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Abstract

Ratio asymptotics for orthogonal polynomials on the unit circle is characterized

in terms of the existence of limn |Φn(0)| and lim
n

Φn+1(0)
Φn(0)

, where {Φn(0)}n≥0

denotes the sequence of reflection coefficients. The limit periodic case, that is
when these limits exist for n = j mod k , j = 1, . . . , k , is also considered.
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1. Introduction

1. The class of finite Borel measures supported on the real line, whose sequence of orthog-
onal polynomials satisfy ratio asymptotics, has been characterized in terms of the limit
behavior of their recurrence coefficients. This is the so called Blumenthal-Nevai class (see
[16]). (In particular, the support of such measures consists of a segment plus at most
a denumerable set of points which may only accumulate on the extreme points of the
segment.) The main purpose of this paper is to obtain the corresponding result for the
case of measures supported on the unit circle Γ. Some important steps have already been
taken.

In [12] there is a spectral theoretic approach to the proof of the following theorem of
Ya. L. Geronimus (see [7]):

Let µ be a probability measure on Γ and let {Φn}n≥0 , be the corresponding sequence
of monic orthogonal polynomials. Suppose that

lim
n−→∞Φn(0) = a , 0 < |a| < 1 . (1)

Set sin α
2 := |a| , α ∈ (0, π) and γα := {eiθ : α ≤ θ ≤ 2π − α}. Then γα ⊆ supp(µ) and

supp(µ) \ γβ is finite for every 0 < β < α.

∗The research of this author was partially supported by Dirección General de Enseñanza Superior under
grant PB 96-0120-C03-01 and by INTAS under grant 93-0219 EXT.
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The proof of this result (see Theorem 3 in [12]) follows through if instead of (1) we
require the weaker conditions

lim
n−→∞ |Φn(0)| = a ∈ (0, 1] , lim

n−→∞
Φn+1(0)
Φn(0)

= b . (2)

In honor of truth, we should say that Geronimus’ proof, using continued fractions, adapts
as well to this apparently naive extension of his result.

In [4] it was shown:
Let supp(µ) = γ, where γ is an arc contained in the unit circle Γ and let µ′ > 0 a.e on

γ, then

lim
n−→∞

Φn+1(z)
Φn(z)

= C(γ)G(z) (3)

uniformly on compact subsets of IC \ γ and

lim
n−→∞

κn+1

κn
=

1
C(γ)

(4)

where C(γ) denotes the logarithmic capacity of γ , G(z) the conformal mapping of IC \ γ
onto [|w| > 1] such that G(∞) = ∞ with G′(∞) > 0 and

κn =
{∫

|Φn(z)|2dµ(z)
}−1/2

.

This result extends one of E. A. Rakhmanov given for the case when µ′ > 0 a.e. on
all Γ (see [21]-[22] for the original proof, also [15] and [23] for simpler ones).

From (3)-(4) immediately follows (2) with b = C(γ)G(0) and a =
√

1− C2(γ) but, in
general, (1) doesn’t take place. Thus, we conclude that (2) should be the characterization,
in terms of the reflection coefficients, of those measures on the unit circle whose orthogonal
polynomials have ratio asymptotics. In case of the real line a measure λ with compact
support [c, d] such that λ′ > 0 a.e. on [c, d] must be in the Blumenthal-Nevai class (see
[21] - [22]). Our first reaction was to check that Geronimus’ Theorem could be extended
to this class of measures.
2. In fact, we shall consider a wider class of measures.

Definition 1. We say that µ ∈ MΓ(a1, . . . , ak; b1, . . . , bk) if for all j = 1, . . . , k , we have

lim
n = j mod k

|Φn(0)| = aj , lim
n = j mod k

Φn(0)
Φn−1(0)

= bj . (5)

We shall restrict our attention to probability Borel measures on the unit circle. For
arbitrary finite Borel measures the corresponding results are easily deduced. For simplicity,
we limit ourselves in the introduction to the case when k = 1. Then (5) reduces to (2)
and we write MΓ(a; b) . For any sequence of orthogonal polynomials on the unit circle, we
have that |Φn(0)| < 1. Therefore, if the first limit in (2) exists then necessarily a ∈ [0, 1].
When a = 0, the values admissible for b are all those with |b| ≤ 1. In this situation, it is
well known (even if the second limit in (2) doesn’t exist) that there is ratio asymptotics
of type (3)-(4) outside and on the unit circle with C(γ) = 1 (the capacity of the whole
unit circle) and G(z) = z (the conformal mapping of [|z| > 1] onto [|w| > 1] such that
G(∞) = ∞ and G′(∞) > 0). When |b| < 1 the measure not only belongs to the Szegő
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class but it is also absolutely continuous with respect to the Lebesgue measure (see [10],
Theorem 8.5, p. 163) and it is to be expected that ratio asymptotics extends uniformly on
all compact subsets of [|z| > |b|]. In Theorem 1, we consider that a ∈ (0, 1], thus Szegő’s
condition is not satisfied and |b| = 1. Set

γ = {z ∈ Γ : α ≤ arg(z)− arg(b) ≤ 2π − α} ,

where sin α
2 := a. We prove:

Theorem 1. Let a ∈ (0, 1]. The following conditions i) and ii) are equivalent:

i) µ ∈ MΓ(a; b) ,

ii)

lim
n−→∞

Φn+1(z)
Φn(z)

=
1
2

[
(z + b) +

√
(z − b)2 + 4zba2

]
, lim

n−→∞
κn

κn+1
=

√
1− a2 , (6)

where convergence is uniform on each compact subset of IC \ supp(µ) and the root is taken
so that

√
1 = 1 . Under any one of the conditions above, we have:

iii) the derived set of supp(µ) equals γ,

iv) for any compact subset K contained in IC \ supp(µ) and for all sufficiently large n the
polynomials Φn(z) have no zeros on K,

v) let ζ be an isolated mass point in supp(µ); then for all sufficiently small r > 0 , there
exists n0 such that for n ≥ n0 , Φn(z) has exactly one zero in {z : |z − ζ| ≤ r} .

vi)

lim
n−→∞

Φn+1(z)
Φn(z)

=
1
2

[
(z + b)−

√
(z − b)2 + 4zba2

]
, z ∈ supp(µ) \ γ .

In the proof of Theorem 1, we use a scheme similar to the one employed in [1] (see also
[2], [3]) where we studied the convergenge of diagonal Padé approximants (J-fractions) and
an extension of the Blumenthal-Nevai class to the case when the recurrence coefficients
are allowed to take complex values.
3. The paper is divided as follows. In section 2, we introduce the necessary notation and
prove several auxiliary lemmas. The key results, Theorems 2 and 3 are proved in Section 3.
From these theorems the main statements of Theorem 1, for a ∈ (0, 1), are an immediate
consequence. Theorems 2 and 3 involve measures in MΓ(a1, . . . , ak; b1, . . . , bk) and ratio
asymptotics of their orthogonal polynomials. Section 3 also contains some statements
(see Theorem 4) regarding the rational approximation of Caratheodory functions in the
complement of the support of the corresponding measure when it is in the class prescribed
above. The final section 4 is dedicated to some corollaries of the main results. In its
second part, a sketch of the proof of Theorem 1 for a = 1 is given.

2. Notation and Auxiliary Results

3



1. As above µ is a probability measure with infinite support supp(µ) ⊂ Γ := {z : |z| = 1},
{Φn(z)}n≥0 the corresponding sequence of monic orthogonal polynomials (deg Φn = n)
and κn =

{∫ |Φn(z)|2 dµ(z)
}−1/2

. The complex numbers Φn(0) , n ≥ 0 , are known as
reflection coefficients. They play an important role in the description of the polynomials
and their asymptotic properties. In particular, it is well known that the orthonormal
polynomials φn = κnΦn , n ≥ 0 , satisfy the following relations:

n−1∑

i=0

κi

κn
Φn+1(0)Φi(0)φi(z) +

(
z + Φn+1(0)Φn(0)

)
φn(z)− κn

κn+1
φn+1(z) = 0 , n ≥ 1 , (7)

where κm and the reflection coefficients are related by

κm−1

κm
=

√
1− |Φm(0)|2 , κ2

m =
1∏m

i=1(1− |Φi(0)|2) , m ≥ 1 , κ0 = 1 (8)

(see [12]).
Another important tool in the research of these polynomials is the multiplication op-

erator U on L2(µ) given by
(Uf)(z) = zf(z) (9)

for each f ∈ L2(µ), where L2(µ) is the space of square integrable functions with respect
to µ. If log µ′ /∈ L1(µ) (that is, if Szegő’s condition is not satisfied), then the orthogonal
polynomials are dense in L2(µ) and the sequence {φn}n≥0 is an orthonormal basis of L2(µ)
(see [10] pp 14). In this case, the infinite Hessenberg matrix

U = U(µ) =




−Φ1(0)Φ0(0) −κ0

κ1
Φ2(0)Φ0(0) −κ0

κ2
Φ3(0)Φ0(0) . . .

κ0

κ1
−Φ2(0)Φ1(0) −κ1

κ2
Φ3(0)Φ1(0) . . .

0
κ1

κ2
−Φ3(0)Φ2(0) . . .

0 0
κ2

κ3
. . .

...
...

...
. . .




(10)

(where Φ0(0) = 1) is the matrix representation of the unitary operator (9) in the basis
{φn}n≥0 (compare (7) and (9)). In terms of the monic orthogonal polynomials (7) may be
rewritten as

Φn+1(z) =
(
z + Φn+1(0)Φn(0)

)
Φn(z) +

n−1∑

i=0

(
κi

κn

)2

Φn+1(0)Φi(0)Φi(z) , n ≥ 1 . (11)

Let Un be the principal section of U of order n. Expanding det(zIn −Un) in terms of the
last column, from (11) it is easy to see that

Φn(z) = det(zIn − Un) , n = 0, 1, . . . (12)

(taking det(zI0 − U0) = 1).
Consider the column vector

u = (φ0(z), φ1(z), . . . , φn(z), . . .)T .
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Formula (7) conjugated indicates that the formal matrix operation of the adjoint U∗ of U
on u gives

U∗u = z u .

This and the remarks above give:

Lemma 1. Let µ be a probability measure for which Szegő’s condition is not satisfied, then

supp(µ) = σ(U)

and z ∈ σp(U) if and only if u ∈ l2 , where σ(U) and σp(U) denote the spectrum and the
point spectrum of U , respectively.

It is well known, but not very frequently used, that the orthogonal polynomials on the
unit circle satisfy a three-term recurrence relation. For completeness, we include a proof.

Lemma 2. We have

Φ0(0)
κ0

κ1
φ1(z)− (zΦ0(0) + Φ1(0))φ0(z) = 0 , φ0 ≡ 1 ,

Φn(0)
κn

κn+1
φn+1(z)− (zΦn(0) + Φn+1(0))φn(z) + z

κn−1

κn
Φn+1(0)φn−1(z) = 0 ,

n ∈ IN .





(13)

Proof. From (11), we have that

Φn+1(0)
κ2

n

n−1∑

i=0

κ2
i Φi(0)Φi(z) +

(
z + Φn+1(0)Φn(0)

)
Φn(z)− Φn+1(z) = 0 , n ∈ IN . (14)

Thus,

Φn(0)
κ2

n−1

n−2∑

i=0

κ2
i Φi(0)Φi(z) +

(
z + Φn(0)Φn−1(0)

)
Φn−1(z)− Φn(z) = 0 , n ≥ 2 . (15)

Multiplying in (14) by
Φn(0)
κ2

n−1

and using (15), we obtain

0 =
Φn+1(0)

κ2
n

[
Φn(0)
κ2

n−1

n−2∑

i=0

κ2
i Φi(0)Φi(z) + Φn(0)Φn−1(0)Φn−1(z)

]

+
Φn(0)
κ2

n−1

(z + Φn+1(0)Φn(0))Φn(z)− Φn(0)
κ2

n−1

Φn+1(z)

=
Φn+1(0)

κ2
n

[Φn(z)− zΦn−1(z)] +
Φn(0)
κ2

n−1

zΦn(z)

+
Φn+1(0)|Φn(0)|2

κ2
n−1

Φn(z)− Φn(0)
κ2

n−1

Φn+1(z) , n ≥ 2 ,

which, using (8), reduces to

Φn(0)Φn+1(z)− (zΦn(0) + Φn+1(0))Φn(z) + z
κ2

n−1

κ2
n

Φn+1(0)Φn−1(z) = 0 , n ≥ 2 . (16)
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For n = 1, (16) follows directly from (15). Multipliying (16) by κn , we arrive to (13) (for
n ∈ IN). The first relation in (13) is trivial.

In the sequel, for simplicity, we shall assume that Φn(0) 6= 0 , n ∈ IN . Nevertheless,
we make no explicit reference to this restriction in the statements of our main results
because it is easy to adjust the arguments used in their proof if only Φn(0) 6= 0 for
all sufficiently large n. This is always the case when µ ∈ MΓ(a1, . . . , ak; b1, . . . , bk) and
ai 6= 0 , i = 1, . . . , k.

The three-term recurrence relation motivates our interest in the following tri-diagonal
matrix. Set

D(z) =




z +
Φ1(0)
Φ0(0)

z
Φ2(0)
Φ1(0)

(
κ0

κ1

)2

0 . . .

1 z +
Φ2(0)
Φ1(0)

z
Φ3(0)
Φ2(0)

(
κ1

κ2

)2

. . .

0 1 z +
Φ3(0)
Φ2(0)

. . .

...
...

...
. . .




. (17)

By D(m)(z) we denote the infinite tri-diagonal matrix obtained after eliminating from
D(z) the first m rows and m columns (D(0)(z) = D(z)). D

(m)
n (z) denotes the principal

section of order n of D(m)(z). Define

∆(m)
n (z) = det(D(m)

n (z)) , ∆(m)
0 (z) ≡ 1 . (18)

Lemma 3. We have
Φn(z) = ∆(0)

n (z) , n ≥ 0 .

Proof. Expanding ∆(0)
n (z) by the last column, we see that {∆(0)

n (z)}n≥0 , satisfies the same
three-term recurrence relation as {Φn(z)}n≥0 (see (16)). On the other hand, ∆(0)

0 (z) ≡
1 ≡ Φ0(z) and ∆(0)

1 (z) = z + Φ1(0) = Φ1(z) . Since the initial conditions coincide so do
the sequences of polynomials generated by the recurrence relation.
2. Let {fn} be any sequence of complex numbers satisfying a three-term recurrence relation

fn+1 = βnfn − αnfn−1 , n ≥ 0 , f0 = 1 , f−1 = 0 .

We can associate to {fn} the infinite tridiagonal matrix

D =




β0 α1 0 . . .
1 β1 α2 . . .
0 1 β2 . . .
...

...
...

. . .




.

As above, by D(m) we denote the infinite tri-diagonal matrix obtained after eliminating
from D the first m rows and m columns (D(0) = D). D

(m)
n denotes the principal section

of order n of D(m). Define

∆(m)
n = det D(m)

n , ∆(m)
0 ≡ 1 .
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As in Lemma 3 one can prove that

fn = ∆(0)
n , n ≥ 0 . (19)

The relations stated in the next Lemma follow by induction and consecutive use of the
three-term recurrence relation. They are well known for the case of orthogonal polynomials
on the real line and may be proved in this general situation exactly the same way, so we
simply refer to Lemma 5 in [2] (see also [6] and [24]).

Lemma 4. Let n ∈ ZZ+ and s ∈ IN. Then

0 = ∆(n+1)
s−1 fn+s+1 −∆(n+1)

s fn+s + (αn+1 · · ·αn+s)fn (20)

and
0 = fn+s+1 −∆(n+1)

s fn+1 + αn+1∆
(n+2)
s−1 fn . (21)

Finally, for s ∈ IN , s ≥ 2 and n ≥ s

0 = ∆(n−s+1)
s−1 fn+s − (∆(n+1)

s−1 ∆(n−s+1)
s − αn+1∆

(n+2)
s−2 ∆(n−s+1)

s−1 )fn

+(αn−s+1 · · ·αn)∆(n+1)
s−1 fn−s .

(22)

Let us assume that the sequences {αn} and {βn} have period k, then

∆(n+1)
k = ∆(n−k+1)

k , ∆(n+1)
k−1 = ∆(n−k+1)

k−1 .

If ∆(n+1)
k−1 6= 0 for all n, then from (22) we see that the sequence {fn} also satisfies the

following three-term recurrence relation over the period k:

0 = fn+k − (∆(n+1)
k − αn+1∆

(n+2)
k−2 )fn + (αn−k+1 · · ·αn)fn−k , n ≥ k . (23)

(In case of the polynomials ∆(n+1)
k−1 (z), the assumption of being different from zero is

unnecessary because (23) would hold except on a finite number of points z, thus it would
hold for all z.) Because of the periodicity, the factor (αn−k+1 · · ·αn) does not depend on
n. The next Lemma shows that the other coefficient is also independent of n. For a proof
we refer to Lemma 2 in [2] (see also [6] and [24]). Again it is an easy consequence of a
three-term recurrence relation. In this case

∆(m)
s = βm∆(m+1)

s−1 − αm+1∆
(m+2)
s−2 , s ≥ 1 , m ≥ 0 , (24)

which may be obtained expanding ∆(m)
s along its first row (∆(m)

−1 ≡ 0) .

Lemma 5. If the sequences {αn} and {βn} have period k (and ∆(n)
k−1 6= 0 for all n), then

∆(n)
k − αn∆(n+1)

k−2 = ∆(1)
k − α1∆

(2)
k−2 , n ≥ 0 ,

and
0 = fn+k − (∆(1)

k − α1∆
(2)
k−2)fn + (α1 · · ·αk)fn−k , n ≥ k . (25)
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We call attention to the fact that formulas (23) and (25) may easily be extended to the
case when periodicity takes place from a certain index on. This is so because our matrices
D

(n)
m , whose determinant form our coefficients, “forget” what occurred before the index n

appeared. In fact, that is why we chose ∆(1)
k − α1∆

(2)
k−2 as coefficient in (25) (instead of

∆(0)
k − α0∆

(1)
k−2) since in our application of Lemma 5 below periodicity occurs for n ≥ 1

(not for n ≥ 0).
3. Now, we choose a convenient representative in each class MΓ(a1, . . . , ak; b1, . . . , bk).
This class is defined in terms of the parameters {a1, . . . , ak; b1, . . . , bk} . From (5) it is
obvious that in order to have some measure in MΓ(a1, . . . , ak; b1, . . . , bk) the parameters
{a1, . . . , ak} and {b1, . . . , bk} must satisfy some linking relations. We only consider cases
when MΓ(a1, . . . , ak; b1, . . . , bk) 6= ∅ . That is when it contains at least one measure.

Lemma 6. Assume that aj ∈ (0, 1) , j = 1, . . . , k . Then, there exists

µ ∈ MΓ(a1, . . . , ak; b1, . . . , bk)

whose sequence of reflection coefficients {Ψn(0)} satisfies

Ψ0(0) = 1 , Ψn(0) = aje
i(θ1+···+θn) , n = j mod k , n ∈ IN , (26)

where θj = arg bj for j = 1, . . . , k , and θn+k = θn , for all positive integers n.

Proof. Since MΓ(a1, . . . , ak; b1, . . . , bk) 6= ∅ and min{a1, . . . , ak} > 0 , we have (see (5))
that

|bj | = aj

aj−1
, j = 1, . . . , k , (a0 = ak) . (27)

Taking the sequence {Ψn(0)} as defined above, obviously it constitutes a sequence
of reflection coefficients because max{a1, . . . , ak} < 1. Let µ denote the corresponding
measure. It rests to show that it belongs to the desired class. In fact, from (26) and (27),
we have

|Ψn(0)| = aj ,
Ψn(0)

Ψn−1(0)
=

aj

aj−1
eiθn = |bj |ei arg bj = bj , n = j mod k , n ≥ 2 ,

from which (5) immediately follows.
We are interested in finding the support of µ. To this end, we will establish a connection

between µ and another probability measure µ̂ whose reflection coefficients are periodic.
The support of measures with periodic reflection coefficients has been studied by Ya. L.
Geronimus [7] and recently by F. Peherstorfer and R. Steinbauer (see [17]-[20]). We make
use of their results and some general ones from operator theory to describe the support of
those measures in the classes we have introduced.

Lemma 7. Under the assumptions and notations of Lemma 6, set

Aj = aje
i[(θ1+···+θj)−jθ] , j = 1, . . . , k ,

where θ =
θ1 + · · ·+ θk

k
. Then, there exists a probability measure µ̂ whose sequence of

reflection coefficients {Ψ̂n(0)} satisfy

Ψ̂n(0) = Aj , n = j mod k , j = 1, . . . , k , n ∈ IN . (28)
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For each n ∈ ZZ+ , we have
Ψ̂n(z) = e−inθΨn(eiθz) (29)

and
supp(µ) = {z ∈ Γ : ze−iθ ∈ supp(µ̂)} . (30)

Proof. Let γ = supp(µ) and consider the change of variables z = eiθζ. Then

0 =
∫

γ
z−νΨn(z) dµ(z) = e−iνθ

∫

γ̂
ζ−νΨn(eiθζ) dµ(eiθζ) ,

where
γ̂ = {ζ = e−iθz : z ∈ γ} (31)

is the support of dµ̂(ζ) = dµ(eiθζ). Therefore,

Ψ̂n(ζ) = e−inθΨn(eiθζ)

is the n-th monic orthogonal polynomial with respect to µ̂. The reflection coefficients are
equal to

Ψ̂n(0) = e−inθΨn(0) = aje
i[(θ1+···+θn)−nθ] = Aj , n = j mod k , n ∈ IN .

Thus we have proved (28)-(29), while (30) follows from (31).
4. In the sequel, we will denote by τn the leading coefficient of the n-th orthonormal
polynomial ψn with respect to µ (ψn = τnΨn) . Using the theory of finite differences, we
can obtain a compact expression (and the asymptotic behavior) for the monic orthogonal
polynomials Ψn(z) with respect to the measure µ. This is done in terms of the algebraic
functions which represent the roots of the characteristic equation

0 = λ2 − p(z)λ + zk Ψk+1(0)
Ψ1(0)τ2

k

(32)

where
p(z) = ∆(1)

k (z)− z
Ψ2(0)

Ψ1(0)τ2
1

∆(2)
k−2(z) ,

and the determinants ∆(1)
k (z) , ∆(2)

k−2(z) are constructed according to (17)-(18) for the
sequence {Ψn(0)} of reflection coefficients relative to µ.

Denote

G±(z) =
1
2

(
p(z)±

√
p2(z)− 4zk

Ψk+1(0)
Ψ1(0)τ2

k

)
, (33)

the two algebraic functions which give the roots of (32). They are defined analytically on
the complement of the set

γ(µ) =

{
z : −1 ≤ τkp(z)Ψ1(0)1/2

2zk/2Ψk+1(0)1/2
≤ 1

}
, (34)

which is the set of points for which both roots coincide in modulus. In (34), we take, for
example, the root which is positive for z = x > 0. The set γ(µ) consists of at most k
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compact analytic curves, each one contained in one of the at most k connected components
of the closed region 


z :

∣∣∣∣∣
τkp(z)Ψ1(0)1/2

2zk/2Ψk+1(0)1/2

∣∣∣∣∣
2

≤ 1



 .

(By the minimum principle each such component must contain at least one zero of p2(z)
and this polynomial has at most k distinct zeros.) In (33), we define G+(z) to be the
root of greater modulus on IC \ γ(µ). On γ(µ) we define G+(z) (and G−(z) ) by continuity
considering the arc γ(µ) to have two sides as it is usually done.

The next Lemma is a reformulation of Theorem 2.1 in [19] in terms more appropriate
for our further considerations. Recall that ψn = τnΨn denotes the n-th orthonormal
polynomial with respect to µ and τn > 0 its leading coefficient. In the sequel, (·)′ denotes
the derived set of (·).

Lemma 8. Assume that aj ∈ (0, 1) , j = 1, . . . , k. Let µ be the measure constructed in
Lemma 6 and {ψn} the corresponding sequence of orthonormal polynomials. We have

Ψn(z) =
Ψk+j(z)−G−(z)Ψj(z)

G+(z)−G−(z)
Gν

+(z) +
G+(z)Ψj(z)−Ψk+j(z)

G+(z)−G−(z)
Gν
−(z) (35)

for n = kν + j , ν ≥ 2 , j = 1, . . . , k , whenever G+(z) 6= G−(z). In particular,

lim
ν

[
ψn(z)− Ψk+j(z)−G−(z)Ψj(z)

G+(z)−G−(z)
(τkG+(z))ντj

]
= 0 , (36)

uniformly on each compact subset of IC \ γ(µ). Moreover,

γ(µ) = (supp(µ))′ (37)

and
k⋂

j=1

{z : Ψk+j(z) = G−(z)Ψj(z)} \ γ(µ) = supp(µ) \ γ(µ) (38)

consists of at most a finite number of points.

Proof.
Notice that for the sequence {Ψn(0)} , we have:

z +
Ψn+1(0)
Ψn(0)

= z + bj+1 = z +
Ψj+1(0)
Ψj(0)

,

and

z
Ψn+1(0)
Ψn(0)

(
τn−1

τn

)2

= zbj+1(1− a2
j ) = z

Ψj+1(0)
Ψj(0)

(
τj−1

τj

)2

,

where n = j mod k , n ≥ 1 , j = 1, . . . , k (bk+1 = b1) . Therefore, the corresponding
matrix (17) is k periodic if we disregard the first row and column. Thus, from Lemma 5
(see the observation made just after that Lemma), we obtain

Ψn+k(z) = p(z)Ψn(z)− zk Ψk+1(0)
Ψ1(0)τ2

k

Ψn−k(z) . (39)

10



Consider the trivial equation
Ψn(z) = Ψn(z) . (40)

In matrix form, the system (39)-(40) can be written
(

Ψn+k(z)
Ψn(z)

)
= M(z)

(
Ψn(z)

Ψn−k(z)

)
,

where

M(z) =


 p(z) −zk Ψk+1(0)

Ψ1(0)τ2
k

1 0


 .

The eigenvalues of M(z) are the roots G±(z) of the characteristic equation (32). The
corresponding eigenvectors (which form a basis if G+(z) 6= G−(z)) are

(
G+(z)

1

)
,

(
G−(z)

1

)
.

Take n = νk + j , j = 1, . . . , k fixed. It is easily verified that
(

Ψj+k(z)
Ψj(z)

)
= c1(z)

(
G+(z)

1

)
+ c2(z)

(
G−(z)

1

)
,

where
c1(z) =

Ψk+j(z)−G−(z)Ψj(z)
G+(z)−G−(z)

, c2(z) =
G+(z)Ψj(z)−Ψk+j(z)

G+(z)−G−(z)
.

Therefore, we have (35) since
(

Ψn+k(z)
Ψn(z)

)
= Mν(z)

(
Ψj+k(z)
Ψj(z)

)
=

= c1(z)Gν
+(z)

(
G+(z)

1

)
+ c2(z)Gν

−(z)

(
G−(z)

1

)
.

Now, we obtain a weaker version of (36). In IC \ γ(µ), we have
∣∣∣∣
G−(z)
G+(z)

∣∣∣∣ < 1 . Thus, its

supremum is strictly less than 1 on any compact subset of IC \ γ(µ) . Using (35), we get

lim
ν

Ψn(z)
Gν

+(z)
=

Ψk+j(z)−G−(z)Ψj(z)
G+(z)−G−(z)

, (41)

uniformly on each compact subset of IC \ γ(µ). Moreover,

lim
ν

Ψn(z)
Gν−(z)

=
G+(z)Ψj(z)−Ψk+j(z)

G+(z)−G−(z)
(42)

for z ∈ {z : Ψk+j(z) = G−(z)Ψj(z)} \ γ(µ).
Let us see that the set {z : Ψk+j(z) = G−(z)Ψj(z)} \ γ(µ) contains at most a finite

number of points. In fact, at any such point, taking λ = G−(z) in (32), we obtain

0 = Ψ2
k+j(z)− p(z)Ψk+j(z)Ψj(z) + zk Ψk+1(0)

Ψ1(0)τ2
k

Ψ2
j (z) . (43)

11



This equation is either solved identically or it has at most 2k + 2j zeros. If (43) is solved
identically, then

G+(z) ≡ Ψk+j(z)
Ψj(z)

, z ∈ IC ,

because G+(z) is the only one of the functions which are roots of (32) that tends to infinity
when z tends to infinity. Then, any point for which Ψk+j(z) = G−(z)Ψj(z) would have to
be in γ(µ). In the second case, we have nothing else to prove.

From (41) and the assertion just proved above, using Hurwtiz’ Theorem, we obtain
that on any fixed compact subset K ⊂ IC\(γ(µ) ∪ {z : Ψk+j(z) = G−(z)Ψj(z)}) , Ψn(z) 6=
0 , z ∈ K , n = νk + j , for all sufficiently large ν. Therefore, using (41)

lim
ν

Ψn+k(z)
Ψn(z)

= G+(z) , (44)

uniformly on each compact subset of IC \ (γ(µ) ∪ {z : Ψk+j(z) = G−(z)Ψj(z)}) . On {z :
Ψk+j(z) = G−(z)Ψj(z)} \ γ(µ) , we have that

lim
ν

Ψn+k(z)
Ψn(z)

= G−(z) . (45)

Since
τn = τν

k τj ,

then (44) and (45) give

lim
ν

ψn+k(z)
ψn(z)

= τkG+(z) , (46)

uniformly on each compact subset of IC \ (γ(µ) ∪ {z : Ψk+j(z) = G−(z)Ψj(z)}) , and

lim
ν

ψn+k(z)
ψn(z)

= τkG−(z) , (47)

on {z : Ψk+j(z) = G−(z)Ψj(z)} \ γ(µ) .
In order to complete the proof of (36), we need some additional information on the

functions G+ and G− which we will extract from the case of periodic reflection coefficients
studied in detail in [19].

Denote Ĝ+ and Ĝ− the functions that appear on the right of (46) and (47) respectively
when instead of the sequence {Ψn(0)} of reflections we consider the associated sequence
{Ψ̂n(0)} of periodic reflection coefficients constructed in Lemma 7. The L2 norms of the
orthogonal polynomials Ψn and Ψ̂n are equal. Thus, from (29), we have

ψ̂n+k(z)
ψ̂n(z)

= e−ikθ ψn+k(eiθz)
ψn(eiθz)

.

Using (30) and (46), it follows that

Ĝ+(z) = e−ikθG+(eiθz) , Ĝ−(z) = e−ikθG−(eiθz) . (48)

For the periodic case, the limit (46) may also be derived from Theorem 2.1 (a) in
[19]. This allows us to identify our expression for 2Ĝ+(z) with what the authors of that

12



paper denote TN (z)+
√

R(z)UN−l(z) and, therefore, 2Ĝ−(z) is what they denote TN (z)−√
R(z)UN−l(z).
From Lemma 2.1 in [19], (30), and (48), it follows that

|τkG−(z)| < 1 , |τkG+(z)| > 1 , (49)

on IC \ (supp(µ))′ and
|τkG−(z)| = |τkG+(z)| = 1 , (50)

on (supp(µ))′ (see also (2.5) and (2.6) in [19]). From this and the definition of γ(µ), we
obtain (36) and (37). Using Lemma 1, (47), and (49), we obtain (38).

To end this section we offer the following Lemma which states that except for at most
a numerable set of (isolated mass) points all the measures in MΓ(a1, . . . , ak; b1, . . . , bk)
have the same support, consisting of at most k disjoint arcs contained in Γ.

Lemma 9. Under the assumptions of Lemma 6, we have that

(supp(µ))′ = γ(µ) = (supp(µ))′ .

Proof. It is not hard to prove that the operator U(µ) − U(µ) is compact (one can use
exactly the same arguments as those employed in the case considered for the proof of
Theorem 3 in [12]). Thus, from Weyl’s Theorem (see [14] and more precisely Problem 182
in [13]), we know that except for isolated points (which are eigenvalues) the spectra of
U(µ) and U(µ) coincide. This together with Lemmas 1 and 8 give us the statement.

3. Ratio Asymptotics

1. In the sequel, ∆(m)
n (z) is the determinant defined in (18) relative to the sequence

{Ψn(0)} of reflection coefficients of µ while δ
(m)
n (z) is that relative to the sequence {Φn(0)}

of reflection coefficients of µ. We also distinguish κn the leading coefficient of the n-th
orthonormal polynomial φn with respect to the measure µ from τn the leading coefficient
of the n-th orthonormal polynomial ψn with respect to µ . We are ready for the proof of

Theorem 2. Let µ ∈ MΓ(a1, . . . , ak; b1, . . . , bk) , aj ∈ (0, 1) , j = 1, . . . , k . Then,

lim
n−→∞

Φn+k(z)
Φn(z)

= G+(z) , lim
n=j mod k

κn−1

κn
=

√
1− a2

j ∈ (0, 1) , j = 1, . . . , k , (51)

uniformly on each compact subset of IC \
(

k⋃

s=1

{z : ∆(s)
k−1(z) = 0} ∪ supp(µ)

)
. Moreover,

i) (supp(µ))′ = γ(µ)

ii) for any compact K ⊂ IC\
(

k⋃

s=1

{z : ∆(s)
k−1(z) = 0} ∪ supp(µ)

)
, and for all sufficiently

large n, the polynomials Φn(z) have no zeros on K.
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Under stronger conditions on the measure µ, some of the statements of Theorem 2
were obtained before by other authors. In connection with i) see [8, Th. IV] and [19, Th.
4.1]. In relation with ii) see [19, Th. 3.3].

The following result complements Theorem 2.

Theorem 3. Let z ∈ IC \
(

k⋃

s=1

{z : ∆(s)
k−1(z) = 0} ∪ γ(µ)

)
. The following conditions are

equivalent

i) z is an isolated mass point of supp(µ) (isolated eigenvalue of σ(U)),

ii) there exists j ∈ {1, 2, . . . , k} such that

lim
ν

Φn+k(z)
Φn(z)

= G−(z) , n = νk + j , (52)

iii) we have

lim
n

Φn+k(z)
Φn(z)

= G−(z) .

Other conditions for the existence of isolated mass points may be found in [9, Th. X]
and [19, Remark 3.2].
Proof (of Theorems 2 and 3).

Let µ ∈ MΓ(a1, . . . , ak; b1, . . . , bk). Then MΓ(a1, . . . , ak; b1, . . . , bk) 6= ∅ and we may
construct µ by Lemma 6. From (22), we have that

0 = Φn+k(z)− αn,1(z)Φn(z) + αn,2(z)Φn−k(z) , n ≥ k , (53)

whenever δ
(n−k+1)
k−1 (z) 6= 0 , where

αn,1(z) =
δ
(n+1)
k−1 (z)δ(n−k+1)

k (z)

δ
(n−k+1)
k−1 (z)

− z
Φn+2(0)
Φn+1(0)

(
κn

κn+1

)2

δ
(n+2)
k−2 (z)

and

αn,2(z) = zk Φn+1(0)
Φn−k+1(0)

(
κn−k

κn

)2 δ
(n+1)
k−1 (z)

δ
(n−k+1)
k−1 (z)

.

Because of (5), (8) and Lemma 5, we have that

lim
n = j mod k

δ(n)
m (z) = ∆(j)

m (z), (54)

lim
n−→∞αn,1(z) = p(z) (55)

and
lim

n−→∞αn,2(z) = zk Ψk+1(0)
Ψ1(0)τ2

k

. (56)

These limits are uniform on any compact subset of IC \
(

k⋃

s=1

{z : ∆(s)
k−1(z) = 0}

)
, because

the degrees of the polynomials involved remain bounded from above.
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Fix j = 1, . . . , k and z0 ∈ Ω = IC \
(

k⋃

s=1

{z : ∆(s)
k−1(z) = 0} ∪ γ(µ)

)
. Take a closed

neighborhood B of z0 also contained in Ω. Because of (54) (for m = k − 1), there exists
ν0 = ν0(z0), such that for all z ∈ B and ν ≥ ν0, we have that δn−k+1

k−1 (z) 6= 0, and the
sequence {Φn(z)} , n = νk + j , ν ∈ IN , satisfies the three-term recurrence relation (53)
for all z ∈ B and ν ≥ ν0. In the sequel, given z0 ∈ Ω, we only consider such values of ν
and n. Notice that if for some z ∈ B, Φn(z) = Φn+k(z) = 0 for a given n then Φn(z) = 0
for all n = νk + j, ν ≥ ν0 − 1.

According to (55) and (56) the coefficients in the three-term recurrence relation have
limits (independent of j) and they are the coefficients of the characteristic equation (32).
Since z0 ∈ IC\γ(µ), the roots of the characteristic equation G±(z0) are different in modulus.
Because of all this, we may use a Theorem of H. Poincaré (see [5, Ch. V, §5, pp 327])
which states that under these conditions, either Ψn(z0) = 0 for all ν ≥ ν0 − 1 or there
exists

lim
ν

Φn+k(z0)
Φn(z0)

, n = νk + j ,

being this limit one of two roots of the characteristic equation; that is, either G+(z0) or
G−(z0).

Let us prove that the limit always exists even in the case when Ψn(z0) = 0, ν ≥ ν0− 1.
In fact, if this is the case, we have that z0 is a common zero for all the polynomials
Ψn, ν ≥ ν0 − 1. Let h be the largest integer such that (z − z0)h divides all Ψn, ν ≥ ν0 − 1.
Since deg Ψn = n for all n, we have that h < ∞. Take Ψ̂n(z) = Ψn(z)/(z − z0)h. The
sequence {Ψ̂n} also satisfies the three term recurrence relation (53) for all z ∈ B and
ν ≥ ν0 and Ψ̂n(z0) 6= 0 for at least one ν ≥ ν0. Therefore, by Poincare’s Theorem there
exists

lim
ν

Ψ̂n+k(z0)
Ψ̂n(z0)

= lim
ν

Ψn+k(z0)
Ψn(z0)

,

because the new sequence of polynomials evaluated at z0 does not give the trivial solution
of the difference equation. (That is, the second limit above must be understood in the
sense of the values obtained in the ratio after cancelling out common factors.)

We must determine which one of these values is the limit for a given z ∈ Ω. Before
doing this, we will prove that if for certain j = 1, . . . , k and z ∈ Ω the limit is G−(z) then
for all j = 1, . . . , k the limit is G−(z). Once this is done, it is obvious that the analogous
statement is true if the limit is G+(z). Certainly, if k = 1 there is nothing to be proved.
So we consider that k ≥ 2.

Assume that
lim
ν

Φn+k(z)
Φn(z)

= G−(z) , n = νk + j , (57)

for given j ∈ {1, . . . , k} and z ∈ Ω. From (20), we have that

0 = δ
(n+1)
k−1 (z)

Φn+k+1(z)
Φn+k(z)

− δ
(n+1)
k (z) + zk Φn+k+1(0)

Φn+1(0)

(
κn

κn+k

)2 Φn(z)
Φn+k(z)

. (58)

Using (54), (5) and (57), we obtain (n = νk + j)

lim
ν

Φn+k+1(z)
Φn+k(z)

=
1

∆(j+1)
k−1 (z)

[
∆(j+1)

k (z)− zk Ψk+1(0)
Ψ1(0)

(
1
τk

)2 1
G−(z)

]
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=
1

∆(j+1)
k−1 (z)

[
∆(j+1)

k (z)−G+(z)
]

(59)

(notice that for z ∈ Ω, ∆(j+1)
k−1 (z) 6= 0 ). In (59) we have also used the fact that

G+(z)G−(z) = zk Ψk+1(0)
Ψ1(0)

(
1
τk

)2

.

If ∆(j+1)
k (z)−G+(z) 6= 0 , then from (59)

lim
ν

Φn+k+1(z)
Φn+k(z)

Φn(z)
Φn+1(z)

= 1

and using (57) it follows that

lim
ν

Φn+k+1(z)
Φn+1(z)

= G−(z) ,

or what is the same, (57) takes place substituting j by j + 1.

We will now show that G+(z) = ∆(j+1)
k (z) implies that z ∈

k⋃

s=1

{
z : ∆(s)

k−1(z) = 0
}

. In

fact, G+(z) = ∆(j+1)
k (z) yields that

0 =
(
∆(j+1)

k (z)
)2 − p(z)∆(j+1)

k (z) + zk Ψk+1(0)
Ψ1(0)

(
1
τk

)2

=
(
∆(j+1)

k (z)
)2

−

∆(j+1)

k (z)− z
Ψj+2(0)
Ψj+1(0)

(
τj

τj+1

)2

∆(j+2)
k−2 (z)


 ∆(j+1)

k (z) + zk Ψk+1(0)
Ψ1(0)

(
1
τk

)2

= z
Ψj+2(0)
Ψj+1(0)

(
τj

τj+1

)2

∆(j+1)
k (z)∆(j+2)

k−2 (z) + zk Ψk+1(0)
Ψ1(0)

(
1
τk

)2

. (60)

On the other hand, we have the identity (valid for all z ∈ IC)

∆(j+1)
k−1 (z)∆(j+2)

k−1 (z)−∆(j+1)
k (z)∆(j+2)

k−2 (z) = zk−1 Ψj+k+1(0)
Ψj+2(0)

(
τj+1

τj+k

)2

. (61)

To prove this identity notice that (see (24))

∆(j+1)
k−1 (z) =

(
z +

Ψj+2(0)
Ψj+1(0)

)
∆(j+2)

k−2 (z)− z
Ψj+3(0)
Ψj+2(0)

(
τj+1

τj+2

)2

∆(j+3)
k−3 (z),

∆(j+1)
k (z) =

(
z +

Ψj+2(0)
Ψj+1(0)

)
∆(j+2)

k−1 (z)− z
Ψj+3(0)
Ψj+2(0)

(
τj+1

τj+2

)2

∆(j+3)
k−2 (z).

Multiplying the first equality by ∆(j+2)
k−1 (z), the second by ∆(j+2)

k−2 (z) and deleting the second
from the first, we get

∆(j+1)
k−1 (z)∆(j+2)

k−1 (z)−∆(j+1)
k (z)∆(j+2)

k−2 (z) =

= z
Ψj+3(0)
Ψj+2(0)

(
τj+1

τj+2

)2 (
∆(j+2)

k−2 (z)∆(j+3)
k−2 (z)−∆(j+2)

k−1 (z)∆(j+3)
k−3 (z)

)
.
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Repeating this process with the right-hand side (k − 1) times, we obtain

∆(j+1)
k−1 (z)∆(j+2)

k−1 (z)−∆(j+1)
k (z)∆(j+2)

k−2 (z) =

= zk−1 Ψj+k+1(0)
Ψj+2(0)

(
τj+1

τj+k

)2 (
∆(j+k)

0 (z)∆(j+k+1)
0 (z)−∆(j+k)

1 (z)∆(j+k+1)
−1 (z)

)

= zk−1 Ψj+k+1(0)
Ψj+2(0)

(
τj+1

τj+k

)2

(∆(m)
0 (z) ≡ 1 and ∆(m)

−1 (z) ≡ 0) which is (61).

Multiplying (61) times z
Ψj+2(0)
Ψj+1(0)

(
τj

τj+1

)2

, we obtain

z
Ψj+2(0)
Ψj+1(0)

(
τj

τj+1

)2

∆(j+1)
k−1 (z)∆(j+2)

k−1 (z)− z
Ψj+2(0)
Ψj+1(0)

(
τj

τj+1

)2

∆(j+1)
k (z)∆(j+2)

k−2 (z) =

= zk Ψj+k+1(0)
Ψj+1(0)

(
τj

τj+k

)2

= zk Ψk+1(0)
Ψ1(0)

(
1
τk

)2

. (62)

If G+(z) = ∆(j+1)
k (z) then (60) takes place and substituting in (62), we obtain

z
Ψj+2(0)
Ψj+1(0)

(
τj

τj+1

)2

∆(j+1)
k−1 (z)∆(j+2)

k−1 (z) = 0.

Therefore, either z = 0 or z ∈
k⋃

s=1

{z : ∆(s)
k−1(z) = 0}.

Finally, let us show that at z = 0

lim
n−→∞

Φn+k(0)
Φn(0)

= G+(0)

thus, there is no j = 1, . . . , k such that (57) takes place at z = 0. Indeed, from (53), we
see that

Φn+k(0)
Φn(0)

=
δ
(n+1)
k−1 (0)δ(n−k+1)

k (0)

δ
(n−k+1)
k−1 (0)

(notice that δ
(n)
m (0) 6= 0 for all n and m). Taking limits, we obtain for all j = 1, . . . , k and

n = νk + j

lim
ν

Φn+k(0)
Φn(0)

= ∆(j+1)
k (0) =

Ψj+k+1(0)
Ψj+1(0)

=
Ψk+1(0)
Ψ1(0)

= ∆(1)
k (0) = G+(0)

which is what we wanted to prove (here, the second and the last equation follow from (17)
and (33), respectively).

Therefore, we have proved that if (57) takes place at z ∈ Ω for a given j it is also true
for j + 1. Repeating this procedure for j + 1 and so on, we obtain the desired result.

Now let us conclude the proof of Theorem 3. From Lemmas 1 and 9, we know that

supp(µ) \ (supp(µ))′ = σp(U) \ γ(µ) , (63)
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that is, isolated mass points of µ are eigenvalues of U not belonging to γ(µ). On the other
hand, for each j = 1, . . . , k and z ∈ Ω we have proved that

lim
ν

φn+k(z)
φn(z)

= lim
ν

κn+k

κn
lim
ν

Φn+k(z)
Φn(z)

= τk lim
ν

Φn+k(z)
Φn(z)

where lim
ν

Φn+k(z)
Φn(z)

is either G+(z) or G−(z). Additionally, we know that if the limit is

G−(z) for some j = 1, . . . , k, then it is G−(z) for all j = 1, . . . , k.

Assume that z ∈ Ω and for a given j = 1, . . . , k , lim
n = j mod k

φn+k(z)
φn(z)

= τkG−(z). Then

lim
n−→∞

φn+k(z)
φn(z)

= τkG−(z).

Since |τkG−(z)| < 1 (see (49)), it follows that

(φ0(z), φ1(z), . . . , φn(z), . . .) ∈ `2 . (64)

From Lemma 1 and (63), we have that z ∈ supp(µ)\
[

k⋃

s=1

{z : ∆(s)
k−1(z) = 0} ∪ (supp(µ))′

]
.

Therefore, ii) in Theorem 3 implies i).

Let z ∈ supp(µ)\
[

k⋃

s=1

{z : ∆(s)
k−1(z) = 0} ∪ (supp(µ))′

]
. In particular, z ∈ Ω, therefore

for each j = 1, . . . , k , lim
n = j mod k

Φn+k(z)
Φn(z)

exists. If for some j = 1, . . . , k the limit is G+(z),

then lim
n = j mod k

φn+k(z)
φn(z)

= τkG+(z). But |τkG+(z)| > 1 according to (49). Therefore,

(φ0(z), φ1(z), . . . , φn(z), . . .) /∈ `2

which contradicts (63). Hence, for all z ∈ supp(µ) \
[

k⋃

s=1

{z : ∆(s)
k−1(z) = 0} ∪ (supp(µ))′

]

and all j = 1, . . . , k

lim
n−→∞

Φn+k(z)
Φn(z)

= G−(z) .

This proves that i) in Theorem 3 implies iii). Since ii) is a trivial consequence of iii),
with this we conclude the proof of Theorem 3. Let us proceed with the proof of Theorem
2.

Now, we know that for z ∈ Ω \ supp(µ)

lim
n−→∞

Φn+k(z)
Φn(z)

= G+(z) .

In order to prove that this limit is uniform on each compact subset of Ω\supp(µ) it suffices

to show that the family
{

Φn+k(z)
Φn(z)

}
, n = νk + j , j fixed, is normal for all sufficiently

large ν; that is, uniformly bounded on each compact subset of the given region Ω\supp(µ).
We do this by showing that if z0 ∈ Ω \ supp(µ), then on a sufficiently small neighborhood
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D(ε ; z0) = {z : |z − z0| < ε} the given family is uniformly bounded for all sufficiently
large ν. In the sequel j = 1, . . . , k and z0 ∈ Ω\ supp(µ) are fixed, n = νk + j. There exists
a closed neighborhood B of z0 contained in Ω\ supp(µ) and ν0 such that for all z ∈ B and
ν ≥ ν0 the three term recurrence relation (53) takes place. We only consider such z and
ν.

Whenever φn−k(z) 6= 0 6= φn(z) formula (53) may be rewritten as follows

φn+k(z)
φn(z)

=
κn+k

κn
αn,1(z)− κn+k

κn−k
αn,2(z)

1
φn(z)

φn−k(z)

.

At point z0 this relation also takes place for all sufficiently large ν. This is a consequence
of the fact that

lim
ν

φn+k(z0)
φn(z0)

= τkG+(z0) 6= 0

because then either φn(z0) 6= 0 for all sufficiently large ν or z0 is a zero of equal multiplicity
of all the polynomials for all sufficiently large ν which serves the same purpose. Notice
that

τkG+(z) + τkG−(z) = τkp(z) , τkG+(z)τkG−(z) = zk Ψk+1(0)
Ψ1(0)

.

Therefore,

φn+k(z)
φn(z)

− τkG+(z0) =
κn+k

κn
αn,1(z)− τkp(z0) +

κn+k

κn−k
αn,2(z)




1
τkG+(z0)

− 1
φn(z)

φn−k(z)




+
1

τkG+(z0)

(
Ψk+1(0)
Ψ1(0)

zk
0 −

κn+k

κn−k
αn,2(z)

)
. (65)

Take ρ > 0 such that ρ < min{1− |τkG−(z0)| , |τkG+(z0)| − 1} (see (49)). We have

lim
ν

κn+k

κn
αn,1(z) = τkp(z) , lim

ν

κn+k

κn−k
αn,2(z) = zk Ψk+1(0)

Ψ1(0)

uniformly on B. Because of this and the continuity of the limit functions, there exists
ε1 > 0 and ν1 ∈ IN such that for all z ∈ D(ε1 ; z0) ⊂ B and ν ≥ ν1

∣∣∣∣
κn+k

κn
αn,1(z)− τkp(z0)

∣∣∣∣ <
1− (|τkG−(z0)|+ ρ)

2
ρ , (66)

∣∣∣∣
κn+k

κn−k
αn,2(z)− zk

0

Ψk+1(0)
Ψ1(0)

∣∣∣∣ <
1− (|τkG−(z0)|+ ρ)

2
ρ , (67)

and ∣∣∣∣∣∣∣∣

κn+k

κn−k
αn,2(z)

τkG+(z0)

∣∣∣∣∣∣∣∣
< |τkG−(z0)|+ ρ . (68)
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Using (65)-(68), we obtain that for all z ∈ D(ε1 ; z0) and ν ≥ ν1 such that φn−k(z) 6= 0 6=
φn(z) ∣∣∣∣

φn+k(z)
φn(z)

− τkG+(z0)
∣∣∣∣ < [1− (|τkG−(z0)|+ ρ)] ρ

+ (|τkG−(z0)|+ ρ)

∣∣∣∣∣∣∣∣

φn(z)
φn−k(z)

− τkG+(z0)

φn(z)
φn−k(z)

∣∣∣∣∣∣∣∣
.

(69)

Following the arguments above, we chose ν1 so that (69) takes place at z = z0 for all
ν ≥ ν1 even if this point is a zero of infinitely many polynomials φn.

Since lim
ν

φn(z0)
φn−k(z0)

= τkG+(z0). Choose and fix ν2 ≥ ν1 such that

∣∣∣∣
φn2(z0)

φn2−k(z0)
− τkG+(z0)

∣∣∣∣ < ρ .

Using the analyticity of φn2−k(z) , φn2(z) , and the continuity of
φn2(z)

φn2−k(z)
, we can find

0 < ε2 < ε1 such that for all z ∈ D(ε2 ; z0) \ {z0} , φn2−k(z) 6= 0 6= φn2(z) and
∣∣∣∣

φn2(z)
φn2−k(z)

− τkG+(z0)
∣∣∣∣ < ρ . (70)

For z ∈ D(ε2 ; z0), from (70) and the definition of ρ, we get
∣∣∣∣

φn2(z)
φn2−k(z)

∣∣∣∣ > |τkG+(z0)| − ρ > 1 . (71)

Combining (69)-(71), we obtain
∣∣∣∣
φn2+k(z)
φn2(z)

− τkG+(z0)
∣∣∣∣ < ρ , z ∈ D(ε2 ; z0) ,

which is (70) for ν = ν2 + 1. This inequality implies that
∣∣∣∣
φn2+k(z)
φn2(z)

∣∣∣∣ > |τkG+(z0)| − ρ > 1 , z ∈ D(ε2 ; z0)

which is (71) for ν = ν2 + 1. In particular, we obtain that φn2+k(z) 6= 0 for all z ∈
D(ε2 ; z0) \ {z0}. We are now in condition of using (69) for the index ν2 + 1 obtaining

∣∣∣∣
φn2+2k(z)
φn2+k(z)

− τkG+(z0)
∣∣∣∣ < ρ , z ∈ D(ε2 ; z0) .

Repeating this process consecutively for all ν ≥ ν2, we obtain that
∣∣∣∣
φn+k(z)
φn(z)

− τkG+(z0)
∣∣∣∣ < ρ , z ∈ D(ε2 ; z0)

for all ν ≥ ν2 , n = νk + j. In other words,

φn+k(z)
φn(z)

∈ D(ρ ; τkG+(z0)) , z ∈ D(ε2 ; z0) , ν ≥ ν2 , (72)

20



which is what we needed to prove.
Therefore, we have obtained uniform convergence in (51) on each compact subset

of Ω \ supp(µ) as stated in Theorem 2. The other limit relations in (51) are a trivial
consequence of the definition of MΓ(a1, . . . , ak; b1, . . . , bk) and (8).

That (supp(µ))′ = γ(µ) was proved in Lemma 9, and the fact that on any compact
subset K of Ω \ supp(µ) there are no zeros of the polynomials φn(z) for all sufficiently
large n is a consequence of (72) and the compactness principle. The proof of Theorem 2
is concluded.
2. Before stating the next result let us introduce some new notation. As above µ is a
probability measure on Γ and {Φn(z)} , the corresponding sequence of monic orthogonal
polynomials. Set

Fµ(z) = F (z) =
∫

ζ + z

ζ − z
dµ(ζ)

the associated Caratheodory function, and

Θn(z) =
∫

ζ + z

ζ − z
[Φn(ζ)− Φn(z)] dµ(ζ) (73)

the n-th degree second kind monic polynomial. From (73), we have that

Θn(0) = −Φn(0) . (74)

Therefore, if µ ∈ MΓ(a1, . . . , ak; b1, . . . , bk), it follows that {Θn(z)} is a sequence of monic
orthogonal polynomials with respect to a measure µ1 ∈ MΓ(a1, . . . , ak; b1, . . . , bk). Denote
θn(z) the n-th orthonormal polynomial with respect to the probability measure µ1. From
(8) and (74), we have that

θn(z) = κnΘn(z) (75)

where κn is the leading coefficient of the n-th orthonormal polynomials φn with respect
to µ.

The following formulas are well-known (see e.g. (1.17) and (1.19) in [10])

θn(z)φ∗n(z) + φn(z)θ∗n(z) = 2zn (76)

and
F (z)φn(z) + θn(z) =

∫
ζ + z

ζ − z
φn(ζ)dµ(ζ) (77)

where, as usual, φ∗n , θ∗n denote the reversed polynomials. In particular, (77) is a conse-
quence of (73) and (75).

Lemma 10. Let µ be a probability measure for which Szegő’s condition is not satisfied.
Then

σp(U(µ)) ∩ σp(U(µ1)) = ∅. (78)

Moreover, if µ ∈ MΓ(a1, . . . , ak; b1, . . . , bk) then

γ(µ) = (supp(µ1))′ (79)

and
[supp(µ) ∩ supp(µ1)] \ γ(µ) = ∅. (80)
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Proof. It is well known that Szegő’s condition is satisfied if and only if
∞∑

n=0

|Φn(0)|2 < +∞.

Using (74) we get that µ1 doesn’t satisfy Szegő’s condition. Therefore, the spectra of
U(µ1) and U(µ) are contained in Γ. Let z ∈ σp(U(µ)) ∩ σp(U(µ1)), then |z| = 1. From
Lemma 1 and (76), using the Cauchy-Schwartz inequality we arrive to a contradiction.
Notice that |φ∗n(z)| = |φn(z)| and |θ∗n(z)| = |θn(z)| when |z| = 1. Thus (78) takes place.

We already pointed out that in case that µ ∈ MΓ(a1, . . . , ak; b1, . . . , bk) then µ1 ∈
MΓ(a1, . . . , ak; b1, . . . , bk); therefore, (79) follows from Theorem 2. Finally, (79) and
Lemma 1 tell us that [supp(µ) ∩ supp(µ1)] \ γ(µ) may only contain isolated mass points
belonging to the spectra of U(µ) and U(µ1), but such points do not exist according to
(78). Hence (80) takes place.

Theorem 4. Let µ ∈ MΓ(a1, . . . , ak; b1, . . . , bk). Then

lim
n−→∞

∥∥∥∥
θn(z)
φn(z)

+ F (z)
∥∥∥∥
1/n

K

≤
(

inf
K
|τkG+(z)|

)−1/k

< 1 (81)

and

lim
n−→∞

∥∥∥∥
θ∗n(z)
φ∗n(z)

− F (z)
∥∥∥∥
1/n

K

≤
(

inf
K
|τkG+(z)|

)−1/k

< 1 (82)

where K is any compact subset of IC \
(

k⋃

s=1

{z : ∆(s)
k−1(z) = 0} ∪ supp(µ)

)
. Moreover, let

z0 be an isolated point of supp(µ). Then, for all sufficiently small r > 0 there exists n0

such that for all n ≥ n0 , φn has exactly one zero contained in {z : |z − z0| < r}.
Proof. As an immediate consequence of (51), we obtain that

lim
n−→∞ |φn(z)|1/n = |τkG+(z)|1/k (83)

uniformly on each compact subset K ⊂ IC \
(

k⋃

s=1

{z : ∆(s)
k−1(z) = 0} ∪ supp(µ)

)
. On the

other hand, from (77), we have
∣∣∣∣
θn(z)
φn(z)

+ F (z)
∣∣∣∣ = | 1

φn(z)

∫
ζ + z

ζ − z
φn(ζ)dµ(ζ)| ≤

≤ 1
|φn(z)|

(∫ ∣∣∣∣
ζ + z

ζ − z

∣∣∣∣
2

dµ(ζ)

)1/2 (∫
|φn(ζ)|2 dµ(ζ)

)1/2

≤

≤ c1

|φn(z)|

(84)

where

c1 = c1(K) = sup
z∈K

(∫ ∣∣∣∣
ζ + z

ζ − z

∣∣∣∣
2

dµ(ζ)

)1/2

< +∞.

Relation (81) follows immediately from (83)-(84). Since
θn(z)
φn(z)

+ F (z) is holomorphic at

∞, using the maximum principle, we have that (81) is also true on any compact subset K ⊂
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IC \
(

k⋃

s=1

{z : ∆(s)
k−1(z) = 0} ∪ supp(µ)

)
. (81) and (82) are equivalent from the definition

of reversed polynomial and the fact that F (1/z) = −F (z) .
Take z0 an isolated point in supp(µ). That is z0 ∈ supp(µ) \ γ(µ). From (80), we have

that z0 /∈ supp(µ1). Therefore, the distance d from z0 to the convex hull conv(supp(µ1))
of supp(µ1) is greater than zero. Take r > 0 sufficiently small so that {z : |z − z0| ≤ r}
contains no point from the set

[
k⋃

s=1

{z : ∆(s)
k−1(z) = 0} ∪ conv(supp(µ1)) ∪ supp(µ)

]
\ {z0}.

It is well known that the zeros of orthogonal polynomials lie in the convex hull of
the support of the orthogonality measure. Thus, for all n ∈ ZZ+ , θn has no zero in
{z : |z − z0| ≤ r}. Take K = {z : |z − z0| = r}, from (81), we know that

lim
n−→∞

θn(z)
φn(z)

= −F (z)

uniformly on K and F (z) 6= 0 , z ∈ K (the zeros of F (z) = Fµ(z) are the poles of Fµ1(z),

since Fµ1(z) =
1

Fµ(z)
). Therefore, by the argument principle,

lim
n−→∞

1
2π

∫

K

(
θn(z)
φn(z)

)′

θn(z)
φn(z)

dz =
1
2π

∫

K

F ′(z)
F (z)

dz = −1 (85)

because F has no zero in {z : |z − z0| < r} and exactly a simple pole at z0 since it is an
isolated mass point of µ. The left-hand of (85) equals, for all sufficiently large n, minus
the number of zeros that φn has inside of K (since θn has none). These integers according
to (85) tend to −1; therefore, for all sufficiently large n must equal −1. Hence we have
proved the final statement of Theorem 4.

Remark 1. For measures in MΓ(a1, . . . , ak; b1, . . . , bk), the asymptotic behavior of the
zeros is well described by Theorems 2 and 4. Each point in supp(µ) \ γ(µ) “attracts”
exactly one zero. The rest go to

k⋃

s=1

{z : ∆(s)
k−1(z) = 0} ∪ γ(µ).

The points in
k⋃

s=1

{z : ∆(s)
k−1(z) = 0} may attract zeros or not. It is easy to see using the

argument principle for the sequence
{

Φn+k

Φn

}
, n = kν + j , ν ∈ IN , that for each fixed

j = 1, . . . , k, there exists r > 0 sufficiently small such that for all sufficiently large ν the
amount of zeros of these polynomials inside the neighborhood of radius r of a point in
k⋃

s=1

{z : ∆(s)
k−1(z) = 0} is fixed.
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4. Corollaries

1. From Theorems 2 and 3, we obtain

Corollary 1. Let µ ∈ MΓ(a1, . . . , ak; b1, . . . , bk). Then

lim
n=j mod k

Φn+1(z)
Φn(z)

=
[
∆(j+1)

k (z)−G−(z)
] 1

∆(j+1)
k−1 (z)

(86)

uniformly on each compact subset of IC \
(

k⋃

s=1

{z : ∆(s)
k−1(z) = 0} ∪ supp(µ)

)
and

lim
n=j mod k

Φn+1(z)
Φn(z)

=
[
∆(j+1)

k (z)−G+(z)
] 1

∆(j+1)
k−1 (z)

(87)

for each z ∈ supp(µ) \
(

k⋃

s=1

{z : ∆(s)
k−1(z) = 0} ∪ γ(µ)

)
.

Proof. We must simply use (58) and (51) or (52) respectively in case that we wish to
prove (86) or (87).

Remark 2. Since
κn

κn+1
=

√
1− |Φn+1(0)|2 and lim

n = j mod k
|Φn+1(0)| = aj+1 the corre-

sponding asymptotic formulas for the orthonormal polynomials follow immediately. On
the other hand,

∆(j+1)
k (z)− z

Ψj+2(0)
Ψj+1(0)

(
τj

τj+1

)2

∆(j+2)
k−2 (z) = p(z) and G+(z) + G−(z) = p(z) ;

therefore,

∆(j+1)
k (z)−G−(z) = z

Ψj+2(0)
Ψj+1(0)

(
τj

τj+1

)2

∆(j+2)
k−2 (z) + G+(z)

and

∆(j+1)
k (z)−G+(z) = z

Ψj+2(0)
Ψj+1(0)

(
τj

τj+1

)2

∆(j+2)
k−2 (z) + G−(z).

These identities may be used for giving a different (equivalent) expression for the right-
hand sides of (86) and (87).

In the next result f (m) denotes the m-th derivate of f .

Corollary 2. Let µ ∈ MΓ(a1, . . . , ak; b1, . . . , bk). Then for each fixed m ∈ ZZ+

lim
n−→∞

Φ(m)
n+k(z)

Φ(m)
n (z)

= G+(z) , (88)

lim
n−→∞

∣∣∣Φ(m)
n (z)

∣∣∣
k/n

= |G+(z)| , (89)
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lim
n−→∞

kΦ(m+1)
n (z)

nΦ(m)
n (z)

=
G

(1)
+ (z)

G+(z)
, (90)

and

lim
n−→∞

n

k


Φ(m+1)

n+k (z)

Φ(m+1)
n (z)

− Φ(m)
n+k(z)

Φ(m)
n (z)


 = G+(z) , (91)

uniformly on each compact subset of IC \
(

k⋃

s=1

{z : ∆(s)
k−1(z) = 0} ∪ supp(µ)

)
.

Proof. The proof of this Corollary follows the same line of reasoning as for the proof of
Corollary 6 in [1] so we will only sketch the proof.

One starts with m = 0 for which (88) is the main statement of Theorem 2. Then,

(89) follows easily from (88). In order to prove (90), notice that

{
k

n

Φ(1)
n (z)

Φn(z)

}
, n ≥ 0 , is

normal in IC\
[

k⋃

s=1

{z : ∆(s)
k−1(z) = 0} ∪ supp(µ)

]
. This is an immediate consequence of the

formula
k

n

Φ(1)
n (z)

Φn(z)
=

k

n

n∑

j=1

1
z − zn,j

,

where zn,1, . . . , zn,n are the n (not necessarily distinct) zeros of Φn, and the fact that given

a compact set K ⊂ IC \



k⋃

j=1

{z : ∆(s)
k−1(z) = 0} ∪ supp(µ)


, for all sufficiently large n, the

zeros of Φn are bounded away from K. Thus in order to prove (90) it suffices to show that

on a segment [c, d] ⊂ IR \



k⋃

j=1

{z : ∆(s)
k−1(z) = 0} ∪ supp(µ)




lim
n−→∞Re

(
k

n

Φ(1)
n (x)

Φn(x)

)
= Re


G

(1)
+ (x)

G+(x)


 , x ∈ [c, d]. (92)

Now, take into consideration that

Re

(
k

n

Φ(1)
n (x)

Φn(x)

)
=

k

2n

k∑

j=1

(
1

x− zn,k
+

1
x− zn,k

)
=

(
k

2n
log |φn(x)|2

)(1)

x
(93)

where (·)(1)
x denotes the derivate with respect to x.

On the other hand, from (89), we have

lim
n−→∞

(
k

n
log |φn(x)|

)(1)

x
= (log |G+(x)|)(1)

x = Re (log G+(x))(1)
x = Re


G

(1)
+ (x)

G+(x)


 . (94)

From (94) and (93), we obtain (92) as needed.
Using (88), (90) (for m = 0) and the identity

n
Φn(z)

Φ(1)
n (z)

(
Φn+k(z)
Φn(z)

)(1)

= n


Φ(1)

n+k(z)

Φ(1)
n (z)

− Φn+k(z)
Φn(z)


 ,
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we get (91) for m = 0 which in turn implies (88) for m = 1. We are able to repeat the
process for m = 1 and so forth for each m ∈ ZZ+ .

Remark 3. Theorems 2-4 and Corollaries 1-2 yield analogous results for the corresponding
relations when the reversed polynomials are considered.

2. Let us prove Theorem 1. Obviously, (6) implies that µ ∈ MΓ(a; b). The reversed
implication and the other statements of Theorem 1, when a ∈ (0, 1), are contained in
Theorems 2-4. Notice that for k = 1 , {z : ∆(1)

k−1(z) = 0} = ∅ since ∆(1)
0 (z) ≡ 1.

When a = 1, the existence of

lim
n−→∞

κn

κn+1
= lim

n−→∞

√
1− |Φn+1(0)|2 = 0 (95)

is immediate. Nonetheless, our proof above of ratio asymptotics encounters some difficul-
ties. The main one is that we can no longer construct a representative measure of type µ
for the class MΓ(a; b) as we did in Lemma 6 (or µ̂ of Lemma 7). This is so because from
(5), |b| = 1, and {bn} is no longer a sequence of reflection coefficients. On the other hand,
in this particular case things simplify quite a bit.

First of all notice that for µ ∈ MΓ(1; b)

U(µ) + bI

(where I is the identity) is compact; therefore, by Weyl’s Theorem

supp(µ) = σ(U) = {−b} ∪ (supp(µ) \ {−b})

where supp(µ) \ {−b} consists of at most a denumerable set of isolated points in Γ \ {−b}.
Secondly, from (16), we have

0 = Φn+1(z)−
(

z +
Φn+1(0)
Φn(0)

)
Φn(z) + z

κ2
n−1

κ2
n

Φn+1(0)
Φn(0)

Φn−1(z) , n ≥ 1 .

In applying Poincaré’s Theorem, from (2) and (95) the corresponding characteristic equa-
tion is

0 = λ2 − (z + b)λ

whose roots are
G+(z) = λ+ = z + b ; G−(z) = λ− = 0.

Therefore
|G+(z)| 6= |G−(z)| ⇐⇒ G+(z) 6= G−(z) = 0 ⇐⇒ z 6= −b.

The proof continues along the same lines from this point on. We leave the details to
the reader.

Corollary 3. Let µ ∈ MΓ(a; b) , a ∈ (0, 1], then

lim
n−→∞

Φ∗n+1(z)
Φ∗n(z)

= zG+

(
1
z

)
= bG+(z)
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and
lim

n−→∞Φn+1(0)
Φ∗n(z)
Φn(z)

= G+(z)− z ,

uniformly on each compact subset of IC \ supp(µ). Also

lim
n−→∞

Φ∗n+1(z)
Φ∗n(z)

= zG−
(

1
z

)
= bG−(z) , z ∈ supp(µ) \ γ(µ),

where γ(µ) = {−b} in case that a = 1.

The proof may be carried out using the same scheme as for Corollary 1 in [4].

Remark 4. Theorems 2-4 may be extended to the case when µ ∈ MΓ(a1, . . . , ak; b1, . . . , bk)
and for some i ∈ {1, . . . , k} , ai = 1. A representative µ does not exist, but it is not hard
to show that in this case

supp(µ) = {z : p(z) = 0} ∪ (supp(µ) \ {z : p(z) = 0})

and supp(µ) \ {z : p(z) = 0} consists of at most a denumerable set of isolated points in
Γ \ {z : p(z) = 0}. Moreover,

p(z) = ∆(i)
k (z)

where ∆(i)
k (z) is the determinant constructed with the limit values given by (5). There is no

problem in using Poincaré’s Theorem to get the corresponding result on ratio asymptotics.
Here, the characteristic equation is

0 = λ2 − p(z)λ ,

and
G+(z) = p(z) , G−(z) = 0 .

For the class MΓ(1, b), we have that p(z) = z + b. In [12, Th. 6], it was proved that
the structure of supp(µ) shown above when p(z) = z + b is not only a necessary but also a
sufficient condition for µ to be in MΓ(1, b). It would interesting to prove that this is true
in general for µ ∈ MΓ(a1, . . . , ak; b1, . . . , bk) and for some i ∈ {1, . . . , k} , ai = 1.

Let

Kn(z, ζ) =
n−1∑

k=0

φk(z)φk(ζ) ,

and
ωn(z) = K−1

n (z, z) ,

where φn denotes the n-th orthonormal polynomial.

Corollary 4. Let µ ∈ MΓ(a1, . . . , ak; b1, . . . , bk) , aj ∈ (0, 1] , j = 1, 2, . . . , k. Then

lim
n = j mod k

Kn(z, ζ)
φn(z)φn(ζ)

=
1

1− zζ

[
(ηj(z)− z)(ηj(ζ)− ζ)

a2
j+1

− 1

]
, j = 1, 2, . . . , k , (96)
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uniformly on each compact subset of

[
IC \

(
k⋃

s=1

{ξ : ∆(s)
k−1(ξ) = 0} ∪ supp(µ)

)]2

, where

ηj(ξ) =
∆(j+1)

k (ξ)−G−(ξ)

∆(j+1)
k−1 (ξ)

, j = 1, 2, . . . , k.

Moreover, if aj = 1 then the right hand of (96) is 0.
In particular, if µ ∈ MΓ(a; b) , a ∈ (0, 1] , we have

lim
n−→∞

Kn(z, ζ)
φn(z)φn(ζ)

=
C2(γ)

G+(z)G+(ζ)− C2(γ)
, (97)

uniformly on each compact subset of
(
IC \ supp(µ)

)2
, where γ = γ(µ) and C(γ) denotes

the logarithmic capacity of γ. In this case we have

lim
n−→∞

1
ωn(z)|φn(z)|2 =

C2(γ)
|G+(z)|2 − C2(γ)

, (98)

uniformly on each compact subset of IC \ supp(µ). Moreover, if a 6= 1 the numerators of
(97) and (98) are different from zero on the indicated sets, thus

lim
n−→∞

φn(z)φn(ζ)
Kn(z, ζ)

=
G+(z)G+(ζ)− C2(γ)

C2(γ)
,

uniformly on each compact subset of (IC \ supp(µ))2 and

lim
n−→∞ωn(z)|φn(z)|2 =

|G+(z)|2 − C2(γ)
C2(γ)

,

uniformly on each compact subset of IC \ γ.

Proof. From the Christoffel formula we obtain

Kn(z, ζ)
φn(z)φn(ζ)

=
1

1− zζ

[(
Φn+1(0)

φ∗n(z)
φn(z)

) (
Φn+1(0)

φ∗n(ζ)
φn(ζ)

)
1

|Φn+1(0)|2 − 1

]
.

Taking into account (37) in [4] and (86) in Corollary 1 we obtain (96). For µ ∈ MΓ(a; b)
the expression on the right hand of (96) reduces to the right hand of (97). To see how this
is done look at the proof of Corollary 2 and Lemma 6 in [4].

When aj = 1 for some j ∈ {1, 2, . . . , k} we have G−(ξ) = 0 and ∆(j+1)
k (ξ) = (z +

bj+1)∆
(j+1)
k−1 (ξ). Thus, from (5) the right hand of (96) is

1
1− zζ

(
|bj+1|2
a2

j+1

− 1

)
= 0 .
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