according to what was proved above all its components must have maximum possible degree. □

Definition 2.1. Let E be a subset of the complex plane and U the class of all coverings of E by
disks Un. The radius of Un is denoted ∣Un∣. The (one dimensional) Hausdorff content of E is

ℎ(E) = inf{
∑
∣Un∣ : {Un} ∈ U}.

Let {fn}n∈Λ be a sequence of functions defined on a region D ⊂ ℂ. We say that {fn}n∈Λ

converges to f in Hausdorff content on D if for every compact set K ⊂ D and any " > 0

lim
n∈Λ

ℎ({z ∈ K : ∣fn(z)− f(z)∣ > "}) = 0.

We denote this by

ℋ− lim
n→∞

fn = f, K ⊂ D.

In [24, Lemma 1], A.A. Gonchar proved that if the functions fn are holomorphic in D and
they converge in Hausdoff content to f in D, then f is in fact holomorphic in D (more precisely,
differs from a holomorphic function on a set of zero Hausdorff content) and the convergence (to
the equivalent holomorphic function) is uniform on each compact subset of D.
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Proof of Corollary 1.1. In [21, Theorem 1] it was proved that under the assumptions of the
corollary, for each k = 0, . . . ,m,

ℋ− lim
n∈Λ

Rn,k = ŝk, K ⊂ ℂ ∖ Co(supp�0).

Due to Gonchar’s lemma and the last assertion of Lemma 2.4, it follows that convergence is uniform
on each compact subset of ℂ ∖ Co(supp�0). Regarding the proof of the rate of convergence, we
refer to the last sentence on page 104 of [21] (see also [21, Corollary 1]). □

3. Proof of Lemma 2.3 and Corollary 1.2.

It is well known (see appendix in [30] and [45, Theorem 6.3.5]) that for each s ∈ ℳ(Δ), there
exists a measure � ∈ℳ(Δ) and ℓ(z) = az + b, a = 1/∣s∣, b ∈ ℝ, such that

1/ŝ(z) = ℓ(z) + �̂(z), (5)

where ∣s∣ is the total variation of the measure s. For convenience, we call � the inverse measure of
s. Such measures will appear frequently in our reasonings, so we will fix a notation to distinguish
them. They will always refer to inverses of measures denoted with s and will carry over to them the
corresponding sub-indices. The same goes for the polynomials ℓ. For instance, if s�,� = ⟨��, ��⟩

1/ŝ�,�(z) = ℓ�,�(z) + �̂�,�(z).

For convenience, sometimes we write ⟨��, �� ⟩̂ in place of ŝ�,� . This is specially useful later on where
we need the Cauchy transforms of complicated expressions of products of measures for which we
do not have a short hand notation. Since s�,� = ��, we also write

1/�̂�(z) = ℓ�,�(z) + �̂�,�(z).

Lemma 3.1. Let �� ∈ℳ(Δ�), �� ∈ℳ(Δ�), and Δ� ∩Δ� = ∅. Then:

�̂�(z)�̂�(z) = ⟨��, �� ⟩̂(z) + ⟨�� , ��⟩̂(z), z ∈ ℂ ∖ (Δ� ∪Δ�) , (6)

�̂�(z)

⟨��, �� ⟩̂(z)
=

∣��∣
∣⟨����⟩∣

+

∫
⟨�� , ��⟩̂(x�)

�̂�(x�)

d��,�(x�)

z − x�
=

∣��∣
∣⟨��, ��⟩∣

+ ⟨��,�
�̂�

, �� , ��⟩̂(z), (7)

⟨��, �� ⟩̂(z)
�̂�(z)

=
∣⟨��, ��⟩∣
∣��∣

−
∫
⟨�� , ��⟩̂(x�)d��,�(x�)

z − x�
=
∣⟨��, ��⟩∣
∣��∣

− ⟨��,�, �� , ��⟩̂(z). (8)

Proof. In fact, (6) follows from the chain of equalities

�̂�(z)�̂�(z) =

∫ ∫
d��(x�)d��(x�)

(z − x�)(z − x�)
=

∫ ∫ (
1

z − x�
− 1

z − x�

)
d��(x�)d��(x�)

x� − x�

=

∫
�̂�(x�)

d��(x�)

z − x�
+

∫
�̂�(x�)

d��(x�)

z − x�
= ⟨��, �� ⟩̂(z) + ⟨�� , ��⟩̂(z).

Notice that

�̂�(z)

⟨��, �� ⟩̂(z)
− ∣��∣
∣⟨����⟩∣

= O
(

1

z

)
∈ ℋ

(
ℂ ∖Δ�

)
, z →∞.

From (5) and (6), it follows that

�̂�(z)

⟨��, �� ⟩̂(z)
=

�̂�(z)�̂�(z)

�̂�(z)⟨��, �� ⟩̂(z)
=
⟨��, �� ⟩̂(z) + ⟨�� , ��⟩̂(z)

�̂�(z)⟨��, �� ⟩̂(z)
=

1

�̂�(z)
+
⟨�� , ��⟩̂(z)
�̂�(z)

ℓ�,� +
⟨�� , ��⟩̂(z)
�̂�(z)

�̂�,�(z).

Since − ∣��∣
∣⟨����⟩∣ + 1

�̂�
+
⟨�� ,�� ⟩̂
�̂�

ℓ�,� and
⟨�� ,�� ⟩̂
�̂�

are analytic on a neighborhood of the interval Δ�,

which contains the support of ��,� , relation (3) implies (7).
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The proof of (8) is similar but somewhat more direct. Again, we have that

⟨��, �� ⟩̂(z)
�̂�(z)

− ∣⟨��, ��⟩∣
∣��∣

= O
(

1

z

)
∈ ℋ

(
ℂ ∖Δ�

)
, z →∞.

From (5) and (6), we get

⟨��, �� ⟩̂(z)
�̂�(z)

=
�̂�(z)�̂�(z)− ⟨�� , ��⟩̂(z)

�̂�(z)
= �̂�(z)− ⟨�� , ��⟩̂(z)ℓ�,�(z)− ⟨�� , ��⟩̂(z)�̂�,�(z).

But − ∣⟨��,��⟩∣∣��∣ + �̂� − ⟨�� , ��⟩̂ℓ�,� and ⟨�� , ��⟩̂ are analytic in a neighborhood of Δ�; therefore,

(3) implies (8). □

Formulas (5)-(6) are the building blocks for (7)-(8) and many more interesting relations. Let us
further extend Lemma 3.1. The new formulas may be grouped in two since (9) may be regarded
a special case of (10) and (11)-(12) as special cases of (13). Putting each group in one formula
causes some notational incongruence which we prefer to avoid for the benefit of the reader.

Lemma 3.2. Let (s1,1, . . . , s1,m) = N (�1, . . . , �m) be given. Then:

ŝ1,k

ŝ1,1
=
∣s1,k∣
∣s1,1∣

− ⟨�1,1, ⟨s2,k, �1⟩̂⟩, 1 = j < k ≤ m, (9)

ŝ1,k

ŝ1,j
=
∣s1,k∣
∣s1,j ∣

+ (−1)j⟨�1,j , ⟨�2,j , s1,j⟩, . . . , ⟨�j,j , sj−1,j⟩, ⟨sj+1,k, �j ⟩̂⟩, 2 ≤ j < k ≤ m,
(10)

ŝ1,1

ŝ1,j
=
∣s1,1∣
∣s1,j ∣

+ ⟨ �1,j
ŝ2,j

, ⟨s2,j , �1⟩̂⟩ = (11)

∣s1,1∣
∣s1,j ∣

+
∣⟨s2,j , �1⟩∣
∣s2,j ∣

�̂1,j − ⟨�1,j , ⟨�2,j , s1,j ⟩̂⟩, 1 = k < j ≤ m,

ŝ1,2

ŝ1,j
=
∣s1,2∣
∣s1,j ∣

− ⟨�1,j ,
⟨�2,j , s1,j⟩

ŝ3,j
, ⟨s3,j , �2⟩̂⟩ = (12)

∣s1,2∣
∣s1,j ∣

− ∣⟨s3,j , �2⟩∣
∣s3,j ∣

⟨�1,j , ⟨�2,j , s1,j ⟩̂⟩+ ⟨�1,j , ⟨�2,j , s1,j⟩, ⟨�3,j , s2,j ⟩̂⟩, 2 = k < j ≤ m,

ŝ1,k

ŝ1,j
=
∣s1,k∣
∣s1,j ∣

+ (−1)k−1⟨�1,j , ⟨�2,j , s1,j⟩, . . . , ⟨�k−1,j , sk−2,j⟩,
⟨�k,j , sk−1,j⟩

ŝk+1,j
, ⟨sk+1,j , �k ⟩̂⟩ =

(13)

∣s1,k∣
∣s1,j ∣

+ (−1)k−1 ∣⟨sk+1,j , �k⟩∣
∣sk+1,j ∣

⟨�1,j , ⟨�2,j , s1,j⟩, . . . , ⟨�k−1,j , sk−2,j⟩, ⟨�k,j , sk−1,j ⟩̂⟩+

(−1)k⟨�1,j , ⟨�2,j , s1,j⟩, . . . , ⟨�k,j , sk−1,j⟩, ⟨�k+1,j , sk,j ⟩̂⟩ . 3 = k < j ≤ m.

Proof. Cauchy transforms equal zero at infinity; therefore, the constants appearing on the right
hand sides in each of the first equalities of (9)-(13) must be as indicated, if in fact the other term
is a Cauchy transform. Consequently, we will not pay attention to the constants coming out of the
consecutive transformations we make in our deduction and simply denote them with consecutive
constants Cj .

Obviously, (9) is deduced from (8) taking �� = �1 = s1,1 and �� = ⟨�2, ⋅ ⋅ ⋅ , �k⟩ = s2,k. Formula
(10) is obtained applying (8) inside out several times as we will indicate.

Let 2 ≤ j < k ≤ m. Using (8) on ŝj,k/ŝj,j , we have that

⟨�j−1, �j , . . . , �k ⟩̂ = ⟨sj−1,j

ŝj,j
, sj,k ⟩̂ = ⟨ ŝj,k

ŝj,j
sj−1,j ⟩̂ = C1ŝj−1,j − ⟨sj−1,j , �j,j , ⟨sj+1,k, �j ⟩̂⟩.

(14)

In particular, if j = 2 we get

⟨�1, �2, . . . , �k ⟩̂ = ⟨s1,2

ŝ2,2
, s2,k ⟩̂ = ⟨ ŝ2,k

ŝ2,2
s1,2⟩̂ = C1ŝ1,2 − ⟨s1,2, �2,2, ⟨s3,k, �2⟩̂⟩,
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and applying (8) on ⟨s1,2, �2,2, ⟨s3,k, �2⟩̂⟩/ŝ1,2, it follows that

ŝ1,k

ŝ1,2
= C1 −

1

ŝ1,2
⟨s1,2, �2,2, ⟨s3,k, �2⟩̂⟩ =

∣s1,k∣
∣s1,2∣

+ ⟨�1,2, ⟨�2,2, s1,2⟩, ⟨s3,k, �2⟩̂⟩

which is (10) for j = 2.
Assume that j ≥ 3. We write then

ŝ1,k = ⟨�1, . . . , �j−2,
ŝj,k
ŝj,j

sj−1,j ⟩̂

and on account of (14), we obtain

ŝ1,k

ŝ1,j
= C1 −

1

ŝ1,j
⟨�1, . . . , �j−2, sj−1,j , �j,j , ⟨sj+1,k, �j ⟩̂⟩.

This means that
ŝ1,k

ŝ1,3
= C1 −

1

ŝ1,3
⟨s1,3

ŝ2,3
, s2,3, �3,3, ⟨s4,k, �3⟩̂⟩, j = 3,

or
ŝ1,k

ŝ1,j
= C1 −

1

ŝ1,j
⟨�1, . . . , �j−3,

sj−2,j

ŝj−1,j
, sj−1,j , �j,j , ⟨sj+1,k, �j ⟩̂⟩, j ≥ 4.

Using (8) again, it follows that

⟨sj−1,j , �j,j , sj+1,k, �j ⟩̂
ŝj−1,j

= C2 − ⟨�j−1,j , ⟨�j,j , sj−1,j⟩, ⟨sj+1,k, �j ⟩̂⟩.

Substituting above, we have

ŝ1,k

ŝ1,3
= C3 + (−1)2 1

ŝ1,3
⟨s1,3, �2,3, ⟨�3,3, s2,3⟩, ⟨s4,k, �3⟩̂⟩, j = 3,

or

ŝ1,k

ŝ1,j
= C3 + (−1)2 1

ŝ1,j
⟨�1, . . . , �j−3, sj−2,j , �j−1,j , ⟨�j,j , sj−1,j⟩, ⟨sj+1,k, �j ⟩̂⟩, j ≥ 4.

If j = 3 one more use of (8) brings us to (10). If j ≥ 4 we keep on applying (8) inside out until we
arrive at

ŝ1,k

ŝ1,j
= C4 + (−1)j−1 1

ŝ1,j
⟨s1,j , �2,j , ⟨�3,j , s2,j⟩, . . . , ⟨�j,j , sj−1,j⟩, ⟨sj+1,k, �j ⟩̂⟩,

which is just one step away from (10) through (8) taking

�� = s1,j , �� = ⟨�2,j , ⟨�3,j , s2,j⟩, . . . , ⟨�j,j , sj−1,j⟩, ⟨sj+1,k, �j⟩⟩.

Now, let us prove formulas (11)-(13). The second equality in each one of these relations is an
immediate consequence of (8) since from it we get

⟨sk+1,j , �k ⟩̂
ŝk+1,j

=
∣⟨sk+1,j , �k⟩∣
∣sk+1,j ∣

− ⟨�k+1,j , sk,j ⟩̂. (15)

The proof of the first equality is obtained, generally speaking, as in proving (10) except that we
begin using once relation (7). In fact, when k = 1 formula (11) follows directly from (7) taking
�� = �1 = s1,1 and �� = s2,j .

Assume that 2 ≤ k < j ≤ m. Using (7), it follows that

⟨�k−1, �k ⟩̂ = ⟨sk−1,j

ŝk,j
, sk,k ⟩̂ = ⟨ ŝk,k

ŝk,j
sk−1,j ⟩̂ = C5ŝk−1,j + ⟨sk−1,j ,

�k,j
ŝk+1,j

, ⟨sk+1,j , �k ⟩̂⟩.

Consequently,
ŝ1,2

ŝ1,j
= C5 +

1

ŝ1,j
⟨s1,j ,

�2,j
ŝ3,j

, ⟨s3,j , �2⟩̂⟩, k = 2,

or
ŝ1,k

ŝ1,j
= C5 +

1

ŝ1,j
⟨�1, . . . , �k−2, sk−1,j ,

�k,j
ŝk+1,j

, ⟨sk+1,j , �k ⟩̂⟩, k ≥ 3.
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From this point on we use (8). From this formula, we obtain

⟨sk−1,j ,
�k,j
ŝk+1,j

, ⟨sk+1,j , �k ⟩̂⟩
ŝk−1,j

= C6 − ⟨�k−1,j ,
⟨�k,j , sk−1,j⟩

ŝk+1,j
, ⟨sk+1,j , �k ⟩̂⟩,

and (12) readily follows if k = 2. For k ≥ 3 this implies

ŝ1,3

ŝ1,j
= C7 −

1

ŝ1,j
⟨s1,j , �2,j ,

⟨�3,j , s2,j⟩
ŝ4,j

, ⟨s4,j , �3⟩̂⟩, k = 3,

or
ŝ1,k

ŝ1,j
= C7 −

1

ŝ1,j
⟨�1, . . . , �k−3, sk−2,j , �k−1,j ,

⟨�k,j , sk−1,j⟩
ŝk+1,j

, ⟨sk+1,j , �k ⟩̂⟩, k ≥ 4.

Continuing down, using (8) on each step, we obtain

ŝ1,k

ŝ1,j
= C8 + (−1)k−2 1

ŝ1,j
⟨s1,j , �2,j , ⟨�3,j , s2,j⟩, . . . , ⟨�k−1,j , sk−2,j⟩,

⟨�k,j , sk−1,j⟩
ŝk+1,j

, ⟨sk+1,j , �k ⟩̂⟩.

One more use of (8) with

�� = s1,j , �� = ⟨�2,j , ⟨�3,j , s2,j⟩, . . . , ⟨�k−1,j , sk−2,j⟩,
⟨�k,j , sk−1,j⟩

ŝk+1,j
, ⟨sk+1,j , �k⟩⟩

gives the first equality of (13). With this we conclude the proof. □

Remark 3.1. We wish to point out that formulas (9)-(10) and the second equalities in (11)-(13)
are contained in [17, Theorem 3.1.3], where they were deduced using the Stieltjes-Plemelj inversion
formula. Our explicit expressions of the right hand sides are necessary for the arguments to follow.
Additionally, the first equalities in (11)-(13) are of great value for the proof of the general case.

Proof of Lemma 2.3 when j = 1. From (5) and (9), we have

ℒn

ŝ1,1
=

p0

ŝ1,1
+ p1 +

m∑
k=2

pk
ŝ1,k

ŝ1,1
=

(ℓ1,1p0 + p1 +

m∑
k=2

∣s1,k∣
∣s1,1∣

pk) + p0�̂1,1 −
m∑
k=2

pk⟨�1,1, s2,k, �1⟩̂ = ℒ∗n.

We are done taking n∗ = (n1, n0, n2, . . . , nm) and

N (�∗1 , . . . , �
∗
m) = N (�1,1, ⟨�2, �1⟩, �3, . . . , �m)

since ⟨s2,k, �1⟩ = ⟨⟨�2, �1⟩, �3, . . . , �k⟩ when k ≥ 3. □

In the sequel 2 ≤ j ≤ m. From (5), (10), and the first equalities in (11)-(13), one has

ℒn

ŝ1,j
=

p0

ŝ1,j
+ pj +

m∑
k ∕=j,k=1

pk
ŝ1,k

ŝ1,j
= (ℓ1,jp0 + pj +

m∑
k ∕=j,k=1

∣s1,k∣
∣s1,j ∣

pk)+

p0�̂1,j + p1⟨
�1,j
ŝ2,j

, ⟨s2,j , �1⟩̂⟩+

j−1∑
k=2

(−1)k−1pk⟨�1,j , ⟨�2,j , s1,j⟩, . . . , ⟨�k−1,j , sk−2,j⟩,
⟨�k,j , sk−1,j⟩

ŝk+1,j
, ⟨sk+1,j , �k ⟩̂⟩+

(−1)j
m∑

k=j+1

pk⟨�1,j , ⟨�2,j , s1,j⟩, . . . , ⟨�j,j , sj−1,j⟩, ⟨sj+1,k, �j ⟩̂⟩. (16)

Now, it is not so clear who the auxiliary Nikishin system should be because some annoying ratios
of Cauchy transforms have appeared. We shall see that already for j = 2 there are two candidates,
and for general j the number of candidates equals 2j−1.

We can use (15) (see the second inequalities in (11)-(13)) to obtain

ℒn

ŝ1,j
= (ℓ1,jp0 + pj +

m∑
k ∕=j,k=1

∣s1,k∣
∣s1,j ∣

pk) + (p0 +
∣⟨s2,j , �1⟩∣
∣s2,j ∣

p1)�1,j+
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j−1∑
k=2

(−1)k−1(pk−1 +
∣⟨sk+1,j , �k⟩∣
∣sk+1,j ∣

pk)⟨�1,j , ⟨�2,j , s1,j⟩, . . . , ⟨�k,j , sk−1,j ⟩̂⟩+

(−1)j−1pj−1⟨�1,j , ⟨�2,j , s1,j⟩, . . . , ⟨�j,j , sj−1,j ⟩̂⟩+

(−1)j
m∑

k=j+1

pk⟨�1,j , ⟨�2,j , s1,j⟩, . . . , ⟨�j,j , sj−1,j⟩, ⟨sj+1,k, �j ⟩̂⟩. (17)

(The sum
∑j−1
k=2 is empty if j = 2.)

If we are in the class ℤm+1
+ (∗) of multi-indices, and we take j to be the first component for

which nj = max{n0 + 1, n1, . . . , nm}, then n0 ≥ ⋅ ⋅ ⋅ ≥ nj−1. It follows that

deg(ℓ1,jp0 + pj +
m∑

k ∕=j,k=1

∣s1,k∣
∣s1,j ∣

pk) ≤ nj − 1

and

deg(pk−1 +
∣⟨sk+1,j , �k⟩∣
∣sk+1,j ∣

pk) ≤ nk−1 − 1, k = 1, . . . , j − 1.

Thus ℒ∗n is the right hand side of (17), which is a linear form generated by the multi-index
n∗ = (nj , n0 . . . , nj−1, nj+1, . . . , nm) ∈ ℤm+1

+ and the Nikishin system

N (�∗1 , . . . , �
∗
m) = N (�1,j , ⟨�2,j , s1,j⟩, . . . , ⟨�j,j , sj−1,j⟩, ⟨�j+1, �j⟩, �j+2, . . . , �m).

This would be sufficient to prove the AT property within the class ℤm+1
+ (∗) because it is easy

to observe that then (n0, . . . , nj−1, nj+1, . . . , nm) ∈ ℤm+ (∗) (see the proof of Theorem 1.2). This
result was first obtained in [22, Theorem 2].

Of course, (17) is still valid in the general case but, if it is not true that n0 ≥ . . . ≥ nj−1, some
of the degrees of the polynomials in the linear form on the right hand blow up with respect to the
bounds established by the components of n∗. We must proceed with caution. For this, we need
two more reduction formulas which are contained in the next lemma.

Let ��,�;, denote the inverse measure of ⟨⟨��, ��⟩, �⟩. That is,

1/⟨⟨��, ��⟩, � ⟩̂(z) = ℓ�,�;,(z) + �̂�,�;,(z)

where ℓ�,�;, denotes a first degree polynomial. This notation seems unnecessarily complicated.
It is consistent with the one used later for more general inverse measures which will be needed.

Lemma 3.3. Let Δ , Δ� and Δ� be three intervals such that Δ ∩ Δ� = ∅ = Δ� ∩ Δ�. Let
� ∈ℳ(Δ), �� ∈ℳ(Δ�) and �� ∈ℳ(Δ�). Then for any f ∈ L1(�)

�̂�(z)

⟨��, �� ⟩̂(z)
⟨⟨��,�, �� , ��⟩, f� , ��⟩̂(z) = ⟨ ⟨�� , ��⟩̂

�̂�
��,� , f� , ��, �� ⟩̂(z), (18)

⟨��, �� ⟩̂(z)
⟨⟨��, ��⟩, � ⟩̂(z)

⟨ ⟨�� , ��⟩̂
�̂�

��,� , � , ��, �� ⟩̂(z) = ⟨ ⟨�� , ��, � ⟩̂
�̂�

⟨� , ��, �� ⟩̂
�̂

��,�;, ⟩̂(z).
(19)

Proof. Let us prove (18). Taking into account (6) and (8), we have that

⟨⟨��,�, �� , ��⟩, ⟨f� , ��⟩̂⟩(z) = ⟨f� , ��⟩̂(z)⟨��,�, �� , ��⟩̂(z)− ⟨⟨f� , ��⟩, ��,�, �� , ��⟩̂(z) =

⟨f� , ��⟩̂(z)

(
∣⟨��, ��⟩∣
∣��∣

− ⟨��, �� ⟩̂(z)
�̂�(z)

)
−
∫ (

∣⟨��, ��⟩∣
∣��∣

− ⟨��, �� ⟩̂(x)

�̂�(x)

)
f(x)d⟨� , ��⟩(x)

z − x
=

∫
⟨��, �� ⟩̂(x)

f(x)d�(x)

z − x
− ⟨f� , ��⟩̂(z)

⟨��, �� ⟩̂(z)
�̂�(z)

.

This and (7), render
�̂�(z)

⟨��, �� ⟩̂(z)
⟨⟨��,�, �� , ��⟩, f� , ��⟩̂(z) =
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�̂�(z)

⟨��, �� ⟩̂(z)

∫
⟨��, �� ⟩̂(x)

f(x)d�(x)

z − x
− ⟨f� , ��⟩̂(z) =

−⟨f� , ��⟩̂(z) +
∣��∣

∣⟨��, ��⟩∣
⟨f� , ��, �� ⟩̂(z) + ⟨f� , ��, �� ⟩̂(z)⟨

��,�
�̂�

, ⟨�� , ��⟩̂⟩(z)

Since

�̂�(z)

⟨��, �� ⟩̂(z)
⟨⟨��,�, �� , ��⟩, f� , ��⟩̂(z) = O

(
1

z

)
∈ ℋ(ℂ ∖Δ�), z →∞,

that −⟨f� , ��⟩̂ + ∣��∣
∣⟨��,��⟩∣ ⟨f� , ��, �� ⟩̂ and ⟨f� , ��, �� ⟩̂ are analytic on a neighborhood of Δ�,

on account of (3), we obtain (18).
Now, we prove (19). From (8) and (6)

⟨ ⟨�� , ��⟩̂
�̂�

��,� , � , ��, �� ⟩̂(z) =

∣⟨�� , ��⟩∣
∣⟨��⟩∣

⟨��,� , � , ��, �� ⟩̂(z)− ⟨⟨��,� , � , ��, ��⟩, ��,� , ��, �� ⟩̂(z) =

∣⟨�� , ��⟩∣
∣⟨��⟩∣

⟨��,� , � , ��, �� ⟩̂(z)− ⟨��,� , � , ��, �� ⟩̂(z)⟨��,� , ��, �� ⟩̂(z)+

⟨⟨��,� , ��, ��⟩, ⟨��,� , � , ��, �� ⟩̂⟩(z) =

⟨�� , ��⟩̂(z)
�̂�(z)

⟨��,� , � , ��, �� ⟩̂(z) + ⟨⟨��,� , ��, ��⟩, ⟨��,� , � , ��, �� ⟩̂⟩(z) =

⟨�� , ��⟩̂(z)
�̂�(z)

(
∣⟨⟨��, ��⟩, �⟩∣
∣⟨��, ��⟩∣

− ⟨⟨��, ��⟩, � ⟩̂(z)
⟨��, �� ⟩̂(z)

)
+

∫ (
∣⟨⟨��, ��⟩, �⟩∣
∣⟨��, ��⟩∣

− ⟨⟨��, ��⟩, � ⟩̂(x�)

⟨��, �� ⟩̂(x�)

)
d⟨��,� , ��, ��⟩(x�)

z − x�
=

−⟨�� , ��⟩̂(z)
�̂�(z)

⟨⟨��, ��⟩, � ⟩̂(z)
⟨��, �� ⟩̂(z)

+

(
⟨�� , ��⟩̂(z)
�̂�(z)

+ ⟨��,� , ��, �� ⟩̂(z)

)
∣⟨⟨��, ��⟩, �⟩∣
∣⟨��, ��⟩∣

− ⟨��,� , ⟨��, ��⟩, � ⟩̂(z) = (20)

−⟨�� , ��⟩̂(z)
�̂�(z)

⟨⟨��, ��⟩, � ⟩̂(z)
⟨��, �� ⟩̂(z)

+
∣⟨�� , ��⟩∣
∣⟨��⟩∣

∣⟨⟨��, ��⟩, �⟩∣
∣⟨��, ��⟩∣

− ⟨��,� , ⟨��, ��⟩, � ⟩̂(z) =

−⟨�� , ��⟩̂(z)
�̂�(z)

⟨⟨��, ��⟩, � ⟩̂(z)
⟨��, �� ⟩̂(z)

− ∣⟨⟨��, ��⟩, �⟩∣
∣�� ∣

− ⟨��,� , ⟨��, ��⟩, � ⟩̂(z) =

−⟨�� , ��⟩̂(z)
�̂�(z)

⟨⟨��, ��⟩, � ⟩̂(z)
⟨��, �� ⟩̂(z)

+
⟨�� , ��, � ⟩̂(z)

�̂�(z)
.

In the second last equality above, we employed that

0 = lim
z→∞

z�̂�(z)�̂�(z) = lim
z→∞

z⟨��, �� ⟩̂(z) + lim
z→∞

z⟨�� , ��⟩̂(z) = ∣⟨��, ��⟩∣+ ∣⟨�� , ��⟩∣,

which implies that ∣⟨��, ��⟩∣ = −∣⟨�� , ��⟩∣. Analogously, −∣⟨⟨��, ��⟩, �⟩∣ = −∣⟨⟨��, �⟩, ��⟩∣ =
∣⟨�� , ⟨��, �⟩⟩∣ and by (8)

⟨�� , ⟨��, � ⟩̂⟩
�̂�

=
∣⟨�� , ⟨��, �⟩⟩∣

∣�� ∣
− ⟨��,� , ⟨⟨��, �⟩, �� ⟩̂⟩ = −∣⟨⟨��, ��⟩, �⟩∣

∣�� ∣
− ⟨��,� , ⟨��, ��⟩, � ⟩̂,

which is used in the last equality. Therefore, from the chain of equations and (7), we derive that

⟨��, �� ⟩̂(z)
⟨⟨��, ��⟩, � ⟩̂(z)

⟨ ⟨�� , ��⟩̂
�̂�

��,� , � , ��, �� ⟩̂(z) = −⟨�� , ��⟩̂(z)
�̂�(z)

+
⟨�� , ��, � ⟩̂(z)

�̂�(z)

⟨��, �� ⟩̂(z)
⟨⟨��, ��⟩, � ⟩̂(z)

=
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−⟨�� , ��⟩̂(z)
�̂�(z)

+
⟨�� , ��, � ⟩̂(z)

�̂�(z)

∣⟨��, ��⟩∣
∣⟨⟨��, ��⟩, �⟩∣

+
⟨�� , ��, � ⟩̂(z)

�̂�(z)
⟨��,�;,

�̂
, � , ��, �� ⟩̂(z).

Taking into consideration that

⟨��, �� ⟩̂(z)
⟨⟨��, ��⟩, � ⟩̂(z)

⟨ ⟨�� , ��⟩̂
�̂�

��,� , � , ��, �� ⟩̂(z) = O
(

1

z

)
∈ ℋ(ℂ ∖Δ�), z →∞,

whereas − ⟨�� ,�� ⟩̂�̂�
+
⟨�� ,��,� ⟩̂

�̂�

∣⟨��,��⟩∣
∣⟨⟨��,��⟩,�⟩∣ and

⟨�� ,��,� ⟩̂
�̂�

are analytic on a neighborhood of Δ�,

using (3) we obtain (19). □

Proof of Lemma 2.3 when 2 ≤ j ≤ m. Set

ℒ∗n = p∗0 + p0�̂1,j + p1⟨
�1,j
ŝ2,j

, ⟨s2,j , �1⟩̂⟩+

j−1∑
k=2

(−1)k−1pk⟨�1,j , ⟨�2,j , s1,j⟩, . . . , ⟨�k−1,j , sk−2,j⟩,
⟨�k,j , sk−1,j⟩

ŝk+1,j
, ⟨sk+1,j , �k ⟩̂⟩+

(−1)j
m∑

k=j+1

pk⟨�1,j , ⟨�2,j , s1,j⟩, . . . , ⟨�j,j , sj−1,j⟩, ⟨sj+1,k, �j ⟩̂⟩, (21)

where

p∗0 = ℓ1,jp0 + pj +
m∑

k ∕=j,k=1

∣s1,k∣
∣s1,j ∣

pk, deg p∗0 ≤ nj − 1 = n∗0 − 1.

We took this function from the right hand side of (16). We must show that there exist a multi-index
n∗ ∈ ℤm+1

+ , which is a permutation of n, and a Nikishin system N (�∗0 , . . . , �
∗
m) which allow to

express ℒ∗n as a linear form generated by them with polynomials with real coefficients. So far, n∗0
defined above serves the purpose of being the first component of n∗ and p∗0 of being the polynomial
part of the linear form.

First step. Is n0 ≥ n1 or n0 ≤ n1? (When n0 = n1 we can proceed either ways.)

A1) If n0 ≥ n1, take n∗1 = n0 and �∗1 = �1,j . Decompose
⟨s2,j ,�1 ⟩̂
ŝ2,j

using (8). Then, the first three

terms of ℒ∗n are

p∗0 + p0�̂
∗
1 + p1⟨

�∗1
ŝ2,j

, ⟨s2,j , �1⟩̂⟩ = p∗0 + (p0 +
∣⟨s2,j , �1⟩∣
∣s2,j ∣

p1)�̂∗1 − p1⟨�∗1 , ⟨�2,j , s1,j ⟩̂⟩.

Consequently, taking p∗1 = p0 +
∣⟨s2,j ,�1⟩∣
∣s2,j ∣ p1, we have that deg p∗1 ≤ n∗1 − 1(= n0 − 1).

In case that j = 2, we obtain

ℒ∗n = p∗0 + p∗1�̂1,2 − p1⟨�1,2, ⟨�2,2, s1,2⟩̂⟩+
m∑
k=3

pk⟨�1,2, ⟨�2,2, s1,2⟩, ⟨s3,k, �2⟩̂⟩

(compare with (17)). Then, the proof would be complete taking n∗ = (n2, n0, n1, n3 . . . , nm) and
the Nikishin system

N (�∗1 , . . . , �
∗
m) = N (�1,2, ⟨�2,2, s1,2⟩, ⟨�3, �2⟩, �4, . . . , �m).

(If m = 2, then n∗ = (n2, n0, n1) and the Nikishin system is N (�1,2, ⟨�2,2, s1,2⟩).)
If j ≥ 3, we obtain

ℒ∗n = p∗0 + p∗1�̂
∗
1 − p1⟨�∗1 , ⟨�2,j , s1,j ⟩̂⟩ − p2⟨�∗1 ,

⟨s3,j , �2⟩̂
ŝ3,j

⟨�2,j , s1,j ⟩̂⟩+

j−1∑
k=3

(−1)k−1pk⟨�∗1 , ⟨�2,j , s1,j⟩, . . . , ⟨�k−1,j , sk−2,j⟩,
⟨�k,j , sk−1,j⟩

ŝk+1,j
, ⟨sk+1,j , �k ⟩̂⟩+

(−1)j
m∑

k=j+1

pk⟨�∗1 , ⟨�2,j , s1,j⟩, . . . , ⟨�j,j , sj−1,j⟩, ⟨sj+1,k, �j ⟩̂⟩.
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B1) If n0 ≤ n1, take n∗1 = n1 and �∗1 =
⟨s2,j ,�1 ⟩̂
ŝ2,j

�1,j . We can rewrite (21) as follows

ℒ∗n = p∗0 + p1�̂
∗
1 + p0⟨

ŝ2,j

⟨s2,j , �1⟩̂
�∗1 ⟩̂+

j−1∑
k=2

(−1)k−1pk⟨
ŝ2,j

⟨s2,j , �1⟩̂
�∗1 , ⟨�2,j , s1,j⟩, . . . , ⟨�k−1,j , sk−2,j⟩,

⟨�k,j , sk−1,j⟩
ŝk+1,j

, ⟨sk+1,j , �k ⟩̂⟩+

(−1)j
m∑

k=j+1

pk⟨
ŝ2,j

⟨s2,j , �1⟩̂
�∗1 , ⟨�2,j , s1,j⟩, . . . , ⟨�j,j , sj−1,j⟩, ⟨sj+1,k, �j ⟩̂⟩, (22)

Decompose
ŝ2,j

⟨s2,j ,�1 ⟩̂
using (7). Then, the first three terms of ℒ∗n in (22) can be expressed as

p∗0 + p1�̂
∗
1 + p0⟨

ŝ2,j

⟨s2,j , �1⟩̂
�∗1 ⟩̂ = p∗0 + (p1 +

∣s2,j ∣
∣⟨s2,j , �1⟩∣

p0)�̂∗1 + p0⟨�∗1 ,
ŝ1,j

�̂1
�2,j;1,1⟩̂.

Taking p∗1 = p1 +
∣s2,j ∣

∣⟨s2,j ,�1⟩∣p0, we have that deg p∗1 ≤ n∗1 − 1(= n1 − 1).

If j = 2, due to (18) (in the next formula ŝ4,k ≡ 1 if k = 3)

ŝ2,2

⟨s2,2, �1⟩̂
⟨⟨�2,2, s1,2⟩, ⟨s3,k, �2⟩̂⟩ =

�̂2

⟨�2, �1⟩̂
⟨⟨�2,2, s1,2⟩, ŝ4,k�3, �2⟩̂ =

⟨ ⟨�1, �2⟩̂
�̂1

�2,2;1,1, ŝ4,k�3, �2, �1⟩̂ = ⟨ ⟨�1, �2⟩̂
�̂1

�2,2;1,1, ⟨�3, �2, �1⟩, s4,k ⟩̂.

Consequently,

ℒ∗n = p∗0 + p∗1�̂
∗
1 + p0⟨�∗1 ,

ŝ1,2

�̂1
�2,2;1,1⟩̂+

m∑
k=3

pk⟨�∗1 ,
ŝ1,2

�̂1
�2,2;1,1, ⟨�3, �2, �1⟩, s4,k ⟩̂.

In this situation, we would be done considering n∗ = (n2, n1, n0, n3, . . . , nm) and the system

N (�∗1 , . . . , �
∗
m) = N (

⟨�2, �1⟩̂
�̂2

�1,2,
⟨�1, �2⟩̂
�̂1

�2,2;1,1, ⟨�3, �2, �1⟩, �4, . . . , �m).

(Should m = 2, then n∗ = (n2, n1, n0) and the Nikishin system is N ( ⟨�2,�1 ⟩̂
�̂2

�1,j ,
⟨�1,�2 ⟩̂
�̂1

�2,2;1,1).)
This result already includes new multi-indices for which it is possible to prove normality. The only
sub-case studied previously (see [19]) was for m = 2. Therefore, if j = 2 we are done.

Let us assume that j ≥ 3. (The algorithm ends after j − 1 steps.) So far, we have used the
notation sk,l only with k ≤ l. We will extend its meaning to k > l in which case

sk,l = ⟨�k, �k−1, . . . , �l⟩, k > l.

Notice that if l < k < j, then

⟨sk,j , sk−1,l⟩ = ⟨sk,l, sk+1,j⟩.

The inverse measure of ⟨sk,j , sk−1,l⟩ we denote by �k,j;k−1,l; that is,

1/⟨sk,j , sk−1,l⟩̂ = ℓk,j;k−1,l + �̂k,j;k−1,l

In particular, �2,j;1,1 denotes the inverse measure of ⟨s2,j , �1⟩.
Let us transform the measures in

∑j−1
k=2 of (22). Regarding the term with p2, using (19) with

�� = �2, �� = s3,j and � = �1, we obtain

ŝ2,j

⟨s2,j , �1⟩̂
⟨ ⟨�2,j , s1,j⟩

ŝ3,j
, ⟨s3,j , �2⟩̂⟩ = ⟨ ⟨s3,j , �2, �1⟩̂

ŝ3,j

ŝ1,j

�̂1
�2,j;1,1⟩̂.
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For j = 3,
∑j−1
k=3 is empty, so here the formulas make sense when j ≥ 4. Using (18), with �� = s2,j ,

�� = �1, � = �3,j , and

f = f1,j,k =

⎧⎨⎩

⟨s4,j , �3⟩̂
ŝ4,j

, 3 = k < j ≤ m,

⟨ ⟨�4,j , s3,j⟩
ŝ5,j

, ⟨s5,j , �4⟩̂⟩, 4 = k < j ≤ m,

⟨⟨�4,j , s3,j⟩, . . . , ⟨�k−1,j , sk−2,j⟩,
⟨�k,j , sk−1,j⟩

ŝk+1,j
, ⟨sk+1,j , �k ⟩̂⟩, 5 ≤ k < j ≤ m,

we obtain

ŝ2,j

⟨s2,j , �1⟩̂
⟨⟨�2,j , s1,j⟩, . . . , ⟨�k−1,j , sk−2,j⟩,

⟨�k,j , sk−1,j⟩
ŝk+1,j

, ⟨sk+1,j , �k ⟩̂⟩ =

⟨ ŝ1,j

�̂1
�2,j;1,1, f1,j,k�3,j , s2,j , �1⟩̂ =⎧⎨⎩

⟨ ŝ1,j

�̂1
�2,j;1,1,

⟨�3,j , s2,j , �1⟩
ŝ4,j

, ⟨s4,j , �3⟩̂⟩, 3 = k < j ≤ m,

⟨ ŝ1,j

�̂1
�2,j;1,1, ⟨�3,j , s2,j , �1⟩,

⟨�4,j , s3,j⟩
ŝ5,j

, ⟨s5,j , �4⟩̂⟩, 4 = k < j ≤ m,

⟨ ŝ1,j�̂1
�2,j;1,1, ⟨�̂1s2,j ⟩̂�3,j , ŝ3,j�4,j , . . . , ŝk−2,j�k−1,j ,

⟨�̂ksk+1,j ⟩̂ŝk−1,j

ŝk+1,j
�k,j ⟩̂, 5 ≤ k < j ≤ m.

In the last row, we used a more compact notation to fit the line. Notice that it is the same as

⟨ ŝ1,j

�̂1
�2,j;1,1, ⟨�3,j , s2,j , �1⟩, ⟨�4,j , s3,j⟩, . . . , ⟨�k−1,j , sk−2,j⟩,

⟨�k,j , sk−1,j⟩
ŝk+1,j

, ⟨sk+1,j , �k ⟩̂⟩.

As for the terms in
∑m
k=j+1, applying (18) with �� = s2,j , �� = �1, � = �3,j , and

f = f1,j,k =

{
⟨s4,k, �3⟩̂, 3 = j < k ≤ m,
⟨⟨�4,j , s3,j⟩, . . . , ⟨�j,j , sj−1,j⟩, ⟨sj+1,k, �j ⟩̂⟩, 4 ≤ j < k ≤ m,

it follows that
ŝ2,j

⟨s2,j , �1⟩̂
⟨⟨�2,j , s1,j⟩, . . . , ⟨�j,j , sj−1,j⟩, ⟨sj+1,k, �j ⟩̂⟩ =

= ⟨ ŝ1,j

�̂1
�2,j;1,1, f1,j,k�3,j , s2,j , �1⟩̂ =⎧⎨⎩

⟨ ŝ1,3

�̂1
�2,3;1,1, ⟨�3,3, s2,3, �1⟩, ⟨s4,k, �3⟩̂⟩, 3 = j < k ≤ m,

⟨ ŝ1,j

�̂1
�2,j;1,1, ⟨�3,j , s2,j , �1⟩, ⟨�4,j , s3,j⟩, . . . , ⟨�j,j , sj−1,j⟩, ⟨sj+1,k, �j ⟩̂⟩, 4 ≤ j < k ≤ m.

When j = m no such terms exist.
Therefore,

ℒ∗n = p∗0 + p∗1�̂
∗
1 + p0⟨�∗1 ,

ŝ1,j

�̂1
�2,j;1,1⟩̂ − p2⟨�∗1 ,

⟨s3,j , �2, �1⟩̂
ŝ3,j

ŝ1,j

�̂1
�2,j;1,1⟩̂+

j−1∑
k=3

(−1)k−1pk⟨�∗1 ,
ŝ1,j

�̂1
�2,j;1,1, f1,j,k�3,j , s2,j , �1⟩̂+ (−1)j

m∑
k=j+1

pk⟨�∗1 ,
ŝ1,j

�̂1
�2,j;1,1, f1,j,k�3,j , s2,j , �1⟩̂.

Using the notation for f1,j,k defined previously, in A1) we ended up with

ℒ∗n = p∗0 + p∗1�̂
∗
1 − p1⟨�∗1 , ⟨�2,j , s1,j ⟩̂⟩ − p2⟨�∗1 ,

⟨s3,j , �2⟩̂
ŝ3,j

⟨�2,j , s1,j ⟩̂⟩+

j−1∑
k=3

(−1)k−1pk⟨�∗1 , ⟨�2,j , s1,j⟩, f1,j,k�3,j , s2,j ⟩̂+ (−1)j
m∑

k=j+1

pk⟨�∗1 , ⟨�2,j , s1,j⟩, f1,j,k�3,j , s2,j ⟩̂.

Denote

�
(l1)
2 =

{
ŝ1,j�2,j , l1 = 1,
ŝ1,j
�̂1
�2,j;1,1, l1 = 0.
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The two formulas for ℒ∗n may be put in one writing

ℒ∗n = p∗0 + p∗1�̂
∗
1 + (−1)l1pl1⟨�∗1 , �

(l1)
2 ⟩̂ − p2⟨�∗1 ,

⟨s3,j , s2,l1+1⟩̂
ŝ3,j

�
(l1)
2 ⟩̂+ (23)

m∑
k=3,k ∕=j

�k,jpk⟨�∗1 , �
(l1)
2 , f1,j,k�3,j , s2,l1+1, s3,j ⟩̂, nl1 = min{n0, n1},

where

�k,j =

{
(−1)k−1, k < j,
(−1)j , k > j.

We also have

deg p∗0 ≤ nj − 1 = n∗0 − 1, deg p∗1 ≤ max{n0, n1} − 1 = n∗1 − 1.

For j = 2 we found the following solutions

max{n0, n1} (n∗0, . . . , n
∗
m) N (�∗1 , . . . , �

∗
m)

n0 (n2, n0, n1, n3, . . . , nm) N (�1,2, ⟨�2,2, s1,2⟩, s3,2, �4, . . . , �m)

n1 (n2, n1, n0, n3, . . . , nm) N (
ŝ2,1
ŝ2,2

�1,2,
ŝ1,2
ŝ1,1

�2,2;1,1, s3,1, �4, . . . , �m)

(If m = 2, then n∗ has only the first three components and the Nikishin system has only the first
two measures indicated.)

We are ready for the induction hypothesis but, for the sake of clarity, let us take one more step.
Second step. The case j = 2 has been solved; therefore, j ≥ 3. We ask whether min{n0, n1} ≥

n2 or min{n0, n1} ≤ n2? (When min{n0, n1} = n2 we can proceed either ways.)

A2) If min{n0, n1} ≥ n2, take n∗2 = min{n0, n1} and �∗2 = �
(l1)
2 , l1 ∈ {0, 1}. Decompose

⟨s3,j ,s2,l1+1 ⟩̂
ŝ3,j

using (8). Then, the first four terms of ℒ∗n reduce to

p∗0 + p∗1�̂
∗
1 + (−1)l1pl1⟨�∗1 , �∗2 ⟩̂ − p2⟨�∗1 ,

⟨s3,j , s2,l1+1⟩̂
ŝ3,j

�∗2 ⟩̂ =

p∗0 + p∗1�̂
∗
1 + p∗2⟨�∗1 , �∗2 ⟩̂+ p2⟨�∗1 , �∗2 , �3,j , s2,l1+1, s3,j ⟩̂, nl1 = min{n0, n1},

with p∗2 = (−1)l1pl1 −
∣⟨s3,j ,s2,l1+1⟩∣

∣s3,j ∣ p2, deg p∗2 ≤ n∗2 − 1.

In case that j = 3, we have

ℒ∗n = p∗0 + p∗1�̂
∗
1 + p∗2⟨�∗1 , �∗2 ⟩̂+ p2⟨�∗1 , �∗2 , �3,3, s2,l1+1, s3,3⟩̂ −

m∑
k=4

pk⟨�∗1 , �∗2 , f1,3,k�3,3, s2,l1+1, s3,3⟩̂,

This subcase produces the two solutions (in both min{n0, n1} ≥ n2)

max{n0, n1} (n∗0, . . . , n
∗
m) N (�∗1 , . . . , �

∗
m)

n0 (n3, n0, n1, n2, . . . ) N (�1,3, ŝ1,3�2,3, ŝ2,3�3,3, s4,3, . . . )

n1 (n3, n1, n0, n2, . . . ) N (
⟨s2,3,�1 ⟩̂
ŝ2,3

�1,3,
ŝ1,3
ŝ1,1

�2,3;1,1, ⟨�3,3, s2,3, �1⟩, s4,3, . . . )

If m = 3, then n∗ has only the first four components and the Nikishin system has only the first
three measures indicated. When m ≥ 4

(n∗4, . . . , n
∗
m) = (n4, . . . , nm), (�∗5 , . . . , �

∗
m) = (�5, . . . , �m), (if m ≥ 5).

Let j ≥ 4. Define

f = f2,j,k =

⎧⎨⎩

⟨s5,j , �4⟩̂
ŝ5,j

, 4 = k < j ≤ m,

⟨ ⟨�5,j , s4,j⟩
ŝ6,j

, ⟨s6,j , �5⟩̂⟩, 5 = k < j ≤ m,

⟨⟨�5,j , s4,j⟩, . . . , ⟨�k−1,j , sk−2,j⟩,
⟨�k,j , sk−1,j⟩

ŝk+1,j
, ⟨sk+1,j , �k ⟩̂⟩, 6 ≤ k < j ≤ m,

⟨s5,k, �4⟩̂, 4 = j < k ≤ m,
⟨⟨�5,j , s4,j⟩, . . . , ⟨�j,j , sj−1,j⟩, ⟨sj+1,k, �j ⟩̂⟩, 5 ≤ j < k ≤ m,
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From (23), we obtain

ℒ∗n = p∗0 + p∗1�̂
∗
1 + p∗2⟨�∗1 , �∗2 ⟩̂+ p2⟨�∗1 , �∗2 , �3,j , s2,l1+1, s3,j ⟩̂+ p3⟨�∗1 , �∗2 ,

⟨s4,j , �3⟩̂
ŝ4,j

�3,j , s2,l1+1, s3,j ⟩̂+

m∑
k=4,k ∕=j

�k,jpk⟨�∗1 , �∗2 , ⟨�3,j , s2,l1+1, s3,j⟩, f2,j,k�4,j , s3,j ⟩̂, nl1 = min{n0, n1}. (24)

B2) If min{n0, n1} ≤ n2, take n∗2 = n2 and �∗2 =
⟨s3,j ,s2,l1+1 ⟩̂

ŝ3,j
�

(l1)
2 . Using (7) to decompose

ŝ3,j

⟨s3,j ,s2,l1+1 ⟩̂
, the first four terms of ℒ∗n in (23) become

p∗0 + p∗1�̂
∗
1 − p2⟨�∗1 , �∗2 ⟩̂+ (−1)l1pl1⟨�∗1 ,

ŝ3,j

⟨s3,j , s2,l1+1⟩̂
�∗2 ⟩̂ =

p∗0 + p∗1�̂
∗
1 + p∗2⟨�∗1 , �∗2 ⟩̂+ (−1)l1pl1⟨�∗1 , �∗2 ,

⟨s2,l1+1, s3,j ⟩̂
ŝ2,l1+1

�3,j;2,l1+1⟩̂, nl1 = min{n0, n1}

where p∗2 = −p2 + (−1)l1
∣ŝ3,j ∣

∣⟨s3,j ,s2,l1+1 ⟩̂∣
pl1 ,deg p∗2 ≤ n∗2 − 1.

If j = m = 3 we are done. Should m ≥ 4 and j = 3, using (18) with �� = �3 = s3,3, �� =
s2,l1+1, � = s4,k, and f ≡ 1, for the terms in

∑m
k=4, we obtain (see definition of f1,3,k)

⟨�(l1)
2 , f1,3,k�3,3, s2,l1+1, s3,3⟩̂ = ⟨ ŝ3,3

⟨s3,3, s2,l1+1⟩̂
�∗2 , ⟨�3,3, s2,l1+1, s3,3⟩, s4,k, s3,3⟩̂ =

⟨�∗2 ,
⟨s2,l1+1, s3,3⟩̂

ŝ2,l1+1
�3,3;2,l1+1, s4,k, s3,l1+1⟩̂.

Therefore,

ℒ∗n = p∗0 + p∗1�̂
∗
1 + p∗2⟨�∗1 , �∗2 ⟩̂+ (−1)l1pl1⟨�∗1 , �∗2 ,

⟨s2,l1+1, s3,j ⟩̂
ŝ2,l1+1

�3,j;2,l1+1⟩̂−

m∑
k=4

pk⟨�∗1 , �∗2 ,
⟨s2,l1+1, s3,3⟩̂

ŝ2,l1+1
�3,3;2,l1+1, s4,k, s3,l1+1⟩̂

The case j = 3 is finished with two additional solutions (in both min{n0, n1} ≤ n2)

max{n0, n1} (n∗0, . . . , n
∗
m) N (�∗1 , . . . , �

∗
m)

n0 (n3, n0, n2, n1, . . . ) N (�1,3,
ŝ3,2
ŝ3,3

ŝ1,3�2,3,
ŝ2,3
ŝ2,2

�3,3;2,2, s4,2, . . . )

n1 (n3, n1, n2, n0, . . . ) N (
⟨s2,3,�1 ⟩̂
ŝ2,3

�1,3,
ŝ3,1
ŝ3,3

ŝ1,3
ŝ1,1

�2,3;1,1,
⟨s2,1,s3,3 ⟩̂

ŝ2,1
�3,3;2,1, s4,1, . . . )

If m = 3, then n∗ has only the first four components and the Nikishin system has only the first
three measures indicated. When m ≥ 4

(n∗4, . . . , n
∗
m) = (n4, . . . , nm), (�∗5 , . . . , �

∗
m) = (�5, . . . , �m), (if m ≥ 5).

Let us transform the terms in
∑m
k=3,k ∕=j of (23). Assume that j ≥ 4. Consider the function

multiplying p3; that is, when 3 = k < j ≤ m. Using (19) with �� = �3, �� = s4,j , and � = s2,l1+1,
we obtain

⟨�(l1)
2 , f1,j,3�3,j , s2,l1+1, s3,j ⟩̂ = ⟨ ŝ3,j

⟨s3,j , s2,l1+1⟩̂
�∗2 ,
⟨s4,j , �3⟩̂
ŝ4,j

�3,j , s2,l1+1, s3,j ⟩̂ =

⟨�∗2 ,
⟨s4,j , s3,l1+1⟩̂

ŝ4,j

⟨s2,l1+1, s3,j ⟩̂
ŝ2,l1+1

�3,j;2,l1+1⟩̂, l1 ∈ {0, 1}.

To reduce the terms in
∑j−1
k=4 when 5 ≤ j ≤ m, and

∑m
k=j+1 for 4 ≤ j < m, apply (18) with

�� = s3,j , �� = �2 or �� = ⟨�2, �1⟩, � = �4,j , and f = f2,j,k. It follows that

⟨�(l1)
2 , f1,j,k�3,j , s2,l1+1, s3,j ⟩̂ = ⟨ ŝ3,j

⟨s3,j , s2,l1+1⟩̂
�∗2 , ⟨�3,j , s2,l1+1, s3,j⟩, f2,j,k�4,j , s3,j ⟩̂ =
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⟨�∗2 ,
⟨s2,l1+1, s3,j ⟩̂

ŝ2,l1+1
�3,j;2,l1+1, f2,j,k�4,j , s3,j , s2,l1+1⟩̂, l1 ∈ {0, 1}.

Therefore,

ℒ∗n = p∗0 + p∗1�̂
∗
1 + p∗2⟨�∗1 , �∗2 ⟩̂+ (−1)l1pl1⟨�∗1 , �∗2 ,

⟨s2,l1+1, s3,j ⟩̂
ŝ2,l1+1

�3,j;2,l1+1⟩̂+ (25)

p3⟨�∗1 , �∗2 ,
⟨s4,j , s3,l1+1⟩̂

ŝ4,j

⟨s2,l1+1, s3,j ⟩̂
ŝ2,l1+1

�3,j;2,l1+1⟩̂,

∑
k=4,k ∕=j

�k,jpk⟨�∗1 , �∗2 ,
⟨s2,l1+1, s3,j ⟩̂

ŝ2,l1+1
�3,j;2,l1+1, f2,j,k�4,j , s3,j , s2,l1+1⟩̂, l1 ∈ {0, 1}.

Let us write down (24)-(25) in one expression. Recall that j ≥ 4. Take

�
(l2)
3 =

⎧⎨⎩
ŝ2,j�3,j , l1 = 1 in (24),

⟨s2,j , �1⟩̂�3,j , l1 = 0 in (24),
ŝ2,j
ŝ2,2

�3,j;2,2, l1 = 1 in (25),

⟨s2,1,s3,j ⟩̂
ŝ2,1

�3,j;2,1, l1 = 0 in (25).

Then

ℒ∗n = p∗0 + p∗1�̂
∗
1 + p∗2⟨�∗1 , �∗2 ⟩̂+ (−1)l2pl2⟨�∗1 , �∗2 , �

(l2)
3 ⟩̂+ p3⟨�∗1 , �∗2 ,

⟨s4,j , s3,l2+1⟩̂
ŝ4,j

�
(l2)
3 ⟩̂+

m∑
k=4,k ∕=j

�k,jpk⟨�∗1 , �∗2 , �
(l2)
3 , f2,j,k�4,j , s3,l2+1, s4,j ⟩̂, nl2 = min{n0, n1, n2}. (26)

We also have that deg p∗k ≤ n∗k − 1, k = 0, 1, 2, where

n∗k =

⎧⎨⎩ nj = max{n0 + 1, n1, . . . , nm}, k = 0,
max{n0, n1}, k = 1,
max{min{n0, n1}, n2}, k = 2,

(27)

and the measures �∗1 , �
∗
2 have also been determined. The polynomials p∗0, p

∗
1, p
∗
2, the indices

n∗0, n
∗
1, n
∗
2, and the measures �∗1 , �

∗
2 will not change in subsequent reductions. The structure of

a Nikishin systems brakes down in the Cauchy transform multiplying p3 due to an annoying ratio
of Cauchy transforms modifying the third measure in the corresponding product.

With this unified formula, you can repeat the line of reasonings employed in step 2 (or 1) and
so on. Let us write down the eight solutions corresponding to j = 4. In the table, besides (27), we
have that n∗3 = max{min{n0, n1, n2}, n3}, n∗4 = min{n0, . . . , n3}, and of course n∗0 = n4.

(n∗1, . . . , n
∗
4) N (�∗1 , . . . , �

∗
m)

(n0, n1, n2, n3) N (�1,4, ŝ1,4�2,4, ŝ2,4�3,4, ŝ3,4�4,4, s5,4, . . . )

(n1, n0, n2, n3) N (
⟨s2,4,�1 ⟩̂
ŝ2,4

�1,4,
ŝ1,4
�̂1
�2,4;1,1, ⟨�3,4, s2,4, �1⟩, ŝ3,4�4,4, s5,4, . . . )

(n0, n2, n1, n3) N (�1,4,
⟨s3,4,�2 ⟩̂
ŝ3,4

ŝ1,4�2,4,
ŝ2,4
�̂2
�3,4;2,2, ⟨�4,4, s3,2, �4⟩, s5,4, . . . )

(n1, n2, n0, n3) N (
⟨s2,4,�1 ⟩̂
ŝ2,4

�1,4,
⟨s3,4,s2,1 ⟩̂

ŝ3,4

ŝ1,4
�̂1
�2,4;1,1,

⟨s2,1,s3,4 ⟩̂
ŝ2,1

�3,4;2,1, ⟨�4,4, s3,1, �4⟩, s5,4, . . . )

(n0, n1, n3, n2) N (�1,4, ŝ1,4�2,4,
ŝ4,3
�̂4
ŝ2,4�3,4,

ŝ3,4
�̂3
�4,4;3,3, s5,3, . . . )

(n1, n0, n3, n2) N (
⟨s2,4,�1 ⟩̂
ŝ2,4

�1,4,
ŝ1,4
�̂1
�2,4;1,1,

ŝ4,3
�̂4
⟨�3,4, s2,4, �1⟩, ŝ3,4�̂3

�4,4;3,3, s5,3, . . . )

(n0, n2, n3, n1) N (�1,4,
⟨s3,4,�2 ⟩̂
ŝ3,4

ŝ1,4�2,4,
ŝ4,2
�̂4

ŝ2,4
�̂2
�3,4;2,2,

⟨s3,2,�4 ⟩̂
ŝ3,2

�4,4;3,2, s5,2, . . . )

(n1, n2, n3, n0) N (
⟨s2,4,�1 ⟩̂
ŝ2,4

�1,4,
⟨s3,4,s2,1 ⟩̂

ŝ3,4

ŝ1,4
�̂1
�2,4;1,1,

ŝ4,1
�̂4

⟨s2,1,s3,4 ⟩̂
ŝ2,1

�3,4;2,1,
⟨s3,1,�4 ⟩̂
ŝ3,1

�4,4;3,1, s5,1, . . . )

If m = 4, then n∗ has only the first five components and the Nikishin system has only the first
four measures indicated. When m ≥ 5

(n∗5, . . . , n
∗
m) = (n5, . . . , nm), (�∗6 , . . . , �

∗
m) = (�6, . . . , �m), (if m ≥ 6).

Summarizing, in step 1 we proved the statement of Lemma 2.3 when j = 2, showing that there
are two solutions, and for j ≥ 3 we obtained formula (23) which allowed us to prove in step 2 that



24 FIDALGO AND LÓPEZ

the lemma is true when j = 3, with 4 solutions, and for j ≥ 4 to obtain formula (26), similar to
(23), which provides the instruments to carry out step 3 and so on. The case j = 1 was treated
separately. The induction will be on the number of successful steps we have been able to carry
out. The counter of the steps will be denoted j∗. Fix j, 2 ≤ j ≤ m. Assume that we have been
able to carry out j∗ steps. Let us describe what we have obtained in

Step j∗. Induction hypothesis. We have proved that the statement of Lemma 2.3 holds
when j = j∗ + 1, with 2j−1 = 2j

∗
solutions, and when j ≥ j∗ + 2, we have defined:

(1) indices

n∗k =

{
nj = max{n0 + 1, n1, . . . , nm}, k = 0,
max{min{n0, . . . , nk−1}, nk}, k = 1, . . . , j∗.

(2) integers lk, k = 0, . . . , j∗, inductively as follows: l0 = 0, l1 is the subindex between those
of n0, n1 not employed in defining n∗1, and so forth until lj∗ which is the subindex between
those of n0, . . . , nj∗ which was not employed in defining n∗1, . . . , n

∗
j∗ . In particular,

nlk = min{n0, . . . , nk}.

(3) polynomials

p∗k =

⎧⎨⎩ ℓ1,jp0 + pj +
∑m
i=1,i∕=j

∣s1,i∣
∣s1,j ∣pi, k = 0,

(−1)lk−1plk−1
+ C1,j,kpk, k = 1, . . . , j∗, min{n0, . . . , nk−1} ≥ nk,

(−1)k−1pk + C2,j,kplk−1
, k = 1, . . . , j∗, min{n0, . . . , nk−1} ≤ nk.

where C1,j,k, C2,j,k, are real constants different from zero.
(4) functions

fj∗,j,k =

⎧⎨⎩

⟨sj∗+3,k, �j∗+2⟩̂, j∗ + 2 = j < k ≤ m,
⟨⟨�j∗+3,j , sj∗+2,j⟩, . . . , ⟨�j,j , sj−1,j⟩, ⟨sj+1,k, �j ⟩̂⟩, j∗ + 3 ≤ j < k ≤ m,
⟨sj∗+3,j , �j∗+2⟩̂

ŝj∗+3,j
, j∗ + 2 = k < j ≤ m,

⟨ ⟨�j
∗+3,j , sj∗+2,j⟩
ŝj∗+4,j

, ⟨sj∗+4,j , �j∗+3⟩̂⟩, j∗ + 3 = k < j ≤ m,

⟨ŝj∗+2,j�j∗+3,j , . . . , ŝk−2,j�k−1,j ,
⟨�k,j , sk−1,j⟩

ŝk+1,j
, ⟨sk+1,j , �k ⟩̂⟩, j∗ + 4 ≤ k < j ≤ m.

(5) measures �∗1 , . . . , �
∗
j∗ and �

(lj∗ )
j∗+1 whose supports are contained in the same intervals Δ1, . . . ,

Δj∗+1 as �1, . . . , �j∗+1, respectively, where

�
(lj∗ )
j∗+1 =

⎧⎨⎩
�j∗+1,j , sj∗,lj∗−1+1, sj∗+1,j , if max{min{n0, . . . , nj∗−1}, nj∗} = nlj∗−1

,

⟨sj∗,lj∗−1+1, sj∗+1,j ⟩̂
ŝj∗,lj∗−1+1

�j∗+1,j;j∗,lj∗−1+1, if max{min{n0, . . . , nj∗−1}, nj∗} = nj∗ .

With these elements, we have proved the formula (analogous to those obtained in steps 1 and 2)

ℒ∗n = p∗0 +

j∗∑
k=1

p∗k⟨�∗1 , . . . , �∗k ⟩̂+ (−1)lj∗plj∗ ⟨�
∗
1 , . . . , �

∗
j∗ , �

(lj∗ )
j∗+1⟩̂+ (28)

(−1)j
∗
pj∗+1⟨�∗1 , . . . , �∗j∗ ,

⟨sj∗+2,j , sj∗+1,lj∗+1⟩̂
ŝj∗+2,j

�
(lj∗ )
j∗+1⟩̂+

m∑
k=j∗+2,k ∕=j

�k,jpk⟨�∗1 , . . . , �∗j∗ , �
(lj∗ )
j∗+1, fj∗,j,k�j∗+2,j , sj∗+1,lj∗+1, sj∗+2,j ⟩̂.

Step j∗ + 1. Induction proof. To complete the induction we must prove in this step that
Lemma 2.3 is satisfied when j = j∗ + 2, with 2j

∗+1 solutions, and when j ≥ j∗ + 3 to produce a
formula which extends (28) one more step.
Case A) Suppose that max{min{n0, . . . , nj∗}, nj∗+1} = min{n0, . . . , nj∗} = nlj∗ . Take

n∗j∗+1 = nlj∗ and �∗j∗+1 = �
(lj∗ )
j∗+1.
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Using (8) on
⟨sj∗+2,j ,sj∗+1,lj∗+1 ⟩̂

ŝj∗+2,j
, from (28) it follows that

ℒ∗n = p∗0 +

j∗+1∑
k=1

p∗k⟨�∗1 , . . . , �∗k ⟩̂+ (−1)j
∗+1pj∗+1⟨�∗1 , . . . , �∗j∗ , �∗j∗+1, �j∗+2,j , sj∗+1,lj∗+1, sj∗+2,j ⟩̂+

m∑
k=j∗+2,k ∕=j

�k,jpk⟨�∗1 , . . . , �∗j∗ , �
(lj∗ )
j∗+1, fj∗,j,k�j∗+2,j , sj∗+1,lj∗+1, sj∗+2,j ⟩̂,

where

p∗j∗+1 = (−1)lj∗plj∗ + (−1)j
∗ ∣⟨sj∗+2,j , sj∗+1,lj∗+1⟩∣

ŝj∗+2,j
pj∗+1, deg p∗j∗+1 ≤ nj∗+1 − 1.

Since fj∗,j∗+2,k = ⟨sj∗+3,k, �j∗+2⟩̂, if j = j∗ + 2 we have that ℒ∗n is a linear form generated by

n∗ = (n∗0, . . . , n
∗
j∗+1, nj∗+1, nj∗+3, . . . , nm)

and the Nikishin system

N (�∗1 , . . . , �
∗
j∗+1, ⟨�j∗+2,j∗+2, sj∗+1,lj∗+1, sj∗+2,j∗+2⟩, sj∗+3,j∗+2, �j∗+4, . . . , �m).

When m = j(= j∗ + 2), the system ends with the measure ⟨�j∗+2,j∗+2, sj∗+1,l+1, sj∗+2,j∗+2⟩.
If j ≥ j∗ + 3, (28) may be expressed as

ℒ∗n = p∗0 +

j∗+1∑
k=1

p∗k⟨�∗1 , . . . , �∗k ⟩̂+ (−1)j
∗+1pj∗+1⟨�∗1 , . . . , �∗j∗+1, �j∗+2,j , sj∗+1,lj∗+1, sj∗+2,j ⟩̂+

(−1)j
∗+1pj∗+2⟨�∗1 , . . . , �∗j∗+1,

⟨sj∗+3,j , �j∗+2⟩̂
ŝj∗+3,j

�j∗+2,j , sj∗+1,lj∗+1, sj∗+2,j ⟩̂+ (29)

m∑
k=j∗+3,k ∕=j

�k,jpk⟨�∗1 , . . . , �∗j∗+1, ⟨�j∗+2,j , sj∗+1,lj∗+1, sj∗+2,j⟩, fj∗+1,j,k�j∗+3,j , sj∗+2,j ⟩̂,

where fj∗+1,j,k is defined as fj∗,j,k substituting j∗ by j∗ + 1.
Case B) If max{min{n0, . . . , nj∗}, nj∗+1} = nj∗+1, take

n∗j∗+1 = nj∗+1 and �∗j∗+1 =
⟨sj∗+2,j , sj∗+1,lj∗+1⟩̂

ŝj∗+2,j
�

(lj∗ )
j∗+1.

Rewrite (28) as follows

ℒ∗n = p∗0 +

j∗∑
k=1

p∗k⟨�∗1 , . . . , �∗k ⟩̂+ (−1)j
∗
pj∗+1⟨�∗1 , . . . , �∗j∗ , �∗j∗+1⟩̂+

(−1)lj∗plj∗ ⟨�
∗
1 , . . . , �

∗
j∗ ,

ŝj∗+2,j

⟨sj∗+2,j , sj∗+1,lj∗+1⟩̂
�∗j∗+1⟩̂+

m∑
k=j∗+2,k ∕=j

�k,jpk⟨�∗1 , . . . , �∗j∗ ,
ŝj∗+2,j

⟨sj∗+2,j , sj∗+1,lj∗+1⟩̂
�∗j∗+1, fj∗,j,k�j∗+2,j , sj∗+1,lj∗+1, sj∗+2,j ⟩̂.

Using (7), reduce
ŝj∗+2,j

⟨sj∗+2,j ,sj∗+1,lj∗+1 ⟩̂
in the term with plj∗ . This formula transforms into

ℒ∗n = p∗0 +

j∗+1∑
k=1

p∗k⟨�∗1 , . . . , �∗k ⟩̂+ (30)

(−1)lj∗plj∗ ⟨�
∗
1 , . . . , �

∗
j∗+1,

⟨sj∗+1,lj∗+1, sj∗+2,j ⟩̂
ŝj∗+1,lj∗+1

�j∗+2,j;j∗+1,lj∗+1⟩̂+

m∑
k=j∗+2,k ∕=j

�k,jpk⟨�∗1 , . . . , �∗j∗ ,
ŝj∗+2,j

⟨sj∗+2,j , sj∗+1,lj∗+1⟩̂
�∗j∗+1, fj∗,j,k�j∗+2,j , sj∗+1,lj∗+1, sj∗+2,j ⟩̂.
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where

p∗j∗+1 = (−1)j
∗
pj∗+1 + (−1)lj∗

∣sj∗+2,j ∣
∣⟨sj∗+2,j , sj∗+1,lj∗+1⟩∣

plj∗ , deg p∗j∗+1 ≤ nj∗+1 − 1.

If m = j∗ + 2 we are done, since the sum
∑m
k=j∗+2,k ∕=j is empty (recall that j∗ + 2 ≤ j ≤ m).

Suppose that j∗ + 2 = j < m. Using (18) with �� = �j∗+2, �� = sj∗+1,lj∗+1, � = sj∗+3,k, and

f ≡ 1, for the terms in
∑m
k=j∗+3 (see definition of fj∗,j∗+2,k), (30) becomes

ℒ∗n = p∗0 +

j∗+1∑
k=1

p∗k⟨�∗1 , . . . , �∗k ⟩̂+

(−1)lj∗plj∗ ⟨�
∗
1 , . . . , �

∗
j∗+1,

⟨sj∗+1,lj∗+1, �j∗+2⟩̂
ŝj∗+1,lj∗+1

�j∗+2,j∗+2;j∗+1,lj∗+1⟩̂+

m∑
k=j∗+3

�k,jpk⟨�∗1 , . . . , �∗j∗+1,
⟨sj∗+1,lj∗+1, �j∗+2⟩̂

ŝj∗+1,lj∗+1
�j∗+2,j∗+2;j∗+1,lj∗+1, sj∗+3,k, sj∗+2,lj∗+1⟩̂.

Thus, we conclude with j = j∗ + 2 taking

n∗ = (n∗0, . . . , n
∗
j∗+1, nlj∗ , nj∗+3, . . . , nm)

and the Nikishin system

N (�∗1 , . . . , �
∗
j∗+1,

⟨sj∗+1,lj∗+1, �j∗+2⟩̂
ŝj∗+1,lj∗+1

�j∗+2,j∗+2;j∗+1,lj∗+1, sj∗+3,lj∗+1, �j∗+4, . . . , �m).

If m = j(= j∗ + 2), the system ends with the measure
⟨sj∗+1,lj∗+1,�j∗+2 ⟩̂

ŝj∗+1,lJ∗+1
�j∗+2,j∗+2;j∗+1,lj∗+1.

Let j∗ + 3 ≤ j ≤ m. In (30), the measure multiplying pj∗+2 is transformed by means of (19),
with �� = �j∗+2, �� = sj∗+3,j and � = sj∗+1,lj∗+1. All other terms of

∑m
k=j∗+2,k ∕=j are reduced

employing (18) taking �� = sj∗+2,j , �� = sj∗+1,lj∗+1, � = �j∗+2,j and f = fj∗+1,j,k (remember
that fj∗+1,j,k is defined substituting j∗ by j∗ + 1 in the definition of fj∗,j,k as was already used at
the end of case A)). It is easy to verify that (30) adopts the expression

ℒ∗n = p∗0 +

j∗+1∑
k=1

p∗k⟨�∗1 , . . . , �∗k ⟩̂+ (31)

(−1)lj∗plj∗ ⟨�
∗
1 , . . . , �

∗
j∗+1,

⟨sj∗+1,lj∗+1, sj∗+2,j ⟩̂
ŝj∗+1,lj∗+1

�j∗+2,j;j∗+1,lj∗+1⟩̂+

(−1)j
∗+1pj∗+2⟨�∗1 , . . . , �∗j∗+1,

⟨sj∗+3,j , sj∗+2,lj∗+1⟩̂
ŝj∗+3,j

⟨sj∗+1,lj∗+1, sj∗+2,j ⟩̂
ŝj∗+1,lj∗+1

�j∗+2,j;j∗+1,lj∗+1⟩̂+

′∑
�k,jpk⟨�∗1 , . . . , �∗j∗+1,

⟨sj∗+1,lj∗+1, sj∗+2,j ⟩̂
ŝj∗+1,lj∗+1

�j∗+2,j;j∗+1,lj∗+1, fj∗+1,j,k�j∗+3,j , sj∗+2,j , sj∗+1,lj∗+1⟩̂

(
∑′

=
∑m
k=j∗+3,k ∕=j), which has the same structure as (29).

Let lj∗+1 denote the subindex between those of n0, . . . , nj∗+1 which was not employed in defining
n∗1, . . . , n

∗
j∗+1, then

nlj∗+1
= min{n0, . . . , nj∗+1}.

Notice that in the situation of case A), lj∗+1 = lj∗ , and in case B), lj∗+1 = j∗ + 1. Define

�
(lj∗+1)
j∗+2 =

⎧⎨⎩
�j∗+2,j , sj∗+1,lj∗+1, sj∗+2,j , if max{min{n0, . . . , nj∗}, nj∗+1} = nlj∗ ,

⟨sj∗+1,lj∗+1, sj∗+2,j ⟩̂
ŝj∗+1,lj∗+1

�j∗+2,j;j∗+1,lj∗+1, if max{min{n0, . . . , nj∗}, nj∗+1} = nj∗+1.

With these notations, formulas (29) and (31) may be unified in

ℒ∗n = p∗0 +

j∗+1∑
k=1

p∗k⟨�∗1 , . . . , �∗k ⟩̂+ (−1)lj∗+1plj∗+1
⟨�∗1 , . . . , �∗j∗+1, �

(lj∗+1)
j∗+2 ⟩̂+
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(−1)j
∗+1pj∗+2⟨�∗1 , . . . , �∗j∗+1,

⟨sj∗+3,j , sj∗+2,lj∗+1+1⟩̂
ŝj∗+3,j

�
(lj∗+1)
j∗+2 ⟩̂+

m∑
k=j∗+3,k ∕=j

�k,jpk⟨�∗1 , . . . , �∗j∗+1, �
(lj∗+1)
j∗+2 , fj∗+1,j,k�j∗+3,j , sj∗+2,lj∗+1+1, sj∗+3,j ⟩̂.

With this we conclude the induction and Lemma 2.3 has been proved. □

Before moving on, let us write down the expressions of the p∗k after carrying out j−1 steps. We
will need their structure for further developments. We have

ℒ∗n = p∗0 +
m∑
k=1

p∗k⟨�∗1 , . . . , �∗k ⟩̂

where

p∗k =

⎧⎨⎩

ℓ1,jp0 + pj +
∑m
i=1,i∕=j

∣s1,i∣
∣s1,j ∣pi, k = 0,

(−1)lk−1plk−1
+ C1,j,kpk, k = 1, . . . , j − 1, max{nlk−1

, nk} = nlk−1
,

(−1)k−1pk + C2,j,kplk−1
, k = 1, . . . , j − 1, max{nlk−1

, nk} = nk,
(−1)j−1pj−1 k = j, min{nlj−2

, nj−1} = nj−1,
(−1)lj−1plj−2

, k = j, min{nlj−2
, nj−1} = nlj−2

,
(−1)jpk, k = j + 1, . . . ,m.

(32)

Lemma 2.3 has an immediate consequence in terms of the orthogonality conditions satisfied by
the linear form An (see (4)). We state it as a lemma which is useful to prove Corollary 1.2 and
the results on the asymptotic behavior of sequences of these linear forms.

Lemma 3.4. Let Ŝ and n = (n1;n2) ∈ ℤm1+1
+ × ℤm2+1

+ , ∣n1∣ = ∣n2∣ + 1, be given. Suppose that
n2,j = max{n2,0 + 1, n2,1, . . . , n2,m2

}. Let n∗2 = (n∗2,0, . . . , n
∗
2,m2

) and N (�2∗
1 , . . . , �2∗

m2
) be a multi-

index and a Nikishin system associated with n2 and N (�2
1 , . . . , �

2
m2

) through Lemma 2.3. Set

d�2∗
0 = ŝ2

1,j(x)d�2
0 and (s2∗

0,0, s
2∗
0,1, . . . , s

2∗
0,m2

) = N (�2∗
0 , �2∗

1 , . . . , �2∗
m2

). Then,∫
x�An(x)ds2∗

0,k(x) = 0, � = 0, . . . , n∗2,k − 1, k = 0, . . . ,m2. (33)

Proof. For k = 0, since ds2∗
0,0 = d�2∗

0 = ŝ2
1,j(x)d�2

0 , (4) reduces to (33) when ℒn2
(x) =

x� ŝ2
1,j(x), � = 0, . . . , n∗2,0 − 1, taking into consideration that n∗2,0 = n2,j .

Let j + 1 ≤ k ≤ m2. On account of Lemma 2.3 and (32)

ℒn2
(x) = x� ŝ2

1,k(x) = (
∣s2

1,k∣
∣s2

1,j ∣
x� + (−1)jx� ŝ2∗

1,k)ŝ2
1,j .

Consequently, from (4) and the orthogonality for k = 0, we obtain

0 =

∫
x� ŝ2

1,k(x)An(x)d�2
0(x) =

∣s2
1,k∣
∣s2

1,j ∣

∫
x�An(x)ds2∗

0,0(x) + (−1)j
∫
x�An(x)ds2∗

0,k(x) =

(−1)j
∫
x�An(x)ds2∗

0,k(x), � = 0, . . . , n∗2,k − 1,

since n∗2,k = n2,k ≤ n2,j = n∗2,0, k = j + 1, . . . ,m2. Thus, for these values of k the assertion also
holds.

If k ∈ {1, . . . , j − 1} and max{n2,lk−1
, n2,k} = n2,k, from Lemma 2.3 and (32), it follows that

ℒn2
(x) = x� ŝ2

1,k(x) = (
∣s2

1,k∣
∣s2

1,j ∣
x� + (−1)k−1x� ŝ2∗

1,k)ŝ2
1,j .

Using the same arguments as in the previous case, we obtain what is needed. Similarly, when k = j
and min{n2,lj−2

, n2,j−1} = n2,j−1, then

ℒn2(x) = x� ŝ2
1,j−1(x) = (

∣s2
1,j−1∣
∣s2

1,j ∣
x� + (−1)j−1x� ŝ2∗

1,j)ŝ
2
1,j

and integrating the statement follows.
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Assume that (33) holds for all values of the parameter less than k, 1 ≤ k ≤ j, and let us show
that it is also true for k. When max{n2,lk−1

, n2,k} = n2,k, 1 ≤ k ≤ j − 1, or min{n2,lj−2 , n2,j−1} =
n2,j−1, k = j, we just proved that (32) is satisfied, so we must only consider the cases when
max{n2,lk−1

, n2,k} = n2,lk−1
, 1 ≤ k ≤ j − 1, and min{n2,lj−2

, n2,j−1} = n2,lj−2
, k = j. In this

situation, if 1 ≤ k ≤ j − 1 we have that

ℒn2
(x) = x� ŝ2

1,lk−1
(x) = (C0x

� +
k−1∑
i=1

C1x
� ŝ2∗

1,i + (−1)lk−1x� ŝ2∗
1,k)ŝ2

1,j , (ŝ2
1,0 ≡ 0).

where Ci, i = 1, . . . , k − 1, are constants, C0 is also a constant if lk−1 ∕= 0 and it is a first degree
polynomial when lk−1 = 0. From (4) and the induction hypothesis, it follows that

0 =

∫
x� ŝ2

1,lk−1
(x)An(x)d�2

0(x) =
k−1∑
i=0

∫
Cix

�An(x)ds2∗
0,i(x)+

(−1)lk−1

∫
x�An(x)ds2∗

0,k(x) = (−1)lk−1

∫
x�An(x)ds2∗

0,k(x), � = 0, . . . , n∗2,k − 1,

since n∗2,k = n2,lk−1
= min{n2,0, . . . , n2,k−1} ≤ n∗2,i, i = 0, . . . , k − 1, and when lk−1 = 0 then

n2,0 < n2,j = n∗2,0. Notice that we have already proved (33) for all values of the parameter
up to j − 1. When k = j and min{n2,lj−2

, n2,j−1} = n2,lj−2
, we proceed analogously taking

ℒn2 = x� ŝ2
1,lj−2

. Again, n∗2,j ≤ n∗2,i, i = 0, . . . , n∗2,j−1 and we can complete the induction. □

Remark 3.2. Fix k ∈ {1, . . . ,m2}. Taking pk ≡ 1, pi ≡ 0, i ∕= k, i = 0, . . . ,m2, one obtains the
formula that links s2

0,k with the measures s2∗
0,0, . . . , s

2∗
0,k (not all have to appear).

Proof of Corollary 1.2. From Lemma 4, we have that∫
x�Qn(x)ds0,k(x) = 0, � = 0, . . . , nk − 1, k = 0, . . . ,m. (34)

Using the definition of type II Padé approximation, we have that for any polynomial Q,degQ ≤ nk
Q(z)(Qn(z)ŝ0,k(z)− Pn,k(z)) = O(1/z), z →∞.

On account of (3), it follows that

Q(z)(Qn(z)ŝ0,k(z)− Pn,k(z)) =

∫
Q(x)Qn(x)ds0,k(x)

z − x
(35)

Taking Q ≡ 1, we obtain that

Pn,k(z) =

∫
Qn(z)−Qn(x)

z − x
ds0,k(x),

Pn,k(z)

Qn(z)
=

1

Qn(z)

∫
Qn(z)−Qn(x)

z − x
ds0,k(x).

Consequently, since the zeros of Qn(z) =
∏∣n∣
i=1(z − xn,i) are simple and lie in the interior of

Co(supp�0)

Pn,k(z)

Qn(z)
=

∣n∣∑
i=1

�n,k,i
z − xn,i

, �n,k,i = lim
z→xn,i

(z − xn,i)
Pn,k(z)

Qn(z)
=

∫
Qn(x)

Q′n(xn,i)

ds0,k(x)

x− xn,i
. (36)

Let p be an arbitrary polynomials of degree ≤ ∣n∣+nk − 1 and ℓn(z) =
∑∣n∣
i=0

Qn(z)p(xn,i)
Q′n(xn,i)(z−xn,i)

be

the Lagrange polynomial of degree ∣n∣ − 1 which interpolates p at the zeros of Qn. Then

(p− ℓn)(z) = q(z)Qn(z), deg q ≤ nk − 1.

From (34), ∫
(p− ℓn)(x)ds0,k(x) = 0.

Consequently, using (36)∫
p(x)ds0,k(x) =

∫
ℓn(x)ds0,k(x) =

∣n∣∑
i=1

p(xn,i)

∫
Qn(x)ds0,k(x)

Qn(xn,i)(x− xn,i)
=

∣n∣∑
i=1

�n,k,ip(xn,i),

which gives the first statement of the corollary.
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Let us consider the case when n0 = max{n0, n1−1, . . . , nm−1}. According to (35) with Q ≡ 1,
Fubini’s theorem, and (34)∫

t�(Qn(t)ŝ0,0(t)− Pn,0(t))ds1,k(t) =

∫
t�
∫
Qn(x)ds0,0(x)

t− x
ds1,k(t) =∫

Qn(x)

∫
t� ∓ x�

t− x
ds1,k(t)ds0,0(x) =

∫
q�(x)Qn(x)ds0,0(x)−

∫
x�Qn(x)ds0,k(x) = 0,

for all � = 1, . . . , nk− 1 and k = 1, . . . ,m, since q�(x) =
∫
t�−x�
t−x ds1,k(t) is a polynomial such that

deg q� ≤ nk − 2 ≤ n0 − 1. This implies that∫
(p1(t) +

m∑
k=2

pk(t)ŝ2,k(t))(Qn(t)ŝ0,0(t)− Pn,0(t))ds1,1(t) = 0,

for arbitrary polynomials pk,deg pk ≤ nk−1, k = 1, . . . ,m. Since, by Theorem 1.1, (1, ŝ2,2, . . . , ŝ2,m)
is an AT-system, it follows that Qnŝ0,0 − Pn,0, has at least ∣n∣ − n0 sign changes in the interior of
Co(supp�1).

Let Qn,1 be a monic polynomial of degree ∣n∣−n0 whose simple zeros are points where Qnŝ0,0−
Pn,0 changes sign on Co(supp�1). It is easy to verify that

z�(Qnŝ0,0 − Pn,0)(z)

Qn,1(z)
= O(1/z2), z →∞, � = 0, . . . , ∣n∣ − 1.

Using (2), we obtain ∫
x�Qn(x)

ds0,0(x)

Qn,1(x)
= 0, � = 0, . . . , ∣n∣ − 1.

Then, for any Q̃,deg Q̃ ≤ ∣n∣, ∫
Qn(x)

Q̃(z)− Q̃(x)

z − x
ds0,0(x)

Qn,1(x)
= 0

which implies that

Q̃(z)

∫
Qn(x)

z − x
ds0,0(x)

Qn,1(x)
=

∫
Q̃(z)Qn(x)

z − x
ds0,0(x)

Qn,1(x)
.

In particular, with z = xn,i, taking Q̃(x) = Qn,1(x) and then Q̃(x) = Qn(x)
Q′n(xn,i)(x−xn,i)

, we have

�n,0,i =

∫
Qn(x)

Q′n(xn,i)

ds0,0(x)

x− xn,i
=

∫
Qn,1(x)Qn(x)

Q′n(xn,i)(x− xn,i)
ds0,0(x)

Qn,1(x)
=

Q′n(xn,i)

Q′n(xn,i)
Qn,1(xn,i)

∫
Qn(x)

Q′n(xn,i)(x− xn,i)
ds0,0(x)

Qn,1(x)
=∫ (

Qn(x)

Q′n(xn,i)(x− xn,i)

)2
Qn,1(xn,i)

Qn,1(x)
ds0,0(x), i = 1, . . . , ∣n∣.

Since
(

Qn(x)
Q′n(xn,i)(x−xn,i)

)2
Qn,1(xn,i)
Qn,1(x) is positive for all x ∈ Co(supp s0,0), the second statement of

Corollary 1.2 follows for k = 0. Using standard arguments of one-sided polynomial approximation
of Riemann-Stieltjes integrable functions (see e.g. [46, Theorem 15.2.2] and [22, Lemma 2]), the
third statement is a consequence of the first two for any sequence of multi-indices Λ ⊂ ℤm+1

+ such
that for all n ∈ Λ, n0 = max{n0, n1−1, . . . , nm−1}. In particular, the second and third statements
are valid when n = (n, n+ 1, . . . , n+ 1).

In the rest of the proof, we restrict our attention to multi-indices of the form n = (n, n +
1, . . . , n+ 1). Fix k ∈ {1, . . . ,m}. Since we have that nk = n+ 1 = max{n0 + 1, n1, . . . , nm}, we
can apply Lemma 3.4 with j = k and we obtain that Qn is multiple orthogonal with respect to n∗,
which has n+ 1 in the first component, and a Nikishin system N (�∗0 , . . . , �

∗
m) whose first measure

is s∗0,0 = s0,k. Consequently, the coefficients

�n,k,i =

∫
Qn(x)

Q′n(xn,i)

ds0,k(x)

x− xn,i
=

∫
Qn(x)

Q′n(xn,i)

ds∗0,0(x)

x− xn,i
must all have the same sign as s0,k. The convergence of the quadratures is obtained as before. □
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4. Proof of Theorems 1.3-1.4

Proof of Theorem 1.3. For m = 0 the result is trivially true since ℒn = p0. When m = 1 it
is easy to deduce. Indeed, if n0 ≥ n1, take � the identity and S(�) = N (�1); otherwise, n0 < n1

and by Lemma 2.3

p0 + p1ŝ1,1 = (p∗0 + p∗1�̂1,1)ŝ1,1, deg p∗0 ≤ n1 − 1, deg p∗1 ≤ n0 − 1.

Hence, the solution is � such that �(0) = 1, �(1) = 0, and S(�) = N (�1,1). In the following m ≥ 2.
Next, let us consider the case when n0 = max{n0, . . . , nm}. If n0 ≥ ⋅ ⋅ ⋅ ≥ nm, the result is trivial

taking � the identity and S(�) = N (�1, . . . , �m). Otherwise, there exists m, 0 ≤ m ≤ m− 2, such
that n0 ≥ ⋅ ⋅ ⋅ ≥ nm, nm = max{nm, . . . , nm}, and nm+1 < max{nm+2, . . . , nm}. (Consequently,
nm+1 < nm.)

We have

ℒn = p0 +
m∑
k=1

pkŝ1,k = p0 +
m∑
k=0

pkŝ1,k +
m∑

k=m+1

pk⟨�1, . . . , �m, sm+1,k ⟩̂.

It is easy to check (see, for example, Lemma 2.1 in [31]) that for each k ∈ {m+ 1, . . . ,m},

pk⟨�1, . . . , �m, sm+1,k ⟩̂ = ℓk,0 +
m∑
i=1

ℓk,iŝ1,i + ⟨�1, . . . , �m, pksm+1,k ⟩̂, (37)

deg ℓk,i ≤ deg pk − 1, and these polynomials have real coefficients. Since nk ≤ nm ≤ nm−1 ≤ n0

whenever k ∈ {m+1, . . . , nm}, the polynomials ℓk,i, i = 0, . . . ,m, k = m+1, . . . ,m, are absorbed
by the polynomials pk, k = 0 . . . ,m, without altering the bound on the degrees of the second.
Therefore, there exist polynomials with real coefficients p̃k,deg p̃k ≤ nk−1, k = 0 . . . ,m, such that

p0 +
m∑
k=1

pkŝ1,k = p̃0 +
m∑
k=0

p̃kŝ1,k + ⟨�1, . . . , �m,
m∑

k=m+1

pksm+1,k ⟩̂ =

p̃0 +
m∑
k=0

p̃kŝ1,k + ⟨�1, . . . , �m, (pm+1 +
m∑

k=m+2

pkŝm+2,k)�m+1⟩̂. (38)

By assumption nm+1 < max{nm+2, . . . , nm}. So, we can apply Lemma 2.3 on the linear form
pm+1 +

∑m
k=m+2 pkŝm+2,k. Thus, there exist a Nikishin system N (�∗m+2, . . . , �

∗
m), a multi-index

(n∗m+1, . . . , n
∗
m) ∈ ℤm−m+ , which is a permutation of (nm+1, . . . , nm), and polynomials with real

coefficients p∗k,deg p∗k ≤ n∗k − 1, k = m+ 1, . . . ,m, such that

pm+1 +

m∑
k=m+2

pkŝm+2,k = (p∗m+1 +

m∑
k=m+2

p∗kŝ
∗
m+2,k)ŝm+2,j ,

where j is such that nj = max{nm+1, . . . , nm} and n∗m+1 = nj . Substitute this formula in (38)
and reverse the application of (37) to pull out the polynomials p̃k of the product of measures. The
new polynomials lk,i, k ∈ {m + 1, . . . , nm} which arise from this second application of (37) are
also absorbed by the polynomials p̃k, k = 0, . . . ,m in (38) without changing the bound on their
degrees. Therefore, we get that for certain polynomials with real coefficients p∗k, k = 0, . . . ,m

ℒn = p∗0 +
m∑
k=1

p∗kŝ1,k + p∗m+1ŝ1,j +
m∑

k=m+2

p∗k⟨�1, . . . , �m, sm+1,j , �
∗
m+2, . . . , �

∗
m⟩̂, (39)

which is a linear form generated by the multi-index n∗ = (n0, . . . , nm, nj , n
∗
m+2, . . . , n

∗
m), and the

Nikishin system N (�1, . . . , �m, sm+1,j , �
∗
m+2, . . . , �

∗
m).

Now, we have that n0 ≥ ⋅ ⋅ ⋅ ≥ nm ≥ nj and nj = max{nj , n∗m+2, . . . , n
∗
m}. If nm+2 ≥ ⋅ ⋅ ⋅ ≥ nm,

we are done taking � such that n�(k) = n∗k, ŝ1,�(0) ≡ 1, and

S(�) = N (�1, . . . , �m, sm+1,j , �
∗
m+2, . . . , �

∗
m).

Otherwise, we repeat the process with the linear form on the right hand of (39). The new m will
certainly be larger that the previous one and in a finite number of iterations we reorganize the
entries of n in decreasing order obtaining with it � and S(�).
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If n0 < max{n0, . . . , nm}, we apply first Lemma 2.3 and then proceed as have done before but
with the form ℒ∗n = p∗0 +

∑m
k=1 p

∗
kŝ
∗
1,k and the multi-index n∗ arising from that lemma. Thus,

we find a permutation � of (0, . . . ,m) such that n∗
�(0)
≥ ⋅ ⋅ ⋅ ≥ n∗

�(m)
, S(�) = N (�1, . . . , �m), and

polynomials with real coefficients qk, k = 0, . . . ,m, such that

ℒ∗n = q0 +
m∑
k=1

qkr̂1,k, deg qk ≤ n∗�(k)
− 1, k = 0, . . . ,m.

If �∗ is the permutation due to Lemma 2.3 which transports n into n∗, taking � = �o�∗ and
S(�) = S(�), applying the formula of Lemma 2.3 the assertion of Theorem 1.3 again follows. □

Using induction we could have reduced a bit the proof of Theorem 1.3. Nevertheless, for the
proof of Theorem 1.4 it was convenient to underline the fact that Theorem 1.3 is a consequence of
iterating the use of Lemma 2.3 and the trick exhibited in (37)-(39).

Proof of Theorem 1.4. If m2 = 0 or m2 = 1 and n2,0 ≥ n2,1 the result is trivial. For m2 = 1
and n2,0 < n2,1 the statement is contained in Lemma 3.4. So, we restrict our attention to m2 ≥ 2.

First, we consider the case when n2,0 = max{n2,0, . . . , n2,m2
}. In this situation, the result is

trivial again if n2,0 ≥ ⋅ ⋅ ⋅ ≥ n2,m2
. If this is not the case, there exists m, 0 ≤ m ≤ m2 − 2, such

that n2,0 ≥ ⋅ ⋅ ⋅ ≥ n2,m, n2,m = max{n2,m, . . . , n2,m2}, and n2,m+1 < max{n2,m+2, . . . , n2,m2}.
According to (39), for any polynomials pk,deg pk ≤ n2,k − 1, (39) takes place; that is,

p0 +

m2∑
k=1

pkŝ
2
1,k = p∗0 +

m∑
k=1

p∗kŝ
2
1,k + p∗m+1ŝ

2
1,j +

m∑
k=m+2

p∗k⟨�2
1 , . . . , �

2
m, s

2
m+1,j , �

2∗
m+2, . . . , �

2∗
m ⟩̂,

where j is such that n2,j = max{n2,m+1, . . . , n2,m2}. This linear form is generated

n∗2 = (n∗2,0, . . . , n
∗
2,m2

) = (n2,0, . . . , n2,m, n2,j , n
∗
2,m+2, . . . , n

∗
2,m2

),

and the Nikishin system

N (�2∗
1 , . . . , �2∗

m2
) = N (�2

1 , . . . , �
2
m, s

2
m+1,j , �

2∗
m+2, . . . , �

2∗
m2

).

Consider the extended Nikishin system N (�2∗
0 , �2∗

1 , . . . , �2∗
m2

) = N (�2
0 , �

2∗
1 , . . . , �2∗

m2
). The form An

is of multiple orthogonality with respect to n∗2 and the extended Nikishin system.
In fact, by definition, An satisfies∫

x�An(x)ds2∗
0,k(x) = 0, � = 0, . . . , n∗2,k − 1, k = 0, . . . ,m+ 1,

since s2∗
0,k = s2

0,k, n
∗
2,k = n2,k, k = 0, . . . ,m, s2∗

0,m+1 = s2
0,j , and n∗2,m+1 = n2,j . To prove∫

x�An(x)ds2∗
0,k(x) = 0, � = 0, . . . , n∗2,k − 1, k = m+ 2, . . . ,m2,

one follows arguments similar to those employed in proving Lemma 3.4, choosing particular ex-
pressions for ℒn2

of the form x� ŝ2
1,k

(k is not always equal to k), and taking into consideration

(37)-(39) as well as (32). The details are left to the reader.
Once we have proved that An is of multiple orthogonality with respect to n∗2 and the extended

Nikishin system, one repeats the process finding a new m, which is obviously larger than the
previous one, and in a finite number of iterations the statement follows.

If n2,0 < max{n2,0, . . . , n2,m2
}, the proof is reduced to the previous case by Lemma 3.4. □

5. Proof of Theorems 1.5-1.6 and Corollary 1.3

If we apply Theorem 1.3 to the form An, we obtain that there exists a permutation �1 of
(0, . . . ,m1) and an associated Nikishin system S(�1) = (r1

1,1, . . . , r
1
1,m1

) = N (�1
1, . . . , �

1
m1

) such
that

An = an,0 +

m1∑
k=1

an,kŝ
1
1,k = (bn,0 +

m1∑
k=1

bn,kr̂1,k)ŝ1,�1(0) = ℬnŝ1,�1(0),
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where ŝ1,�1(0) ≡ 1 if �1(0) = 0, and deg bn,k ≤ n1,�1(k)−1, k = 0, . . . ,m1. On the other hand, from
Theorem 1.4, we know that there exists a permutation �2 of (0, . . . ,m2) and a Nikishin system
N (�2

0, . . . , �
2
m2

), where �2
0 = ŝ2

1,�2(0)�
2
0 , such that for each k = 0, . . . ,m2,∫

x�An(x)dr2
0,k(x) =

∫
x�ℬn(x)ŝ1,�1(0)(x)dr2

0,k(x) = 0, � = 0, . . . , n2,�2(k) − 1.

Therefore, ℬn is a linear form, generated by the multi-index (n1,�1(0), . . . , n1,�1(m1)) and S(�1),
which is of multiple orthogonality with respect to the multi-index (n2,�2(0), . . . , n2,�2(m2)) and the

Nikishin system (ŝ1,�1(0)r
2
0, r

2
1, . . . , r

2
m2

) = N (ŝ1,�1(0)�
2
0, �

2
1, . . . , �

2
m2

). In other words,

Bn = (bn,0, . . . , bn,m1
)

is the mixed type multiple orthogonal polynomial relative to the pair of Nikishin systems (S̃1, S̃2)
and the multi-index ñ = (ñ1; ñ2) ∈ ℤm1+1

+ × ℤm2+1
+ , where

(S̃1, S̃2) = (N (ŝ1,�1(0)�
2
0, �

1
1, . . . , �

1
m1

),N (ŝ1,�1(0)�
2
0, �

2
1, . . . , �

2
m2

)),

and
ñi = (ni,�i(0), . . . , ni,�i(m1)), i = 1, 2.

Both ñ1 and ñ2 have decreasing components. Therefore, to derive Theorems 1.5 and 1.6 we can
apply the results of [23].

Lemma 5.1. If (S1, S2) satisfies the hypotheses of Theorem 5 (respectively 6) the same is true for

(S̃1, S̃2).

Proof. The systems S̃1 and S̃2 are obtained transforming the generating measures of S1 and
S2 through inversion of measures and multiplication by Cauchy transforms of measures supported
on disjoint intervals. We have to check that these operations preserve the quasi-regularity of
supports, the regularity of measures, and the property concerning the Radon-Nikodym derivative
of the measure.

Let � ∈ ℳ(Δ),Δ = Co(supp�), � is the inverse measure of �, and g is a continuous function
on Δ with constant sign and different from zero on Δ.

It is trivial that the supports of � and g� coincide and that �′ > 0 if and only if g�′ > 0. It
is well known and easy to verify (using, for example, the minimality property of monic orthogonal
polynomials) that � ∈ Reg if and only if g� ∈ Reg as well.

Regarding the inversion of measures, the Stieltjes-Plemelj inversion formula implies that the
continuous parts of the supports of � and � coincide. From the formula relating �̂ and �̂ it is
obvious that isolated mass points of � outside its continuous support become zeros of �̂ (thus are
no longer in the support of �). On the other hand, in each connected component of Δ ∖ supp�, �̂
may have at most one zero (counting multiplicity), because �̂ is strictly monotonic when restricted
to any one of those components. Such zeros of �̂ become mass points of � . They are isolated,

so they can only accumulate on supp�. Therefore, if supp� = Ẽ ∪ e, where Ẽ is regular with
respect to the Dirichlet problem and e is at most a denumerable set of points which may only

accumulate on Ẽ, then supp � = Ẽ ∪ ẽ where ẽ is at most a denumerable set of points which may

only accumulate on Ẽ. In particular, the same holds when Ẽ is an interval (case of Theorem 1.6).
If � ∈ Reg then � ∈ Reg. Indeed, the denominator Qn of the n-th diagonal Padé approximant

of �̂, taken with leading coefficient equal to 1, is the n-th monic orthogonal polynomial with respect
to �. The numerator Pn−1 is an (n− 1)-th orthogonal polynomial with respect to � . By Markov’s
theorem

lim
n

Pn−1(z)

Qn(z)
= �̂(z), K ⊂ ℂ ∖Δ,

In particular, the leading coefficient cn−1 of Pn−1 satisfies

lim
n
cn−1 = lim

n
lim
z→∞

zPn−1(z)

Qn(z)
= lim
z→∞

z�̂(z) = �(Δ) ∕= 0.

Therefore,

lim
n
∣Qn(z)∣1/n = cap(supp�)egΩ(z;∞) ⇔ lim

n

∣∣∣∣Pn(z)

cn

∣∣∣∣1/n = cap(supp�)egΩ(z;∞),
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uniformly on compact subsets of ℂ ∖ Δ, where gΩ(z;∞) denotes Green’s function of the region
Ω = ℂ ∖ supp� with singularity at ∞. But supp� and supp � differ on a set of capacity zero so
their capacities coincide as well as the Green’s function of the complement of their supports. The
limits above are equivalent to regularity (see [45, Theorem 3.1.1]).

That �′ > 0 a.e. on an interval is equivalent to � ′ > 0 a.e. on the same interval follows from
the Stieltjes–Plemelj inversion formula. □

In order to prove Theorem 5 there is still one thing to be considered. The corresponding result
[23, Theorem 1.3] for the case of decreasing components in n1,n2, was proved assuming that the
supports of the measures were regular. We have to extend its applicability to the case of quasi-
regular supports because, as follows from the proof of the previous lemma, the regularity of the
supports of the measures generating (S1, S2) does not guarantee regularity of the supports of the

measures which generate (S̃1, S̃2) since isolated mass points may arise.
We need some notation. ℳ1(E) denotes the class of probability measures supported on E, and

V �(z) =

∫
log

1

∣z − �∣
d�(z)

the logarithmic potential of the measures �. If ql is a polynomials of degree l,

�ql =
1

l

∑
ql(x)=0

�x

is the associated normalized zero counting measure, where �x is the Dirac measure with mass 1 at
x. In [44, Theorem I.1.3] the authors prove

Lemma 5.2. Let E ⊂ ℂ be a compact subset of the complex plane and � a continuous function on
E. Then, there exists a unique � ∈ℳ1(E) and a constant w such that

V �(z) + �(z)

{
≤ w, z ∈ supp� ,
≥ w, z ∈ E ∖A, cap(A) = 0.

� and w are called the equilibrium measure and the equilibrium constant, respectively, in pres-
ence of the external field � on the compact E.

We are especially grateful to H. Stahl who gave us the clue for the following improvement of
[23, Lemma 4.2].

Lemma 5.3. Let � ∈ Reg, supp� ⊂ ℝ, where supp� is quasi-regular. Let {�l}, l ∈ Λ ⊂ ℤ+, be a
sequence of positive continuous functions on supp� such that

lim
l∈Λ

1

2l
log

1

∣�l(x)∣
= �(x) > −∞,

uniformly on supp�. By {ql}, l ∈ Λ, denote a sequence of monic polynomials, deg ql = l, and∫
xkql(x)�l(x)d�(x) = 0, k = 0, . . . , l − 1.

Then

∗ lim
l∈Λ

�ql = �,

in the weak star topology of measures, and

lim
l∈Λ

∣∣∣∣∫ ∣ql(x)∣2�l(x)d�(x)

∣∣∣∣1/2l = exp (−w),

where � and w are the equilibrium measure and equilibrium constant in the presence of the external
field � on supp� =: E. We also have that

lim
l∈Λ

(
∣ql(z)∣
∥ql�1/2

l ∥E

)1/l

= exp (w − V �(z)), K ⊂ ℂ ∖ Co(supp(�)),

where ∥ ⋅ ∥E denotes the sup norm on E.
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Proof. Proceeding as in the proof of [23, Lemma 4.2] one shows that for any sequence of monic
polynomials {pl}, l ∈ Λ, such that deg pl = l,

lim sup
l∈Λ

(
∣pl(z)∣
∥pl�1/2

l ∥E

)1/l

≤ exp (w − V �(z)), K ⊂ ℂ, (40)

and

lim inf
l∈Λ

∥pl�1/2
l ∥

1/l
E ≥ exp (−w). (41)

In particular, these relations hold for {ql}, l ∈ Λ. In [23, Lemma 4.2], it is also proved that

lim sup
l∈Λ

∥ql�1/2
l ∥

1/l
2 ≤ exp(−w), (42)

where ∥ql�1/2
l ∥2 is the L2 norm of ql�

1/2
l with respect to �. We may assume, without loss of

generality, that � is positive. In deducing (40)-(42), the regularity of supp� is not required.
Combining (41)-(42), it follows that

lim inf
l∈Λ

(
∥ql�1/2

l ∥E
∥ql�1/2

l ∥2

)1/l

≥ 1.

Should

lim sup
l∈Λ

(
∥ql�1/2

l ∥E
∥ql�1/2

l ∥2

)1/l

≤ 1, (43)

then

lim
l∈Λ

(
∥ql�1/2

l ∥E
∥ql�1/2

l ∥2

)1/l

= 1.

and due to (41)-(42), we would have

lim sup
l∈Λ

∥ql�1/2
l ∥

1/l
E = lim sup

l∈Λ
∥ql�1/2

l ∥
1/l
2 = exp(−w). (44)

Once (44) is attained, with the help of (40), one can conclude the proof as in [23, Lemma 7]. So,
it remains to show that (43) takes place when we relax the regularity of supp� to quasi-regularity.

In [45, Theorem 3.2.3] it is proved (see (v)⇒ (vi)) that (43) holds for any sequence of polynomials
{pl}, l ∈ Λ, such that deg pl = l, if the same property is satisfied when �l ≡ 1, l ∈ Λ. Though the
hypothesis of that theorem also contains the assumption that supp� be regular, the proof of this
assertion is independent of the regularity condition. Therefore, let us show that (43) holds true
when �l ≡ 1, l ∈ Λ, and supp� is quasi-regular.

In fact, according to [45, Theorem 3.2.1 ii)] , we have that

lim sup
l∈Λ

(
∣pl(z)∣
∥pl∥2

)1/l

≤ exp (gΩ(z;∞)), K ⊂ ℂ, (45)

where gΩ(z;∞) is the Green’s function of the region Ω = ℂ ∖ E with singularity at ∞. Since

E = Ẽ ∪ e, where Ẽ is regular with respect to the Dirichlet problem and cap(e) = 0, we have that

gΩ(z;∞) = gΩ̃(z;∞), Ω̃ = ℂ ∖ Ẽ, and gΩ̃(z;∞) extends continuously to all ℂ.

Fix " > 0 and let U" = {z ∈ ℂ : gΩ̃(z;∞) < "}. This is an open set which contains Ẽ where
gΩ̃(z;∞) = 0 identically. Since the set e is at most denumerable and all its accumulation points

are contained in Ẽ, it follows that e ∖U" has at most a finite number of points (or may be empty).
Let {z1, . . . , zN} be the set of such points (should there be any). For each fixed k = 1, . . . , N,

∣pl(zk)∣2

∥pl∥22
�(zk) ≤

∫
∣pl(x)∣2

∥pl∥22
d�(x) = 1.

Consequently,

lim sup
l∈Λ

(
∣pl(zk)∣
∥pl∥2

)1/l

≤ 1, k = 1, . . . , N.
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since �(zk) > 0. Because of (45)

lim sup
l∈Λ

(∥pl∥E∩U"
∥pl∥2

)1/l

≤ exp(")

This, together with the previous inequality for zk, k = 1, . . . , N , immediately imply that

lim sup
l∈Λ

(
∥pl∥E
∥pl∥2

)1/l

≤ exp(").

The arbitrariness of " > 0 renders what we set out to prove. □

The assumption that the points in e only accumulate on Ẽ is essential. If this was not the case
one can construct examples where (43) does not hold.

Proof of Theorem 1.5. We will prove ∣n1∣-th root asymptotics for the sequence {ℬn},n ∈ Λ.
Since ŝ1,�1(0)(z) ∕= 0, z ∈ ℂ ∖Δ1

1, the statement of the theorem readily follows with the same limit.
For definiteness, in reordering the components of a given n, let us take that unique pair of

permutations (�1, �2) such that for each i = 1, 2, whenever ni,�i(j) = ni,�i(k) for some 0 ≤ j < k ≤
mi, then �i(j) < �i(k). By Λ(�1, �2), we denote the set of all multi-indices in Λ whose components
n1,n2, are reordered decreasingly with �1 and �2 respectively. We are only interested in those
Λ(�1, �2) containing an infinite number of elements of Λ. Fix (�1, �2) and let

(S̃1, S̃2) = (N (ŝ1,�1(0)�
2
0, �

1
1, . . . , �

1
m1

),N (ŝ1,�1(0)�
2
0, �

2
1, . . . , �

2
m2

))

be the pair of Nikishin systems associated with An by Theorems 1.3-1.4 with respect to which ℬn
is a multiple orthogonal linear form.

Set

Pj =

m1∑
k=j

p1,�1(k), j = 0, . . . ,m1, P−j =

m2∑
k=j

p2,�2(k), j = 0, . . . ,m2.

Define the tri-diagonal matrix

C =

⎛⎜⎜⎜⎜⎜⎜⎝
P 2
−m2

−P−m2P−m2+1

2 0 ⋅ ⋅ ⋅ 0

−P−m2P−m2+1

2 P 2
−m2+1 −P−m2+1P−m2+2

2 ⋅ ⋅ ⋅ 0

0 −P−m2+1P−m2+2

2 P 2
−m2+2 ⋅ ⋅ ⋅ 0

...
...

...
. . .

...
0 0 0 ⋅ ⋅ ⋅ P 2

m1

⎞⎟⎟⎟⎟⎟⎟⎠ . (46)

The sub-indices of the entries cj,k of C run from −m2 − 1 to m1 + 1.
Let ℳ1(Ek) be the subclass of probability measures of ℳ(Ek),

Ek =

{
supp �1

k, k = 1, . . . ,m1,
supp �2

−k, k = −m2, . . . , 0.

Denote

ℳ1 =ℳ1(E−m2
)× ⋅ ⋅ ⋅ ×ℳ1(Em1

) .

Given a vector measure � = (�−m2
, . . . , �m1

) ∈ ℳ1 and j ∈ {−m2, . . . ,m1}, we define the
combined potential

W�
j (x) =

m1∑
k=−m2

cj,kV
�k(x), V �k(x) =

∫
log

1

∣x− y∣
d�k(y).

Set

J(�) =

m1∑
k,j=−m2

cj,k

∫ ∫
log

1

∣x− y∣
d�j(x)d�k(y) =

∫
W�
j (x)d�j(x).

From Propositions 4.1-4.5 in [37, Chapter 5] it follows that there exists a unique vector measure
� = (�−m2

, . . . , �m1
) ∈ℳ1 such that

J(�) = inf{J(�) : � ∈ℳ1}, (47)
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and that exist constants w�j , j = −m2, . . . ,m1, for which

W�
j (x)

{
≤ w�j , x ∈ supp�j ,

≥ w�j , x ∈ Ej ∖Aj , cap(Aj) = 0.
(48)

for certain Borel sets Aj . For any two vector measures �1, �2 ∈ℳ1 such that J(�1) <∞, J(�2) <
∞, straightforward calculations yield

J(�2)− J(�1) = J(�2 − �1) + 2

m1∑
j=−m2

∫
W�1

j (x)d(�2
j − �1

j )(x).

Since J(�2 − �1) ≥ 0 for all �1, �2 ∈ ℳ1 (see [37, Proposition 4.2]), and sets of capacity zero are
negligible for measures with finite energy, if �1 satisfies (48) it also satisfies (47). Thus, (47)-(48)
are equivalent and a measure verifying any one of the two is unique (and so are the constants

in (48)). � is called the equilibrium vector measure, and w� = (w�−m2
, . . . , w�m1

) the equilibrium
vector constant, for the logarithmic potential governed by the interaction matrix C on the system
of compact sets Ej , j = −m2, . . . ,m1.

From Lemma 5.1 we have that (S̃1, S̃2) ∈ Reg and the supports of the generating measures are
quasi-regular. If An is monic (see Definition 1.6), due to the way in which ℬn is constructed (in
particular, see (32) in the proof of Lemma 2.3 and the proof of Theorem 1.4) it follows that bn,m1

is either plus or minus an,�−1
1 (m1). Thus, its leading coefficient is either 1 or −1; that is, except

for a sign change, ℬn is monic with the normalization imposed in [23, Theorem 5.1]. Following the
proof of [23, Theorem 5.1], but using Lemma 5.3 instead of [23, Lemma 5.1], one finds that

lim
n∈Λ(�1,�2)

∣ℬn(z)∣1/∣n1 = exp

(
P1V

�1(z)− P0V
�0(z)− 2

m1∑
k=1

!�k
Pk

)
, K ⊂ ℂ ∖ (Δ1

0 ∪Δ1
1),

where � = �(C) = (�−m2
, . . . , �m1

) is the equilibrium vector measure and (!�−m2
, . . . , !�m1

) is the
system of equilibrium constants for the vector potential problem determined by the interaction
matrix C defined in (46) on the system of compact sets Ej , j = −m2, . . . ,m1.

It is easy to see that the interaction matrix C does not depend on (�1, �2) and that the compact
sets Ej , j = −m2, . . . ,m1, for each fixed j, may differ only on a (denumerable) set of capacity
zero depending on �1, �2 (see proof of Lemma 5.1). Therefore, the equilibrium measure and the
equilibrium constant are uniquely determined for any Λ(�1, �2) containing infinitely many terms
of Λ. Consequently,

lim
n∈Λ
∣An(z)∣1/∣n1 = exp

(
P1V

�1(z)− P0V
�0(z)− 2

m1∑
k=1

!�k
Pk

)
, K ⊂ ℂ ∖ (Δ1

0 ∪Δ1
1).

(49)

With this we conclude the proof. □

Remark 5.1. If we denote by Qn,0 the monic polynomial whose zeros are those of An, under the
assumptions of Theorem 1.5, we have (see [23, Theorem 4.2])

∗ lim
n∈Λ

�Qn,0 = �0.

There are other linear forms related with An whose asymptotic zero distribution and logarithmic
asymptotic is described in terms of the other components of � and the vector equilibrium constant.
This allows to give the logarithmic asymptotics of the polynomials an,k as well. For a view of what
can be expected, see [23, Section 5]. These results can be used to give the exact rate of convergence
of mixed type Hermite Padé approximants, see [23, Section 7] and [20, Theorem 7]. For example,
in case of type II approximation, under regularity of the generating measures and quasi–regularity
of their supports, the following limit exists

lim
n∈Λ
∥ŝ0,k −

Pn,k

Qn
∥1/2∣n∣K , K ⊂ ℂ ∖ (Co(supp�0) ∪ Co(supp�1)), k = 0, . . . ,m.

Proof of Theorem 1.6. The existence of the limit claimed in Theorem 1.6 follows directly
from [23, Theorem 1.4], but to give an expression of the limit function, we must introduce some
notions.
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Let �1, �2, and l = (l1; l2) be as given in Theorem 1.6. Consider the (m1 + m2 + 2)-sheeted
Riemann surface

ℛ =

m1∪
k=−m2−1

ℛk,

formed by the consecutively “glued” sheets

ℛ−m2−1 := ℂ ∖ Δ̃−m2
, ℛk := ℂ ∖ (Δ̃k ∪ Δ̃k+1), k = −m2, . . . ,m1 − 1, ℛm1

:= ℂ ∖ Δ̃m1
,

where the upper and lower banks of the slits of two neighboring sheets are identified. Define

(l̃1; l̃2) := (�−1
1 (l1);�−1

2 (l2)).

Let  (l̃) be a singled valued function defined on ℛ onto the extended complex plane satisfying

 (l̃)(z) =
C1

z
+O(

1

z2
), z →∞(−l̃2−1),

 (l̃)(z) = C2 z +O(1), z →∞(l̃1),

where C1 and C2 are nonzero constants. Since the genus of ℛ is zero,  (l̃) exists and is uniquely

determined up to a multiplicative constant. Consider the branches of  (l̃), corresponding to the
different sheets k = −m2 − 1, . . . ,m1 of ℛ

 (l̃) := { (l̃)
k }

m1

k=−m2−1 .

Given an arbitrary function F (z) which has in a neighborhood of infinity a Laurent expansion of
the form F (z) = Czk +O(zk−1), C ∕= 0, and k ∈ ℤ, we denote

F̃ := F/C .

Because of Theorem 1.4, Lemma 5.1, and the normalization adopted, the sequence {ℬn}, n ∈ Λ,
satisfies all the assumptions of [23, Theorem 6.8]. Consequently,

lim
n∈Λ

ℬnl(z)
ℬn(z)

= C(l̃) ̃
(l̃)
0 (z), K ⊂ ℂ ∖ (supp �1

0 ∪ supp �1
1),

where C(l̃) is a constant, which only depends on l̃ and can be determined exactly (see (69), (73),

and (83) in [23]) in terms of the values of the branches of  (l̃) at ∞. Due to the relation between
ℬn and An, we obtain

lim
n∈Λ

Anl(z)

An(z)
= C(l̃) ̃

(l̃)
0 (z), K ⊂ ℂ ∖ (supp�1

0 ∪ Co(supp�1
1)), (50)

since supp�1
0 = supp �1

0 and Co(supp �1
1) ⊂ Co(supp�1

1). □

Proof of Corollary 1.3. As in the proof of Theorem 1.5, for definiteness, in reordering the
components of a given n, let us take that unique pair of permutations (�1, �2) such that for each
i = 1, 2, whenever ni,�i(j) = ni,�i(k) for some 0 ≤ j < k ≤ mi, then �i(j) < �i(k). By Λ(�1, �2), we
denote the set of all multi-indices in Λ whose components n1,n2, are reordered decreasingly with
�1 and �2 respectively. We are only interested in those Λ(�1, �2) containing an infinite number of
elements of Λ. Fix (�1, �2) and let

(S̃1, S̃2) = (N (ŝ1,�1(0)�
2
0, �

1
1, . . . , �

1
m1

),N (ŝ1,�1(0)�
2
0, �

2
1, . . . , �

2
m2

))

be the pair of Nikishin systems associated with An by Theorems 1.3-1.4 with respect to which ℬn
is a multiple orthogonal linear form.

Let M be the least common multiple of m1 + 1 and m2 + 1, and define d1 := M/(m1 + 1),
d2 := M/(m2 + 1). Within the class of pairs l = (l1; l2) with 0 ≤ l1 ≤ m1, 0 ≤ l2 ≤ m2, we
distinguish the subclass

L := {(l1; l2) : l1 ≡ rmod (m1 + 1), l2 ≡ rmod (m2 + 1) for some 0 ≤ r ≤M − 1} .
It is easy to check that for different r, 0 ≤ r ≤ M − 1, the pairs (l1, l2) in L are distinct. Let
p := (p1;p2), where p1 = (d1, . . . , d1) and p2 = (d2, . . . , d2) have m1 +1 and m2 +1 components,
respectively. By n + p we denote the multi-index (n1 + p1;n2 + p2); that is, n + p = ñ.
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Given n ∈ Λ(�1, �2) and 0 ≤ r ≤ M , let n(r) := n + q(r) where q(r) = (q1(r);q2(r)) is the
multi-index satisfying (qi(r) = (qi,0(r), . . . , qi,mi(r)), i = 1, 2)

qi,�i(j)(r) =

{
ki + 1, j = 0, . . . , si − 1,
ki, j = si, . . . ,mi,

r = ki(mi + 1) + si, 0 ≤ si ≤ mi .

Hence, n(0) = n, n(M) = n + p = ñ. It is easy to see that for all r ∈ {0, . . . ,M − 1}, the same

pair (�1, �2) reorders the components of n(r) giving rise to the same systems (S̃1, S̃2).
We have

An+p(z)

An(z)
=
M−1∏
r=0

An(r+1)(z)

An(r)(z)
.

Due to (50)

lim
n∈Λ(�1,�2)

Añ(z)

An(z)
=

∏
(l1,l2)∈L

C(l̃) ̃
(l̃)
0 (z), K ⊂ ℂ ∖ (supp�1

0 ∪ Co(supp�1
1)), (51)

where l = (l1; l2) is precisely the multi-index satisfying l1 ≡ rmod (m1 + 1), l2 ≡ rmod (m2 + 1),

and l̃ = (l̃1; l̃2) = (�−1
1 (l1);�−1

2 (l2)). The limit does not depend on (�1, �2) because the set

L̃ = {(l̃1; l̃2) : (l1; l2) ∈ L} is the same for all (�1, �2). The proof is complete. □

Remark 5.2. The linear forms associated with An mentioned in the previous remark also satisfy
ratio asymptotics in the spirit of the results contained in [23, Section 6].
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