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1 Introduction 

The purpose of this paper is to provide an alternative way of specification and estimation of 
a standard model of labor supply. Our interest involves a structural labor supply model in 
which hours of work depend on the wage rate and other explanatory variables. The difficulty 
in estimating such system occurs because first, information is not available on the wage rate 
for those who do not work, and second, the wage rate is determined endogeneously. To avoid 
the first problem, the estimation method must take into account the sample selection bias 
and the second problem is solved by specifying a relationship that considers the wage rate 
as a endogeneous variable. 

The estimation procedure proposed in this paper is a three step method based on the ideas 
developed by Heckman (1979) and it can be included in the so called predicted wage methods 
(Wales and Woodland, 1980). Its main interest is twofold. First, in the standard econometric 
model that is traditionally assumed in studies of labor supply, the three step estimator based 
on predicted wages is shown to be consistent and asymptotically normal. Moreover, we 
provide also a consistent estimator of the asymptotic variance covariance matrix for this 
three step estimator. Second, the classical assumption of linearity between working hours 
and other explanatory variables is relaxed allowing for a semiparametric partial additive 
relationship. It is also possible to identify and estimate the model when both, the hours 
of work (or participation) and the (log) wage equation are non- or semiparametric. These 
relationships have been traditionally assumed to be linear, but as Blundell and Meghir 
(1986) pointed out there exist very few theoretical foundations to support this hypothesis. 
A natural way to extend the classic (log) linear models is to relax the additive components 
from linear to arbitrary but smooth functional forms. Further, additive models or modeling 
has a long history and strong foundation in economic theory, see e.g. the standard work 
of Deaton and Muellbauer (1980). Beside this, also in nonparametric regression additive 
models are quite popular for their dimension reduction and interpretability properties, see 
e.g. Stone (1985). Here, the nonparametric additive components are estimated according to 
the method developed in Hardle, Huet, Mammen and Sperlich (1998). It is based on quasi 
Likelihood estimation (Severini and Staniswalis, 1994) and marginal integration techniques 
(Linton and Nielsen, 1995). The resulting estimators turn out to be semiparametric ones, 
in the sense that the distribution of the random errors is assumed to be known (gaussian in 
this paper) but the index function is not specified. 

Within this set up, we suggest a root-n consistent estimator for the (log) wage equation, 
derive the asymptotic distribution and provide a easy to calculate consistent estimator of 
the asymptotic variance covariance matrix. This is of outstanding interest for the empirical 
economic studies, and in this paper enables us to make comparisons between the three 
step fully parametric estimator and the semi parametric one. This certainly holds also for 
analyzing the possibly nonlinear relationships in the considered models. 

In the next section of the paper we specify the simultaneous equation structural model of 
labor supply. We also recall the basic principles of three step estimation methods based on 
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predicted wages and we establish the main statistical results in the fully parametric context. 
In Section 3 we introduce the semiparametric three step estimator and we establish its main 
asymptotic properties. Here we separate mainly in the cases of modelling the influence of 
wages linear or non linear since this can produce serious identification problems. Section 
4 presents an extensive application based on a Spanish labor force data. In Section 5 we 
finally conclude. In Appendix I we give the assumptions, in Appendix 11 we prove the main 
results and finally in section III of the Appendix we provide an algorithm to compute the 
proposed estimator. The quoting and discussion of further decisive or important literature 
is always given in the corresponding sections, especially references to other semiparametric 
approaches in this field. 

2 The Structural Model of Labor Supply 

We start by considering a structural econometric model of labor supply. To this end, we 
previously specify the relationship among wages, hours of work (or participation) and other 
explanatory variables, and next, we will introduce formally the assumptions that are neces­
sary to obtain the statistical properties of the three step estimator based on predicted wages. 
We will finally propose a consistent estimator of the asymptotic variance covariance matrix 
of the previous estimator. 

Let us consider a labor supply in which both the wage rate and hours of work are en doge­
neously determined. The extended model can be expressed as follows. Hours of work are a 
function of a vector of explanatory variables x which includes the log of the wage rate as its 
first element {w}. In addition it is assumed that the log of the wage rate W is a function 
of another vector of exogeneous variables z. Thus, we have for the individual i we have the 
following structural model of labor supply 

• the hours equation, 

(1) l1 (Wi' Xi) + U1i 
o 

• and the log wage equation 

(2) 

if l1 (Wi' Xi) + Uti > 0 
otherwise 

Instead of an hour equation like (1), we could also consider another standard labor partici­
pation model in which the endogeneous variable is having a paid job or not (see section 4), 
so we estimate a probit instead a tobit model. In equation (2) is important to note that we 
are interested in the unconditional expectation of (log) wages, i.e. not conditioned on 'having 
a job', though we certainly observe only wages for people with job. So we have 

(3) 
E[Wilzi] 

E[Wilzi, Yi > 0] 

l2(Zi) , unconditioned, but 

l2(Zi) + E[U2iIYi > 0] = l2(Zi) + E[U2il(i = 1] , 
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where (i is a binary response variable indicating whether person i has a job 1 or not O. 

As it has been remarked in Wales and Woodland (1980), there exist two problems in the 
estimation of the structural parameters of the previous simultaneous equation system. First, 
both equations are subject to sample selection bias and second, the model is a set of two 
simultaneous equations in which the wage rate, which is an explanatory variable in the hours 
equation, is correlated with the hours equation disturbance. 

In order to solve these problems and estimate the structural parameters of the previous 
model, some further hypotheses are needed. 

(A.l) The values {Wi' Xi, Zi}~l are realizations from i.i.d random variables, where W E JR, 

X E JRP+d and Z E JRT. Moreover, {Yi}~l are realizations from a truncated random 
variable, and ( is a binary variable that takes the value 1 as Y > 0 and 0 otherwise. 

(A.2) The indicator ( has bounded support, and X and Z have finite sixth order moments. 

(A.3) The data satisfy the restrictions (1) and (2). 

(A.4) Moreover, for the linear model case we have 

(4) 

where the vector z contains at least one variable not contained in x. 

(A.5) Define the parameter vector () = (/3w, /3, 'Yl) and the parameter space e = lBw x lB x r. 
Then () E e, e is a compact set, and ()o is an interior point of e. 

Taking into account these assumptions, in order to estimate all structural parameters of 
the labor supply model several procedures have been proposed in the literature (see Wales 
and Woodland, 1980). Among them, the methods based on predicted wage rates have been 
followed by several authors (see Boskin, 1973; Hall, 1973 and Rosen, 1976). Traditionally, 
this method has consisted on a three step procedure. 

In the first step we estimate the parameters of the reduced form model for the hours equation 
by using a probit maximum likelihood procedure. For the ease of notation we assume that 
z contains no variable nor a linear combination of the variables in x. Notice that this is not 
necessary for the suggested procedures but would otherwise complicate the presentation a 
lot. The reduced form model is given by 

(5) if zT a + xi /3 + Vii> 0 

otherwise 
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indicating whether somebody has a paid job or not. 

The relationship between the structural and the reduced form parameters is a = flw'Y and 
Vii = flwU2i + Uli. The variable (i is equal to 1 iff Yi > 0 and 0 otherwise, and therefore, 
under assumptions (A.l) to (A.6) the likelihood function has the form 

(6) L(a,fl) = IT (1- F (zTa+xTfl)) llF (zTa + xTfl) , 
i=M+l av i=l av 

where M is the number of individuals for those who both wages and number of working 
hours are observed, N is the number of individuals in the sample, F(.) is the cumulative 
normal distribution function and a; = fl~(J~ + (J~2flwp(Jl(J2' Maximum likelihood estimates 
of the reduced form parameters & and fl can be estimated by introducing the identifying 
restriction (Jv = 1. For only determining the bias correcting factor, i.e. the Mills ratio, we 
certainly do not need this restriction. The estimators & and fl must fulfill the following 
restriction 

1 N _. _ 1 N (i - F (xT 15) -T __ 

(7) N?= m (Xi, 15) - N?= F (-r 15)(1 _ F (-r 15))1 (Xi 15) Xi - 0 , 
z=1 z=1 Xz X z 

where xT = (xT zT), 15 = (aT flT) T and 1 (.) stands for the gaussian density. 

In the second step, the log wage equation is estimated by least square methods correcting the 
sample selection bias by the Mill's ratio. More exactly, the selection bias corrected equation 
will be 

(8) 

Here, V2i is the error in the conditional equation. The vector estimate l' = (1'f 1'2) T must 
fulfill the condition 

(9) ~ tg (ii),'Y) = - ~ t(iii (Wi - iT'Y) = 0, 
i=l i=l 

where iT = [zT A (xT J)] and A (.) = 1 (.) IF (.) is the inverse of Mill's ratio. 

In the third step the structural parameters of the hours equation are estimated. In order to 
do this, we construct the predicted wages unconditionally for all individuals in the sample 

(10) i = 1,···,N. 

Recall that 1'1, l' are either O.L.S. or feasible G.L.S. of the log wage equation. Then, by 
substituting the predicted wages in the hours equation (1) it is possible to estimate the 
structural parameters by tobit maximum likelihood. For this unconditional predicted wages 
the likelihood function has the expression 

(11) 
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If the structural model is recursive (p = 0), then the predicted wages for participants are the 
observed ones, and for nonparticipants, the predicted ones. The problem is that if p =/:- 0, then 
tU is endogeneous and therefore the tobit maximum likelihood estimators are inconsistent. 
This is also the problem when the predicted wages are generated conditionally by using the 
inverse of Mill's ratio. In this case, the estimators of the hours equation are also inconsistent 
since the criteria that determines the truncation of both structural equations is the same. 
The estimators derived from the maximization of (11) respectively its logarithm will fulfill 
the following equation condition, see Olsen (1978), 

h T [T A T] d ({3w were x· = z· /'1 x· an T = -
z Z Z a1 

As it was remarked before, in the presence of simultaneity, tobit maximum likelihood es­
timates are consistent when real wages are replaced by unconditionally predicted wages. 
However, the usual standard errors obtained from the tobit equation are not appropriated. 
The reason is that we have to take into account the parameter estimates from the previous 
steps. Whereas statistical properties of two step estimators are well known in the litera­
ture of labor supply functions (see Vella, 1998), very little is known about predicted wage 
methods. In what follows, under very general assumptions, we show the consistency and 
asymptotic normality of the three step estimator based on predicted wages. Moreover, we 
provide a consistent estimator of the asymptotic variance-covariance matrix. Before giving 
the theoretical results, we will introduce some notation. Let 

m (x, z) = m (x, z; 60)' 9 (x, z) = 9 (x, z; 60, /'0) , h (x, z) = h (x, z; 60, /'0, TO) , 

G'Y = E ['\7 'Yg (x, z)] , 

and 'lj;(x, z) = -Mi1m (x, z) . 

Theorem 1 Assume conditions (A.1) to (A.6) hold, then 

v'N (f - TO) ~ N (0, V (TO)) 

where 

V (To) H;l E [h (x, z) + H'YG~l (g(x, z) + G5'lj; (x, z))] 

x [h (x, z) + H'YG~l (g(x, z) + G5'lj; (x, z))]T H;l. 

Moreover, if 
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wher'e 

AN (Xi, Zi) = ~ t {h (Xi, Zi, J, 1', f) + AIN (Xi, Zi) } {h (Xi, Zi, J, 1',f) + AIN (Xi, Zi)} T , 
i=l 

and 

then 

as N tends to infinity, 

In order to estimate the parameters that are contained in the structural model described 
in (1) and (2) it has been necessary to introduce some additional restrictions that were 
considered in assumptions (A.l) to (A.6). As it was pointed out in Mroz (1987), some of 
these restrictions are hardly supported by economic theory and they are only introduced on 
the grounds of convenience. Among them, distributional assumptions and linear prespeci­
fied relationships between different variables appear to be the assumptions that present the 
weakest justification. The impact of misspecification on distributional assumptions in this 
type of models has been studied in depth by Vijverberg (1991), and Blundell and Meghir 
(1986) discuss some models proposed by economic theory that do not imply linearity be­
tween hours of work, log-wages and other explanatory variables of the hours equation. In the 
next Section, we will relax some of the previous assumptions and we will provide alternative 
methods to estimate the structural model of labor supply defined by equations (1) and (2). 

3 A Semiparametric Approach to the Heckman Esti­

mator 

In this section we are particularly interested in relaxing assumption (A.4). That is, instead 
of imposing linear relationships among the different variables, we will keep additivity but 
allowing for unknown functional forms in the relationship between these variables. Assump­
tion (A.6) concerning distributional assumptions is not relaxed in this work. One reason is, 
when dealing with empirical research, the normality assumption does not appear to be a very 
restrictive one (see Fermindez and Rodriguez-P60, 1997), in other words, a misspecification 
of the error distribution turns does by far not effect the estimation results inferences as a 
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misspecification of the functional forms. Additionally, for estimating a generalized additive 
partial linear model some distribution assumptions are needed in practice anyway. 

Since we handle with nested equations, nonparametric and even nonlinear modelling can 
cause serious identification problems. Remember that in the first step we have to estimate 

with It, l2 arbitrary smooth functions and x, Z not necessarily different in all entrances. 
Fortunately, in the first step we need only the index to be estimated and not explicitly It, h. 
So they are mainly three ways to proceed: First, replacing the wages w by their expectations 
to get rid of Ui2 and estimating the index with a multidimensional nonparametric smoother; 
second, replacing w in step one by instrumental variables arguing that the wage would be 
endogenous here as Ahn and Powell (1993) or Mroz (1987) do; or third, to impose linearity 
for the influence of wages in h. Note that from a statistical point of view the second and 
third version result in the same estimation procedures and differ only in notation. This will 
be seen better inside of Section 3.1. In the next section we consider respectively linearity 
and non-linearity in wages. 

3.1 Linearity in wages 

Following the previous reasoning, h(w, x) and l2(Z) are alternatively specified as 

h (Wi' Xi) () + f3w Wi + f3T xf + 2:1=1 'flj (xij) , 
(14) 

l2 (Zi) 1'0 + zT 1'1 

The 'fl/s are unknown functions that need to be estimated jointly with the parameters (), 
f3w and the vectors f3 and 1'1. For reasons we discuss later, we put and treat this time 
the intercept (1'0) in the log-wage equation explicitly. Note that the functional relationship 
between hours and log wages is kept linear. This will be relaxed in Section 3.2, in the paper. 
Moreover, the wage equation is also assumed to be linear. This is done without loss of 
generality. In fact, l2 (.) could be taken to be nonparametric, and this would not affect the 
results stated in the paper. 

Taking into account the structural model of labor supply that was introduced in the previous 
section (equations (1) and (2)), now, we re-develop the predicted wage estimation method 
considering the model that was introduced in equation (14). To this end, we will distinguish 
three subsections that will describe each of the steps that were previously introduced for the 
fully parametric model. 

3.1.1 First step: Estimation of the reduced form parameters 

This subsection is devoted to the estimation of the reduced form parameters of the hours 
equation. In order to do this, in (14), if we substitute the wage equation (2) into the hours 
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equation (1) and using the normality assumption then the reduced form model is 

(15) 

Where XC is a vector of continuous variables and xd is a vector of discrete variables. This 
expression falls within the class of the so called Generalized Additive Partial Linear Model 
(GAPLM), where F is the cumulative normal distribution function. In analogy to the 
parametric case we take it as being the gaussian normal distribution function. Again, under 
the identifying condition av = 1 and all elements of z different from x, we could estimate {3, 
Cl! = {3w"/l, and the 'TU'S uniquely, but do not need this restriction to get the inverse of Mill' 
s ratio for the second step. Nevertheless, for the ease of notation we set av = 1. 

The parameters {3, () and Cl! , and the additive components {1]j(XC
)} 1=1 are estimated by a 

method proposed by Hardle, Huet, Mammen and Sperlich (1998). To make clear that there 
can be an overlapping of entrances in z and x, in equation (15) we rewrite {3T xd + L1=1 'TJj(xj) 
as {3T vd + Ll=l 'lj;l (vf). The number of the additive components is between max{ d, r} and 
(d+r), let us call it s. For the dummies, now xd and zd together in Vd, we keep the notation 
{3 E JRP. 

So far known nonparametric estimation procedures for these models are the backfitting 
algorithm, see Hastie and Tibshirani (1990) and the so-called marginal integration estimator 
(MIE), see Tj0stheim and Auestad (1994) or Linton and Nielsen (1995). To estimate a 
particular additive component 'lj;k they use a multidimensional preliminar estimator and 
then integrate out all covariates Vj except Vk' 

To get the multidimensional pre-estimate of 'Ij;(.) := e + L.f=l 'lj;j(')' we use the method of 
Severini and Staniswalis (1994) which considered a model of the form (15). Their approach 
is based on an iterative application of smoothed local and un-smoothed global likelihood 
functions. In particular, this method allows for a m-consistent estimation of the parametric 
component. Afterwards, we apply the integration idea on 'Ij; to obtain estimates for all 'lj;j 
(see Hardle, Huet, Mammen and Sperlich, 1998). 

The main reason why we have chosen in our application the MIE is that no asymptotic 
theory for GAPLM with the backfitting algorithm has been developed so far. Note that the 
MIE is indeed always estimating the marginal effect of the particular input variable, even 
when the assumption of additivity is violated. In contrast, the backfitting is looking for an 
optimal fit in the space of additive models of the regression problem and thus has a different 
interpretation (cf. Sperlich, Linton, Hardle, 1997). 

The Estimation Procedure: Depending on what kind of participation variable ( we 
consider, we have a density or a mass point (probability) function f((, /1), or f(Y, /1), where 
the goal now is to estimate the unknown parameter /1, in the case of our first step with 
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J-Li = F{,BT vf + () + 2:J=l1/Jj(vij)}' Then the (conditional) log-likelihood we consider is 

N 

(16) C('l/J,,B) = I)n!((i,J-Li) . 
i=l 

E.g. for the binary case, as we have it in the first step, this is given by 

N 

(17) L (i log J.£i + (1 - (i) log( 1 - J.£i) . 
i=l 

Without loss of generality, we describe now how to estimate the component 1/Jl' For a vector 
u E IRs we denote the vector (U2,"" us)T by Ul, respectively viI = (Vf2"'" vfsV. Further, 
for a kernel function L defined on IRs- 1 we put Lg (.) = g- (s-1) L(g-1 .) and for a kernel 
function K defined on lR we put KhO = h-1 K(h- 1 

.). For L we take the product kernel 
L = TIj=2 Lj . The bandwidth 9 is related to the smoothing in direction of the nuisance 
covariates, the bandwidth h to the direction of interest (here direction 1). We also make use 
of the smoothed likelihood defined by 

N 

(18) CS ('l/J , (3) = J L Kh(V~ - Vil)Lg(vf- vi!)1n! [(i' F {VfT (3 + 'l/J+(V C
)}] dv. 

i=l 

A good introduction to all these considerations can be found in Staniswalis (1989). Further­
more, following Severini and Staniswalis (1994) we put for f3 E B c lRP: 

(19) 

(20) 

(21) 

;j(3( VC) 

fj 

;j) 

-

-

N 

argmJn L Khl (v~ - Vil)Lh2 (vf- vi!) In! [(i' F{ vfT f3 + 1/J}] , 
i=l 

arg min C( ;j)(3, (3), (3EB 

'l/Jfj' 

We remark that ;j) is a multivariate kernel estimate of 'l/J which makes no use of the additive 
structure but serves as a pre-estimate as mentioned above. 

We now apply the marginal integration method. Because of the identifiability conditions, 
'l/Jl(Vf) is, up to a constant, equal to J wl(u)1/J(vr,u)du, where Wl is any weight function 

- -
verifying J wl(u)du = 1. In other words, integrating out of the multidimensional function 'l/J 
all the nuisance directions (vi), is giving you, up to a constant, the marginal influence of vf, 
that is 'l/Jl. For details see one of the abovementioned papers. 

Thus, we put 

(22) 

and by centering -01 to zero, we get an estimate for 'l/Jl. Here again, introduction of a weight 
function W1 may be useful to avoid problems at the boundary. The additive constant () is 
simply estimated by 

(23) 
~ 1 N ~ 
() = N L'l/J(vi). 

i=1 
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In the paper of Hardle, Huet, Mammen and Sperlich (1998) under the set of assumptions B, 
that are included in Appendix I, the consistency for these estimators (including P) is proved 
and the asymptotic distribution is developed. 

3.1.2 Second step: Semiparametric estimation 

In this step, our aim is to estimate the structural parameters of the wage equation. To this 
end, recall that under the previous assumptions then the mean of the wages conditional on 
the explanatory variables for those individuals who work is 

E[WI( = 1, Z = Zi, X = Xi] = 10 + If Zi + (2).. {(3T vf + () + t 'lj;j(Vfj )} , 
3=1 

i= 1,···,M, 

where).. stands for the inverse of Mill's ratio. Recall that as it was indicated in the previous 
section, to make clear that there can be an overlapping of entrances in Z and X, in equation 
(15) we rewrite (3T xd + L1=11]j(Xj) as (3T Vd + Ll=1 'l/Jt( vf). The number of the additive 
components is between max{ d, r} and (d + r), let us call it s. For the dummies, now xd and 
zd together in vd, we keep the notation {3 E IRP. Then, 

(24) i= 1,···,M, 

where €i = Wi - E[WI( = 1, Z = Zi, X = Xi]' In the previous equation, the estimation of the 
parameter vector ,T = (,0 If 12f is infeasible since the parameters of the index, {3 and 
hl)l (.)} ;=1 are unknown. Remember that in this case, {3 stands indeed for the parameter 
vector {3 assuming the normalization (Jv = 1. Heckman (1979) proposed, in a fully parametric 
setting, to replace them by consistent estimators. Proceeding in the same way then obtain 
the following regression equation 

(25) i= 1,···,M. 

The parameter vector (ro IT 12f can be estimated by ordinary least squares. However, 
this estimation procedure does not provide satisfactory rates of convergence for the estima­
tors. This is due to the nonparametric part that is plugged into the inverse of the Mill's ratio. 
In fact, it can be shown that the o.1.s. estimators of the parameters of the wage equation are 
consistent and asymptotically normal, but they heritate from the nonparametric estimator 
of the first step its rate. This rate, of course is optimal for the nonparametric function, but 
it is suboptimal for parametric estimators. In order to obtain root-n consistent estimators of 
the structural parameters of the wage equation we propose to use the differencing estimator 
proposed by Powell (1987) and Ahn and Powell (1993). Then, the parameters 11 in the 
structural wage equation can be estimated as follows, 

(26) 
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where 

(27) 

(28) 

and we define the weights for i, j = 1, ... , N as 

for some function S : lRP+d+r -7 lEt . 

The estimation of 10 and 12 has been neglected by Powell (1987), Ahn and Powell (1993), 
neither a proof for the consistency and rate of 1'1 is provided. The treatment of 10 and 
12 we consider in Section 4 in the context of our application. In the second section of the 
Appendix we present a detailed proof for the asymptotic result for ;h. Further, for the sake 
of simplicity, also the assumptions needed to claim this result have been relegated to the the 
Appendix, first part. The asymptotics of our estimator are the following: 

Theorem 2 Let us define the index as Vi = vf (3 + () + Lk=l 'lj; (Vfk)' Then, under assump­

tions (B.1) to (B.12) and if the sequence of bandwidths h, h2 and 9 tends to zero such that 

hgd - 1 N 1/ 2 (log N) -1 -7 00, N h~ -7 00 and N h~ -7 0 then 

(29) ..fN ("11 - '11) = <I> ;,' { ~ t. { f (Vi) F (Vi) Ci [Si - El(~Jil] u" 

{ 
-d C } (i - F (Vi) } } + A1iVi + A2iKi (vd F (vd (1 _ F (Vi)) f (Vi) + op(l) 

where ~sz is defined in assumption (B. 12). 

Ali = E {X (Vi) F (Vi)2 f (Vi) [Si - E~~jJil] 

X [Wi - {E [Ttlvf]} -1 E [1?vtlvf] - E [Wi - {E [TtIVf]} -1 E [TtvtIVf]]]T}, 

{ ' ( ) { [21 c] }-1 ( )2 [ E[(sIViJ] } A2i = E A Vi E 1i Vi F Vi Si - F(Vi) 

vt = vt - {E [1i2Ivf]} -1 E [T?vtlvf] i = 1,' .. , N, 

T~ = f (Vi)2 i = 1, ... , N 
~ F (Vi) (1 - F (Vi)) 

(30) i = 1,···,N 

as N tends to infinity. 
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Finally, we want to mention again, that this second step also could be done non- or semi­
parametric ally allowing for arbitrary functional forms in equation (2). This would not cause 
any problems of identification as discussed above but results as in Theorem 2 would be much 
harder to derive. 

3.1.3 Third step: Tobit Local Maximum Likelihood Estimation 

Here, we can apply a quite similar procedure as in the first step. We replace all wages with 
the predicted ones obtained in the second step: Wi = 1'0 + ZT1'I for i = 1, ... , N. The goal 
is to estimate the conditional expectation of Y, that is 

{ 
(3T xd + () +,,~ TJ' (x<:) + f3 W} 

E [YIW = w, X = xl = F L.J~1 J J W , 

where al is the standard deviation of Ul. 

In general, this can again be estimated by the (smoothed) maximum likelihood method 
presented in Section 3.1.1 following Staniswalis (1989) and Hardle, Huet, Mammen, Sperlich 
(1999). E.g. if the participation variable Y as presented in equation (1) is the number of 
working hours, we have a censured variable and thus to estimate a tobit model, compare 
equation (11) for the parametric analogon. Since to our knowledge this has presented never 
before explicitly nor implemented, we give the estimation procedure here and a possible 
numerical algorithm for implementation in Appendix IlI. 

The likelihood function in this model is 

1nL = 
-In(21f) -In(a?} {y - X

dT 
(3 + Cl! + 2:1=1 TJj(xj) + (3ww F 

2 + 2 - 2~ 

-In { 1 _ F ( _(X
dT 

/3 + a + LJ[=[ ~j(xj) + /3wW») } 

Let TJ be Cl! + 2:1=1 TJj(xj). We estimate (3, (3w, al and TJ in the following way: 

1. f}{3,{3W,O'I = argm:x£.s (TJ, (3, (3w, ad , 

2. ((3T,Tw, al) = arg max £. (f}{3,{3w,O'I' (3, al) , 
{3,{3w,O'I 

where 
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Here, again tT = (t1, tD. 

The following result is also shown in the Appendix for /3 and /3w. 

Theorem 3 Under the assumptions (B.i) to (B.12) and the rates on hand g considered in 

Theorem 2, then 

as N tends to infinity. 

/3 = ,8 + op(l) 

/3w = ,8w + op(l) 

3.2 Nonlinearity in wages 

Finally, we analyze the case when the structural hours equation presents a nonlinear re­
lationship between hour and log of wages. This case, has been motivated for example by 
Blundell and Meghir (1986) and it can be taken into account by assuming the following 
nonparametric additive relationship 

(31) 

The ru's are unknown functions that need to be estimated jointly with the parameters () 
and the vectors ,8 and 1'1. Note that the difference with respect to the linear specification 
in wages (see equation (14)) is twofold. First, from a theoretical point of view, individual 
log wages are replaced by 'lifetime' wage rates, {w*}. This represents a life-cycle average of 
single period wage rates (see Killingsworth and Heckman, 1986). For further discussion see 
also the application in Section 4. Second, the hours of work and average wages are related 
through an unspecified nonlinear relationship, 1Jd+1(.), whereas in equation (14)) a linear 
parametric relationship was assumed. Again, the wage equation is assumed to be linear and 
parametric for the sake of simplicity. 

Although under a nonlinear relationship between hours and log wages the three step method 
estimation procedure that has been proposed in this paper remains valid it is necessary 
to make some changes in the estimation stages. For the first step, recall that under the 
specification that was introduced in (31) and the normality assumption for the error terms, 
the reduced form model for the hours equation is 

(32) 
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where F(e) is the c.n.dJ., (Jv a scaling factor, and 'fJ is a multivariate unknown function. 
Here, we could separate now 'fJ depending on the intersection between the elements of x and 
Zj we can separate, given that the data generating process is like this, exactly that parts 
which affect elements of x which are not in z. 

A different solution has been chosen in Ahn and Powell (1993). They argue that the wage can 
be considered in the first step as being endogeneous and be replaced by some instrumental 
variables. However, they did not discuss the rising problems of identification if this seems 
inappropriate to the empirical researcher. In that case, we give up the idea of perfectly nested 
equations and thus instead of straight forward plugging in one equation into the other we 
only try to approximate the values needed for the bias correction in the second step, see 
discussion in Section 2. Following their arguments, the reduced form model for the hours 
equation will be 

where F( e) is the c.n.d.f., (Jv a scaling factor, and 'fJj, 'Pj are unknown functions from fR. At 
least one element of Z is different from the elements of x. 

For estimation purposes, the three step estimation method changes depending on whether 
(32) or (33) are chosen to be the reduced form model. In the second case, the steps and 
properties developed in Section 3.1 apply. For the first case, a direct application of the 
local likelihood method proposed by Staniswalis (1989) can be used for the first step: the 
Pre-estimation for the selection bias correction, i.e. 

where bandwidths hand 9 not refer to the one chosen before but have to be chosen ac­
cordingly this new smoothing problem. For the second step, the semiparametric estimator 
developed in Section 3.1.2 can be used. The regression equation is now 

(34) i= 1, ... ,M 

and the parameter vector {I can be estimated by the differencing estimator proposed in (26). 
i.e. 
(35) 

where now 

(36) 

(37) 
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and we define the weights for i, j = 1, ... ,N as 

with kernel function K2 (.) and bandwidth h2• 

In the third step, taking Wi = i'[ Zi for i = 1, ... ,N we estimate 

E [Y[W = w,X = xl = F {Xd
T 

f3 + 0 + E1~~~j(xj) + ~d+1(W)} 

using the same method as in Section 3.1 but with likelihood function 

We conjecture that the results presented in Section 3.1, can be also claimed for the estimators 
developed in this section. However, to avoid a too long paper we do not present them as 
formal results. 

4 The Application 

4.1 Model and Data 

The source of the data is the Encuesta de Poblaci6n Activa (EPA) , the Spanish Labor 
Force Surveys. These surveys have been carried out on a quarterly basis since 1975 and 
are collected by the National Bureau of Statistics (INE). They cover approximately 60,000 
households and contain information about 150,000 individuals that are older than 16 years. 
It provides information at different levels of disaggregation both at national and regional 
level. From these surveys, in the second quarter of 1990, the National Bureau of Statistics 
randomly selected a cross-section of 4,989 individuals and additional information about some 
variables that were considered relevant for labor market participation analysis were provided. 
In this paper we consider a subsample of 1010 individuals participating in the labor market, 
612 workers and 398 non workers. 

The variables included in this data set are defined in Table 1 including some basic statistics. 
Further, we certainly have the information whether a person has a job (JOB) or not. 

In this application we are considering the problem of estimating the conditional expectation 
of being employed. As discussed in the introduction, we have two problems; for including 
the wages we have to predict them for non workers, and additionally, estimating the wage 
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I Variable " Description I Whole Sample I Workers I 
SEXM dummy, 1 if male 0.680 0.625 

(0.466) (0.484) 

AGEl dummy, age 16 to 19 0.131 0.111 
(0.338) (0.314) 

AGE2 dummy, age 20 to 25 0.265 0.256 
(0.441) (0.437) 

AGE3 dummy, age 26 to 35 0.278 0.261 
jO.448) JO.439) 

AGE4 dummy, older than 45 0.138 0.143 
(0.345) (0.351) 

EDUCl elementary school 0.350 0.339 
(0.477) (0.474) 

EDUC2 high school 0.115 0.106 
(0.320) (0.308) 

EDUC3 university 0.064 0.039 
(0.245) (0.194) 

URATE unemployment rate 0.171 0.171 
(0.069) (0.071) 

of the district 
SINGLE dummy, 1 if single 0.689 0.725 

(0.463) (0.446) 

NOHH dummy, 1 if person is 0.703 0.616 
(0.456) (0.486) 

not head of household 
WAGE earnings per hour 292.735 483.108 

(313.237) (264.402) 

Table 1: Comparative Statistics of the explanatory variables; mean and standard deviation 

(in brackets). 

equation we are touched by the sample selection problem. Therefore we apply the three step 
Heckman estimation procedure. 

We did the estimation for two competing models, a standard parametric (Model I) and a 
semiparametric one (Model 11), as we described them in Section 3. For Model 11 we did 
both, estimation with modelling the influence of log-wages non linearly (i)), and modelling it 
linearly (ii)). Notice that this makes only a difference for the calculations in step 3. Further 
we investigated the question what happens (for these data) when using w versus W*, see 
Section 3.2. 

We proceed as follows. We regress in the following steps 

1. the variable JOB against AGEl, AGE2, AGE3, AGE4, EDUCl, EDUC2, EDUC3, 
SEXM, SINGLE, NOHH, SEXM*SINGLE, URATE and a constant (CONST) by 

(Model I) 

(Model 11) 

E[(!X = x] = F (xT(lI) ,respectively by 

E[(IXd = xd, Xc = XC] = F {XdT flIl + TJ(XC) } , 
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with X = (XdT, XCTf denoting all input variables, Xc =URATE; 

2. In(WAGE) against AGE1, AGE2, AGE3, AGE4, EDUC1, EDUC2, EDUC3, SEXM, 
SEXM*SINGLE, URATE the inverse of Mill's ratio and a constant (CONST) by 

E[ln(WAGE)!Z = z, A = ),] = zT "11 + "(2)" 

again with Z denoting all input variables and A, ), the Mills ratio; 

3. JOB against AGE1, AGE2, AGE3, AGE4, EDUC1, EDUC2, EDUC3, SEXM, SIN­
GLE, NOHH, URATE, In(WAGE) and (CONST) by 

(Model I) E[C!X = xl = F (xT (JI) ,respectively by 

(Model II) i) E[(!Xd = xd, Xc = XC] = F {XdT (3II + a + 7]l(xD + 7]2(X~)} 
ii) E[(IXd = xd, Xc = XC] = F {xdT {JII + a + 7]l(xD + {Jwx~} , 

X = (XdT, XCTf denoting all input variables, x~ =URATE, x~ =In(WAGE). 

We had observed N = 1010 people, of which M = 612 have a job, for more information see 
Table 1. 

As common, in step 2 is regressed In(WAGE) versus In(Z) since we are interested in the par­
tial increase proportional to wage, i.e. (8WAGE)/(8Xj )·(WAGE)-1 = (~ln(WAGE)) / (~Zj). 
For comparison reasons this was done first with a simple OLS for both models and afterwards 
for Model II with our estimation procedure proposed in the preceding sections. 

In the latter case we estimated the constant "10 apart. A consistent root-N estimator was 
proposed by Andrews and Schafgans (1998). The estimator they consider is 

A L~l (Wi - zr i1) (iK, (Indexi - c5N ) 

"10 = E~l CiK, (I ndexi - c5N) , 

where Index stands for the index in the selection equation It, c5N for a smoothing parameter 
with c5N -t 00 when N -t 00. The function K,(.) is a non-decreasing [O,l]-valued function 
that has three derivatives bounded over IR and for which K,(u) = 0 for U ~ 0 and K,(u) = 1 
for U ;::: B for some 0 < B < 00. However, they did not present simulations, applications nor 
discussion how to choose K" B, c5N reasonable in practice. An investigation about this topic 
and robustness of the estimator against their choices as well as against the choice of h2, the 
bandwidth of the differencing estimator, would be interesting. As we are also interested in 
the (partly nonparametric with bandwidth he, explained later) estimation of the variance of 
i1, to look at all at the same time would be too much and such a simulation study beyond 
the scope of this application. Instead, we compare for different bandwidths h2 the resulting 
io with the constant we got out of the simple OLS (for Model II), see Tables 2 and 3. In 
our application we choose for numerical reasons 
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with B = dN = ~Index[0.95NJ, where Index[a] means the a'th order statistic. 

As mentioned above we also compare the two cases of (a) taking in step 3 predicted wages 
for all persons in the sample versus (b) taking the real (observed) wages for workers. This 
comparison for Model Il will strengthen the often found state that it is preferable to take 
as regressor the predicted log wage instead of the real ones also for the people having a job 
and thus working with the in average expected log wages 'Ii;* for all people. 

For the nonparametric estimation we applied in all steps the quartic kernel, K(u) = ~~(1 -
U

2)2ll{lul ~ 1}. Since in the first step where we only pre-estimate to get an approxima­
tion for the bias correcting factor in the log wage equation, we are interested in keeping 
the bias small but are not that much worried about slightly bigger variances. Thus we 
undersmooth a little bit choosing in the first step bandwidth h = 0.8* stdev(URATE), 
where stdev(·) is the standard deviation of the corresponding input. In step three we used 
hp = (1.5,1.75)* stdev(URATE,ln(WAGE)) when estimating the parametric (linear) part 
and h = (1.0, 1.25) *stdev(URATE,ln(WAGE)) , 9 = h to estimate TJl, 'f/2. For the explana­
tion of hand g, see Section 3. Not discussed in Section 3, we run the estimation procedure 
separately to get /3, respectively TJ. Then hp indicates the bandwidth used for getting /3 when 
there does not exist an direction of interest for TJ. We did all calculations also for bigger as 
well as smaller bandwidths. Presented are the results giving reasonable smooth estimates, 
respectively slightly undersmoothed ones for the first step. A nice result and a little bit 
surprising: qualitatively the estimates almost did not vary with the bandwidth. 

We start with estimation of step 1 and 2 for both models. Hereby, we did also for Model Il, 
step 2 a simple OLS. All results are displayed in Table 2. Note that the standard deviation 
for Model Il, step 2 are not corrected for the first step and thus have to be interpreted 
carefully if at all. For the nonparametric part in Model I see Figure 1, (fI,l). Because 
step 1 is only for determining the inverse of Mill's ratio, we skip a detailed discussion of its 
numerical results. We only notice that all coefficients have the expected sign due to economic 
theory. Aside the signs a comparison of the results for the dummy variables between Model 
I and Il is not possible due to the different normalizations but in any case the influence of 
URATE seems to be strongly nonlinear. 

For the wage equation (step 2) we again have quite similar results for the different Models, 
except for the inverse of Mill's ratio. Notice that age, education, sex and family status 
have significant influence with expected signs. They confirm that very young age and low 
education level have a negative influence on the earnings per hour. 

The fact that URATE is perfectly insignificant could indicate that pay policy and wage 
negotiations are still nationwide in Spain and are not affected by the labor market in the 
particular district. The Mills ratio in both models is strongly significant, so we indeed deal 
with a big selection bias in the wage equation. For the semiparametric case (Model Il) it is 
much smaller. 

We now look closer to the results of step 2, Model Il, giving the estimates of the method 
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step 1 step 2 

Variable Model I Model II Model I Model II 

Constant 1.034 1.003 6.305 6.393 
(0.213**) - (0.074**) (0.065**) 

AGE1 -0.520 -0.450 -0.302 -0.329 
(0.183**) (0.112**) jO.097**1 jO.097*~ 

AGE2 -0.267 -0.259 0.046 0.044 
(0.163*) (0.099**) (0.075) (0.060) 

AGE3 -0.188 -0.192 0.006 0.010 
_(0.146) jO.088*~ iO.06'Q iO.0521 

AGE4 -0.439 -0.443 0.071 0.068 
(0.161 **1 iO.096*~ iO.G7Ql iO.0551 

EDUC1 0.034 -0.033 -0.027 -0.016 
(0.105) (0.066) (0.051) (0.046) 

EDUC2 -0.118 -0.178 0.210 0.214 
(0.142) (0.090**) (0.070**) (0.063**) 

EDUC3 -0.531 -0.510 0.645 0.601 
(0.182**) (0.115**) (0.109**) (0.101 **) 

SEXM -0.219 -0.247 0.081 0.060 
(0.181) (0.112**) (0.075) (0.065) 

SINGLE 0.696 0.690 - -
(0.199**) (0.120**) 

NOHH -0.895 -0.910 - -
iO.130**1 JO.078*~ 

SEXM*SINGLE -0.102 -0.089 -.1111 -0.093 
(0.212) (0.131) (0.066*) (0.059) 

U-RATE -0.504 - 0.073 0.071 
(0.614) (0.280) (0.215) 

Mill's inverse - - -0.480 -0.299 
(0.116**) (0.062**) 

Table 2: Estimation results for step 1 and 2 for the parametric part. Standard deviations 

are given in brackets. Asterisks indicate significance at 10 (*), respectively 5 (**) percent 

level. 

proposed in Section 3 including the (correct) standard deviations. Looking at Theorem 2 

and a careful check of its proof reveals that we can estimate the variance of '~h by 

(38) v.;-r (-yd = ap~; J,v t. {f (Vi) F (Vi) (+ -E1(t:;;il]} 

(39) {j(V,) F (Vi) (i [Si - E1(~;;ill r <f>~,l , 

with a-i = ~ L:~1 U~i' U2i the residuals of the log-wage equation. Unfortunately, we can get 

only these residuals for the people working. Therefore, we take a-i = It L:t!1 (U2i - .fr2) 2 

only with the obtained M residuals and .fr2 = It L:t!1 U2i. 

The conditional expectations E[(slvi], E[(zlvi], see definition of <I>sz in the Appendix I, 

we estimate using the Nadaraya-Watson estimator with quartic kernel and bandwidth he. 
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Figure 1: Nonparametric and parametric estimates for URATE and 1n(WAGE}. At top (fl,l) 

for step 1, below (fl,£2) for step 3, left case (a), right case (b). 

Since the robustness of the estimators 1'1, Var( 1'1) against the choice of h2' he is of crucial 
importance as it decides about slope, variance, significance and has direct impact on step 3, 
we dedicated an own small simulation study on this topic. In this context we also got the 
different 10 to compare with the OLS estimate. All the results can be found in Table 3. 

The all over impression is that the results, taking the trade-off between absolute value for 
the coefficient estimates and their variance into account, are astonishing robust. We also see 
the closeness to the simple OLS results. Certainly, the standard deviations are bigger now 
since the one in Table 2 (step 2, Model II) are not corrected for the first step. For all results 
in Table 3 we have significance at 5% level for AGE1 and EDUC3, whereas EDUC2 is only 
significant at about 12%. 

Unfortunately, in both models the wage regression have a R2 of only about 21%, i.e. we are 
not explaining much of the variance of In(WAGE). This lead us to the comparison of two 
cases ((a) and (b)) in step 3. In Figure 1 we have plotted the estimates of the influence 
functions for URATE, and In (WAGE) for both cases when modelling influence of log-wages 
nonlinear (case i)). The problem in case (b), when we take the observed wages for workers 
and predicted wages only for the non workers is, that due to the small R2 we have predicted 
wages only in a much smaller (but high-level) range than the range is for observed wages. 
For the case where taking the predicted wages for all, we have the functions on quite different 
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standard deviation 

he 0.5 1.0 1.5 2.0 

1'0 5.989 

AGE1 -0.385 0.104 0.103 0.106 0.108 

AGE2 -0.001 0.232 0.224 0.224 0.224 

AGE3 -0.022 0.264 0.252 0.251 0.250 

1.0 AGE4 0.051 0.252 0.248 0.248 0.250 

EDUC1 -0.040 0.291 0.280 0.279 0.279 

EDUC2 0.188 0.140 0.133 0.133 0.133 

EDUC3 0.587 0.040 0.039 0.041 0.042 

SEXM 0.007 0.418 0.416 0.417 0.418 
SEXM*SINGLE -0.066 0.349 0.364 0.364 0.364 

U-RATE 0.054 0.099 0.087 0.085 0.085 

he 0.5 1.0 1.5 2.0 

1'0 5.947 

AGE1 -0.348 0.105 0.105 0.107 0.110 
AGE2 0.026 0.236 0.227 0.228 0.227 
AGE3 -0.002 0.268 0.256 0.254 0.253 

0.75 AGE4 0.054 0.256 0.251 0.252 0.253 
EDUC1 -0.041 0.296 0.284 0.283 0.283 
EDUC2 0.194 0.142 0.135 0.135 0.135 

EDUC3 0.631 0.041 0.040 0.041 0.043 
SEXM 0.028 0.424 0.422 0.423 0.424 
SEXM*SINGLE -0.080 0.354 0.369 0.369 0.369 
U-RATE 0.073 0.100 0.088 0.086 0.086 

he 0.5 1.0 1.5 2.0 

1'0 5.924 

AGE1 -0.324 0.106 0.106 0.109 0.111 
AGE2 0.038 0.238 0.229 0.230 0.229 
AGE3 0.007 0.271 0.259 0.257 0.256 

0.5 AGE4 0.044 0.259 0.254 0.255 0.256 
EDUC1 -0.044 0.299 0.287 0.286 0.286 
EDUC2 0.203 0.143 0.137 0.136 0.137 

EDUC3 0.676 0.042 0.041 0.042 0.043 
SEXM 0.039 0.429 0.427 0.428 0.429 
SEXM*SINGLE -0.087 0.358 0.373 0.373 0.373 
U-RATE 0.083 0.101 0.089 0.087 0.087 

Table 3: Estimation results for Model Il, in step 2, using the differencing estimtor for different 

bandwidths. 
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scales for log-ii.J*. This is due to the fact that maybe the estimator of Andrews and Schafgans 
(1998) is underestimating the constant. Fortunately, this does not affect the further steps 
neither the estimation of the standard deviations of 'Y1. 

Consequently all small wages in that sample belong to workers and vice versa we get a 
strongly negative estimate for the influence ofln(WAGE) on having ajob. Therefore, and to 
be consistent in the inputs, we rely more on case (a) where we take the predicted wages for 
all people and thus avoid the problem of having two quite different variations in the same 
predictor variable. As we will see, wage seems to be absolutely insignificant in the linear 
model (in this example) and thus a linear modelling (case ii)) is not affecting the other 
results. So we skipped the presentation of the results for that case. 

In Table 4 we show the estimation results in step 3, case (a) for the parametric part in all 
models considered. First, to manifest the difference between a standard probit, as often done 
in the economic literature, and the probit with corrected standard deviations, we present 
both for Model I. We can see that the corrected ones are about 5 to 15% bigger than the 
uncorrected ones. 

The coefficient estimates for Model I and II are again different. Certainly, including In(WAGE), 
the significance for the other explanatory variables is shrinking compared to step 1. But still 
age (AGE2, AGE4), SEX, SINGLE and NOHH is highly significant with expected signs. 
In Model I URATE is only significant at a level of about 21 %. But this statement holds 
only for the linear influence of URATE. Looking at Figure 1, we see a clearly nonlinearity 
for URATE while for In(WAGE) insignificance seems to be real and not just caused by a 
misspecification of its functional form. In Model II now also education is highly significant. 
In general we find that allowing the influences of the continuous regressors to be nonlinear, 
increases the significance for the parametric part even compared to the uncorrected standard 
errors. 

" 

0.05 0.1 O.IS 0.2 0.25 OJ 

Unem 10 men! IIlW e 

Figure 2: Nonparametric estimates for URATE and In(WAGE) for step 3, case (a). 
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I Variable "Model I I Model 1* I Model II I 
Constant -4.715 1.044 

(14.001) (12.133) -
AGE1 -0.244 -0.477 

(0.829) (0.615) (0.133**) 

AGE2 -0.310 -0.257 
(0.201) (0.181 *) (0.098**) 

AGE3 -0.193 -0.198 
(0.168) (0.145) (0.088**) 

AGE4 -0.504 -0.444 
(0.213**) (0.204**) (0.096**) 

EDUC1 0.059 -0.035 
(0.134) (0.118) lO.066) 

EDUC2 -0.309 -0.185 
(0.474) (0.421) (0.097**) 

EDUC3 -1.119 -0.660 
11.351} j1.228) (0.260**) 

SEXM -0.292 -0.308 
(0.123**) (0.094**) (0.058**) 

SINGLE 0.696 0.621 
(0.190**) (0.199**) (0.067**) 

NOHH -0.895 -0.894 
. (0.130**) (0.130*~ (0.075**) 

In (WAGE) 0.912 -
(2.209) (1.907) 

U-RATE -0.570 -
(0.652) (0.631) 

Table 4: Estimation results for step 3, case (a) for the parametric part. Standard deviations 

are given in brackets. Column Model 1* is giving the uncorrected standard deviations. 

Asterisks indicate significance at 10 (*), respectively 5 (**) percent level. For Model II we 

give here the uncorrected standard deviations neglecting the first two steps. 

Nevertheless, zooming the graphics, see Figure 2, we get the impression that in Spain there 

is a small upper-middle class. We have many jobs where people earn a small salary, but for 

some people with the adequate abilities to earn a lot there is an increasing probability to get 

such a job. 

Looking at the estimated influence of URATE, the functional form is a little bit harder to 

understand. Let E be the employed people, LF the labor force (all participants), U the 

unemployed people, u the percentage of U to LF, and P the probability to be employed 

(that is what we estimate). 

Describing the probability of having a job in terms of E, u and LF, we have 

P = E/LF = E/(E + U) = E/(E + u * LF) 
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and consider 
8P -E*LF 
8u (E+u*LF)2' 

compare with parametric results in Table 4. 

Now we consider this with respect to a possibly change in Labor Force. This consideration 
makes sense, since there are many situations where at the same time many people give up, 
e.g. in a recession when nobody is believing in his chance to find a job. 

8P/8u -E(E+u*LF)+2E*u*LF 
-

8LF (E + u * LF)3 
-E2 +E*u*LF 

(E + u * LF)3 . 

Here we can see that indeed for certain changes in LF or u this probability P can be increasing 
or decreasing, compare e.g for especially high unemployment u. In the next data wave the 
unemployment rate u should be corrected then for this change in Labor Force. Certainly 
also other reasons could be thought to be responsible for this phenomenon. 

5 Conclusions 

The purpose of this paper has been to provide a new, practical way of specification and 
estimation a standard model of labor supply with simultaneous equations of interest. As 
a byproduct we gave also theoretical results for the so far used fully parametric procedure. 
The method is based on the ideas developed by Heckman and it can be included in the so 
called predicted wage methods. We have been able to identify, estimate and give asymptotic 
theory for all parameters and functions of interest, including the standard deviations. 

According to the empirical findings, the relationship between labor supply and some of its 
explaining variables in the structural equation is nonlinear and this fact not only contradicts 
the standard assumptions incorporated in previous econometric models of labor supply but 
also demands for more flexible methods. Our procedure allows for this flexibility and more­
over has been shown to be quite robust in its smoothing based parts. With the application 
we thus could maintain the practical relevance of the proposed methods. 

Appendix I: Assumptions 

For the asymptotic expansions that we have introduced in Theorem 2, we make the following 
assumptions. 

25 



(B.1) The values {Wi' Xi, Zi}~l are realizations from LLd random variables, where W E JR, 
X E JRP+d and Z E JRT. Moreover, {Yi}~l are realizations from a truncated random 
variable, Y, and ( is a binary variable that takes the value 1 as Y > 0 and 0 otherwise. 

(B.2) X = (Xd, XC), where Xc E JRd are absolutely continuous random variables and X d E 

JRP are discrete or dummy variables. {xt,xn~l are realizations from (Xd,Xc). Xd 

and XC have compact support Dd and Dc. The support Dc is of the form Dc,l x Dc,-l 

with Dc,l c JR and Dc,-l C JRd-l. Xc has a twice continuously differentiable density 
fc with infxcEDc fc (XC) > o. Furthermore, the same conditions are assumed for Z. 

(B.3) W has finite sixth order moments, and the laplace transform E exp tlYI is finite for 
t > 0 small enough. 

(BA) The data satisfy the restrictions (1) and (2) as defined in equation (14). 

(B.5) (U l
) rv N (0, ~) where ~ = ( (Jr P(J12(J2) . 

U2 P(Jl(J2 (J2 

(B.6) {1]j(.)} :=1 are four times continuously differentiable on JR. The weight functions w, 
W-l and Wl are positive and twice continuously differentiable. To avoid problems on 
the boundary, we assume that for a c5 > 0 we have that W_l(t) = 0, Wl(t) = 0, 
and wet) = 0 for t E D;'-l = {s: there exists an u ~ Dc,-l with lis - ull :::; c5}, 
t E D;'l = {s : there exists an u ~ Dc,l with lis - ull :::; c5} or t E Sr = {s : 
there exists an u ~ Dc with lis - ull :::; c5}, respectively. Furthermore, the weight 

function Wl is such that IDc,l Wl (tl)ml(tdfTl (tddtl = 0, where fTl denotes the density 
ofTI . 

(B.7) The kernel L is a product kernel L(v) = LI(VI) ..... Ld-I(Vd-t). The kernels L j are 
symmetric probability densities with compact support ([-1,1], say), j = 1, ... , d - l. 

The kernel K is a symmetric probability density with compact support (e.g.[-l, 1]) ,too. 
Moreover, the kernels K and L are twice continuously differentiable. 

(B.8) The kernel function K 2 (.) satisfies 

i) K2(U) is twice differentiable, with K~ < ko for some ko. 

ii) K2(U) = K2(-u). 

iii) K2(U) = 0 if lul > lo for some lo > o. 
iv) J uIK(u)du = 0 for l = 1,2,3. 

(B.9) E [cp{v} Ivc = t] and E [cp{v}vdlvC = t] are twice continuously differentiable functions 
for t E Dc. Where 

a [ (- F (v) 1 
cp{v} = av F(v)(l_F(v»f(v) 

--T 
(B.10) The matrix E T 2vdvd is strictly positive definite. This assumption implies that vd 

does not contain an intercept. 
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(8.11) The conditional expectation functions E[vlv = Vi] E[(zlv = Vi] and E[(slv = Vi] are 
at least three times continuously differentiable in the index function. 

(B.12) The matrix 

~" = E [f(V)F(V)2 [s - E~~~)Jl [z - E~~~)Jll 
is positive definite. 

Appendix 11: Proof of Theorems 

Proof of Theorem 1 

Before to prove the results we introduce the following lemma. 

Lemma 1 (Newey and McFadden, 1994) If Zi is i.i.d., a (z, 0) is continuous at 00 with 

probability one, and there is a neighborhood N of 00 such that E [SUPOEN IIa (z, 0) 11] < 00, then 

for any e -tp 00 , n-1 2:i=l a (Zi' e) ~ E [a (Z, (0 )]. 

The proof can be found in Newey and McFadden (1994), p. 2156. 

We will show first the convergence in distribution result. In order to do so, first note that 

(40) 

where i!J(Xi,Zi) - [irL~l '\lom(xi,zi,J)r1m(Xi,Zi) and J is a mean value. This is 

because J makes (7) equal to zero, with probability one, and the mean value theorem. 
Furthermore, Assumptions (A.1) to (A.6) ensure both that J is a consistent estimator for 60 
(see Manski and McFadden, 1994: Theorem 2.5, p. 2131), and E [SUPOENo IIm (x, z; 6)11] < 00. 

Therefore, Lemma 1 applies for J between J and and 60 and then 

(41) 

where now, 'l/J (Xi, Zi) = - [E ['\lom (x, Z)j]-l m (Xi, Zi). Proceeding in the same way as before 
for equation (9), it is also possible to show that 

(42) 
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But then, if we substitute (41) into (42) and we apply again Lemma 1 we obtain 

The same can be done for equation (12) and then 

VN(f- 70)= 

( ~ )-1 1 N (~ )-1 (- ) r;;;; (~ ) (44) -HNT 6,1,f y'N~h(xi,zi)-HNT 6,1,f HN5 6,')'0,70 vN 6-60 

-HNT (J, 1, f) -1 HN,,( (60, ,,(, 70).JN (1 -')'0) 

-HNT (J,1,f)-1 HN5,,( (J,,,(, 70) N (J - 60) (1 -')'0), 

where 

H N5,,( (J, ,,(, 70) = N- ~ 'Ef:1 "V 5 "V "(h (Xi, Zi, J, ,,(, 70) . 

Now, substituting back both equations (41) and (43) into (44) and applying Lemma 1 then 
we obtain 

(45) 
x IN 'Ef:1 {h (Xi, Zi) + H5'ljJ (Xi, Zi) + H-yG:/ (g (Xi, Zi) + G5'ljJ (Xi, Zi))} + op(1) 

and taking into account assumption (A.2), we can apply both the Lindeberg-Levy CLT and 
the Slutzky theorem (see Serfiing, 1980: pp.19 and 28) and the proof is done. 

The proof of consistency of the variance covariance matrix V (f) is immediate by applying 
Lemma 1 to the different terms. 0 

Proof of Theorem 2 

For the proof of this theorem, we need the following lemmas 

Lemma 2 (Powell, Stock and Stoker, 1989) Consider a second order U-statistic of the 

form 
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where {Zi' i = 1,"', N} is an i.i.d. random sample and PN is a k-dimensional symmetric 
kernel. Also define 

rN(Zi) - E [PN (Zi' Zj) IZi] , 

()N E [rN (Zi)] = E [PN (Zi' Zj)] 
2 N 

UN - ()N + N L [rN(zi) - ()N]. 
i=l 

(46) 

The proof of this lemma is the proof of lemma 3.1 in Powell, Stock and Stoker (1989), p. 
1426. 

Lemma 3 Under assumptions (B.i) to (B.12) and if the sequence of bandwidths h, h2 and 
9 tends to zero such that Nhg2(s-1) (log N)-2 ~ 00, Nh~ ~ 00 and Nhg ~ 0 then 

where <I>sz is defined in assumption (B.12), and 

where U2i is the error term of the structural wage equation, 

s 

Vi = fiT vf + () + L 7Pk(vfk), 
k=l 

(47) 

and 

f(.) and F(.) are respectively the gaussian density and the gaussian distribution function. 
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Proof of Lemma 3 

In order to prove the fist statement of the lemma, we first show that 

Msz - Msz = op(1). 

To do so, from equations (27) and (47) we have that 

(48) 

Now, with the same arguments as in Lemma B.1 from Ahn and Powell (1992), p. 23, we can 
obtain the following bound 

Using a third order Taylor expansion around the true values, assumption (B.5) and the 
uniform convergence properties of the first step estimators (Hardle, Huet, Mammen and 
Sperlich, 1999; p. 32) then 

(49) max{w·· - w·-} = 0 (h22N-4!S). ij ~J ~J P 

If S ~ 3, then equation (49) is op(1) because we have assumed that Nh~ ~ 00. This 
constraint in S can be weakened by assumption of higher order smoothness in 'l/Jl, ... , 'l/Js and 
by use of higher order kernels. 
Finally, applying Lemma 2 and the strong law of large numbers for U-statistics (see Serfiing, 
1980; p. 190) the first term of the Lh.s. of equation (48) is Op(1), and since Nh~ ~ 00 the 
second term is op(1), and the first result is proved. 
The proof of the first part of the lemma will be closed by proving that 

The proof of the previous statement relies on the arguments of Lemma 5.1 and Theorem 
5.1 of Powell (1987). Taking expectations conditional on the index functions and applying 
assumptions (B.5), (B.8) and (B.11) then it can be shown that 

This expression is o(N) because Nh~ ~ 00. Proceeding as in the previous expression then 

T 2 E[(sllI] E[(zllI] 4 

[ [ ] [ ]T] E [Wij(Si - Sj)(Zi - Zj) ] = 2E f(lI)F(lI) S - F(lI) Z - F(lI) + 0 (h2) 
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where v = f3T vd + () + 2:k=l ~k(Vk). Lemma 2 and the strong law of large numbers for U­
statistics (see Serfiing, 1980; p. 190) applies and the proof is done. 
Next we show the second part of the lemma, i.e. 

Taking into account that Wi = zT 1'1 + 1'2)... (f3T vf + () + 2:k=l ~k (viU) + U2i, then 

To apply lemma 2 we have to show that 

We claim, 

(51) l'iE [wli ()...(Vi) - )...(Vj))2 (Si - Sjf (Si - Sj)] - O(h2), 

(52) E [wli (U2i - U2j)2 (Si - Sj)T (Si - Sj)] O(h21), 

(53) 21'2E [w;j ()...(Vi) - )"'(Vj)) (U2i - U2j) (Si - Sjf (Si - Sj)] O. 

Taking expectations conditional on the index functions and applying assumptions (B.l), 
(B.2), (B.5) and (B.l1) then (51) and (52) hold. Moreover, equation (53) holds because 
E (u2lv = Vi) = O. Therefore, under the conditions previously stated on the bandwidths the 
result in equation (50) has been shown. Then Lemma 2 and the strong law of large numbers 
for U-statistics (see Serfiing, 1980; p. 190) applies and the proof of the desired result is done 
by noticing that under the conditions previously stated in the lemma 

This closes the proof of lemma 3. 

o 

Lemma 4 Under assumptions (B.l) to (B.12) and if the sequence of bandwidths h, h2 and 

9 tends to zero such that h = 9 = o(N-1/8), hgs - 1N 1/2 (IogN)-l -+ 00, Nh~ -+ 00 and 

Nh~ -+ 0 then 
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where where <I?sz is defined in assumption (B.12). 

Ali = E {)..' (Vi) F (Vi)2 f (Vi) [Si - EJ1j;)il] 
X [Wi - {E [Ti2Ivi]} -1 E [17vtlvi] - E [Wi - {E [Tllvi]} -1 E [Ji2vtlvi]]]T} , 

vt = vt - {E [Tllvf]} -1 E [Tlvtlvf] i = 1,···, N, 

T2 = f (Vi)2 i = 1, ... , N 
~ F (Vi) (1 - F (Vi)) 

(54) i = 1,···,N 

as N tends to infinity. 

Proof of Lemma 4 

In order to show the lemma we first prove that 

IISzw - Szw-

(55) ( ; ) -I L~I Lf~i~1 '2;; [('\(0;) - '\(Vi)) - ('\(0;) - '\(v;lll = op (N-1/2) . 

where 

The 1.h.s. of equation (55) is bounded by 

IIMsz - MszlI 

+ {m~j !Wij - Wij - (~J2 K~ C'(Vi)~A(vd) (i(j [(.\(Di) - .\(Vi» - (.\(Dj) - ,\(vj»l!} 

x ( ~ ) Ilsi - sjlll\!2 (.\(Vi) - .\(Vj» + U2i - u2jll· 

By Lemma 3, 

(57) 
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Furthermore, using Lemma 2, 

(58) ( ; ) -1 ~J:_lI1S' - Sjllll?2 (.I(V') - .I(Vj)) + U2i - U2jll = Op(l). 

Finally, (55) is shown by following the same arguments in Lemma B.2 from Ahn and Powell 
(1992), p. 24. More concretely, note that under the rates defined in the lemma for h2, 
and using a third order Taylor expansion around the true values, assumption (B.5) and the 
uniform convergence properties of the first step estimators, then 

(59) m<tXij IWij - Wij 

- (~J2 K~ C(vil
h2>'(v;)) (i(j [(;\(Vi) - ;\(Vi)) - (;\(Vj) - ;\(Vj))] I = Gp (hi3N-4!.). 

If s ::; 4, then equation (60) is op(1) because we have assumed that Nh~ -t 00. This 
constraint in s can be weakened again as in the proof of lemma 3, by assumption of higher 
order smoothness in 'l/J1, ... ,'l/Js and by use of higher order kernels. To finish the proof of the 
lemma recall first that 

(60) 

Assumption (B.5) allows us to make a Taylor expansion around the true values of the index 
in the inverse of the Mill's ratio, and therefore (60) can be writen as 

2 ( ~ ) -1 Ef=! Ef~i~1 3,j.l'( vt"!i +8 + I:'~1 "bk( vf.)) 

(61) x [vyT (fJ - fJ) + () - e + Lk=l (~k(viU - 'l/Jk(viU)] + Gp (~) + Gp (N~J· 
Under assumptions (B.1) to (B.8) we have available the following asymptotic expansions for 
fJ and Lk=l ~k(vfk) (see Hardle, Huet, Mammen and Sperlich, 1999; p. 34) 

;B = fJ + {E(T2ii:urIT')} -1 ~ t:ut (i - F (Vi) f (Vi) 
N i=l F (Vi) (1 - F (Vi)) 

(62) +Gp ((h2 + (logN)1/2(NghS
-
1t 1/2)2) , 

and 

(63) 

with 

($(VC) _ {'l/J(VC) 

+{ E(T2IvC)} -1 E(T2vrIT'lvC) {E(T2:ud:urIT')}-1 

(64) 1 ;-. -d (i - F (Vi) ()} 
x N {;;{ Vi F (Vi)(l _ F (Vi)) f Vi , 
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0'.( C) 0'.+( C) { ( 21 c)}-l 1 ~ (C) (i - F(Vi) f() 
'f/ V 'f/ V + E T v N f;;;. "'i V F (Vi) (1 _ F (Vi)) Vi, 

D; {VC E Dc : VC + fJ E Dc 

for all fJ with IfJti ~ 9 and IfJj 1 ~ h (j = 2, ... ,s)}, 

vt - vt - {E[Ti2 Ivf]}-1 E[T?vtlvf), 

If we substitute expressions (62) and (64) into (61) and apply the corresponding rates then 

the proof is closed. 

o 

Proof of Theorem 2 

The proof of this theorem follows inmediately from Lemmas 3 and 4. To show this, let 

(65) 

Then, taking into account that Msz = Msz + op(l), and applying Lemma 4 we obtain 

(66) 71 = M.-;' {M.w + ~ ~ {Abvt + A2i~i (vi)} F (5.) (1 ~ ~~Vi)) f (Vi)} + op(l) 

Apply Lemma 3 and the proof is done. 

o 

Proof of Theorem 3 

The proof of this result follows directly form the proof of Theorem 1 in Hardle, Huet, 

Mammen and Sperlich (1999). 

Let k((3) = E[lnf ((; F{XdT (3 + (3w ZT,l + fJt,'Yl (XC)) )1. We will show that 

(67) (in probability). 

This proves the result we want to show because 

k"((3o) = E [A"{X dT (3 + (3wZT,l + fJt,'Yl (XC)) {X + ,'foz + 8%-r! ((30, ,to, XC)} 

x {X + ,'foz + 81~-r! ((30, ,to, XC) } T] 
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is strictly negative definite and k({Jo) = SUP.BEH k(fJ). 

It remains to prove (67). This follows from the following two properties: 

(68) sup i~£(17t.h,'7I,{J) - k({J)i-+ 0 (in probability), 
.BEB n ' 

(69) sup 1~£(i7t,'YI''7I,fJ) - !-.£(17t,'Y1 ,'71,{J)1-+ 0 (in probability). 
.BEB n n 

Claim (68) holds because £(17;,1'1' '71, (J)/n converges to k({J) by the law oflarge numbers and 
because {£(17t,'YI,'7I,{J),{J E E} is tight. 
For the proof of tightness note first that 

Tn,lll{Jl - {J2/1 + Tn,2 sup 117;1,1'1 (XC) -17;2,1'1 (xC)1 
x 

< Tn,lll{Jl - {J2/1 + Tn'2~~$II:{J17t,'YI (xC)II"{Jl - {J211, 

where 

It is easy to see that, under our conditions, and the consistency of '71 (see Theorem 2), Tn ,1 

and Tn ,2 are bounded in probability. Following the arguments of Hardle, Huet, Mammen 
and Sperlich (1999), p.33, it can be seen that t.a17t,'YI (XC) is uniformly bounded in {J and XC. 
This shows (68). Claim (69) follows from 

sup I ~£( i7t,'YI' '71, (J) - ~ £( 17;,1'1' '71, (J) I 
.BEB n n 

::; ~u~ lA' (xF {J + (Jw ZT'71 + 17;,'YI (Xi)) I s~~ 1i7t,'YI (XC) -17;,1'1 (xC)I· 
/-,,'T/ x ,/-' 

But then, the result claimed in the theorem has been shown, because 

~u~ IX (XdT {J + (Jw ZT 1'1 + 17t,'YI (XC)) 1 = op(l) 
/-,,'T/ 

and 

The last two terms are inmediate from the consistency of '71 and the proof of Theorem 3.1 
from Hardle, Huet, Mammen and Sperlich (1999), p.32. 

o 
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Appendix Ill: Newton-Raphson algorithm for local like­

lihood 

To facilitate the notation we just write a for aI, and set Kh = Khl X Lh2 . In case of modeling 
the influence of wage linear, we write nevertheless just /3T for (/3T, /3w) and adjust the vector of 
regressors accordingly. We start with calculating 8Cs (TJj, /3, a) /8TJj and 82 CS (TJj, /3, a)/ 8TJI, 
where TJj is the function TJO at point tj . For ease of notation we set Uij = {-/3T vt - TJj}a- 1 

and get 

(70) 

(71) 

where 

8CS (TJj, /3, a) 
8TJj 

82 CS (TJj, /3, a) 
8TJ] 

Yi f(Uij) 
An (Uij) = - + Uij - 1 F ( ) a - Uij 

Moreover, we have used 8f( -u/ s)/8u = -us-2 f( -u/ s). 

Next, we calculate 8C(TJ(3,u, /3, a)/8/3 and 82 C(TJ(3,u, /3, a)/8/32 and denote TJi = TJ(3,u(ti) , Sii = 
Si + 8TJi/ 8/3: 

(72) 8C(TJ(3,u, /3, a) _ ~ ~ [Yi + u .. - f(Uii) 1 s-.. 
8/3 - L....J n F() U· a i=l a 1 - Uii 

For the Hessian matrix we neglect the dependency of Sii on /3 and get 

8C
2
(TJ(3,u,/3,a) = -1 t [1 + f(Uii)Uii - P(Uii) 1 S··S·'!' 

8/32 a2 i=l 1-F(uii) {l-F(uii)P zz tz· 

Here we used 8f(Uii)/8/3 = f(Uii)UiiSii. 

A little bit more complicated is to get 8C(TJ(3,u, /3, a)/8a and 82 C(TJ(3,u, /3, a)/8a2; set TJ~ = 
8TJ(3,u / 8a : 

(73) 8C(TJ(3,u,/3,a) _ -1 ~ B ( .. ) 
8 - L....J n Un , 

a a i=l 

where 

() (Yi )2 {Yi }' f(Uii)(Uii+TJ~) 
Bn Uii = 1- -;; + Uii - -;; + Uii TJu + 1 _ F(Uii) . 

For the Hessian matrix we again neglect the dependency of TJ~ on a and so get with Bn(Uii) 
from (73) and get 

36 



with 

and 

f '( .. ) - Of(Uii) - f(Uii) (_ 1 + ' .. + ~.) 
Un - ~ - 'T}q Uu Uu ' 

ua a 

The question is how to get 'T}p = o'T}lo[3 and 'T}~ = o'T}loa. For the likelihood maximizing'T}j 
expression (70) is equal to zero. First we derive it with respect to [3: 

02£,S('T}j,[3,a) -a-2t [1+ f(Uij)Uij +{ f(Uij) }2]Kh(tj -ti)Sii=0 
O'T}jo[3 i=1 1 - F(Uij) 1 - F(Uij) 

_,,~ [1 + !(Uij)Uij + { !(Uii) }2] K (t· - t.)s. 6z=1 1-F(Uij) 1-F(Uij) h J Z Z 

,,~ [1 + !(Uij)Uij + { !(Uij) }2] K (t· - t.) 
6z=1 1-F(Uij) 1-F(Uij) h J Z 

Finally we need the mixed derivatives O£'('T}f3,q, [3, a)lo[3oa and O£'('T}f3,q, [3, a)loao[3. 

o£'('T}f3,q, [3, a) 
o[3oa 

_a-2 t ['T}' + 2u·· + a f~(Uij) - P(Uij)('T}~ + Uij) - f(Uij) ] s" 
. q ZJ 1 _ F(u··) {I - F(u' .)}2 1 _ F(u .. ) zz z=1 ZJ ZJ ZJ 

wi th 'T}~ = O'T}f3,q loa, Sii as above and 

o£'('T}f3,q, [3, a) 
oao[3 

j ' ( ) of (Uij) f(Uij) ( , 2) 
q Uij = oa = -a- - 1 + 'T}qUij + Uij , 

_a-2 t [2Uij + 'T}~ + 
i=1 

Uijf(Uij) (Uij + 'T}~) _ f(Uij) _ { f(Uij) }\U" + 'T}' )]S" 
1 - F ( Uij) 1 - F ( Uij ) 1 - F ( Uij) ZJ q W 

Here, we have neglected the dependency of 'T}~ on f3 and the dependency of'T}p on a. 

The Hessian matrix for £s is simply given by (71). 

The Hessian matrix for £, is given by 

( 

82e 

He = g~~ 
8q8f3 
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