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and standard financial theory. The highest possible precision is incorpo- 
rated since the real quotes are perfectly synchronized and the bid-ask spread 
is always considered. A static setting is assumed and the main topics of 
arbitrage, hedging, and portfolio choice are involved in the analysis. Three 
significant conclusions are reached. First, the catastrophe derivatives may 
often be priced by arbitrage methods, and the paper provides some examples 
of practical strategies that were available in the market. Second, hedging 
arguments also yield adequate criteria to price the derivatives, and some 
real examples are provided as well. Third, in a variance aversion context 
many agents could be interested in selling derivatives to invest the money 
in stocks and bonds. These strategies show a suitable level in the variance 
for any desired expected return. Furthermore, the methodology here ap- 
plied seems to be quite general and may be useful to price other derivative 
securities. Simple assumptions on the underlying asset behavior are the only 
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INTRODUCTION 

New investment and financing opportunities and innovative risk management tech- 
niques involving derivatives have been developed to allow individuals and corpora- 
tions to cost-effectively reallocate funds and transfer risks to other parties. A grow- 
ing concern about catastrophe losses has particularly brought attention to catastro- 
phe derivatives and their potential financing and risk sharing benefits for the insur- 
ance industry. 

The PCS (Property Claim Services) Catastrophe Insurance Options Contracts, 
launched by the Chicago Board of Trade (CBOT) on September 29, 1995, are among 
the most significant catastrophe derivatives. These are standardized option contracts 
based on indices that track the insured losses, as estimated by PCS, resulting from 
catastrophic events that occur in a given area and period. Previously, the CBOT had 
traded catastrophe futures and options contracts on an index provided by Insurance 
Services Office (ISO). Moreover, the CBOT planned to list PCS Single-Event Catas- 
trophe options in 1998 to broaden its product offering. In 1997 the Bermuda Com- 
modities Exchange (BCOE) also began trading derivative securities based on the Guy 
Carpenter Catastrophe Index, an index of losses from climate events in the United 
States. 

This article focuses on the CBOT's PCS options. Previous literature on these particu- 
lar contracts and other related catastrophe derivatives can be roughly divided into 
two major categories, according to their main objective. The first group of articles 
concentrates on pricing issues. They view catastrophe derivatives as financial instru- 
ments and, accordingly, they take a financial approach to valuing (see Cummins and 
Geman (1995), Geman and Yor (1997), among others; Tomas (1998) suggests an actu- 
arial approach). They theorize on the dynamic stochastic behavior of the relevant 
underlying variables in order to obtain the desired pricing result. From a theoretical 
point of view this line of research is extremely important and very promising. From 
a practical point of view, there are some difficulties due to market imperfections (bid- 
ask spread, other transaction costs, short-selling restrictions, illiquidity that makes 
continuous trading rather difficult, etc.) and some specific properties shown by the 
underlying indices (their stochastic behavior, the absence of any underlying security 
available for trading, etc.). This motivates the existence of a second group of articles 
devoted to describing the contracts and illustrating their most significant applica- 
tions to both insurance and capital markets (e.g., D'Arcy and France (1992), Canter et 
al. (1996), Litzenberger et al. (1996), O'Brien (1997) and Jaffee and Russell (1997)). 
They explore the potential benefits of using catastrophe derivatives for the insurance 
industry, and they compare these securities to other competitive alternatives such as 
reinsurance and catastrophe-linked bonds. Some articles analyze from any investor's 
perspective the potentially attractive new investment opportunities provided by the 
catastrophe-linked assets. Most of all these articles stress the traders' need for an 
understandable and reliable complete pricing methodology for these innovative se- 
curities. 

The present article may be included in the second group, but the standard static asset 
pricing models are applied. We consider real bid and ask prices of catastrophe-linked 
derivatives and we test their adequacy with static financial theory. Examining static 
valuation minimizes the impact of real market imperfections, and problems deriving 
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from the nature of the underlying variables may be solved if one prices an arbitrary 
derivative by only bearing in mind the interest rates and the prices of other deriva- 
tive securities. Thus, we can apply the main topics of asset pricing, arbitrage, hedg- 
ing, and portfolio choice in a model where bonds and derivatives are the only mar- 
keted assets.' 

In order to use static theory, we will consider a two-period model characterized by 
the current date, the derivatives' expiration date, their current bid and ask prices, 
and their final payoffs. The analysis is independently implemented once a day. 

Once the context has been fixed, we will start by analyzing the existence of arbitrage 
portfolios. There are two different perspectives. First, we test the situation of an in- 
vestor who incurs in the cost of the bid-ask spread, i.e., he/she sells at the bid and 
buys at the ask price. As expected, we will find it impossible to form any arbitrage 
portfolio. Second, we explore the position of any agent who posts one of the avail- 
able prices (i.e., either he/she buys at the bid or sells at the ask for a given asset and 
incurs on the cost of the bid-ask spread for the rest of assets). If an arbitrage portfolio 
were available in this context, any other agent could offer a better price and still 
retain some of the arbitrage gains. Competition among traders willing to earn money 
without any risk should lead to a more reduced spread. As will be shown, arbitrage 
portfolios may be available from this second perspective and, consequently, some 
relative misspricings may be found, narrower spreads may be possible, and traders 
can sometimes improve real bid or ask quotes without any type of risk or, equiva- 
lently, they can price by arbitrage methods. 

When a concrete derivative cannot be priced by arbitrage methods, we explore the 
existence of hedged portfolios containing this derivative. In particular, there may 
exist some hedged portfolios with a slightly lower guaranteed positive return than 
the risk-free return, but with a possible return far larger (under some conditions). 
Our results show that interesting portfolios of this type can actually be formed in 
some cases. Again, competition among traders trying to exploit the attractive ben- 
efits of these portfolios should lead to reductions of the spread. 

Previous studies, Canter et al. (1996) and Litzenberger et al. (1996), utilized empiri- 
cal evidence concerning the insignificant correlation of the PCS national index with 
the S&P 500 index (see also Litzenberger et al. (1996) and the references contained 
therein for more evidence in this regard). Canter et al. (1996) stress the diversification 
benefits open to investors participating in the new securitized insurance risk. 
Litzenberger et al. (1996) illustrate the attractiveness of including some hypothetical 
catastrophe bonds in diversified stock or bond portfolios in terms of the new risk/ 
returns opportunities offered. This article follows the theoretical framework proposed 
by Fisher Black and Robert Litterman based on the Capital Asset Pricing Model 
(CAPM) including the calculation of some necessary parameters from historical data 
of insurance losses and premiums. 

While our study on portfolio choice is closely related to these previous studies, it 
takes a different point of view. We focus on investment in the catastrophe insurance 
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options market. Suppose that an investor, possibly attracted by the accompanied di- 
versification benefits, adds insurance risk to his/her traditional portfolio of stocks, 
bonds, and real estate. How should he or she efficiently combine PCS options in this 
insurance portfolio with the riskless asset in order to obtain the desired expected 
return with a minimum variance? We will try to answer this question with the assis- 
tance of two important theorems concerning static pricing theory. 

We also need the real probability distribution for the underlying insured loss index 
and a linear pricing rule compatible with the real quotes. The probability distribu- 
tion is obtained via simulation and historical catastrophe data. The linear pricing 
rule originates from a risk-neutral probability measure attained by applying a meth- 
odology proposed by Rubinstein (1994) and a number of others. 

Once the probability measure and the pricing rule are established, we shall look for 
minimum variance portfolios. An interesting result seems to hold. For investors whose 
risk is not correlated with the PCS indices (i.e., investors that are not insurers), it may 
be very useful to sell catastrophe derivatives and to invest the money in other kinds 
of assets, like bonds or stocks. 

Summarizing, our empirical results confirm the potential interest of catastrophe-linked 
derivatives. They are useful to insurers because, in some sense, they can be regarded 
as a special type of reinsurance. Besides, they may also be interesting for other types 
of financial institutions (banks, for instance) because, if arbitrage and hedging argu- 
ments lead to low bid-ask spreads, these institutions can adequately diversify their 
portfolios by selling derivatives. Consequently, the high level of risk due to cata- 
strophic events may be appropriately diversified among large numbers of investors 
who trade "reinsurances" in a financial market. 

Finally, the applied methodology highlights two interesting properties: first, its use- 
fulness to traders in providing practical criteria and investment strategies; second, it 
may be quite general and can be implemented to analyze other kinds of securities. 
Very weak assumptions are then required. Arbitrage and hedging arguments will 
hold if one is able to identify the underlying uncertainty, i.e., the underlying vari- 
ables if we are working with derivatives. Variance aversion and CAPM-type argu- 
ments will work well if the probability measure, affecting the underlying uncertainty, 
can be determined.2 

The remainder of the article is organized as follows. Section 2 briefly reviews the 
main theoretical results we rely on to carry out our empirical analysis of PCS options 
quotes. Section 3 summarizes the foremost characteristics of PCS options and all our 
data. In Section 4 we present the concrete methodology we adopt in our empirical 
research of PCS options quotes and provide our results. The article ends with some 
concluding remarks in Section 5. 

2 When the usual CAPM is tested, it is not possible to describe the underlying probability 
space, and researchers have to obtain information about it by studying correlations within 
the set of available securities. Nevertheless, in this case, the underlying PCS indices' behavior 
has been directly analyzed and the derivatives' quotes and returns were not used for this 
purpose. 
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THEORETICAL BACKGROUND 

Throughout this article we will consider a static setting to analyze how the theory of 
portfolio selection and different asset pricing models may be applied to PCS option 
contracts. Thus, first of all, we must summarize the general framework and the basic 
assumptions that lead to the most important theoretical results on asset pricing. A 
brief review of these topics is the main purpose of the present section. Later, we will 
provide the way this theory applies in this article to study the market of PCS option 
contracts. 

We focus on the two-period approach characterized by the present date to, a future 
date tl, n securities denoted by Sl, S2, . . ., Sn, their bid prices at to denoted by vl, 
v2,. .. , v", their ask prices cl, c2,. . . ,cn, and the future prices (or final payoffs) at ti 
which depend on a finite number of states of the world W1, W2,..., Wk and are given 
by the matrix A = (a V), i = 1, 2, .. ., k,j = 1, 2, .. ., n, being a1 2 0 the price of S, if the state 
W. takes place. I The probability of W. is denoted by ,u> 0, i = 1, 2,... , k, and ,u will 
denote the whole probability measure. The inequalities cj 2 Vj for j = 1, 2,..., n are 
clear, and we will accept the convention v. = 0 (c. = oo) if there is no bid (ask) price 
available for S.. The inequalities c] > 0 and v] 2O = 1, 2, .. ., n, will also be assumed. 

The first security S1 will be a riskless asset (its final payoff is 1 and does not depend 
on the state of the world) and cl = > 0.4 As usual, the riskless return is given by 
R = 1 / v1. 

The row matrix x = [xl, x2,.. . , x"] will represent the portfolio composed of x. units of 
S.,] =1,2,.. ., n, and x.j 0 (x. <O) must hold if v. =O (c. = oo). Its current (at to) price will 
be P(x) = pjxj being p. = cj (p. = v.) if ?]20 x < 0)>5 where we assume the conven- 
tion oo x 0 = d if cj = 0 and x. = 0. Its price at t1 depends on the state of the world and is 
given by the column matrix AxT where xT is the transpose of x. 

For an arbitrary portfolio x, we will consider the portfolios x+ = [x4,...,xn+land 
x - = [xl,.. ., xA ] composed of the purchased and sold securities respectively. To be 

precise, x. = Max{x., 0} and x = Max{-x., 0} for j = 1, 2,.. .,n. I I J I 

The prices of the purchased and sold assets will be denoted by C(x) and V(x) respec- 
tively, and are given by 

n n 
C(x) = Xc,x and V(x) = Xv,x I 

j=l j=l 

The relationships P(x) = C(x) - V(x) and x = x+ - x are clear. 

3 Almost all the results still hold for a matrix A whose elements are also negative, but the 
constraint a - > 0 makes things a little easier and is always fulfilled in our empirical analysis. 

4 Once again, this assumption can be avoided in a general framework, but it is useful and 
fulfilled in this article. 

5 That is, agents can buy or sell any security, but prices are larger if they buy. 
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fulfilled in this artiele.

s That is, agents can buy or sell any security, but prices are larger if they buyo
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We will follow the approach proposed for instance by Prisman (1986) or Ingersoll 
(1987) to introduce the concept of arbitrage.6 

Definition 1. The portfolio x is said to be an arbitrage portfolio of the second type, or a 
strong arbitrage portfolio, if P(x) < 0 and AxT 0 , or P(x) = 0 and AxT >> 0. 

The portfolio x is said to be an arbitrage portfolio of the first type, or a weak arbitrage portfo- 
lio, if P(x) = 0 and AxT > 0. 

Let us consider a simple numerical example in order to illustrate what is meant by 
weak and strong arbitrage. Suppose that 

A 1' 1' ?' 1] 

the bid prices are v = 1, v2 = 0.7, v3 = 0.4 and v4 = 2.6, and the ask prices are cl=1, c2= 
0.8, c3 = 0.5 and c4 = 3. Then, x' = [1, -1, -1,01 is an arbitrage portfolio of the second 

type because its current price is -0.1 and its final payoffs are 0[]. The portfolio x' = 

[1.1, -1, -1, 0] is also a strong arbitrage portfolio because its current price and final 

payoffs are 0 and [0 *] respectively. Finally, x"' = [0, 2, 2, -11 is a weak arbitrage 

portfolio with current price equal to 0 and future payoffs equal to [0]. 

Previous literature has characterized the absence of arbitrage by the existence of state 
prices or discount factors (see for instance Chamberlain and Rothschild (1983), 
Ingersoll (1987), or Hansen and Richard (1987)). The following result is a minor ex- 
tension that incorporates the bid-ask spread and may be easily proved by readapting 
classical proofs (see also Jouini and Kallal (1995)). 

Theorem 1. There are no arbitrage opportunities if and only if there exists a vector d = [d1, 
d2, . . ,dk] of discount factors such that di > 0, i = 1, 2, .. .,kand 

k 

v; < ,aiidimi < Cj (1) 

forj=1,2,..,n. i=1 

There are no arbitrage opportunities of the second type if and only if there exists a vector d = 
[d1, d2, . . ., dk] of discount factors such that d, 2 0, i = 1, 2, . . . , k, and (2.1) holds.7 

6 In what follows, AxT > 0 denotes that all the elements in this matrix are larger than or equal 
to 0. Analogously, AxT >> 0 denotes that all the elements are larger than 0, and AxT > 0 
denotes that elements are larger than or equal to 0, but at least one element is strictly positive. 
Similar notations will appear in similar cases. 

7 An analogous result holds if the probability measure u is not specified. In such a case, the 

discount factors d[ > 0(2 O)must verifiy v. < 
k 

1aid' < c.. The proof is trivial since one 
can define di' = dig. 
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J -Li=l IJ ,- J
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Let us remark that (2.1) leads to 1 / R = , dipi. If we set 

xi = Rdigi (2) 
k 

i = 1, 2, ... , k, then X, 2 0 and Xi = 1, and, therefore, A = (A . . Ak) can be 

considered as a probability measure. Furthermore, (2.1) leads to 

v. < -E"(Sd)<ci (3) 

for j = 1, 2, . , n, being EV(S1) the expected value of S, at t1 computed with the 
probability measure A instead of ,u. This is the reason why A is called a Risk Neutral 
Probability Measure, and Theorem 1 shows that its existence (and positiveness) is the 
necessary and sufficient condition to guarantee the absence of arbitrage of the second 
type (of any kind). 

The latter theorem provides a very well-known and important condition to ensure 
the absence of arbitrage. Nevertheless, if the arbitrage occurs, it will be interesting to 
measure, in monetary terms, the degree of arbitrage. This measurement will be use- 
ful to improve bid or ask real prices for PCS option contracts, and will also permit us 
to analyze other type of market imperfections. For instance, owing to transaction 
costs, the presence of arbitrage could only be apparent but not real. 

The following result summarizes some properties of the measures developed by Balbas 
and Mufioz (1998). 

Theorem 2. Suppose that the set X of arbitrage strategies of the second type is non void. 
Then, problems 

Max V( ) {x EX 
V(X) 

and 

Ma - P(x) XE 
Max C( )+V(X) { 

achieve an optimal value at the same portfolio x*. 

The ratios in the theorem above represent relative arbitrage profits (-P(x)) with re- 
spect to the price of the sold assets (V(x)) or the total volume of trade (C(x) + V(x), the 
price of the purchased and sold assets without considering a negative sign for the 
sold assets). For instance, if we consider the strong arbitrage portfolio x' = [1,-1,-1,0I 
introduced in the previous numerical example, the price of the sold assets is V( x') = 
1.1, the price of the purchased assets is C( x') = 1, the total volume of trade is V( x') + 
C(x') = 2.1, and the price of x' is P(x') = C(x') - V(x') = -0.1. Consequently, the 
relative arbitrage profits with respect to V( x') and C( x') + V( x') are 0.1/1.1 and 0.1/2.1. 

Consider the portfolio x* whose existence is guaranteed by Theorem 2. The disagree- 
ment measures m and 1 are defined by m = - P(x *) / V(x *), 1 = -P(x *) / [C(x *) + V(x *)], 
or zero if no arbitrage opportunities of the second type exist. Measures m and 1 van- 
ish if and only if there are no arbitrage opportunities of the second type. When the 
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Consider the porHolio x" whose existence is guaranteed by Theorem 2. The disagree­
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or zero if no arbitrage opportunities of the second type existo Measures m and 1van­
ish if and only if there are no arbitrage opportunities of the second type. When the
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arbitrage occurs, m (1) yields available relative arbitrage gains with respect to the 
value of the sold (interchanged) assets. The inequalities 0 ? 1 ? m ? 1 may be proved, 
and the level of violation of the arbitrage absence grows as the measures move from 
0 to 1. The relationship l = m/(2 - m) holds, and thus since [0,1] 3 z -> z / (2 - z) E [0,1] 
is an increasing one-to-one function, both measures provide equivalent information. 
Further details may be found in Balbas and Munioz (1998) or Balbas et al. (1998).8 9 

Let us remark that Theorems 1 and 2 permit us to analyze and detect arbitrage port- 
folios without previously specifying the exact nature of the strategy to be used. For 
instance, many financial papers empirically test the existence of violations for the 
usual put-call parity or the relationship between spot and future prices. This type of 
test cannot be implemented when analyzing PCS options, in which case all the avail- 
able securities must be simultaneously considered and the market globally tested. 

Let us turn now to hedging strategies and arbitrage portfolios of the first type. As- 
sume that the model does not permit arbitrage portfolios of the second type. Then, R 
is the highest return than can be guaranteed. However, an investor may be interested 
in a hedging portfolio whose guaranteed return is very close to R but provides larger 
returns in some states of the world. 

Let us fix a concrete security SJO and consider the usual way of hedging the purchase 
of this security, i.e., solve the problem. 10 

(2.4) 

Mi P(x) { xi =1 

If the solution is attained at x, the absence of strong arbitrage ensures that P(x) > 0, 
and 1 / P(i) is the optimal (maximum) guaranteed return if a unit of Sj is bought.11 

Notice that the solution x of (2.4) dominates the riskless security and, consequently, 
i is really a hedged portfolio. Moreover, P(x) ? 1/ R because, otherwise, investors 

could implement strong arbitrage (against our assumptions) by selling the riskless 
asset and buying R. Furthermore, if P(x) = 1 / R, then either xi replicates the riskless 
asset or the previous strategy is weak arbitrage. Thus, there are arbitrage portfolios 
of the first type such that x. = 1 if R = 1/ P(i) and ART>1. 

An analogous analysis may be done to hedge the sale of Sj . Just write xjo = -1 in (2.4) 
instead of x. = 1. Obviously, not only hedging portfolios, but also arbitrage of the 
first type, can be detected by computing all the hedging portfolios when jo moves 
from 1 to n. 

The last part of this synopsis focuses on individual portfolio selection and variance 

8 Once again, these results are also verified in a model where , is not specified. 
9 Another procedure, useful to detect arbitrage portfolios, may be found in Garman (1976). 
10 Recall that AXT >1 means that all the elements in the column matrix AxT are larger than or 

equal to 1. 
II Clearly, the return 1 /P(x) is maximum if and only if the price P(x) is minimum. 
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aversion. Assume that there are no arbitrage opportunities (of any sort) in the model. 
Then, Theorem 1 shows that the arbitrage absence still holds for some concrete linear 
pricing rule r such that v. < r. < c, j = 1, 2, ... ., n, being r. the price of S, provided by 
Z.12 Besides, ir may be considered as a positive real valued linear operator over the 
space span(A), which is the span of the columns of A.13 Then, the Riesz Representation 
Theorem of linear operators in Hilbert spaces allows us to establish the following 
result (see Chamberlain and Rosthchild (1983)). 

Theorem 3. There exists a unique discountfactor d such that 
k 

E aidi1i = rj 
i=1 

for j = 1, 2,... , n, and dt belongs to span(A). 

We will assume that dt is not the payoff of a riskless asset. This hypothesis is not 
restrictive (it only affirms that the market is not risk-neutral and, consequently, A ? ,u) 
and will always hold in our empirical test. 

In order to achieve an easier notation, denote by S1 the jh-colunn of A, j = 1, 2,... n, 
and let us identify each feasible portfolio x with its final payoff AXT = y E span(A). 

Denote ir(AxT) = r(Y) = yk 1yidiuii by its current price provided by r. In particular, 

,r(d')) =X du2pi > 0 . Define by R(y) = y / r(y) the return (provided by r) of any y E 

span(A) such that ir(y) > 0, and consider its expected value E' (R(y)) and standard 
deviation a& (R(y)) 14 Then, the statement below, whose proof is a consequence of the 
Projection Lemma of Hilbert spaces (see for instance Duffie (1988)), provides the opti- 
mal portfolios in a variance-averse model. 

Theorem 4. For any y E span(A) such that nr6y) > 0, there exists a linear combination of dt 
and the riskless asset, VS, + y4dt, such that 

i) V/O0 

ii) r(y) = n((pS1 + Wdt) 

iii) E' (R(y)) = E' (R(pS1 + yVdt)) 

iv) a" (R(y)) > a"j (R(pS1 + VWdt)) 

Hence, for a desired expected return, the minimum variance is attained by selling the 
portfolio x such that A xT = dt and investing the price of x, along with the investor's 
capital, in the riskless asset.-5 

12 Take, for instance, the linear pricing rule provided by the second term of (2.3). 
13 That is, the space of k x 1 column matrices that can be obtained by linear combinations of 

the columns of A. 
14 Recall that y and R(y) may be considered random variables and, therefore/ E (R(y)) = 

(1 / r(y))Xk 1yip, and a"(R(y)) = (1 / ir(y))(1[y, - 7r(y)E (R(y))]2 1) 

5 Under the usual CAPM assumptions, the considered securities are stocks and, under the 
suitable hypotheses on their stochastic behavior, the portfolio x is composed of a long 
position in the riskless asset and short positions in the stocks. Since the coefficient yr must 
be negative, the Market Portfolio consists of stocks in a long position. 
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Theorem 4 will play a crucial role in our analysis because it allows us to compute the 
minimum variance portfolios without deriving correlations within the set of avail- 
able PCS options. In fact, these portfolios are given by the vector d of discount factors 
and, as pointed out by (2.2), d is the density between a risk neutral measure A and the 
initial probability measure p. 

MARKETS AND DATA 

The Chicago Board of Trade's (CBOT) PCS Catastrophe options are standardized 
contracts based on PCS indices that track the insured losses resulting from catastrophic 
events that occur in a given area and risk period, as estimated by PCS. 

When PCS estimates that a natural or man-made event within the US is likely to 
cause more than $25 million in total insured property losses and determines that 
such effect is likely to affect a significant number of policyholders and property- 
casualty insurance companies, PCS identifies the event as a catastrophe and assigns 
it a catastrophe serial number. PCS provides nine loss indices daily to the CBOT: a 
national index, five regional indices, and three state indices (National, Eastern, North- 
eastern, Southeastern, Midwestern, Western, Florida, Texas, and California loss indi- 
ces). Each PCS loss index represents the sum of current PCS estimates for insured 
catastrophic losses in the area and loss period covered, divided by $100 million, and 
rounded to the nearest first decimal point. 

The loss period is the time during which a catastrophic event must occur in order for 
the resulting losses to be included in a particular index. Most PCS indices have quar- 
terly loss periods, some of them (California and Western) have annual loss periods, 
and one of them (National) has both quarterly and annual risk periods. Following 
the loss period, there exists a development period (twelve months) during which 
PCS continues estimating and reestimating losses for catastrophes occurring during 
the loss period. The development period estimates affect PCS indices and determine 
the final settlement value of the indices. 

Catastrophe options are available for trading until the end of the development pe- 
riod. They are European and cash-settled (each point equals $200 cash value). They 
can be traded as either "small-cap" or "large-cap" contracts. These caps limit the 
amount of losses that are included under each contract: insured losses from $0 to $20 
billion for the small contracts and losses from $20 to $50 billion for large contracts. In 
practice, traders prefer negotiating call spreads, further limiting their associated pay- 
offs. Sophisticated combinations traded as a package, which include several expira- 
tion dates and indices, are also available.'6 Catastrophe options bid and ask quotes, 
and the current value of the indices are provided daily by the CBOT. Premiums are 
quoted in (index) points and tenths of a point (each point equals $200). Strike values 
are listed in integral multiples of five points. 

Our empirical work studies two periods: from February 25 to April 20, 1998, and 
from June 23 to July 30, 1998. The quotes used in the empirical analysis were pro- 
vided by the CBOT and correspond to synchronized bid and ask quotes posted at the 
end of each day. For each of the days considered, we have also included a risk-free 

16 Henceforth, for short, we will merely say "derivative" or "option" to refer to a single option 
or a package of options. 
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riod. They are European and cash-settled (each point equals $200 cash value). They
can be traded as either "smal1-cap" or "large-cap" contracts. These caps limit the
amount of losses that are included under each contract: insured losses from $0 to $20
billion for the smal1 contracts and losses from $20 to $50 billion for large contracts. In
practice, traders prefer negotiating cal1 spreads, further limiting their associated pay­
offs. Sophisticated combinations traded as a package, which include several expira­
tion dates and indices, are also available.16 Catastrophe options bid and ask quotes,
and the current value of the indices are provided daily by the CBOT. Premiums are
quoted in (index) points and tenths of a point (each point equals $200). Strike values
are listed in integral multiples of five points.

Our empirical work studies two periods: from February 25 to April 20, 1998, and
from June 23 to July 30, 1998. The quotes used in the empirical analysis were pro­
vided by the CBOT and correspond to synchronized bid and ask quotes posted at the
end of each day. For each of the days considered, we have also included a risk-free

16 Henceforth, for short, we will merely say "derivative" or "option" to refer to a single option
or a package of options.
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asset. Its price was obtained from the coupon-only strips quotes reported by The Wall 
Street Journal.'7 Treasury bills could have been used instead, but strips maturities 
were much closer to the options expiration dates.'8 

In order to learn about the distributional properties of the catastrophe waiting times 
and their associated amount of insured losses, our data also includes a 25-year (1973- 
1997) catastrophe record provided by PCS. This record included all catastrophes that 
occurred in each state with indication of its serial number, beginning and ending 
dates, causes and PCS's estimates of insured losses. The monetary value of losses 
was converted into 1997 dollars by using the Producer Price Index reported by the 
Bureau of Labor Statistics (US Department of Labor). We restricted our observations 
of the value of the insured losses to the sample period from 1990 through 1997 for 
several reasons that will be analyzed in the fourth section. 

EMPIRICAL RESEARCH: METHODOLOGY AND RESULTS 

Henceforth, we will first specify the methodology employed in the empirical analy- 
sis and then present the obtained results. 

Our analysis only targets those derivatives with a single underlying index and a 
unique expiration date. We group those derivatives with the same expiration date 
and the same underlying index that are available for trading. For a given day, we 
require a minimum of four assets in each set. For the first period, this filtering left us 
with derivatives associated with the following indices: National Annual-98 (36 valid 
days), California Annual-98 (36 days), Eastern September-98 (12 days) and South- 
eastern September-98 (10 days). For the second period we have the National Annual- 
98 (27 valid days), Eastern September-98 (10) and Southeastern September-98 (10) 
indices.'9 Table 1 summarizes the number of relevant derivatives satisfying the above 
criteria and the number of their quotes available in the two periods.20 This consti- 
tutes our whole sample for Subsections 4.1 and 4.2. 

In Subsections 4.3 and 4.4, a large amount of data on waiting times and their associ- 
ated amount of losses is required to perform reliable simulations and, therefore, the 
characteristics of our historical data set compel us to concentrate exclusively on the 
National Annual-98 Index. 

Pricing by Strong Arbitrage Methods 
The price of the PCS derivatives will be analyzed once a day during each tested 
period. Hence, under the notations of the second section, the date to will always be 

17 Exact values were obtained through linear interpolation of midpoints of the bid-ask prices 
by using the closest maturities to the option expiration dates. 

18 Some of our computations were also implemented with T-bill returns. Our main results 
remained unchanged. 

19 The expiration dates for the Annual-98 contracts and the September-98 contracts are 
December 31, 1999, and September 30, 1999, respectively. 

20 We have also detected that it was possible to synthetically produce some other Eastern 
September-98 options based on their corresponding Northeastern and Southeastern options 
for some days in our sample. To be consistent, as the latter two negotiated independently, 
we decided not to include the synthesized Eastern options as other derivatives available for 
trading in our sample. 
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In Subsections 4.3 and 4.4, a large amount of data on waiting times and their associ­
ated amount of losses is required to perform reliable simulations and, therefore, the
characteristics of our historical data set compel us to concentrate exclusively on the
National Annual-98 Index.

Pricing by Strong Arbitrage Methods
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TABLE 1
Overview of the PCS Catastrophe Options Sample

This table describes our sample of derivatives. For each specific index, we require a minimum of four tradable securities in order to include a
given day in the analysis. The first column gives cumulative figures corresponding to each of the entire periods, and the subsequent total
columns summarize the daily number of derivatives and quotes.

NATANN98 ESTSEP98 SE SEP 98 CALANN98

Total Daily Statistics Total Daily Statistics Total Daily Statistics Total Daily Statistics

Numberof Mean Min. Med. Max. Mean Min. Med. Max. Mean Min. Med. Max. Mean Min. Med. Max.

Panel A: First Period

Days 35 12 10 36

Derivatives 316 8.77 8 9 9 53 4.42 4 4 5 40 4 4 4 4 144 4 4 4 4

Bid Quotes 253 7.3 7 7 8 48 4 4 4 4 35 3.5 3 3.5 4 112 3.11 1 4 4

Ask Quotes 260 7.22 5 7 9 53 4.42 4 4 5 40 4 4 4 4 120 3.33 3 3 4

Panel B: Second Period

Days 27 10 10

Derivatives 283 10.48 8 11 13 40 4 4 4 4 40 4 4 4 4

Bid Quotes 187 6.93 5 7 8 40 4 4 4 4 18 1.8 1 2 2

Ask Quotes 232 8.59 5 10 11 27 2.7 2 2 4 36 3.6 2 4 4
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the corresponding day, while securities S2. S3,..., Sn will be PCS option contracts 
(call or put spreads, butterflies, etc.) available this day, and with the same underlying 
index W and expiration date t1.21 Their bid and ask prices are perfectly synchronized 
and are provided by CBOT. Security S1 will be a pure discount bond available at to 
such that its maturity is as close to ti as possible. Of course, all the data and param- 
eters (dates to or tl, securities, prices, etc.) depend on the concrete day under revision. 

Let W, be the current value of the index and denote by W2,. .. iWr the strike prices 
corresponding to Sj, j = 2, 3, ... ., n. The future state of the world will be determined 
by the final (at t,) value of W (any real number greater than W, and rounded to the 
nearest first decimal point), and the matrix A of final payoffs may be easily com- 
puted. In fact, all the elements in matrix A's first column (payoffs of the riskless as- 
set) are equal to 1, and the rest of the columns are given by the usual differences 
between W and W , i = 1, 2,... , r. It is obvious that, for an arbitrary strategy x, its final 
payoffs verify the constraints AxT > 0, AxT > 0, or AXT >> 0 if and only if these con- 
straints are fulfilled when the settlement value of W belongs to the set {W1, W2, ..., 
Wr}.22 So, the absence or existence of arbitrage may be tested under the assumption 
that these elements are the only possible states of the world. Furthermore, this sim- 
plification neither modifies the value of the disagreement measures m and 1, nor af- 
fects the results when hedging or weak arbitrage portfolios are being computed. 
Consequently, we will allow W to attain all the feasible values only when testing 
portfolio choice models. 

Once the available derivatives, their real bid-ask prices provided by CBOT, the r 
states of the world, and the matrix A are fixed, we can compute the measure m and 
the portfolio x* introduced in Theorem 2. If m ? 0, there are arbitrage opportunities. 
This case never appeared within the period tested. 

Next, we fix an arbitrary option SI. 10 = 2, 3, .. . , n, and consider an agent who can 
buy this derivative by paying the price vJ7.23 If the new values for m and x* show the 
presence of arbitrage and the profits represented by m are high enough to overcome 
the market frictions, it may be concluded that the market allows us to price Sj by 

arbitrage methods. An agent can offer a new bid price v'10 (such that v1o < v'o0 < Clo 

and, therefore, better than the current bid price V.) without any kind of risk. The 
position will be hedged by implementing the arbitrage portfolio x* if a new investor 
accepts the new bid price. 

Analogously, one can analyze if the ask price cj may be improved. Just consider that c. 
lo l~~~~~~~~~~~~~~~~~o 

equals both, the bid and the ask price and compute the new solutions for m and x*.24 

The above procedure can be applied for all the available securities (for jO = 2, 3, . . , n) 
in order to test how often the market allows us to price by strong arbitrage methods. 
The empirical results are confined to Table 2. 

21 That is, the underlying index and the loss and development periods coincide for all the 
considered derivatives. 

22 Strategies 1 and 2 below illustrate this fact. Notice that the same property holds if one 
writes 1 instead of 0 in the right side of the above inequalities. 

23 That is, the bid-ask spread vanishes for the ]oth security. The rest of the prices are not modified. 
Of course, this analysis has not been implemented in cases where v. = 0. 

24 This analysis has not been implemented in cases where c0 = l 
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the corresponding day, while securities 52' 53' ... , 5n will be PCS option contracts
(call or put spreads, butterflies, etc.) available this day, and with the same underlying
index Wand expiration date t/¡ Their bid and ask prices are perfectly synchronized
and are provided by CBOT. Security S¡ will be apure discount bond available at to
such that its maturity is as close to t¡ as possible. Of course, all the data and param­
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Wrl.22 So, the absence or existence of arbitrage may be tested under the assumption
that these elements are the only possible states of the world. Furthermore, this sim­
plification neither modifies the value of the disagreement measures m and 1, nor af­
fects the results when hedging or weak arbitrage portfolios are being computed.
Consequently, we will allow W to attain all the feasible values only when testing
portfolio choice models.

Once the available derivatives, their real bid-ask prices provided by CBOT, the r
states of the world, and the matrix A are fixed, we can compute the measure m and
the portfolio x* introduced in Theorem 2. If m:F- O, there are arbitrage opportunities.
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TABLE 2 
Second Type Arbitrage Opportunities 

The bid-ask spread has been removed for each option at a time, and its price was set equal 
alternatively to the bid quote and the ask quote when possible. The table summarizes the 
resulting arbitrage opportunities of the second type and their associated optimal gains as 
quantified by the m measure. The first two columns show the number of days for which 
there are some arbitrage opportunities. Subsequent columns provide statistics computed 
over those days with arbitrage opportunities (m ? 0). 

Detected Second Type Arbitrage Opport. 

Days Daily Number of Opport. Daily Maximum m (percent) 
Index No. Percent Mean Min. Med. Max. Mean Min. Med. Max. Mode 

Panel A: First Period 

NAT ANN 98 7 19.44 2 1 2 3 10.23 9.09 9.09 13.98 9.09 
EST SEP 98 5 41.67 1 1 1 1 6.82 6.67 6.82 6.98 6.70 
SE SEP 98 0 0.00 

CAL ANN 98 26 72.22 1 1 1 1 15.46 11.76 16.67 21.05 16.67 

Panel B: Second Period 

NAT ANN 98 27 100.00 2.22 1 2 3 19.05 2.50 9.09 37.50 37.50 
EST SEP 98 9 90.00 1 1 1 1 10.13 9.96 10.17 10.23 10.17 

SE SEP 98 0 0.00 

This particular type of arbitrage is quite often detected. It should be noted that these 
results seem to reveal that the price setting process might be improved. Hedging 
(with arbitrage portfolios) would be feasible. The arbitrage profits are quite large 
and this should be used by investors to offer new prices. For the National Annual-98 
index, arbitrage opportunities appear in 7 out of 36 days for the first period (see 
Table 2) and in up to three different cases. The maximum value of m is equal to .1398 
(this corresponds to an I value of .0752). For the second period and the same index, 
arbitrage is feasible every day for up to three different available premium quotes. 
This time the maximum value of m is .375 (I = .2308). This reflects a riskless benefit 
that amounts to a 37.5 percent of the total monetary value of the sold assets (or a 
23.08 percent of the total monetary value of all traded assets). With respect to other 
indices, California and Eastern include a unique position that allows for arbitrage 
hedging in the first period (the maximum value of m is .2105 and .0698, respectively) 
and the same may be said about the Eastern index in the second period (maximum m 
= .1023). No mispricings were found for the Southeastern index. In any event, the 
number of available positions was notably low for these last three indices (see Table 
1). Thus, for a significant percentage of days, agents could analyze the bid-ask spread 
and offer more efficient prices in some cases without assuming any kind of risk. This 
fact should lead to smaller spreads. 

For illustration purposes, we show in Table 3 the optimal (maximum m value) sec- 
ond type arbitrage portfolio detected on date July 24, 1998 for the Eastern Septem- 
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resulting arbitrage opportunities of the second type and their associated optimal gains as
quantified by the m measure. The first two columns show the number of days for which
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(with arbitrage portfolios) would be feasible. The arbitrage profits are quite large
and this should be used by investors to offer new prices. For the National Annual-98
index, arbitrage opportunities appear in 7 out of 36 days for the first period (see
Table 2) and in up to three different cases. The maximum value of mis equal to .1398
(this corresponds to an 1value of .0752). For the second period and the same index,
arbitrage is feasible every day for up to three different available premium quotes.
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that amounts to a 37.5 percent of the total monetary value of the sold assets (or a
23.08 percent of the total monetary value of all traded assets). With respect to other
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hedging in the first period (the maxirnum value of mis .2105 and .0698, respectively)
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= .1023). No mispricings were found for the Southeastern indexo In any event, the
number of available positions was notably low for these last three indices (see Table
1). Thus, for a significant percentage of days, agents could analyze the bid-ask spread
and offer more efficient prices in sorne cases without assuming any kind of risk. This
fact should lead to smaller spreads.

For illustration purposes, we show in Table 3 the optimal (maxirnum m value) sec­
ond type arbitrage portfolio detected on date July 24, 1998 for the Eastern Septem-
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ber-98 Index (Strategy 1). Figure 1 plots the portfolio payoffs pattern for different 
levels of the final index value. 

TABLE 3 
Optimal Second Type Arbitrage on July 24, 1998, for the Eastern September-98 Index 

This table shows the optimal second type arbitrage opportunity corresponding to July 24, 
1998 and the Eastern September-98 Index. CA 20 40 and PU 50 stand for a call spread and a 
put with relevant exercise prices as indicated, respectively. All derivatives available for 
trading together with their bid and ask prices are reported. The price for a zero-coupon 
bond (riskless asset) with a maturity value of one point is also given. All prices are ex- 
pressed in points, each with a value of $200. Bold face is used to indicate those assets 
involved in the detected arbitrage portfolio, and the number of bought or sold units is 
given in parentheses beside the affected price (a negative sign indicates a sale). The last two 
rows give the portfolio price and the m value. This arbitrage was detected when the bid 
quote was set equal to the ask for the PU 50 derivative. The same arbitrage strategy was 
detected for nine days. 

Asset Bid Ask 

Bond 0.93867188 0.93867188 (100) 
CA 20 40 3 (4) n.a. 
CA 4060 2.5 (-1) 3.5 
CA 150 200 2 n.a. 
PU 50 30 45 (-2) 
Portfolio Price -10.6328 
Value of m 0.1017 

FIGURE 1 
Final Payoffs of Strategy 1 
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Strategy 1 may be interpreted as follows: The bonds can be purchased at 93.87, and 
calls can be sold at the bid prices, so the net portfolio costs the owner 79.37 now (to). 
Later (tl), the owner cashes the bonds and pays the call owners. It is always adequate 
to cover the liability for selling the put portfolio. Therefore, the owner can ask a price 
of 79.37 for a portfolio of two puts (39.68 per put) and still have a non-negative pay- 
off without paying anything now. This is a weak arbitrage and getting more (45 per 
put contract) provides the owner with an upfront arbitrage profit. 

We can also check the value of m and 1. Since the price of the purchased assets (bonds) 
is 93.87 and the price of the sold assets is (assuming that both puts are sold at 45 per 
put) 104.5, then 

m= (104.5 - 93.87) /104.5 = 0.101722 and 

= (104.5 - 93.87) / (104.5 + 93.87) = 0.05358. 

The strategy shows that an ask price could have been reduced from 45 to 39.68 index 
points at least. If the ask price is lower than 39.68, the strategy does not work, but a 
new strategy might appear. Thus, if we are interested in the lowest possible ask price 
(actually, it is 39.68 is this case), we have to apply the general procedure provided by 
Theorem 2 instead of analyzing the previous strategy. 

Figure 1 also shows that the final global payoff of the strategy may be easily deter- 
mined by means of the final payoffs obtained when the index final value W belongs 
to the set of strike prices {0, 20, 40, 50, 60, 150, 200) (connecting the corresponding 
points with line segments). Moreover, the final payoff is never lower than zero if and 
only if the property holds when W belongs to this set. This is the reason why we can 
simplify the set of states of the world. 

Let us leave Strategy 1 and go back to the general case. Because the offering of better 
quotes is sometimes feasible, it is interesting to measure the highest adjustments that 
could have been implemented in the bid (an increase) and ask (a decrease) premi- 
ums. To this aim we followed the next algorithm. Focusing on one of the quotes 
which gave rise to the above arbitrage opportunities, we appropriately moved up or 
down the implied quote only for a tick and then searched again for arbitrage oppor- 
tunities. This process was iterated until reaching a total removal of the riskless arbi- 
trage hedging. We carried over this algorithm for each price independently. The cor- 
responding price and spread final adjustments are given in Table 4. For the National 
Annual derivatives, our results show price changes ranging from 2.5 percent to 100 
percent along with spread reductions ranging from 5 percent to 56.52 percent. Sig- 
nificant adjustments were also possible for the other indices. 

It should be mentioned that some refinements of this procedure point out that a more 
adjusted set of prices may still be reached. If the above algorithm is not carried out 
ceteris paribus, that is, if we keep the final adjusted premium before moving to the 
next one, we find that new arbitrage hedging strategies could appear, thereby lead- 
ing to possible further reductions in the spread.25 

In short, although the market quotes studied here do not permit a gain of arbitrage 

25 As the ordering might be relevant in this case, we do not report our results. 
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Strategy 1 may be interpreted as follows: The bonds can be purchased at 93.87, and
calls can be sold at the bid prices, so the net portfolio costs the owner 79.37 now (to).

Later (t
1
), the owner cashes the bonds and pays the call owners. It is always adequate
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Let us leave Strategy 1 and go back to the general case. Because the offering of better
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could have been implemented in the bid (an increase) and ask (a decrease) premi­
ums. To this aim we followed the next algorithrn. Focusing on one of the quotes
which gave rise to the aboye arbitrage opportunities, we appropriately moved up or
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tunities. This process was iterated until reaching a total removal of the riskless arbi­
trage hedging. We carried over this algorithm for each price independently. The cor­
responding price and spread final adjustments are given in Table 4. For the National
Annual derivatives, our resuIts show price changes ranging from 2.5 percent to 100
percent along with spread reductions ranging from 5 percent to 56.52 percent. Sig­
nificant adjustments were also possible for the other indices.

It should be mentioned that sorne refinements of this procedure point out that a more
adjusted set of prices may still be reached. If the aboye algorithm is not carried out
ceteris paribus, that is, if we keep the final adjusted premium before moving to the
next one, we find that new arbitrage hedging strategies could appear, thereby lead­
ing to possible further reductions in the spread.25

In short, aIthough the market quotes studied here do not perrnit a gain of arbitrage

25 As the ordering might be relevant in this case, we do not report our results.
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profits by anyone obliged to incur the cost of the bid-ask spread, better relative pric- 
ing by (strong) arbitrage methods is possible in the PCS options market for the stud- 
ied periods. This is important for two reasons. First, this information is useful to 
traders since the whole arbitrage portfolio may be shown. Second, frictionless pric- 
ing theory suggests that competition among traders should lead to a situation with 
correct relative prices, i.e., a set of quotes that should exhaust any exploitable possi- 
bility of making money without any sort of risk. 

TABLE 4 
Bid-Ask Spread Reduction 

This table shows the bid-ask spread reduction that can be implemented for each derivative 
in order to remove the second type arbitrage strategies previously detected. Those assets 
involved are reported on the left side; additionally, in parentheses we indicate whether 
changes correspond to the ask quote (a), bid quote (b) or both bid and ask quotes (b/a). CA 
40 60 stands for a call spread with exercise prices 40 and 60. PS 40 60 stands for a put spread 
with relevant exercise prices as indicated. The price change and the spread reduction are 
both given in ticks (i.e., $20 or one-tenth of a point) and in percentage terms. For each asset 
some descriptive statistics have been computed over those days and quotes for which 
changes were possible. 

Price Change Spread Reduction 

Index & Ticks Percent Ticks Percent 
Derivative Mean Min. Max. Mean Min. Max. Mean Min. Max. Mean Min. Max. 

Panel A: First Period 

NAT ANN 98 10.09 5.17 22.41 16.35 5.41 56.52 
CA 80 100 (a) 5 3 13 8.62 5.17 22.41 5 3 13 19.80 10.34 56.52 
CA 100 120 (b/a) 3.5 2 5 12.69 10.00 15.38 3.5 2 5 9.66 5.41 13.89 
CA 120 140 (a) 5.71 5 10 10.39 9.09 18.18 5 5 5 12.50 12.50 12.50 

EST SEP 98 
PS 40 60 (a) 14 14 14 8.24 8.24 8.24 n.a. n.a. 

CAL ANN 98 
CA 100 200 (b) 5.54 4 8 18.46 13.33 26.67 4 4 4 13.33 13.33 13.33 

Panel B: Second Period 

NAT ANN 98 26.33 2.50 100.00 13.45 5.00 33.33 

CA 40 60 (b) 3 3 3 4.00 4.00 4.00 n.a. n.a. 
CA 60 80 (b) 18 11 25 72.00 44.00 100.00 18 11 25 25.13 16.92 33.33 
CA 100 120 (b) 6 6 6 60.00 60.00 60.00 6 6 6 15.00 15.00 15.00 
CA 100 200 (a) 5 5 5 2.50 2.50 2.50 5 5 5 5.00 5.00 5.00 
CA 120 140 (b/a) 5.41 4 6 37.35 6.67 60.00 7.11 6 10 15.19 13.33 20.00 

EST SEP 98 
PS0 50 (a) 53.56 52 54 11.90 11.56 12.00 53.56 52 54 35.70 34.67 36.00 

Some factors related to the implementation of the detected arbitrage strategies and 
not considered so far might explain those relative mispricings. One of them is the exist- 
ence of transaction costs. In relation to the relative mispricing, it should be kept in 
mind that measures m and 1 represent relative arbitrage profits, and the levels achieved 
by these measures are high enough to reflect gains after discounting transaction costs. 

Another factor is due to the number of units of each asset needed to implement some 
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arbitrage strategies. This number might not be available for trading. We do not have 
any piece of information about the volume associated with the quotes gathered by 
the CBOT that constitute our sample. Nevertheless, a comparison between the vol- 
ume corresponding to the transactions made during our sample periods and the 
number of derivatives needed to implement the detected arbitrage strategies lead us 
to think that in most cases this lack of information does not seem to be a real problem. 

Some final reasons might be related to margin rules or illiquidity but the empirical 
results seem to be significant for researchers and traders anyway. 

Weak Arbitrage and Hedging Portfolios 

Suppose that for a fixed j0 E {2, 3,. . . , n} it is still obtained m = 0 after assuming that 

vIo.< V? j < C., is the ask price (respectively, c. is the bid price). Then, problem (2.4) 
(respectively, after the modification x. = -1) has been solved in order to analyze how 
the real bid price vjo (ask price cjo) can be improved. This case will hold when the 
achieved solution guarantees a return R or very close to R. Then, investors can offer 
a new bid (ask) v < v' < c1o, and the solution of (2.4) provides a portfolio that will 
almost guarantee the riskless return R if a new agent accepts the new price. Further- 
more, this strategy could lead to great returns in some states of the world, and thus, 
it could be interesting for many investors. 

Following this procedure hedging strategies were obtained, and they were grouped 
into first type arbitrage opportunities (with a guaranteed return equal to R and pay- 
offs greater than one in at least one state of the world) and other optimal hedging 
strategies. Both the guaranteed net return and the maximum possible net return were 
computed for each detected position available for hedging; mean values are given in 
Table 5. We also report the corresponding mean values after subtracting the return 
guaranteed by the risk-free asset. For some states of the world, extraordinarily large 
returns might be obtained (e.g., there were first type arbitrage opportunities that 
involved selling one call spread 80/100 and gave rise to a possible net return of 
2,215.63). The minimum net return equals that of the risk-free asset for almost all cases. 
Thus, an important part of the available positions might have been hedged by means of 
weak (and strong) arbitrage or other optimal strategies leading in many cases to possible 
returns exceeding largely that of the risk-free asset. Note that this has been feasible even 
in a situation in which the underlying index is not tradable, and put derivatives are 
seldom available. Considerations akin to the ones pointed out at the end of the previous 
subsection, regarding the proper interpretation of these results, also apply here. 

Again, for illustration purposes, Table 6 shows the optimal hedging portfolio (weak 
arbitrage) on July 1, 1998 for the National Annual-98, Index (Strategy 2). Figure 2 
plots the portfolio payoffs pattern for different levels of the final index value. 

The interpretation of Strategy 2 may be as follows: the purchase of one butterfly and 
the sale of one CA 40 60 provides an income equal to 2.5 index points, the bid price 
for the CA 60 80. Suppose that this call is bought at 2.5. Then the payoffs associated 
with the sold assets are dominated (strictly in some states of the world) by the pay- 
offs associated with those purchased. So, the whole portfolio price is zero but pro- 
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arbitrage strategies. This number might not be available for trading. We do not have
any piece of information about the volume associated with the quotes gathered by
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more, this strategy could lead to great returns in sorne states of the world, and thus,
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Following this procedure hedging strategies were obtained, and they were grouped
into first type arbitrage opportunities (with a guaranteed return equal to R and pay­
offs greater than one in at least one state of the world) and other optimal hedging
strategies. Both the guaranteed net return and the maximum possible net return were
computed for each detected position available for hedging; mean values are given in
Table 5. We also report the corresponding mean values after subtracting the return
guaranteed by the risk-free asset. For sorne states of the world, extraordinarily large
returns might be obtained (e.g., there were first type arbitrage opportunities that
involved selling one call spread 80/100 and gave rise to a possible net return of
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Thus, an important part of the available positions might have been hedged by means of
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returns exceeding largely that of the risk-free asset. Note that this has been feasible even
in a situation in which the underlying index is not tradable, and put derivatives are
seldom available. Considerations akin to the ones pointed out at the end of the previous
subsection, regarding the proper interpretation of these results, also apply here.

Again, for illustration purposes, Table 6 shows the optimal hedging portfolio (weak
arbitrage) on July 1, 1998 for the National Annual-98, Index (Strategy 2). Figure 2
plots the portfolio payoffs pattern for different levels of the final index value.

The interpretation of Strategy 2 may be as follows: the purchase of one butterfly and
the sale of one CA 40 60 provides an income equal to 2.5 index points, the bid price
for the CA 60 80. Suppose that this call is bought at 2.5. Then the payoffs associated
with the sold assets are dominated (strictly in sorne states of the world) by the pay­
offs associated with those purchased. So, the whole portfolio price is zero but pro-
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TABLE 5 
Optimal Hedging Portfolios 

CA 40 60 stands for a call spread with exercise prices 40 and 60, and similarly for the other 
possible exercise prices. CB denotes a butterfly call spread with relevant exercise prices as 
indicated. For each derivative, the number of days for which a hedging strategy was 
available is given and in parentheses it is indicated whether the hedged derivative is 
bought (b) or sold (s) at the optimal hedging portfolios. Guaranteed and maximum returns 
in average terms along with the corresponding excesses over the risk-free rate R are also 
given. 

Optimal First Type Arbitrage Opport. Other Optimal Hedging Portfolios 
Mean Mean Mean Mean 

Guaranteed Maximum Guaranteed Maximum 
Index Return (%) Return (%) Return (%) Return (%) 
& Derivative Days Return Excess Return Excess Days Return Excess Return Excess 

Panel A: First Period 

NAT ANN 98 
CA 40 60 16 (b) 10.35 0.00 10.35 0.00 

1 (s) 10.62 0.00 10.62 0.00 
CA 120 140 29 (s) 10.27 0.00 2,215.63 2,205.36 

CAL ANN 98 
CA 80 100 1 (s) 9.74 0.00 2,204.53 2,194.79 

Panel B: Second Period 

NAT ANN 98 
CA 60 80 5 (b) 8.23 0.00 2,172.77 2,164.54 
CB 40 60 80 100 1 (s) 8.11 0.00 2,170.27 2,162.16 6 (s) 6.57 -1.46 2,137.97 2,129.93 

vides (strictly in some states) positive payoffs (weak arbitrage). Besides, if we add 
the bond to this portfolio, the final payoffs dominate the bond payoffs (strictly in 
some states), but we just have to pay the bond price. 

Evaluating the index real distribution and the risk-neutral probability measure 
To assess catastrophe options from an actuarial point of view, an analysis of the dis- 
tribution of possible future values of the underlying indices is required. There are 
essentially two approaches to form such probability assessments. One is to use com- 
puter simulation of scenarios based on a vast amount of meteorological, seismologi- 
cal, and economic information. The other relies on statistical modeling based on his- 
torical data. 

This subsection is partially devoted to the analysis of the distributional properties of 
the National Annual Index to be used in the rest of the article, and for this matter we 
concentrate on the statistical analysis of historical catastrophe data. We develop a 
nonparametric simulation procedure in order to obtain the expected final payoffs. 
This method does not require any distributional assumption; instead, "it lets the data 
talk."Furthermore, this analysis relies on the empirical distribution of waiting times 
and their associated losses, thereby avoiding the traditional shortage of data that is 
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CA 40 60 stands for a caH spread with exercise prices 40 and 60, and sirnilarly for the other
possible exercise prices. CB denotes a butterfly caH spread with relevant exercise prices as
indicated. For each derivative, the number of days for which a hedging strategy was
available is given and in parentheses it is indicated whether the hedged derivative is
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To assess catastrophe options from an actuarial point of view, an analysis of the dis­
tribution of possible future values of the underlying indices is required. There are
essentially two approaches to form such probability assessments. One is to use com­
puter simulation of scenarios based on a vast amount of meteorological, seismologi­
cal, and economic information. The other relies on statistical modeling based on his­
torical data.

This subsection is partially devoted to the analysis of the distributional properties of
the National Annual Index to be used in the rest of the article, and for this matter we
concentrate on the statistical analysis of historical catastrophe data. We develop a
nonparametric simulation procedure in order to obtain the expected final payoffs.
This method does not require any distributional assumption; instead, Hit lets the data
talk."Furthermore, this analysis relies on the empirical distribution of waiting times
and their associated losses, thereby avoiding the traditional shortage of data that is
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TABLE 6 
Optimal Hedging Portfolio 

(Weak Arbitrage) on July 1, 1998, or the National Annual-98 Index 
This table shows the optimal hedging portfolio detected on July 1, 1998, for the National 
Annual-98 Index. CA 30 50 stands for a call spread with exercise prices 30 and 50, and 
similarly for the other possible exercise prices. CB denotes a butterfly call spread with 
relevant exercise prices as indicated. The reported portfolio is a weak arbitrage portfolio 
which permits one to hedge the purchase of the CA 60 80 derivative. All derivatives 
available for trading together with their bid and ask prices are reported. The price for a 
zero-coupon bond (riskless asset) with a maturity value of one point is also given. All prices 
are expressed in points, each with a value of $200. Bold face is used to indicate those assets 
involved in the detected hedging portfolio, and the bought and sold units are given in 
parentheses (a negative sign indicates a sale). The last row gives the portfolio price. The 
same portfolio was available for 5 consecutive days. 

Derivative Bid Ask 

Bond 0.92351562 0.92351562 (1) 
CA 30 50 10 n.a. 
CA 40 60 7.5 (-1) n.a. 

CA 60 80 2.5 (1) 9 

CA 80 100 n.a. 7 
CA100120 1 5 
CA 100 150 n.a. 12 
CA 100 200 n.a. 20 
CA 120 140 n.a. 5.5 
CA 150 200 4 7.5 
CA 180 200 0.4 1.8 
CA 200 250 n.a. 4 
CA 250 300 0.5 2.5 
CB 40 60 80 100 n.a. 5 (1) 

Portfolio Price 0.92351562 

faced when using exclusively the empirical distribution of the final historical values 
of the index. 

In addition, from a financial perspective, once we have exhausted the arbitrage and 
hedging pricing approaches, risk considerations come into place and therefore the 
use of probability assessments is also necessary. As stated by Theorems 3 and 4, the 
underlying index real distribution is required in order to solve minimum variance 
problems. In this case, variables and parameters (dates to or t1, the riskless return, 
securities, prices, etc.) are introduced by the procedures already mentioned, but the 
set of states of the world must be enlarged. Now this set must incorporate all the 
index-feasible final (at the expiration date tl) values and not only the derivatives' 
strike prices. 

Fix a day to and, consequently, let us assume that all the parameters are fixed. To 
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hedging pricing approaches, risk considerations come into place and therefore the
use of probability assessments is also necessary. As stated by Theorems 3 and 4, the
underlying index real distribution is required in order to solve minimum variance
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set of states of the world must be enlarged. Now this set must incorporate aH the
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FIGURE 2 
Final Payoffs of Strategy 2 
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determine the final distribution of the underlying index W, we proceed as follows: 
First of all, we consider the empirical distribution of random variables T, "time be- 
tween two consecutive catastrophes," and L, "losses caused by a specific catastrophe." It is 
assumed that T and L can achieve several values with probabilities according to the 
empirical frequencies obtained from the real data described in the third section. Later, 

we simulate several values T1, T2 ..., Ts of T till Z=1 Ti < t to and Si=l 

and s-i values L1, L2, ... , Ls 1 of L. Each specific result L. is incorporated if and only 
if Li > $25 million, and we take Li = 0 otherwise. If WO is the index value at t0, the 

simulation process provides the total value W = WO + = L, where each Li has been 

previously translated into index points. The whole simulation process is repeated a 
high number of times in order to attain a numerical distribution of W. 

The risk neutral probabilities, defined in (2.2), have also been determined. We have 
followed the general method proposed by Hansen and Jagannathan (1997).26 Hence, 
fix a day to and all the parameters of the problem. Suppose that the simulation pro- 
cess has already been implemented and, therefore, the (real) probability measure ,u = 
(,1' 92'. . . ' pk) is known. Then, the (risk-neutral) measure A is obtained by minimiz- 

ing Xi=1(k - Hi) among the row-matrixes k such that = 1, Xi ?0, i =1,2,... , 

and (2.3) holds. 

Once the measures ,u and A have been determined, we can give two theoretical prices 
per security. The first one, (1 / R)Eu(Sj), j = 1, 2,.. . , n, is the Pure Premium, usual in 
actuarial sciences. The second (see (2.3)), (1 / R)E-(Sj), is obtained from a financial 

26 The Hansen and Jagannathan (1997) method extends the procedure provided by Rubinstein 
(1994) and by Jackwerth and Rubinstein (1996) to study the effect of the volatility "smile" 
on the risk-neutral probability measure. 
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per security. The first one, (1 / R)P (S¡ ), j = 1, 2, ... , n, is the Pure Premium, usual in
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point of view by considering real quotes and applying the most important topics on 
static asset pricing models. 

The procedure above has been implemented for all the possible values of the current 
date to (every day of our sample periods). 

We restrict our observations of the value of insured losses to the sample period from 
1990 through 1997 for several reasons. Figure 3 shows the annual number of catastro- 
phes and the quantity of their associated losses since 1973. As the figure suggests, 
while the annual number of catastrophes remains reasonably stable along the pe- 
riod, there seems to be a general positive trend and a structural change in the behav- 
ior of the value of insured losses associated with each catastrophe since Hurricane 
Hugo hit the U.S. in 1989. However, these patterns may be only illusory. Insured 
losses are affected by multiple variables thus far ignored such as population growth, 
development, changes in insurance coverage, number of premiums, and inflation. 
When a sufficiently long period of time is considered, the adjustments of the loss 
series for these variables tend to homogenize it, approximating past losses to more 
recent ones.27 Thus, a reasonable approximation to the adjusted series can be ob- 
tained by concentrating on recent (unadjusted) losses.28 Moreover, any adjustment of 
the series, which becomes necessary when a long period of losses is considered, might 
be methodologically questionable. 

With regard to the number of catastrophes, the whole sample since 1973 has been 
used. This is expected to surmount the difficulty of getting good estimates based on 
small samples for the probability of low frequency events such as catastrophes. 

The simulation process described above has been implemented in order to estimate 
the probability distributions of the final (end of 1999) value of the National Annual- 
98 index for every day in both periods. A number of 100,000 replications has been 
used for each day. Results are given in Figures 4 and 5. As the figures show, the 
probability mass is mainly accumulated around the index levels lying approximately 
in the intervals 20 to 100 and 160 to 240. The distributions are bimodal or even trimodal 
because (probably) the number of catastrophes must be entire. Note also that as days 
go by and the final date approaches, the probability mass tends to concentrate be- 
cause of the accompanying uncertainty reduction. 

Once the required distributions have been estimated, the next step is to compute the 
discounted expected options payoffs (pure premiums). These are given in Table 7. 
Notice that the call spreads 100/120 and 120/140 have almost identical discounted 
expected payoffs. This is due to the general lack of probability mass in the interval 
100 to 140. In general, pure premiums lie around options real quotes. 

27 An illustration of this effect may be found in Litzenberger et al. (1996). These authors adjust 
historical loss ratios for both the increase in population and the market penetration of 
catastrophe coverage. 

28 Anyway, the results of the simulation process only show slight modifications if adjusted 
data and long periods are considered. 
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FIGURE 3 
Number of Catastrophes and Total Amount of Loss (1973-1997) 
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We now use this result to infer some conclusions on the individual prices of these 
options, based on our estimated future probabilities. First, mean midpoints of the 
bid and ask quotes being around mean pure premiums seem to indicate that, in aver- 
age terms, transactions in this market could have been made at reasonable prices, 
close to the actuarial "fair" price during the sample periods. This is good news for 
those participating in the market who hedge their catastrophe insurance risks: this 
market seems to be an attractive alternative to traditional reinsurance, as it offers 
reinsurance at "fair" prices. However, those willing to participate in the (re)insurance 
market by selling options seeking attractive returns over the risk-free rate might find 
it difficult to get them, at least when trading with individual options. 

Second, for our sample periods, conclusions inferred from spread midpoints may 
substantially change when the real bid-ask spread is taken into account. On the one 
hand, in general, those hedgers able to buy at bid prices will find this market more 
attractive than the usual reinsurance (for most options mean bid prices are lower 
than the mean actuarial ones), but things might turn the other way around for hedg- 
ers that buy at the ask. On the other hand, for the moment keeping aside risk consid- 
erations, investors seeking high returns should try to buy close to the bid or sell close 
to the ask. 

Third, investors searching for new investment/financing opportunities also attend 
to risk considerations in their decisions. Analyzing risk and return on an option by 
option basis hardly makes sense as it is in a portfolio choice context where risk/ 
return opportunities are fully understood (it is in this context where risk-pooling 
benefits, for instance, come into place). These are the topics considered in the next 
subsection. 
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We now use this result to infer sorne conclusions on the individual prices of these
options, based on our estimated future probabilities. First, mean midpoints of the
bid and ask quotes being around mean pure premiums seem to indicate that, in aver­
age terms, transactions in this market could have been made at reasonable prices,
close to the actuarial "fair" price during the sample periods. This is good news for
those participating in the market who hedge their catastrophe insurance risks: this
market seems to be an attractive altemative to traditional reinsurance, as it offers
reinsurance at "fair" prices. However, those willing to participate in the (re)insurance
market by selling options seeking attractive retums over the risk-free rate might find
it difficult to get them, at least when trading with individual options.

Second, for our sample periods, conclusions inferred from spread midpoints may
substantially change when the real bid-ask spread is taken into account. On the one
hand, in general, those hedgers able to buy at bid prices will find this market more
attractive than the usual reinsurance (for most options mean bid prices are lower
than the mean actuarial ones), but things might tum the other way around for hedg­
ers that buy at the ask. On the other hand, for the moment keeping aside risk consid­
erations, investors seeking high retums should try to buy close to the bid or sell close
to the ask.

Third, Ííwestors searching for new investment/financing opportunities also attend
to risk considerations in their decisions. Analyzing risk and retum on an option by
option basis hardly makes sense as it is in a porHolio choice context where risk/
retum opportunities are fully understood (it is in this context where risk-pooling
benefits, for instance, come into place). These are the topics considered in the next
subsection.
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FIGURE 4 
Probability Distributions of the Index Final Value (First Period) 
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TABLE 7 
Theoretical Prices for the National Annual-98 Index Derivatives 

This table shows average theoretical prices corresponding to the National Annual-98 
derivatives available for trading on any day during the sample periods. CA 40 60 stands for 
a call spread with exercise prices 40 and 60, and similarly for the other possible exercise 
prices. CB denotes a butterfly call spread with relevant exercise prices as indicated. The first 
two columns give the mean pure (actuarial) premiums and the mean risk-neutral (financial) 
price. The third column displays the absolute value of the difference between the previous 
two columns, and the last two columns show the mean real bid and ask quotes for compari- 
son purposes. All figures are given in points, each point valued at $200. We also report the 
mean Euclidean distance between the measures p and A (standard deviation in parentheses) 
in the last row of each panel. 

Mean Theoretical Prices Mean Real Quotes 
Pure Risk-Neutral 

Derivatives Premium Price Discrepancy Bid (Days) Ask (Days) 

Panel A: First Period 

CA 40 60 10.42 10.46 0.038 8.61 (36) 9.47 (17) 
CA 60 80 5.48 6.10 0.617 6.09 (36) 7.31 (34) 
CA 80 100 3.70 4.35 0.644 4.12 (36) 5.96 (36) 
CB 40 60 80 100 6.72 6.11 0.606 3.88 (36) 6.00 (1) 
CA 100 120 3.32 3.36 0.440 1.60 (36) 5.40 (36) 
CA 120 140 3.26 3.48 0.221 1.50 (1) 5.50 (36) 
CA 150 200 6.79 6.08 0.712 n.a. (0) 8.00 (28) 
CA 180 200 2.18 1.80 0.381 0.73 (36) 1.80 (36) 
CA 250 300 0.82 0.74 0.071 0.74 (36) 2.50 (36) 

Mean Square Distance (Std. Dev.): 0.000317 (0.000515) 

Panel B: Second Period 

CA 30 50 18.17 18.19 0.024 10.00 (11) n.a. (0) 
CA 40 60 17.03 17.11 0.082 9.48 (27) n.a. (0) 
CA 60 80 8.66 8.97 0.318 4.89 (27) 9.63 (27) 
CA 80 100 3.44 3.97 0.535 3.87 (3) 7.42 (26) 
CB 40 60 80 100 13.92 13.40 0.525 5.00 (15) 11.25 (16) 
CA 100 120 2.26 2.94 0.685 2.45 (22) 5.67 (27) 
CA100 150 5.32 7.20 1.878 n.a. (0) 12.00 (22) 
CA 100 200 10.18 13.80 3.629 10.00 (7) 20.00 (21) 
CA120 140 2.11 2.77 0.658 1.00(18) 5.59 (27) 
CA 150 200 4.89 6.46 1.572 4.00 (21) 7.50 (22) 
CA 180 200 1.87 1.80 0.065 0.40 (9) 1.80 (9) 
CA 200 250 2.24 3.12 0.881 n.a. (0) 4.30 (15) 
CA 250 300 0.37 1.46 1.088 0.50 (27) 2.95 (20) 

Mean Square Distance (Std. Dev.): 0.000052 (0.000050) 
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Let us now analyze the risk-neutral probabilities. We solve the minimization pro- 
gram that gives their possible values and we use them to obtain the corresponding 
theoretical risk-neutral prices. These are also given in Table 7.29 We also report the 
average value of the objective function for both periods and the resulting discrepan- 
cies between pure (actuarial) premiums and prices calculated with the risk-neutral 
probabilities. As these figures show, it might well be concluded that real prices, as 
summarized by the linear pricing rule extracted from them, are reasonably close to 
their "fair" value. 

Lane and Movchan (1999) also consider real market mid-year 1998 prices and com- 
pute a compatible risk neutral probability measure.3x They follow a different and 
interesting approach because they do not use any real distribution ,u Instead, they 
impose the constraints (2.3) and minimize the differences between the prices of real 
transactions and the theoretical prices provided by the second term of (2.3). This 
methodology could show some advantages with respect to the one we followed be- 
cause we could commit errors when evaluating , (although the authors assume a 
specific type of distribution for the relevant random variables). However, bearing in 
mind our purposes, we preferred to obtain A from ,u for several reasons. First, one of 
this article's main objectives is to give well diversified portfolios and (as pointed out 
by Theorem 4), consequently, the measure ,u is required. Second, the theoretical prices 
obtained by Lane and Movchan are very close to the risk-neutral prices provided in 
Table 7. Third, as will be pointed out in the next subsection, the main conclusions 
concerning well diversified portfolios seem to be more robust if we take X as close to 
, as possible. 

Looking for Well Diversified Portfolios 
Consider an arbitrary date to, the probability measures A and , obtained for t in the 
previous subsection, and the linear pricing rule ir such that g, = (1 / R) E" (Si 5 j = 1, 
2, ... ., n. Then, the (unique) discount factor d of Theorem 3 may be easily found by 

I 
dt E span(A) 

means of the following conditions: 
k 

= ,rj , j = 1,2,., n 
i=l 

The condition dt E span(A) leads to a simple linear system of equations. In fact, con- 
sider the matrix B = (A, dt) (i.e., add the column dt to A) and impose that the ranges of 
A and B must be identical. 

According to Theorem 4, the minimum-variance strategies are obtained by selling 

the portfolio x = (xl X2,... ,in) such that AiT = dt. The portfolio x* = (O,i2. . 1X)31 
will also provide a very useful information. Depending on the sign of its theoretical 

29 Risk-neutral prices certainly verify the bid and ask quote restrictions day by day, even 
though the reported mean risk-neutral prices do not have to lie inside the mean bid-ask 
spread; the bid /ask quote may not be present whenever these prices are computed (we use 
the term "risk-neutral prices" as has become usual in finance). 

30 We thank an anonymous referee for pointing out this reference. 
31 That is, the portfolio ionce the bond has been excluded. 
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price , 2 7rjx;, we know when variance-averse individuals must sell or buy deriva- 

tives in their reinsurance-linked portfolios. As will be shown later, it turned out that quite 
often investors in the PCS options market must sell derivatives (the sign is positive).32 

For the empirical analysis we first excluded those redundant derivatives for each 
day. See Table 8 for a summary of the main results. With regard to the i * portfolio, 
this was mainly composed of bonds (87.98 percent and 68.36 percent in average terms 
for the first and the second periods, respectively), and its mean (gross) return equals 
.9460 and .9096. The portfolio i * has a positive value for 77.78 percent of the days in 
the first period and 81.48 percent in the second. Thus, risk-averse investors should 
view the PCS options market as a very profitable source of capital that allows them 
to finance their investments in other markets. 

Let us remark that the last conclusion concerning the sign of the price of x * seems to 
be robust with respect to the measure X used in the analysis. In fact, when X is obtained 
by minimizing the distance to p, we are minimizing the Risk Premium, the difference be- 
tween the risk-neutral price and the actuarial pure prenium. Thus, if we take a new measure 
X' for which (2.3) holds but such that X' ? X, the risk premium will probably increase 
and short positions in PCS options will probably be more interesting for traders. 

In order to further illustrate the relationship between probabilities ,u and X, and the 
portfolio i * payoffs (appropriately standardized), these variables are plotted in Fig- 
ures 6 and 7 for a representative day of both periods. It is clear that the portfolio final 
payoff becomes significantly negative only for states of the world (index final val- 
ues) with slight probability. 

CONCLUDING REMARKS 

Throughout, this article has shown that arbitrage arguments, in a static setting, very 
often allows us to price catastrophe-linked derivatives and reduce their bid-ask spread. 
Though the empirical literature concerning the existence of arbitrage in real financial 
markets usually focuses on concrete well-known arbitrage portfolios (put-call parity, 
relationship between spot and future prices, etc.), this procedure does not apply to 
catastrophe-linked derivatives. We have followed more complex methodologies that 
are based on the main principles of asset valuation and provide arbitrage portfolios 
without previously specifying the exact nature of the arbitrage strategy to be used. 
This seems to be a significant difference with respect to other financial papers. Fur- 
thermore, the procedure to detect arbitrage portfolios has been given, and some il- 
lustrative examples have been presented. 

Hedging arguments have also been applied and, again, they have shown many pos- 
sibilities to price these derivatives. The hedging portfolios have been computed by 
using general procedures, too, rather than usual particular methods that only apply 
in special situations. Concrete examples of hedging portfolios have been given. 

32 Notice that we are considering investors willing to participate in the catastrophe insurance 
market through PCS options in order to benefit from their new risk/return opportunities 
when included in diversified stock and bond portfolios. Of course, insurers, who must hedge 
their proper liabilities when the final index value becomes large, follow different portfolio 
criteria. 

How flNANCIAl THEORY ApPlIES TO CATASTROPHE-LINKED DERIVATIVES 577

Price ",n 1r.x., we know when variance-averse individuals must sell or buy deriva­
L¡=2 ¡ ¡
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TABLE 8 
Well Diversified Portfolios 

The first two rows show the risk/return characteristics of the entire portfolio by providing 
the expected return and its standard deviation, respectively (returns defined as payoffs 
divided by the risk-neutral price). The third row gives the weight of x (the derivatives 
portfolio) over the entire diversified portfolio, while the fourth row shows the price of x in 
index points. Finally, the number of days in which x has positive price is indicated in the 
last row. 

Descriptive Statistics 
Portfolio Characteristics Mean Std. Dev. Min. Median Max. 

Panel A: First Period 

Expected Return 0.9460 0.0809 0.8262 0.9330 1.0589 
Std.Dev. of the Return 5.1902 10.8703 1.4038 1.7278 64.1093 
Cat derivatives weight 0.1202 0.1875 -0.2386 0.1319 0.3374 
Price of x* 0.1249 0.1930 -0.2345 0.1185 0.3664 
Portfolio 

Days with positive price 28 (77.78%) 

Panel B: Second Period 

Expected Return 0.9096 0.1753 0.6622 0.9911 1.0826 
Std.Dev. of the Return 1.4279 1.4056 0.3566 0.9453 5.5590 
Cat derivatives weight 0.3164 0.2907 -0.0980 0.5053 0.8079 
Price of x* 0.3808 0.3519 -0.0845 0.5727 0.8648 
Portfolio 

Days with positive price 22 (81.48%) 

TAILE 9 
An Example of Two Well Diversified Portfolios 

This table shows the asset weights of the derivatives portfolio i!* for two selected days. 
Weights were calculated as value invested in the asset divided by the portfolio value (a 
negative sign indicates a sale). The corresponding risk-neutral prices are also reported. The 
weights for these derivative portfolios over the entire (bond included) portfolios are 0.29 
and 0.63 for panels A and B, respectively. 

Panel A: Date February 2, 1998 (First Period) Panel B: Date July 30, 1998 (Second Period) 
Derivative Weight Risk-Neutral Price Derivative Weight Risk-Neutral Price 
CA 40 60 0.06 11.66 CA 40 60 0.36 17.88 
CA 60 80 0.05 7.00 CA 60 80 -0.02 9.84 
CA 80 100 0.32 5.00 CA 80 100 -0.08 4.43 
CA 100 120 3.92 4.25 CA 100 120 1.74 3.50 
CA 120 140 -1.52 3.83 CA 100 150 -4.16 8.43 
CA 150 200 -2.58 6.23 CA 120 140 4.24 3.32 
CA 180 200 0.72 1.80 CA 150 200 -1.59 7.5 
CA 250 300 0.00 0.80 CA 250 300 0.52 2.70 
Portfolio 1 0.30 Portfolio 1 0.86 
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FIGURE 6 
Standardized Payoffs of Portfolio ix on February 25, 1998, Along With the 
Corresponding Risk-Neutral and Real Probabilities 

0.03 

0.02 

0.01 

0.00 =_ 

-0.01 

0.02 

-0.03 I 

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 

Index Level 

Real Probability - Risk-Neutral Probability - Standardized Payoffs 

FIGURE 7 
Standardized Payoffs of Portfolio x on date July 30, 1998, Along With the 
Corresponding Risk-Neutral and Real Probabilities 
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The Theory of Portfolio Selection also yields suitable strategies to invest. Moreover, 
if the bid-ask spread is reduced by arbitrage, the real quotes available in the market 
show very significant particularities. Linear pricing rules compatible with the quotes 
usually imply theoretical prices quite close to the actuarial pure premiums. How- 
ever, even though a well diversified portfolio (in a variance-aversion context) is com- 
posed of different catastrophe-linked derivatives in short and long positions, its price 
is usually negative (i.e., the total price of the sold derivatives is greater than the total 
price of those purchased), and this capital must be invested in shares and bonds. 

Catastrophe-linked derivatives can usually be added to a portfolio of other assets to 
the mean-variance advantage of the portfolio holder. This result emanates from the 
fact that catastrophe derivative outcomes are uncorrelated with bonds or stock out- 
comes. But the conclusion presented in the previous paragraph provides important 
additional information. In a well diversified portfolio, the price of the catastrophe 
derivatives is usually negative. 

The last comment leads to significant implications. Insurers can consider the market 
in order to buy reinsurances and hedge their liabilities. The price paid may be ad- 
equate with respect to the pure premiums. On the contrary, variance-averse inves- 
tors whose risk does not depend on the indices can use catastrophe-linked deriva- 
tives to compose portfolios with negative price that must be invested in other type of 
assets. This makes the market very attractive because it allows us to appropriately 
diversify among many investors the risk due to catastrophic events. However, we 
must notice that these properties hold for linear pricing rules and, therefore, it is 
important to reduce the real bid-ask spreads observed in the market. As mentioned 
above, this is possible by arbitrage and hedging arguments. 

Well diversified portfolios have also been determined by applying a very general 
method. In fact, the optimal mean-variance strategies are given by densities between 
risk-neutral measures and initial probability measures, rather than by correlations 
associated with the returns of the available catastrophe-linked derivatives. 

The applied methodology seems to reveal two interesting advantages. It is useful to 
traders because practical criteria and strategies to invest are provided. Moreover, it 
seems to be general enough to apply in many other contexts. Only two properties are 
needed. The underlying uncertainty must be easily identified (arbitrage and hedg- 
ing), and the probability space that explains its behavior, along with the risk-neutral 
probability, needs to be determined (variance aversion). 
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