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Abstract

Let ¹ be a ¯nite positive Borel measure whose support S(¹) is a compact regular

set contained in R. For a function of Markov type

¹̂(z) =

Z

S(¹)

d¹(x)

z ¡ x
; z 2 C n S(¹);

we consider Multipoint Pad¶e-type Approximants (MPTAs) , where some poles are

preassigned and interpolation is carried out along a table of points contained in

C nCo(S(¹)) which is symmetrical with respect to the real line. The main purpose

of this paper is the study of the \exact rate of convergence" of the MPTAs to the

function ¹̂.

Keywords: Orthogonal polynomials, logarithmic potential. Pad¶e-type approxi-

mants, rate of convergence.

AMS classi¯cation: 41A21, 42C05, 30E10.

1. Introduction

1.1 - Some de¯nitions. Let ¹ be a ¯nite positive Borel measure whose support

S(¹) is a compact set contained in R. Set

¹̂(z) =

Z

S(¹)

d¹(x)

z ¡ x
; z 2 C n S(¹): (1)

Let fLng; n 2 N, be a sequence of monic polynomials whose zeros lie in Co(S(¹)),

the convex hull of S(¹) such that deg Ln = k(n) · n. We ¯x another family of

polynomials

A2n(z) =

2nY

i=1

(z ¡ ®n;i) ; n 2 N; (2)

whose zeros

f®n;ig ; i = 1; 2; :::; 2n ; n 2 N; (3)

are contained in a compact set A ½ CnCo(S(¹)) and lie symmetrically with respect

to the real line (counting multiplicities). In case that for some i; ®n;i = 1, the

corresponding factor must be omitted.
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We also assume the existence of a measure ®, (supp ® ½ A), such that

1

2n
¾(A2n)

¤
¡! ® ; as n ¡!1 (4)

(in the weak star topology), where ¾(A2n) denotes the zero counting measure of the

polynomial A2n. That is

¾(A2n) =

2nX

i=1

±®n;i ;

where ±®n;i denotes the Dirac measure with mass 1 at ®n;i. A sequence of measures

fºng is said to converge weakly (or in the weak star topology) to a measure º (in

C), if for every function f continuous in C, we have

Z
fdºn ¡!

Z
fdº ; as n!1

(see, for instance, [7], Chapter 1 , page 7).

In the following, we restrict our attention to the type of interpolating rational

functions whose asymptotics we shall study. For the de¯nition of Multipoint Pad¶e-

type approximants, some of the restrictions we impose are not necessary, but they

arise naturally in the location of the zeros of the orthogonal polynomials with respect

to varying measures connected with Pad¶e-type approximation.

De¯nition 1. The Multipoint Pad¶e-type Approximant (MPTA) of ¹̂ with

preassigned poles at the zeros of a given polynomial L2n, deg Ln = k(n) · n,

Ln 6́0, which interpolates the function ¹̂ at the zeros of the polynomial A2n with

deg A2n · 2n, given by (2), is the unique rational function

Rn =
Pn
QnL2n

; (5)

where Pn and Qn are polynomials satisfying:

(i) deg Pn · n+ k(n)¡ 1; deg Qn · n¡ k(n); and Qn 6́0:

(ii)
QnL

2
n¹̂¡ Pn
A2n

2 H(C n S(¹)); where H(C n S(¹)) denotes the set of all

holomorphic functions de¯ned on C n S(¹):

(iii)
QnL

2
n¹̂¡ Pn
A2n

(z) = O

µ
1

zn¡k(n)+1

¶
; as z ¡!1:



5

The MPTA given by (5) has order n+ k(n) and the error of approximation to the

function ¹̂ satis¯es

rn(z) = (¹̂¡Rn)(z) =
A2n(z)

(LnQn)2(z)

Z
(LnQn)

2(x)

A2n(x)

d¹(x)

z ¡ x
; z 2 C n S(¹): (6)

This formula is easy to prove using (iii) and Cauchy's integral formula (see,e.g. [3],

Lemma 1).

1.2 - The contents of this paper. It is known that a polynomial pn of degree n

is orthonormal with respect to ¹ if

1 = jjpnjj2 · jjpn + vjj2 (7)

for all polynomials v satisfying deg v · n¡ 1 , where jj : jj2 denotes the L2¹-norm

jj : jj2 :=

µZ
j : j2d¹

¶ 1
2

: (8)

It is well-known (see e.g. [7], Theorem 3.1.1, Chap.4) that for a very general class

of measures ¹ , the orthonormal polynomials pn satisfy the following limit relation

lim
n!1

jpn(z)j
1
n = exp fg−(z;1)g ; (9)

uniformly on compact subsets of CnCo(S(¹)), where g−(z;1) denotes the Green

function of − = C n S(¹) with pole at in¯nity. In this case ¹ is called a regular

measure and it is denoted by ¹ 2 Reg (for other equivalent forms of de¯ning the

class of measures Reg, see [7], Chapter 3, page 61). Furthermore, for this class of

measures, the zeros of pn have regular asymptotic behavior in the sense that, as n

tends to in¯nity, the normalized zero counting measure of pn converges in the weak

star topology to the equilibrium measure of S(¹) for the logarithmic potentials (see

[7], Theorem 3.1.4).

Recently, A. Ambroladze and H. Wallin extended this result to the case when

¹ 2 Reg and the zeros of pn are partially ¯xed. More precisely, instead of pn they

considered polynomials of the form ~pn := ~qnTn where Tn is a monic polynomial

with all its zeros in Co(S(¹)), deg Tn = k(n); k(n) · n, and ~qn is a polynomial

of degree n¡ s(n) satisfying the following condition, analogous to (7)

1 = jj~qnTnjj2 · jj(~qn + v) Tnjj2 (10)
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for all polynomials v satisfying deg v < deg ~qn ( If deg ~qn = 0 , then v = 0 in (10)).

This means that ~qn is the orthonormal polynomial of degree n¡ k(n) with respect

to the measure jTnj
2d¹; ¹ 2 Reg. They showed that the polynomials ~pn = ~qnTn

have the same nth root asymptotic behavior as pn de¯ned by (7), under fairly weak

conditions on the sequence fTng (under more restrictive conditions on ¹ this result

was previously obtained in [2]).

Here, we consider the polynomial p̂n = qnLn where Ln is a monic polynomial with

all its zeros in Co(S(¹)) , such that deg Ln = k(n) · n, and qn is a polynomial of

degree n¡ k(n) satisfying the following conditions, analogous to (10):

1 =

¯̄
¯̄
¯

¯̄
¯̄
¯
qnLn

jA2nj
1
2

¯̄
¯̄
¯

¯̄
¯̄
¯
2

·

¯̄
¯̄
¯

¯̄
¯̄
¯
(qn + v)Ln

jA2nj
1
2

¯̄
¯̄
¯

¯̄
¯̄
¯
2

(11)

for all polynomials v satisfying deg v < deg qn (if deg qn = 0, then v ´ 0). This

means that qn is the orthonormal polynomial of degree n¡k(n) with respect to the

varying measure
jLnj

2

jA2nj
d¹: (12)

This paper deals with the problem of ¯nding su±cient conditions on the measure

¹, on the preassigned polynomials Ln, and on the choice of the interpolation points

(®n;i ; i = 1; 2; :::; 2n; n 2 N) in order to have exact rate for the asymptotic

behavior of p̂n and rn.

The authors wish to express their gratitude to A. Ambroladze and H. Wallin for use-

ful discussions on the subject. In particular, their suggestion to use Lemma 1 below

which they proved in [1], considerably simpli¯ed our initial proof of Theorem 1.

2. Statement of Results

2.1 - Notation. The following notation will be used throughout this paper.

¹ A ¯nite positive Borel measure on R with non-empty compact

and regular support.

S(¹) Support of ¹.

Co(S(¹)) The convex hull of S(¹).
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− = −(¹) − := C n S(¹).

Ln A given polynomial with deg Ln = k(n) · n , whose zeros lie

in Co(S(¹)).

A2n A given polynomial with deg A2n · 2n , whose zeros are

contained in C n Co(S(¹)) and are symmetric with respect to

the real line. Moreover, we assume, without loss of generality,

that A2n(x) > 0 if x 2 Co(S(¹)):

qn The orthonormal polynomial (with positive leading coe±cient

¸n) of degree n¡ k(n) , with respect to the measure

(jLnj
2=jA2nj)d¹.

p̂n A polynomial of degree n , de¯ned by p̂n := qnLn.

Z(:) The set of zeros of the polynomial \.".

¾(:) The zero counting measure of the polynomial \." which puts mass

1 at each zero of the polynomial \."(counting multiplicities).

jj:jj2 The L2¹-norm (see (8) above).

jj:jj¯ The supremum norm of \." on the set \¯".

diam(.) The diameter of the set \.".

d(.; ¦) The distance between \." and \¦".

cap(.) The logarithmic capacity of the set \.".

p(:; ©) The logarithmic potential of the measure \." at the point \©".

g/(z; :) The (generalized) Green function of \/" with pole at the

point \.".

g/(z) g/(z) := g/(z;1).

Gª(º; :) The Green potential of the measure \º" in \ª"µ C at the

point \." which is de¯ned by

Gª(º; :) :=

Z

S(º)

gª(: ; ³) dº(³):
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ºn
¤
¡! º The sequence of measures fºng converges \weakly" (or in the

\weak star topology") to the measure º (in C).

2.2 - Results.We denote by ¸, the unit equilibrium measure of S(¹) in the presence

of the external ¯eld p®(x) = ¡p(®;x). Since S(¹) is a regular compact set, then

cap S(¹) > 0 and the measure ¸ is characterized by the conditions

p(¸; z)¡ p(®; z) = ! ; z 2 S(¸); (13)

¸ ! ; z 2 S(¹) n S(¸);

where ®, with S(®) ½ A , is the unit measure given by (4). Since A ½ CnCo(S(¹))

it is well known that for this type of external ¯eld ¸ is the balayage of ® onto S(¹)

(see, for instance [5], Chapter IV). Thus, S(¸) = S(¹) and equality takes place on

all S(¹). Therefore,

p(¸;x)¡ p(®;x) ´ ! on S(¹): (14)

The constant \!" is called \the extremal constant" or \the equilibrium constant"

(cf., for instance, [4]).

Let us introduce some restrictions on the ¯xed zeros. We assume that

lim sup
n!1

1

n
¾(Ln) · ¸; (15)

in the weak star topology. By (15) we mean that for any positive continuous func-

tions h in C, we have

lim sup
n!1

1

n
¾(Ln)(h) · ¸(h);

where ¸(h) :=
R

S(º)

hd¸. This condition was ¯rst introduced in [2] and later used

also in [1] and [5]. We also assume that

Z(Ln) ½ Co(S(¹)): (16)

This restriction can be replaced by the slightly weaker necessary condition that all

the limit points of the zeros of Ln lie in Co(S(¹)).

THEOREM 1. Let ¹ 2 Reg be a measure with regular compact support S(¹) ½ R.

Let fLng; n 2 N, be a sequence of polynomials, deg Ln = k(n) · n ,with the
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properties (15) and (16), and fA2ng; n 2 N, be a sequence of polynomials which

satis¯es (3) and (4). Let p̂n := qnLn, where qn is de¯ned as in (11). Then

lim
n!1

jp̂n(z)j
1
n = expf! ¡ p(¸; z)g; (17)

uniformly on compact subsets of C n Co(S(¹)): Furthermore, the zeros of p̂n have

a quasi-regular asymptotic distribution in the sense that

lim
n!1

1

n
¾(p̂n) = ¸; (18)

where ¸ is the unit measure which solves the extremal problem (13).

From Theorem 1 and the error formula (6), the following theorem is obtained in a

standard way (see, for instance [3], x3). Recall that A is a compact set contained

in C n Co(S(¹)), symmetric with respect to the real line, and contains the table of

points (3), which is also symmetric with respect to the real line and includes all the

zeros of the polynomials A2n given by (2).

THEOREM 2. Under the assumptions of Theorem 1, the MPTAs of the function

¹̂ with preassigned poles at the 2k(n) zeros of L2n (such that n¡ k(n) poles remain

free) which interpolates ¹̂ at the 2n zeros of A2n, satisfy

lim
n!1

jrn(z)j
1
2n = expf¡G−(®; z)g; (19)

uniformly on compact subsets of C n (A [ Co(S(¹))), and

lim sup
n!1

jrn(z)j
1
2n = expf¡G−(®; z)g; (20)

uniformly on compact subsets of C nCo(S(¹)) of positive capacity.

Remark 1. If ®n;i =1 for every i=1,2,...,2n, then G−(®; z) = g−(z); ¸ represents

the equilibrium measure of S(¹), and Theorem 10 in [1] is regained.

Remark 2. If the ¯xed poles represent limitwise a ¯xed proportion with respect

to the order of the MPTA; that is, if

lim
n!1

2k(n)

n+ k(n)
= µ 2 [0; 1]; (21)
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then from Theorem 2 follows Theorem 1 in [3] under weaker conditions on the

measure.

3. Proofs

3.1 - Some lemmas. In the sequel, we will assume without loss of generality that

the set A which contains all the zeros of the polynomials A2n is a compact subset

of C nCo(S(¹)). The reduction to this case may be achieved by means of a MÄobius

transformation of the variable in the initial problem, which transforms S(¹) into

another compact subset of R and A ½ C n Co(S(¹)) into another compact set

contained in C n Co(S(¹0)) where ¹0 is the image measure of ¹ by the MÄobius

transformation (cf. [7], proof of Theorem 6.1.6).

Let us ¯nd the extremal constant ! and the unit equilibrium measure ¸ on S(¹)

which are uniquely determined by (13) (or, more precisely, (14)). To this end we

need some auxiliary results. The following lemma is very useful. It was given in [1],

x3. We state it for convenience of the reader.

Lemma 1. Let ¹ be a ¯nite positive Borel measure with compact support S(¹) ½ R

of positive capacity. Let the polynomials Ln, with deg Ln = k(n) · n, satisfy (15).

Then, there exist polynomials Tn ; deg Tn = n ¡ k(n); n = 1; 2; :::; with zeros

in a ¯xed compact subset of C such that the zeros of TnLn have \quasi-regular"

asymptotic distribution, i.e.

1

n
¾(TnLn)

¤
¡! ¸ as n!1: (22)

The following result is well known (see Theorem 5.1, Chap. II of [6]).

Lemma 2. We have

G−(®; z) = ! ¡ p(¸; z) + p(®; z); z 2 −; (23)

where G−(®; z) is the Green potential of the measure ® in −.

Set

M2n :=

¯̄
¯̄
¯̄
¯̄ P

2
n

A2n

¯̄
¯̄
¯̄
¯̄
S(¹)

(24)
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where A2n is as described by (2) and Pn is an arbitrary monic polynomial with

deg Pn = n.

Lemma 3. Assume that (4) takes place. Then

lim sup
n!1

¯̄
¯̄ P 2n(z)

M2nA2n(z)

¯̄
¯̄
1
2n

· exp fG−(®; z)g (25)

uniformly on compact subsets of − nA and

lim inf
n!1

(M2n)
1
2n ¸ exp f¡!g (26)

Proof. Consider the sequence of functions fv2n(z)g ; n 2 N ; z 2 − = C n S(¹)

de¯ned by

v2n(z) :=
1

2n

(

log

¯̄
¯̄ P 2n(z)

M2nA2n(z)

¯̄
¯̄¡

2nX

i=1

g−(z;®n;i)

)

: (27)

For each n 2 N, it is easy to verify that v2n is subharmonic in −, and

lim
z!1

log

¯̄
¯̄ P 2n(z)

M2nA2n(z)

¯̄
¯̄ = log

1

M2n
: (28)

On the other hand,

v2n(z) · 0; z 2 S(¹);

and using the Maximum Principle for subharmonic functions, we obtain that

v2n(z) · 0; z 2 −: (29)

Then, from (27) and (29), it follows that

1

2n
log

¯̄
¯̄ P 2n(z)

M2nA2n(z)

¯̄
¯̄ ·

1

2n

2nX

i=1

g−(z;®n;i); z 2 −; (30)

and from (28), we have

1

2n
log

1

M2n
·

1

2n

2nX

i=1

g−(1;®n;i) =
1

2n

2nX

i=1

g−(®n;i;1): (31)

Notice that
1

2n

2nX

i=1

g−(z;®n;i) =

Z

A

g−(z; ³)

·
1

2n
d¾(A2n)

¸
(³): (32)
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If z 2 C nA the function g−(z; ³) is continuous in ³ on A (for z 2 S(¹); g−(z; ³)

is extended by continuity, which is possible because we have assumed that S(¹) is

a regular set). Moreover, if z 2 K , where K is a compact set contained in C n A

and ³ 2 A , then g−(z; ³) is continuous in both variables and

lim
n!1

Z

A

g−(z; ³)

·
1

2n
d¾(A2n)

¸
(³) =

Z

A

g−(z; ³)d®(³) = G−(®; z); (33)

uniformly with respect to z 2 K ½ C nA:

From (30) and (33) follows (25). Using (31) and (33), we obtain

lim sup
n!1

µ
1

M2n

¶ 1
2n

· exp fG−(®;1)g;

or what is the same,

lim inf
n!1

(M2n)
1
2n ¸ exp f¡G−(®;1)g:

Since p(®¡ ¸;1) = lim
z!1

p(®¡ ¸; z) = 0, applying Lemma 2, we obtain (26) and

Lemma 3 is proved.¥

The following lemma is key in the proof of Theorem 1 and has independent interest.

Lemma 4. Assume that Z(Pn) ½ Co(S(¹)), and (4) takes place. Then, the follow-

ing conditions are pairwise equivalent:

lim
n!1

1

n
¾(Pn) = ¸ (34)

in the weak star topology.

lim
n!1

(M2n)
1
2n = exp f¡!g: (35)

lim
n!1

¯̄
¯̄ P

2
n(z)

A2n(z)

¯̄
¯̄
1
2n

= exp fG−(®; z)¡ !g (36)

uniformly on compact subsets of C n (A [ Co(S(¹))).

Proof. Let us show that (34) implies (35). From (34) and the \principle of descent"

(see, for example, [7]), we have that

p(¸; z) · lim inf
n!1

p

µ
1

2n
¾(P 2n); z

¶
; (37)
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uniformly on each compact subset of C. Using (4) and the assumption that the

table (3) is contained in the set A , we obtain

lim
n!1

p

µ
1

2n
¾(A2n); z

¶
= p(®; z); (38)

uniformly on each compact subset of C n A. Take any contour ¡ surrounding S(¹)

such that A lies in the exterior of ¡. From (37) and (38), we have that

lim sup
n!1

¯̄
¯̄ P

2
n(z)

A2n(z)

¯̄
¯̄
1
2n

=

lim sup
n!1

¯̄
P 2n(z)

¯̄ 1
2n

lim
n!1

jA2n(z)j
1
2n

· exp f¡p(¸; z) + p(®; z)g; (39)

uniformly on ¡.

Take " > 0 su±ciently small so that the level curve

¡" := fz : p(¸; z)¡ p(®; z) = ! ¡ "g (40)

has A in its exterior, i.e. A ½ Ext(¡"). From (14), we know that p(¸; z)¡p(®; z) ´ !

on S(¹). Hence, S(¹) is entirely inside ¡", i.e. S(¹) ½ Int(¡"). From the maximum

principle for analytic functions it follows that (see (24))

M2n =

¯̄
¯̄
¯̄
¯̄ P

2
n

A2n

¯̄
¯̄
¯̄
¯̄
S(¹)

·

¯̄
¯̄
¯̄
¯̄ P

2
n

A2n

¯̄
¯̄
¯̄
¯̄
¡"

: (41)

So, from (39), (40) and (41) with ¡ = ¡" , we obtain

lim sup
n!1

M
1
2n

2n · lim sup
n!1

¯̄
¯̄
¯̄
¯̄ P

2
n

A2n

¯̄
¯̄
¯̄
¯̄
¡"

(42)

· exp f sup
z2¡"

(¡p(¸; z) + p(®; z))g:

= exp f¡! + "g:

Since (42) is true for all su±ciently small " > 0 , we obtain

lim sup
n!1

M
1
2n

2n · exp f¡!g: (43)

From (26) in Lemma 3 and (43), we obtain (35) as required.

Now, let us prove that (36) follows from (35). From (25) in Lemma 3 and (35), we

have that

lim sup
n!1

¯̄
¯̄ P

2
n(z)

A2n(z)

¯̄
¯̄
1
2n

· exp fG−(®; z)¡ !g: (44)
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Moreover, using (4) (see(38)) and taking logarithms, we ¯nd that

lim sup
n!1

1

n
log jPn(z)j · G−(®; z)¡ ! ¡ p(®; z); (45)

uniformly on each compact subset of Cn(A[Co(S(¹))). Because of (23) in Lemma

2, we can write

lim sup
n!1

1

n
log jPn(z)j · ¡p(¸; z); (46)

uniformly on each compact subset of C n (A [Co(S(¹))).

Since Z(Pn) ½ Co(S(¹)) , we have that for each n 2 N, the function
1
n

log jPn(z)j is

harmonic in CnCo(S(¹)) and the family of functions
©
1
n

log jPn(z)j
ª

is uniformly

bounded on each compact subset of CnCo(S(¹)). Take any convergent subsequence;

that is, let ¤ ½ N be any sequence of indexes such that

lim
n!1
n2¤

1

n
log jPn(z)j = u¤(z); (47)

uniformly on compact subsets of C n Co(S(¹)). Take an arbitrary contour ° that

surrounds Co(S(¹)) such that A ½ Ext(°). From (46) and (47), we get that

u¤(z) + p(¸; z) · 0 on °: (48)

From (47), we have that u¤(z) is a harmonic function in C n Co(S(¹)) and it has

a singularity of type log jzj at in¯nity. On the other hand, p(¸; z) is harmonic in

C n S(¹) and has a singularity of type log
1

jzj
, at in¯nity. Thus

u¤(z) + p(¸; z) is harmonic in C n Co(S(¹))

and, in particular, this function is harmonic in Ext(°), including in¯nity. Since

u¤(1) + p(¸;1) = 0;

and (48) takes place, using the maximum principle, we conclude that

u¤(z) + p(¸; z) ´ 0 ; z 2 Ext (°): (49)

But ° can be taken arbitrarily close to Co(S(¹)), hence

u¤(z) ´ ¡p(¸; z) ; z 2 C n Co(S(¹)):
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Therefore, the limit u¤(z) in (47) does not depend on ¤. Using the normality of

the family of functions it follows that

lim
n!1

1

n
log jPn(z)j = ¡p(¸; z); (50)

uniformly on compact subsets of C n Co(S(¹)). Thus, (36) is a consequence of (4),

(50), and (23).

Finally, we deduce (34) from (36). From the assumption that Z(Pn) ½ Co(S(¹)),

we have that

S

µ
1

n
¾(Pn)

¶
½ Co(S(¹)); n 2 N:

Moreover, the family ½
1

n
¾(Pn)

¾
; n 2 N; (51)

is compact in the weak star topology of measures. Thus, in order to prove this part

of the lemma, it is su±cient to show that any weak star convergent subsequence of

(51) has for limit the measure ¸.

Assume that ¨ ½ N is a set of indexes such that

lim
n!1
n2¨

1

n
¾(Pn) = ¸¨; (52)

in the weak star topology. Obviously, S(¸¨) ½ Co(S(¹)). We know that

S(¸) = S(¹) ½ Co(S(¹)):

Therefore

(¸¨ = ¸)()

µZ
fd¸¨ =

Z
fd¸

¶
; (53)

for all functions f continuous on Co(S(¹)). Moreover, it is su±cient to check

(53) on a dense subset of the space of continuous functions on Co(S(¹)) (with the

topology of uniform convergence).

From the assumption (36), using (4) and Lemma 2, we obtain (50). In turn, formulas

(50) and (52) imply

Z
log

1

jz ¡ ³j
d¸¨(³) = lim

n!1
n2N

Z
log

1

jz ¡ ³j
d

µ
1

n
¾(Pn)

¶
(³) = p(¸; z) ; (54)
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which is equivalent to

Z
log

1

jz ¡ ³j
d¸¨(³) =

Z
log

1

jz ¡ ³j
d¸(³): (55)

It is well known that the family of functions (with respect to ³ 2 Co(S(¹))),

½
log

1

jz ¡ ³j

¾
; z 2 C n Co(S(¹));

is total in the space of continuous functions on Co(S(¹)). That is, linear combina-

tions (for di®erent z) are uniformly dense in the space of continuous functions on

Co(S(¹)). Therefore, (53) takes place and ¸¨ = ¸, independent of ¨. Hence, (34)

holds. With this, we conclude the proof of Lemma 4.¥

Let us consider the monic polynomial Qn of degree · n ¡ k(n), which satis¯es

(i)-(iii) of De¯nition 1, and the monic polynomial A2n de¯ned by (2). The following

orthogonality relations are easy to verify (for the proof, see [3]).

Lemma 5. We have

Z

S(¹)

xjQn(x)
L2n(x)d¹(x)

A2n(x)
= 0; j = 0; 1; :::; n¡ k(n)¡ 1: (56)

From Lemma 5, it follows that for each n 2 N; Qn satis¯es the following inequality

¯̄
¯̄
¯

¯̄
¯̄
¯
QnLn

A
1
2

2n

¯̄
¯̄
¯

¯̄
¯̄
¯
2

·

¯̄
¯̄
¯

¯̄
¯̄
¯
(Qn + v)Ln

A
1
2

2n

¯̄
¯̄
¯

¯̄
¯̄
¯
2

(57)

for all polynomials v such that deg v < n¡ k(n). Set

qn(z) = ¸n Qn(z); (58)

where

¸n =

°°°°°
QnLn

A
1
2

2n

°°°°°

¡1

2

: (59)

Therefore, qn is the polynomial of degree n¡ k(n) orthonormal with respect to the

(varying) measure L2nd¹=A2n and (11) takes place.
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The following bounds for the error formula given by (6) are straightforward (see

(1.34) in Section 6.1 of [7]).

Lemma 6. There exist two positive continuous functions d1(z) > 0 and d2(z) <1

on C n Co(S(¹)) independent of n such that

d1(z)

¯̄
¯̄ A2n(z)

(qnLn)2(z)

¯̄
¯̄ · jrn(z)j · d2(z)

¯̄
¯̄ A2n(z)

(qnLn)2(z)

¯̄
¯̄ : (60)

Since d1(z) and d2(z) are bounded from above and below on each compact subset

of CnCo(S(¹)), formula (60) guarantees that the nth¡ root asymptotic behavior

of the error is completely determined by that of the sequence
½¯̄
¯̄ A2n(z)

(qnLn)2(z)

¯̄
¯̄
¾

n2N

:

3.2 - Proof of Theorem 1. Let Tn(z) = zn¡k(n) + :::; n = 1; 2; ::: be the monic

polynomials given by Lemma 1. From (8) and (57), we have
°°°°°
QnLn

A
1
2

2n

°°°°°

2

2

=

Z
(QnLn)

2(x)

A2n(x)
d¹(x) (61)

·

Z
(TnLn)

2(x)

A2n(x)
d¹(x) · ¹(S(¹))

°°°°
(TnLn)

2

A2n

°°°°
S(¹)

:

From (15), we have that (22) takes place, and using Lemma 4, for the sequence

Pn = TnLn, we obtain

lim
n!1

°°°°
(TnLn)

2

A2n

°°°°

1
2n

S(¹)

= exp f¡!g: (62)

Therefore, from (61) and (62), we have

lim sup
n!1

°°°°°
QnLn

A
1
2

2n

°°°°°

1
n

2

· exp f¡!g: (63)

On the other hand, ¹ 2 Reg and S(¹) is regular with respect to Dirichlet's

problem; therefore (cf. [7], Chapter 3, page 68),

lim
n!1

°°°°
QnLn

A
1
2
2n

°°°°

1
n

S(¹)
°°°°
QnLn

A
1
2
2n

°°°°

1
n

2

= 1: (64)
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Thus, from (63) and (64), we get

lim sup
n!1

°°°°
(QnLn)

2

A2n

°°°°

1
2n

S(¹)

= lim sup
n!1

°°°°°
QnLn

A
1
2

2n

°°°°°

1
n

S(¹)

=

= lim sup
n!1

°°°°°
QnLn

A
1
2

2n

°°°°°

1
n

2

· exp f¡!g:

This together with (26) gives

lim
n!1

°°°°
(QnLn)

2

A2n

°°°°

1
2n

S(¹)

= exp f¡!g: (65)

Due to Lemma 4, (65) implies (18) and

lim
n!1

¯̄
¯̄ (QnLn)

2(z)

A2n(z)

¯̄
¯̄
1
2n

= exp fG−(®; z)¡ !g; (66)

uniformly on compact subsets of C n (A [ Co(S(¹))). From (59), (64), and (65),

we also have

lim
n!1

(¸n)
1
n = exp f!g: (67)

Therefore, using (66) and (67), it follows that

lim
n!1

¯̄
¯̄
¯
(qnLn)(z)

A
1
n

2n(z)

¯̄
¯̄
¯

1
n

= lim
n!1

¯̄
¯̄
¯
p̂n(z)

A
1
2

2n(z)

¯̄
¯̄
¯

1
n

= exp fG−(®; z)g: (68)

Finally, (68),(4) (see (38)), and (23) imply (17). The proof of Theorem 1 is

complete.¥

Theorem 2 is an immediate consequence of Theorem 1 and Lemma 6 (for more

details, see proof of Theorem 1 in [3]).

4. Applications to quadratures

According to (6), (¹̂¡Rn)=A2n is holomorphic in C n S(¹) and

¹̂¡Rn
A2n

= O

µ
1

z2n+1

¶
as z !1: (69)
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Consider the partial fraction decomposition of Rn

Rn(z) =

NnX

i=1

Mn;iX

j=0

j!Ani;j
(z ¡ xn;i)j+1

; (70)

where Nn denotes the total number of distinct poles of Rn. The points xn;i are zeros

of L2nQn and although the zeros of Qn are simple (see (56)) they may coincide with

zeros of Ln; therefore, for given xn;i any value ofMn;i is possible (unless we restrict

the multiplicity of the zeros of Ln).

Lemma 7. For any polynomial p of degree at most 2n¡ 1, we have

Z µ
p

A2n

¶
(x)d¹(x) =

NnX

i=1

Mn;iX

j=0

Ani;j

µ
p

A2n

¶(j)
(xn;i): (71)

Proof. From (69), for any polynomial p of degree at most 2n¡ 1,

p(¹̂¡Rn)

A2n

has a zero at in¯nity of order at least two and is holomorphic in C n S(¹). Then,

integrating along any contour ¡ which surrounds Co(S(¹)), in such a way that A

lies outside the closed domain determined by ¡, from Cauchy's Theorem, Fubini's

Theorem, Cauchy's integral formula, and using (70), it follows that

0 =

Z

¡

p(¹̂¡Rn)

A2n
(z)dz =

Z

¡

p¹̂

A2n
(z)dz ¡

Z

¡

pRn
A2n

(z)dz =

= 2¼i

2

4
Z µ

p

A2n

¶
(x)d¹(x)¡

NnX

i=1

Mn;iX

j=0

Ani;j

µ
p

A2n

¶(j)
(xn;i)

3

5

which implies (71). Lemma 7 is proved.¥

Let f be a continuous function on Co(S(¹)) such that the operations indicated in

the following expressions make sense. Denote

I(f) =

Z
f(x)d¹(x) and In(f) =

NnX

i=1

Mn;iX

j=0

Ani;jf
(j)(xn;i):
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Formula (71) indicates that for any polynomial p of degree at most 2n¡ 1 we have

I

µ
p

A2n

¶
= In

µ
p

A2n

¶
:

Using arguments similar to those in the proof of Lemma 7, it is easy to verify the

following.

Lemma 8. Let f 2 H(V ) where V is a neighborhood of Co(S(¹)). Then, for any

contour ¡ contained in V such that Co(S(¹)) ½ Int(¡) and A ½ Ext(¡), we have

I(f)¡ In(f) =
1

2¼i

Z

¡

f(z)(¹̂¡Rn)(z)dz: (72)

Now, we can prove

THEOREM 3. Let f 2 H(V ) where V is a neighborhood of Co(S(¹)). Under the

conditions of Theorem 2, we have

lim sup
n!1

jI(f)¡ In(f)j
1
2n · sup

z2@V
expf¡G−(®; z)g: (73)

Assume that cap(@V ) > 0 and denote

qn(f) = jI(f)¡ In(f)j;

then

sup
f2H(V )

lim sup
n!1

q
1
2n
n (f) = sup

z2@V
expf¡G−(®; z)g: (74)

Proof. Take ¡ as indicated in Lemma 8. From (19), it follows that

jI(f)¡ In(f)j · (2¼)¡1l¡kfk¡k¹̂¡Rnk¡; (75)

where l¡ denotes the length of ¡. From (75) and (20), we have that

lim sup
n!1

jI(f)¡ In(f)j
1
2n · sup

z2¡
expf¡G−(®; z)g:

We can take ¡ as close to @V as we please; therefore, (73) follows immediately.

Since the right hand side of (73) does not depend on f 2 H(V ), it follows that
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sup
f2H(V )

lim sup
n!1

q
1
2n
n (f) · sup

z2@V
expf¡G−(®; z)g:

For the lower bound, take fz(x) = (z ¡ x)¡1, where z 2 C n V . This function (with

respect to x) belongs to H(V ) and

qn(fz) ¸ jI(fz)¡ In(fz)j = j¹̂(z)¡Rn(z)j:

Therefore,

lim sup
n!1

q
1
2n
n (fz) ¸ lim sup

n!1
j¹̂(z)¡Rn(z)j

1
2n : (76)

Using (20), it follows from (76) that

sup
f2H(V )

lim sup
n!1

q
1
2n
n (f) ¸ sup

z2CnV

lim sup
n!1

j¹̂(z)¡Rn(z)j
1
2n (77)

= sup
z2@V

expf¡G−(®; z)g;

which is what we needed to prove.¥
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