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Abstract 

It is well-known that a linear regression among the levels of independent highly persistent processes yields 

high values of the corresponding coefficient of determination along with divergent I-ratios and low values of 

the Durbin-Watson statistic. In fact, such a behaviour of the customary OLS statistics has become a sort of 

definition of the so-called spurious regressions in econometrics. In this paper, however, we show how these 

spurious stylized facts also arise among nonstationary (fractionally) cointegrated processes. 
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"Econometricians have found their Philosophers' Stone; it 
is called regression analysis and is used for transforming 
data into "significant" results! Deception is easily 
practised from false recipes intended to simulate useful 
findings, and these are derogatively referred by the 
profession as "nonsense regressions" ( ... )" . 
(David F. Hendry, "Econometrics - Alchemy or Science? ") 

1. INTRODUCTION 

If we run a regression among the levels of independent nonstationary time series, then 

we shall obtain divergent t-ratios along with high values of the coefficient of multiple 

correlation R 2 or the corrected coefficient JP and an extremely low value for the 

Durbin-Watson (DJ¥) statistic. This is the so-called spurious regression problem. 

Granger and Newbold (1974, 1986) through simulations, and Phillips (1986, 1998) 

analytically, showed how these findings apply in the case where such a spurious or 

nonsense regression is composed by independent 1(1) or near 1(1) processes. 

In recent years, it has been known that these spurious stylized facts do not hold only 

for independent 1(1) processes but also for other persistent processes, such as higher 

order integrated processes (Haldrup, 1994, Marmol, 1995), nonstationary fractionally 

integrated processes (Tsay and Chung, 1995, Cappuccio and Lubian, 1997, Marmol, 

1998) or stochastic unit root processes (Granger and Swanson, 1997). Furthermore, 

Haldrup (1994), Tsay and Chung (1995), Hassler (1996) and Marmol (1996) show that 

the spurious problem also appears in situations where the underlying processes are 

allowed to have different orders of integration or memory parameters. 

On the other hand, Tsay and Chung (1995) show that if we regress a stationary long 

memory processes on a constant term and another independent stationary long memory 

process, then as long as their memory parameters sum up to a value greater than 1/2, 
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the t-ratios become divergent and spurious effects occur. Moreover, recently Granger et 

al. (1998) find evidence that similar results are found with positively auto correlated 

series on long moving averages. Therefore, it seems that it is the long memory or strong 

temporal dependence, instead of only nonstationarity or lack of ergodicity, that causes 

such spurious effects. Nonstationarity in one or all of the variables only helps to 

accelerate the divergence rates. 

By contrast, it is well-known (see, e.g., BaneIjee et aI., 1986; Phillips and Dudauf, 

1986) that when the processes are 1(1) but cointegrated with 1(0) errors, the regression 

coefficients and (1 - R 2) are T-consistent while the t-ratios and the D Ware bounded in 

probability. Similar qualitative results have been provided by Phillips (1988) and 

Dolado and Marmol (1998) for near-integrated and nonstationary fractionally integrated 

processes, respectively. Of course, for some values of the sample size, T, and for some 

values of the nuisance parameters of the underlying Data Generating Process (D GP) , 

one can obtain low values of the D W statistic jointly with high values of R 2 and the t

ratios, but in general, the spurious stylized facts are no longer present in co integrated 

systems with weakly stationary 1(0) errors. 

All the above results have led many authors to claim that a high value of R2 or lP 

combined with a low value of D Wand a highly significant value of the corresponding t

statistic is no indication of a true relationship. In this paper, however, we demonstrate, 

both theoretically and by means of a small Monte Carlo experiment that these spurious 

stylized facts do also apply in general in the cointegrated case as long as the equilibrium 

errors are fractionally integrated. More precisely, we show that in this case the t-ratios 

always diverge and R 2 ~ 1, whereas the D W converges in probability to zero 
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whenever the error tenn has memory parameter, say 8, in the nonstationary range, i.e., 

8> 1/2. Otherwise, i.e. if 8 < 1/2, the DW statistic has a well-defined limiting 

distribution though even in this latter case D W takes values close to zero except for 

very small values of 8. This paper, hence, proves the observational equivalence on the 

basis of the customary OLS statistics between spurious and a large and important class 

of genuine regressions. 

2. THE MODEL AND ASUMPTIONS 

To keep things simple (and without loss of generality), our main concern will be with 

a co integrated system of fractionally integrated processes that are generated by the 

triangular representation 

(1) (t = 1,2, ",), 

where 

and 

(3) 

Let {Ut} ~'" = {(u 1t , UZt ),}:'" be a zero mean weakly stationary 1(0) sequence of random 

2 x 1 vectors satisfying that each element of {Ut} ~'" is either Lr - bounded for r> 2, 

and L2 - NED of size -1/2 on a a -mixing sequence of size - r/{r - 2), or 
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uniformly square-integrable, and L2 - NED of size -1/2 on a fj; - mixing sequence of 

size -r/(2(r-l)), r2::2.1 

Define now 

where 11(L) is a diagonal 2 x 2 lag polynomial matrix having diagonal elements 

; E[O, 1]. Then, following Davidson and de Jong (1999), we have that as the sample 

size Tt Cl) , 

where W(;) is a functional of a 2 x 1 vector of fractional Brownian motions as 

introduced by Mandelbrot and Van Ness (1968), and with the symbol "=>" denoting 

weak convergence of the associated probability measures. 

Therefore, from expression (5) we obtain that 

and 

(7) Zt = Op(T'5-I/2). 

3. OLS ASYMPTOTICS UNDER FRACTIONAL COINTEGRATION 

Assume now that we are interested in the limiting distribution of the OLS estimator of 

fJ in the DGP given by expressions (1)-(3), 

I While this assumption rules out nonstationarity in the fonn of trending sequences of L2 - and 

Lr - nonns, for example, it allows for many weakly dependent time series including a broad class of 

data generating mechanisms such a finite order ARMA models under very general conditions. 
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(8) 

and associated statistics, namely, 

" 

(9) 
f3-f3 

t fJ =--, 
s· 

fJ 

(10) 

and 

(11) 

where all summations ~ run from t = 1 to T. 

THEOREM 1: Given the DGP (1)-(3), then as Tt 00, 

(12) 

(13) 

(14) 

(15) 

and 

" A {o (TO-d) ifo>torO<o<tandd+o>l,Vd, 
f3 ~ f3, with f3 = OPp (TI-2d ) , if 0 < 0 < t and d + 0 < 1, Vd 

ifo>t,vd 

if 0 < 0 < t and d + J> 1, Vd, 

if 0 < 0 < t and d + 0 < 1, Vd 

{
o (T-2(d-O») if 0 >.1 Vd 

2 P . 2 P 2, 
R ~ 1 , with (1 - R ) = (1-2d). 1 ' 

Op T ifo<T,Vd 
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where PI (5) stands for the first lag correlation coefficient of Zt and where the symbol 

"~ " denotes convergence in probability. 

PROOF: See Appendix. 

From this theorem the following comments are in order. First, the least squares 

regression coefficient f3 is a consistent estimator of the corresponding theoretical 

counterpart for Vd, 5. Second, if we focus the attention on the inferential results, we 

can observe from (13) that the t-ratio always diverges, at a rate that depends on whether 

the error term is a nonstationary or stationary fractionally integrated process. Only when 

5 = 0, i.e., only when the error term is a weakly stationary 1(0) process, the t-ratio has a 

well-defined limiting distribution. Third, as regards the coefficient of multiple 

correlation, we have from (14) that it tends to one in probability for Vd, 5, as in the 

standard d = 1, 5 = 0 case; see, i.e., Banetjee et al. (1986). Therefore, in a fractionally 

co integrated system, with an increasing probability, we are likely to obtain high values 

of R 2. Please, notice that the rate of convergence to unity is smaller in the 

nonstationary 5> 1/2 case. 

Lastly, consider the performance of the DW statistic. From (15) we deduce that it 

converges to zero (at different rates) whenever 5> 1/2 . Low values of D W in this case, 

thus, must be expected in fractionally cointegrated systems with nonstationary 

equilibrium errors. On the other hand, from (16) we learn that DW converges in 

probability to 2(1- PI (5)) as in the conventional 1(0) case if 5 < 1/2. Notice, however, 
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the dependency of the DW statistic on the memory parameter 0 of the error terin 

through PI' In fact, it can be proved that DWand 0 are inversely related, and hence, the 

smaller the value of 0, the closer is the D W statistic of zero, other things held constants. 

For instance, assume the empirically relevant case where Zt is a stationary 

ARF1MA( 0,0,1) process, 

Then, it follows from Hosking (1981, Lemma 2) that 

(18) 
(1 + 02 )0(2 - 0) - 20( 1 - 0 + 02

) 

PI (0,0) = (1- oX2 _ o){ 1 + 02 - 200/(1- a)} , 

and after some tedious algebra, we get 

8DW(o,O) 
00 >0 and 

8DW(o,O) 
00 <0, 

uniformly in 101 < 1 and 0< 0 < 1/2. Table 1 below shows the theoretical values of the 

D W statistic for selected values of 0 and o. 

TABLE 1 ABOUT HERE 

4. SOME MONTE CARLO EVIDENCE 

In order to gam further insights into the finite sample performance of the OLS 

statistics in a fractionally cointegrated system, we have conducted the following small 

experiment. Let XI'YI be two 1(1) processes in the conditional model 
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(19) y/ =/Jx/ +Z/ f3= 1, 

(20) ~1=Ull' 

(21) l1°zl =u21 ' 0<0<1, 

where ult ,u2t are generated as i.i.d. standard Gaussian variables, such that 

E( Ul/ u2S ) = 0 for all t, s, in order to avoid second-order bias problems. Further, the 

sample size was set equal to 100. The results obtained over 5,000 simulations are 

collected in Table 2. It is clear from this table that diverging t-ratios associated with 

high values of R2 and Iow values of DW are not (only), in general, spurious stylized 

facts. 

TABLE 2 ABOUT HERE 

5. CONCLUSIONS 

Herein we have shown, both, theoretically and by means of some experimental 

evidence, how the so-called spurious stylized facts do also arise in case of fractional 

cointegration. In this sense, perhaps the most important finding of the paper is that 

conventional inference remains invalid not only in the spurious but in the cointegrated 

case whenever the equilibrium errors are fractionally integrated. 

This, in turn, leads naturally to the conclusion that tests of statistical hypothesis of 

interest crucially depend on a pre-classification of the variables of interest by their 

degrees of integration as well as on the memory parameters of the corresponding 

equilibrium errors. Incorrect estimation of the persistent characteristics of the 
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underlying processes will lead to an inappropriate choice of critical values and thus lead 

to incorrect inference. 

APPENDIX: PROOF OF THEOREM 1 

Consider first the case where 6> 1/2. Then, from (6), (7) and the Continuous 

I Zt = 0 p (r I/2
+

6
) , so that by the Cauchy-Schwarz inequality, it follows that 

jJ = 0 p ( r 6
-

d
) • By contrast, if 0 < 6 < 1/2 then I z; = 0 p (r) by the Ergodic Theorem, 

whereas from Robinson and Marinucci (1998) we obtain that IXtzt = Op (rd
+

6
) (and 

d+6<1. 

the previous analysis it follows that for 6> t, I2; = Op( r26) and therefore 

S2 = r-I" 22 = 0 (r 26-1) S~=O (r-2(d-6l-l) and t = 0 (rIl2) whereas that if L.. t p 'p p f3 p , 

d + 6 > 1 and t f3 = op(r l-d) if d + 6 < 1, proving (13). 

With regard to the R2 statistic, since I{Yt - jiY = op(r2d) for all 6, it is 

Lastly, let us be concerned with the behavior of the DW statistic. After some 

manipulations, the numerator becomes 
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Consequently, if d > 3/2 and 0> 3/2, it follows from the previous analysis that 

1/2<0<3/2, we obtain that I(LlZtf =o/r) implying that DW=Op(r l
-

2°).Inthe 

same manner, in the case where 1/2 < d < 3/2 and 1/2 < 0 < 3/2, L (LlZt f = 0 p (r) 

given that I (LUt )(&t) = Op (r) by the Ergodic Theorem and then DW = Op (rHO). 

Likewise, by compiling all the above results, we have that in the case where 

it turns out that 

which is the assertion of the theorem .• 
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TABLE 1. Asymptotic values of the D W statistic when Z t is generated by expression (17) 

b () -0.9 -0.5 0 0.5 0.9 

0 1.01 1.20 2.00 2.80 2.99 

0.1 0.85 1.02 1.78 2.69 2.94 

0.2 0.67 0.81 1.50 2.54 2.88 

0.3 0.48 0.57 1.14 2.31 2.81 

0.4 0.25 0.30 0.67 1.86 2.72 

0049 0.03 0.04 0.08 0043 2.35 

TABLE 2. Features of regressions among /(1) cointegrated processes with fractionally 

integrated of order 0 errors. 

0 Average pr[lt jJ 12 2] 
Average Average 

~ 

R2 DW P 

0.01 0.99961 0.87 0.85 2.021 

0.10 0.99873 0.88 0.80 1.842 

0040 0.99904 0.89 0.81 0.721 

0049 0.99863 0.90 0.77 0.101 

0.51 1.00116 0.90 0.78 0.091 

0.80 0.98482 0.94 0.70 0.042 

0.90 0.98220 0.97 0.65 0.024 

0.99 1.01816 0.97 0.62 0.017 
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