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Universidad Politécnica de Madrid
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Abstract

We study the asymptotic behaviour of orthogonal polynomials inside the unit circle
for a subclass of measures that satisfy Szegő’s condition. We give a connection be-
tween such behavior and a Montessus de Ballore type theorem for Szegő-Padé rational
approximants of the corresponding Szegő function.
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1 Introduction

In [1] two of the authors of the present paper studied the ratio asymptotics of a sequence
{Φn} of monic orthogonal polynomials on the unit circle under the conditions that

lim
n = j mod k

|Φn(0)| = aj ∈ (0, 1] , lim
n = j mod k

Φn(0)
Φn−1(0)

= bj ∈ C , j = 1, . . . , k ,

where k is a fixed positive integer. Here, we complete this study with the case when aj = 0.
Notice that the conditions above imply that if aj = 0 for some j then aj = 0 , j = 1, . . . , k .
Thus, in the sequel, we assume that

lim
n→∞ |Φn(0)| = 0 , lim

n = j mod k

Φn(0)
Φn−1(0)

= bj ∈ C , j = 1, 2, . . . , k , (1)

and k is the least value for which (1) takes place. Here, and in the following, the evaluation
of the ratio of two polynomials is that obtained after cancelling out common factors.

From the well-known recurrence relation

Φn+1(z) = zΦn(z) + Φn+1(0)Φ∗n(z) , (2)
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it is easy to verify that lim
n→∞Φn(0) = 0 is equivalent to

lim
n

Φn+1(z)
Φn(z)

= z (3)

uniformly on [|z| ≥ 1]. As usual, Φ∗n(z) = znΦn(1/z) denotes the reversed polynomial of
Φn. The object of this paper is to study what occurs in [|z| < 1].

Notice that (1) implies that there exists an integer n1 such that either Φn(0) = 0 , n >
n1 , or Φn(0) 6= 0 , n > n1 . In the first case, from (2) we have that

Φn(z) = zn−n1Φn1(z) , n > n1 ,

and the picture becomes quite clear. Therefore, we assume in the following that Φn(0) 6=
0 , n > n1 . From (1), we have that

lim
n→∞

Φn+k(0)
Φn(0)

= b1 · · · bk , (4)

thus |b1 · · · bk| ≤ 1 (because lim
n→∞Φn(0) = 0), and

lim
n→∞ |Φn(0)|1/n = |b1 · · · bk|1/k . (5)

In the sequel, for each n = 0, 1, . . . , we denote by ϕn(z) = κnΦn(z) , κn > 0 , the nth
orthonormal polynomial. The leading coefficient κn and the reflection coefficients are
related by

κ2
n =

1∏n
i=1(1− |Φi(0)|2) .

If |b1 · · · bk| < 1, then from (5) it follows that

∞∑

i=0

|Φi(0)|2 < +∞ (6)

and Szegő’s condition is satisfied. Thus

lim
n→∞κn = κ = exp

{
−

∫ 2π

0
log µ′(θ)dθ

}
< +∞ (7)

where µ denotes the orthogonality measure (for example, see [3], pp 14-15). Moreover,
from Theorem 1 in [5], the (exterior) Szegő function

Sext(z) = exp
{

1
4π

∫ 2π

0
log µ′(θ)

eiθ + z

eiθ − z
dθ

}
, |z| > 1 , (8)

can be extended analytically to all the region
{
z : |z| > |b1 · · · bk|1/k

}
and according to

Theorem 2.2 in [4]

lim
n→∞

ϕn(z)
zn

= Sext(z) (9)

uniformly on compact subsets of this region, where Sext(z) also denotes the analytic ex-
tension of the (exterior) Szegő function.
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Set

S =
{ ∅ , if Szegő’s condition is not satisfied,
{z : Sext(z) = 0} , if Szegő’s condition is satisfied.

Notice that Sext(z) 6= 0 , |z| > 1 , whenever it is defined. From what has been said above
it follows that if (1) takes place, then either by use of (1) or (9), we have

lim
n→∞

Φn+1(z)
Φn(z)

= lim
n→∞

ϕn+1(z)
ϕn(z)

= z , (10)

uniformly on compact subsets of
[|z| > |b1 · · · bk|1/k

] \ S. Thus our study reduces to what
occurs inside the disk

[|z| < |b1 · · · bk|1/k
]
.

Before stating the corresponding result, we introduce some needed notation. For j =
1, 2, . . ., set ∆(j)

0 (z) ≡ 1 and

∆(j)
m (z) =

∣∣∣∣∣∣∣∣∣∣∣∣

z + bj zbj+1 0
1 z + bj+1 zbj+2

0 1 z + bj+2
. . .

. . . . . . zbj+m−1

1 z + bj+m−1

∣∣∣∣∣∣∣∣∣∣∣∣

, m = 1, 2, . . . .

Denote

∆ =
k⋃

j=1

{
z : ∆(j)

k−1(z) = 0
}

.

We shall prove
Theorem 1 Assume that (1) holds. Then

lim
n→∞

Φn+k(z)
Φn(z)

= b1 · · · bk (11)

uniformly on compact subsets of
{
z : |z| < |b1b2 · · · bk|1/k

} \∆ .

From Theorem 1 and the arguments above one obtains

Corollary 1 Assume that (1) holds. Then the accumulation points of the set of zeros of
the polynomials {Φn} are contained in

{z : |z| = |b1 · · · bk|1/k} ∪ S ∪
{

∆ ∩ {z : |z| < |b1 · · · bk|1/k}
}

.

Of particular interest is the case when k = 1, then ∆(1)
k−1 ≡ 1 thus ∆ = ∅ and the set

of accumulation points is contained in

{z : |z| = |b1|} ∪ S .

Various examples when this is the case may be found in [6, page 369].
It is not easy to calculate the sequence of reflection coefficients. Our next goal is to

provide conditions on the measure which allow us to assert that (1) is satisfied without
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having an explicit formula for the reflection coefficients. We restrict our attention to
measures satisfying Szegő’s condition.

Let us denote by Sint(z) the interior Szegő function; that is, the function which is
defined by the integral in (8) for |z| < 1 and its analytic extension accross the unit circle.
Formula (9) is equivalent to

lim
n→∞ϕ∗n(z) = S−1

int (z) =
1
κ

∞∑

i=0

ϕi(0)ϕi(z) (12)

uniformly on compact subsets of the largest disk centered at z = 0 inside of which S−1
int can

be extended analytically (see [3, page 19], [5, Theorem 1], and [4, Theorem 2.2]). Under
(1) this disk is {z : |z| < |b1 · · · bk|−1/k}.

For any m ≥ 0 denote by Dm = {z : |z| < Rm} the largest disk centered at z = 0 in
which S−1

int can be extended to a meromorphic function having at most m poles (counting
their multiplicities).

Theorem 2 Assume that R0 > 1. The following assertions are equivalent:

1) S−1
int has exactly one pole in D1.

2) There exists b , 0 < |b| < 1 , such that

lim sup
n

∣∣∣∣
Φn(0)

Φn−1(0)
− b

∣∣∣∣
1/n

= δ < 1 .

Either of these two conditions implies that the pole of S−1
int in D1 lies at point 1/b.

The paper is divided as follows. In Section 2 we prove Theorem 1 and Corollary 1.
Section 3 is devoted to the proof of Theorem 2. In the following, we maintain the notations
introduced above.

2 Proof of Theorem 1

We begin by studying pointwise convergence. We can assume that bj 6= 0 , j = 1, . . . , k ;
otherwise, we have nothing to prove. At z = 0 the result is obviously true (see (4)).
Additionally, as pointed out in the introduction, we can assume that Φn(0) 6= 0 , n ≥ n1 .

Set

D(z) =




z +
Φ1(0)
Φ0(0)

z
Φ2(0)
Φ1(0)

(
1− |Φ1(0)|2) 0 · · ·

1 z +
Φ2(0)
Φ1(0)

z
Φ3(0)
Φ2(0)

(
1− |Φ2(0)|2) · · ·

0 1 z +
Φ3(0)
Φ2(0)

· · ·
...

...
...

. . .




. (13)

By D(m)(z) we denote the infinite matrix which is obtained eliminating from D(z) the first
m rows and columns (D(0)(z) = D(z)), and D

(m)
n (z) is the principal section of order n of
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D(m)(z). In [1], Lemma 4, it was shown that the polynomials Φn(z) verify the following
three-terms relation

Φn+k(z)− detD
(n+1)
k−1 (z) det D

(n−k+1)
k (z)− αn+1 det D

(n+2)
k−2 (z) detD

(n−k+1)
k−1 (z)

detD
(n−k+1)
k−1 (z)

Φn(z)+

+(αn−k+1 · · ·αn)
det D

(n+1)
k−1 (z)

detD
(n−k+1)
k−1 (z)

Φn−k(z) = 0 , (14)

where
αm = z

Φm+1(0)
Φm(0)

(
1− |Φm(0)|2) .

Here D
(m)
−1 (z) ≡ 0 and D

(m)
0 (z) ≡ 1.

Under the conditions (1), it is easy to see that the limit of the coefficients of −Φn(z)
and Φn−k(z) in (14) exist. Moreover, they equal respectively

p(z) = ∆(1)
k (z)− b1z∆(2)

k−2(z)

zk(b1b2 · · · bk) = lim
n→∞(αn−k+1 · · ·αn)

detD
(n+1)
k−1 (z)

det D
(n−k+1)
k−1 (z)

.

Notice that
lim

n = j mod k
detD

(n)
k−1(z) = ∆(j+1)

k−1 (z) ,

thus the points in ∆ =
k⋃

j=1

{
z : ∆(j)

k−1(z) = 0
}

must be excluded. Regarding p(z), it may

seem that this coefficient depends on j if we take limit as n → ∞ , n = j mod k ; but
from Lemma 5 in [1] we have that

∆(1)
k (z)− b1z∆(2)

k−2(z) = ∆(j)
k (z)− bjz∆(j+1)

k−2 (z) , j = 1, . . . , k .

Let us prove that
p(z) = zk + b1 · · · bk .

For k = 1, 2 it is straightforward. Let k ≥ 3. We will show that

∆(1)
i (z)− b1z∆(2)

i−2(z) = zi + b1 · · · bi , i = 2, 3, . . . , k .

Expanding ∆(s)
i (z) by its last column, we obtain

∆(s)
i (z) = (z + bi+s−1)∆

(s)
i−1(z)− zbi+s−1∆

(s)
i−2(z) .

From here it readily follows that

∆(s)
i (z)− z∆(s)

i−1(z) = bi+s−1

[
∆(s)

i−1(z)− z∆(s)
i−2(z)

]
= · · · = bs · · · bs+i−1 (15)

Analogously, developing ∆(s)
i (z) by its first row, we have

∆(s)
i (z) = (z + bs)∆

(s+1)
i−1 (z)− zbs+1∆

(s+2)
i−2 (z) ;
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therefore,

∆(s)
i (z)− bs∆

(s+1)
i−1 (z) = z[∆(s+1)

i−1 (z)− bs+1∆
(s+2)
i−2 (z)] = · · · = zi . (16)

From (15) and (16), we have

∆(1)
i (z)− b1z∆(2)

i−2(z) = ∆(1)
i (z)− z∆(1)

i−1(z) + z∆(1)
i−1(z)− b1z∆(2)

i−2(z) =

= b1 · · · bi + zi , i = 2, . . . , k ,

and for i = k, we get p(z) = zk + b1 · · · bk .
Therefore, the characteristic equation associated with (14) is

λ2 − (zk + b1 · · · bk)λ + zk(b1 · · · bk)

whose roots are zk and b1 · · · bk . Only if
[|z| = |b1 · · · bk|1/k

]
do these roots have equal

modulus. Therefore, outside this circle, according to Poincaré’s Theorem (see [2, Ch. V,
§5, pp 327] ), either Φn(z) = 0 for all sufficiently large n = j mod k, or there exists

lim
n = j mod k

Φn+k(z)/Φn(z) and the limit equals one of the two roots of the characteristic

equation.
In [1], Lemma 4, it was proved that

det D
(n+1)
k−1 (z)Φn+k+1(z) = detD

(n+1)
k (z)Φn+k(z)− (αn+1 · · ·αn+k)Φn(z) . (17)

Since z /∈ ∆ it cannot occur that Φn(z) = 0 for all sufficiently large n = j mod k because
then Φn+k+1(z) and Φn+k(z) would have a common zero for all sufficiently large n =
j mod k which is not possible since Φn(0) 6= 0 , n ≥ n1 (see (2)).

Therefore, for z ∈ C \ [
∆ ∪ {z : |z| 6= |b1 · · · bk|1/k}] and for each j ∈ {1, . . . , k}, there

exists
lim

n = j mod k

Φn+k(z)
Φn(z)

. (18)

Let us show that the limit does not depend on j ∈ {1, . . . , k} .
In fact, from (17), we have that

Φn+k+1(z)
Φn+k(z)

=
1

det D
(n+1)
k−1 (z)

[
det D

(n+1)
k (z)− (αn+1 · · ·αn+k)

Φn(z)
Φn+k(z)

]
.

If the limit in (18) is zk, using this relation and (15), it follows that

lim
n = j mod k

Φn+k+1(z)
Φn+k(z)

=
1

∆(j+2)
k−1 (z)

[
∆(j+2)

k (z)− b1 · · · bk

]
= z

∆(j+2)
k−1 (z)

∆(j+2)
k−1 (z)

= z . (19)

Analogously, if the limit in (18) is b1 · · · bk, from (16), we obtain

lim
n = j mod k

Φn+k+1(z)
Φn+k(z)

= bj+2

∆(j+3)
k−1 (z)

∆(j+2)
k−1 (z)

.

6



In either cases, the right hand side is not zero; therefore,

lim
n = j mod k

(
Φn+k+1(z)
Φn+k(z)

)

(
Φn+1(z)
Φn(z)

) = lim
n = j mod k

(
Φn+k+1(z)
Φn+1(z)

)

(
Φn+k(z)
Φn(z)

) = 1 .

The second equality indicates that

lim
n = j mod k

Φn+k(z)
Φn(z)

= lim
n = (j+1) mod k

Φn+k(z)
Φn(z)

.

Therefore, there exists

lim
n→∞

Φn+k(z)
Φn(z)

. (20)

From (3), we know that for all |z| ≥ 1

lim
n→∞

Φn+k(z)
Φn(z)

= zk . (21)

We have also proved that if for a given z the limit is zk, then (see (19))

lim
n→∞

[
Φn+1(z)
Φn(z)

− z

]
= 0 . (22)

Let us show that if |z| < 1 and (21) takes place then |z| ≥ |b1 · · · bk|1/k. In fact, on account
of (2) (for the indices n and n + k), (21), and (22), it follows that

lim
n→∞

∣∣∣∣∣
(

Φn+k+1(z)
Φn+k(z)

− z

)(
Φn+1(z)
Φn(z)

− z

)−1
∣∣∣∣∣ = lim

n→∞

∣∣∣∣
Φn+k+1(0)
Φn+1(0)

Φ∗n+k(z)
Φ∗n(z)

Φn(z)
Φn+k(z)

∣∣∣∣ =

=
|b1 · · · bk|
|z|k ≤ 1 .

Therefore, |z| ≥ |b1 · · · bk|1/k as indicated.
We have proved (11) in {z : |z| < |b1 · · · bk|1/k} \∆ pointwisely. In order to prove that

the convergence is uniform on compact subsets of this region it is sufficient to show that

the sequence
{

Φn+k

Φn

}
is uniformly bounded on each compact subset of this region. In

order to do this, the procedure is the same as for the proof of the analogous statement in
Theorem 2 in [1] (see pp. 17-19); therefore, we leave this to the reader. ¤

Proof of Corollary 1. The statement regarding the points in {z : |z| > |b1 · · · bk|1/k} is a
consequence of (9) and Hurwitz’s Theorem. That the points in {z : |z| < |b1 · · · bk|1/k}\∆
are not accumulation points of zeros of Φn is a consequence of (11) (recall that Φn and
Φn+k cannot have common zeros for all sufficiently large n). ¤
Remark 1 Each point of the circle {z : |z| = |b1 · · · bk|1/k} is in fact a limit point of
zeros of the orthogonal polynomials. This is a consequence of (2.8) Theorem 2.3 in [4].
By Hurwitz’s theorem the points of S are also limit points of such zeros. Regarding the
points in ∆ we cannot say the same. Though it seems that they are accumulation points,
the construction of a sequence of converging zeros may depend on j.
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3 Proof of Theorem 2

The main tool in proving Theorem 2 is the use of row sequences of Fourier-Padé approxi-
mants.

Let f be a function which admits a Fourier expansion with respect to the orthonormal
system {ϕn}; namely

f(z) ∼
∞∑

i=0

Aiϕi(z) , Ai =< f, ϕi >=
∫

Γ
f(z)ϕi(z)dµ(z) .

The Fourier-Padé approximant of type (n,m) , n,m ∈ {0, 1, . . .} , of f is the ratio πn,m(f) =
pn,m

qn,m
of any two polynomials pn,m and qn,m such that

(i) deg(pn,m) ≤ n , deg(qn,m) ≤ m , qn,m≡| 0 .

(ii) (qn,mf − pn,m)(z) ∼ An,1ϕn+m+1(z) + An,2ϕn+m+2(z) + · · · .

In the sequel, we take qn,m with leading coefficient equal to 1.
The existence of such polynomials reduces to solving a homogeneous linear system of

m equations on the m + 1 coefficients of qn,m. Thus a non-trivial solution is guaranteed.
In general, the rational function πn,m is not uniquely determined, but if for every solution
of (i), (ii), the polynomial qn,m is of degree m, then πn,m is unique.

For m fixed, a sequence of type {πn,m} , n ∈ N , is called an mth row of the Fourier-
Padé approximants relative to f . If f is such that R0(f) > 1 and has in Dm(f) exactly
m poles then for all sufficiently large n ≥ n0 , πn,m is uniquely determined and so is the
sequence {πn,m} , n ≥ n0 . Here Dm(f) = {z : |z| < Rm(f)} is the largest disk centered
at z = 0 in which f can be extended to a meromorphic function with at most m poles.

This and other results for row sequences of Fourier-Padé approximants may be found
in [7] and [8] for Fourier expansion with respect to measures supported on an interval
of the real line whose absolutely continuous part with respect to Lebesgue’s measure is
positive almost everywhere. Some results were also stated without proof for orthonormal
systems with respect to measures supported in the complex plane. We have checked that
in the case of measures supported on the unit circle the arguments used for an interval of
the real line are still applicable with little modifications. We state in the form of a lemma
the result which we will use. Compare the statement with the Corollary on page 583 of
[8]. For the proof follow the scheme employed in proving Theorem 1 in [7] and Theorem
1 in [8].
Lemma 1 Let µ be such that R0 = R0(S−1

int ) > 1. The following assertions are equivalent:

a) S−1
int has exactly m poles in Dm = Dm(S−1

int ).

b) The sequence {πn,m(S−1
int )} , n = 0, 1, . . . , for all sufficiently large n has exactly

m finite poles and there exists a polynomial wm(z) = zm + · · · such that

lim sup
n

‖qn,m − wm‖1/n = δ < 1 ,

where ‖·‖ denotes (for example) the Euclidean norm on the space of polynomial
coefficient vectors in Cm+1 .
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The poles of S−1
int coincide with the zeros z1, . . . , zm of wm, and

Rm =
1
δ

max
1≤j≤m

|zj | .

Proof of Theorem 2. We will use Lemma 1 for m = 1. To simplify the notation, we write
qn,1 = qn and pn,1 = pn. If S−1

int has exactly one pole in D1, then for all sufficiently large
n, qn has exactly one zero and it can be written in the form qn(z) = z−αn. On the other
hand, if the second case occurs in Theorem 2, then Φn(0) 6= 0 for all sufficiently large n.
Notice (see (12)) that then

< S−1
int , ϕn+1 >=

ϕn+1(0)
κ

6= 0 , n ≥ n1 . (23)

Since, by definition, < qnS−1
int , ϕn+1 >= 0, it follows that for n ≥ n1, qn must be of degree 1

and again qn(z) = z−αn. In either case, we restrict our attention to indexes n sufficiently
large for which qn is of degree 1.

Our next step is to find some connection between αn and
Φn+1(0)
Φn(0)

. We have

< qnS−1
int − pn, ϕn+1 >=< (z − αn)S−1

int , ϕn+1 >= 0 .

Therefore,
< zS−1

int , ϕn+1 >

< S−1
int , ϕn+1 >

= αn , n ≥ n1 . (24)

Using (12), we find that

< zS−1
int , ϕn+1 >=

1
κ

∞∑

i=n

ϕi(0) < zϕi, ϕn+1 > . (25)

From (2) and the well known relation

κiϕ
∗
i (z) =

i∑

j=0

ϕj(0)ϕj(z) ,

we obtain

< zϕi , ϕn+1 >=





κi

κi+1
=

κn

κn+1
, i = n

−Φi+1(0)Φn+1(0)
κn+1

κi
, i ≥ n + 1 .

Using this, (23), (24), and (25), it follows that

αn =
ϕn(0)

ϕn+1(0)
κn

κn+1
−

∞∑

i=n+1

Φi(0)Φi+1(0) .
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On account of the formula 1− κ2
n

κ2
n+1

= |Φn+1(0)|2, the last equality can be rewritten as

Φn(0)
Φn+1(0)

− αn =
∞∑

i=n

Φi(0)Φi+1(0) . (26)

From the Cauchy-Schwarz inequality, we obtain
∣∣∣∣∣

Φn(0)
Φn+1(0)

− αn

∣∣∣∣∣ ≤
∑

i≥n

|Φi(0)|2 . (27)

It is well known (see Theorem 1 in [5]) that

R0 =
1

lim sup |Φn(0)|1/n
.

Our general assumption is that R0 > 1. This and (27) imply

lim sup
n

∣∣∣∣∣
Φn(0)

Φn+1(0)
− αn

∣∣∣∣∣
1/n

≤ 1
R0

< 1 . (28)

From (28) and the triangular inequality, it follows that

lim sup
n

|αn − α|1/n = %1 < 1 ,

if and only if

lim sup
n

∣∣∣∣∣
Φn(0)

Φn+1(0)
− α

∣∣∣∣∣
1/n

= %2 < 1 .

Assume that S−1
int has exactly one pole in D1 (and R0 > 1). From Lemma 1, we have

that
lim sup

n
|αn − α|1/n = δ < 1 ,

where α , 1 < |α| < ∞ , is the unique pole which S−1
int has in D1. Therefore,

lim sup
n

∣∣∣∣∣
Φn(0)

Φn+1(0)
− α

∣∣∣∣∣
1/n

= %2 < 1 .

Since 1 < |α| < ∞, we obtain

lim sup
n

∣∣∣∣
Φn+1(0)
Φn(0)

− 1
α

∣∣∣∣
1/n

= %2 < 1 .

Thus the first assertion in Theorem 2 implies the second one with b =
1
α

.

Reciprocally, assume that the second assertion takes place. Since 0 < |b| < 1, we get

lim sup
n

∣∣∣∣∣
Φn(0)

Φn+1(0)
− 1

b

∣∣∣∣∣
1/n

= δ < 1 .
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Thus

lim sup
n

∣∣∣∣αn − 1
b

∣∣∣∣
1/n

= %1 < 1 .

This is equivalent to the second part of Lemma 1 which in turn implies that S−1
int has

exactly one pole in D1 at α =
1
b
. ¤

The following example illustrates that %1 and %2 (in the notation used in the proof of
Theorem 2) need not be equal. Therefore, we cannot obtain a formula for R1 similar to the

one displayed in Lemma 1 in terms of the rate of convergence of the sequence
{

Φn(0)
Φn−1(0)

}

to b. In fact, take Φn(0) = an , n ∈ N , where 0 < |a| < 1. In this case
Φn+1(0)
Φn(0)

= a for all

n; therefore,

lim
n

∣∣∣∣
Φn+1(0)
Φn(0)

− a

∣∣∣∣
1/n

= 0 .

On the other hand, formula (26) gives us

1
a
− αn = a

∞∑

i=n

|a|2i = a
|a|2n

1− |a|2 .

From here, we obtain

lim
n

∣∣∣∣
1
a
− αn

∣∣∣∣
1/n

= |a|2 .
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