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1 Introduction 

This paper is concerned with testing the null hypothesis of no cointegration 

among I(l)-variables when the cointegration residuals are I(d) with 0 < d < l. 
This possibility is entertained with increasing frequency in many applications 

(see e.g. Cheung and Lai 1993, Baillie and Bollerslev 1994, Booth and Tse 1995 

or Baillie 1996 for examples). We consider the power of various cointegration 

tests both for the stationary case (d < 0.5) and for the nonstationary case 

(d ~ 0.5). 

When the potential cointegrating relationship is known, this problem boils 

down to testing for unit roots against fractional alternatives, as discussed by 

e.g. Sowell (1990), Diebold and Rudebusch (1991), Hassler and Wolters (1994), 

Dolado and Marmol (1997) or Kdimer(1998). When the potential co integrating 

relationship has to be estimated, we encounter the twin problems of nonstan

dard regression properties due to I(d)-disturbances and unobservabiIity of the 

true residuals. While the second problem has been solved for the case where 

1 Research supported by Deutsche Forschungsgemeinschaft and Volkswagenstiftungj we 

are grateful to lngolf Dittmann for helpful criticism and comments, and to Deutsche Finanz

datenbank (DFDB) for providing us with the data for our empirical results 

1 



the true residuals are 1(0) (Phillips/Ouliaris 1990), an analoguous analysis of 

the case where the true residuals are l(d) with d < 1 is still missing. 

A related problem is the power of tests of the null hypothesis that cointegration 

exists, against the alternative of fractionally integrated residuals. Again, this 

problem has only been addressed for the case where true residuals are used 

(Lee and Schmidt 1996, Marmol1997). 

Below we confine ourselves to testing the null hypothesis of no cointegration. 

2 The Model and the Tests 

Let {Zt}, t = 0,1,2, ... be the m-vector integrated process under test, genera

ted according to 

Zt=Zt-l+~t (t=1,2, ... ). (1) 

As regards to this and subsequent notation and also as regards assumptions, 

we follow Phillips and Ouliaris (1990). In particular, let Zo without loss of 

generality be zero. The innovations ~t in (1) are assumed to have mean zero 

and to satisfy a multivariate invariance principle 

1 [Tr] 

XT(r):= m; L~t ~ B(r), 
vT t=l 

where B(r) is an m-vector Brownian motion with covariance matrix 

Under the null hypothesis of no cointegration, n has full rank m. 

(2) 

(3) 

Below we consider the alternative that there is exactly one cointegrating rela

tionship, i.e. that the z-vector can be split into 

- [ Yt ]1 Zt - , 
Xt n 

m=n+1 (4) 
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such that 

(5) 

where Ut is 1(d) with d < 1. This generalizes Phillips and Ouliaris (1990), who 

consider the case where under the alternative Ut is 1(0). 

Given that the data follow (5), we consider the following tests of the null 

hypothesis of no cointegration (Le. Ut '" 1(1)): 

Augmented Dickey Fuller (ADF): 

The t-statistic for 0: = 0 in the regression 

(6) 

where the Ut are OLS-residuals from (5). 

Phillips' ZQ: 

(7) 

where a is from the regression Ut = aUt-1 + kt and where 

s2 1 t A2 (8) T kt, 
t=l 

Sfl 
1 T A2 2 l T 

ktkt- s, (9) TLkt + TLWSl L 
t=l s=l t=s+l 

s 
(10) Wsl - 1---. 

£+1 

The extra term on the right in (7) takes care of nuisance parameters that 

would otherwise affect the limiting rejection probability under Ho: The 

limiting distribution of the standard Dickey-Fuller statistic T(a - 1) depends 

on the correlation structure of the residuals, and this dependency is thereby 

(asymptotically) removed (see Hamilton 1994, chapter 17.6 for a didactical 
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exposition of this issue). 

(11) 

Again, the second term is added to remove the dependency of the limiting 

null distribution on the correlation structure of the residuals. 

The Phillips/Ouliaris variance ratio test: 

(12) 

(13) 

and where the tt are the residuals from the least squares regression 

(14) 

The Phillips/Ouliaris multivariate trace statistics: 

(15) 

where Mzz = ~ Ef=1 ZtZ~. 

The Za- and Zt-tests can be viewed as generalizations of the standard Dickey

Fuller tests based on either T(&-1) or on the standard t-statistic for Ho : a = 1 

in the regression 

Ut = aUt-1 + kt . (16) 
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The variance-ratio and multivariate trace-statistic tests explore the relation

ship between direct and indirect estimates of the conditional variance of Yt 

given Xt, along the lines of Hausman (1978): Under the null hypothesis of no 

cointegration, both estimates are close together, but they diverge when there 

is cointegration. 

Sowell (1990) has shown that Cl! -1 from the regression (16) is Op(Tl-2d) when 

the Ut'S are /(d), (0.5 < d < 1) so 

(17) 

i.e. the Dickey-Fuller-test is consistent as it diverges under the alternative, 

albeit much slower than when the disturbances in (16) are /(0). Similarly, 

the Dickey-Fuller-t-test diverges, again much slower than under the /(0)

alternative. 

Below we extend these results to the case where estimated rather than true 

residuals are used, and where the tests account for the fact that there is auto

correlation among the kt's from (16) under the null hypothesis. 
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3 Divergence Rates under Nonstationary 

Alternatives 

THEOREM 1: Under the assumptions specified in Section 2, when the residuals 

Ut in Yt = /3' Xt + Ut are I (d) with 0.5 < d < 1, we have the following divergence 

rates of the various test-statistics:2 

(i) ZO! = Op(T2- 2d ), 

(ii) Zt = Op(T1
-

d), 

(iii) ADF = Op(T1-d), 

(iv) Pu = Op(T2-2d), 

(v) Pz = Op(T2-2d) , 

REMARK: The theorem shows that the tests remain consistent, but the 

divergence rates are smaller in the context of fractional cointegration, so 

conventional tests will often fail to pick it up. Also, the relative differences 

established by Phillips and Ouliaris (1990, Theorem 5.1 and 5.2) remain: 

the Zt and ADF-tests diverge still slower than the rest, which explains why 

there tests are particularly poor in detecting fractional cointegration in the 

empirical example discussed in section 5. 

PROOF OF THEOREM: For ease of exposition and notation, we initially 

confine ourselves to bivariate systems, i.e. to the case n = 1 and m = 2. Then 

/3 and Xt in (5) are scalars, and we have in obvious notation: 

~-/3 
X'u 
X'X 

and (18) 

2Here and elsewhere, "Opg(T)" is taken to imply that geT) is the largest function of 

T such that the respective expressions divided by geT), remain stochastically bounded, 

but do not tend to zero in probability either. f(T)/g(T) -t 00 implies that the respective 

expressions are op(f(T)). 
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A A X'U 
U '- Y - f3x = U - (f3 - (3)x = U - -X where 

x'x 
x'U 
x'x 

(19) 

(20) 

(see Cheung and Lai 1993, p. 106). This latter relationship implies that, with 

nonstationary fractional alternatives, we no longer have 

(21) 

since 

, 
xu ( d 1) 

UT T = UT - -XT = UT + Gp T -2 . , x'x (22) 

This makes various subsequent derivations rather complicated, since estimated 

residuals do no longer tend in probability to the true residuals uniformly in t. 3 

In the regression 

Ut T = aUt-l T + kt , , (23) 

we have 

a-I 
U~l(U-U-l) 

A' A 
U_IU-l 

~ (u~,T - Li (LlUt,T)2) 
A' A 
U_IU-l 

(24) 

3 Unlike Phillips/Ouliaris (1990), we have added a second subscript to Ut in (21) and (22), 

to highlight the fact that OLS residuals depend on sample size. This dependence on sample 

size is inconsequential in the case of ARMA-residuals, as then 

Ut,T = Ut + Op(T-!) uniformly in t, 

(see Phillips/Ouliaris 1990, p. 184), so the subscript T can without danger be omitted. 

With fractionally integrated residuals, we still have Ut,T 4 Ut for any given t, as for given 

t, Ut,T - Ut = Op(Td-l», but this convergence is no longer uniform in t. 
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where 

(25) 

T 

L(L~itt,T)2 Op(T) (26) 
1 

and 

(27) 

Taken together, (24) - (27) imply that under the alternative 

(28) 

which is the same convergence rate that obtains when true residuals are used 

(Sowell 1990). 

In the general case where m > 2, the simple formula (19) for the cointegration 

residuals it is replaced by it = y - xS = zb (b = [1, -S']'), where 

(29) 

and where it can again be shown, using the fact that 

(Tr] 

T-d L b' Zt ~ fractional Brownian Motion, (30) 
t=l 

Now consider Zo. from (7). From (28), we have 

(31) 

and as the second term in Za does not diverge any faster, this gives at the 

same time the divergence rate of the Za-test. 
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As to Zt, we have from (27) and (28) that 

(32) 

which again is equal to the divergence rate of the complete test statistic. 

As to ADP, the t-statistic for Ho : a = ° in the regression (6) can be written 

as 

(33) 

where Qxp = I - Xp(X;XptlXp and Xp is the matrix of observations on the 

p regressors (~'lLl' ~U-2' ... , ~u_p) in (6). We have 

where 

Op(T2d) and 

Op(T2d) 

if p does not tend to infinity too fast (see Kramer 1998), implying 

~-lQ ~ 0 (T2d ) U XpU-l = P . 

In the same vein, if p does not tend to infinity too fast, we have 

constant > 0, so 

(34) 

(35) 

(36) 

(37) 

As to Pu , one first verifies that the steps in the proof of Theorem 5.2 in Phil

lips/Ouliaris (1990, p. 186) that lead to 

~ p 0 
WU.2 ~ constant > (38) 
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are still valid in the present context. The divergence rate under fractional 

cointegration of ?u then follows fromu'u = Op(T2d) (see (27)). 

As to ?z, we decompose Mzz = ~ '£;=1 ZtZ~ in into 

where 

1 [Y'Y y')( 1 M --
zz - T )('y )(')( , 

M- l =T zz [ 
(U'U)-l . 1 = Op(Tl

-
2d). 

()(I)( _ )('yy')(/y'y)-1 

(39) 

( 40) 

As n remains Op(l) under fractional cointegration, the theorem follows from 

the definition (15). 

4 Divergence rates under stationary 

alternatives 

THEOREM 2: Under the assumptions specified in section 2, where the residuals 

Ut in Yt = j3'Xt + Ut are I(d) with -0 < d < ~, we have 

(ii) Zt = Op(T~) 

(iii) ADF = Op(Tt) 

(iv) ?u = Op(T) 

(v) ?z = Op(T) 

REMARK: The theorem shows that the divergence rates under stationary 

long memory alternatives are identical to divergence rates under stationary 

short memory alternatives, as given by Phillips/Ouliaris (1990, Theorem 5.2). 

In particular, they no longer depend on d. Also, the relative differences in 
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divergence speeds from the nonstationary case are retained. 

PROOF OF THEOREM: By assumption, 

Ut = Yt - {3'Zt =: qt 

is stationary, and from 

b - b + Op(Td
-

1
) we have 

(41) 

(42) 

Therefore 

T(& - 1) = Op(T) , (43) 

which is also the divergence rate of the Za-test. 

In the same vein, the divergence rate of the Zt-test follows from 

(44) 

and the divergence rates of the Fu and Fz-tests are obtained by replicating the 

proof of theorem 5.2 in Phillips/Ouliaris (1990, p. 186) (this proof establishes 

the divergence rates under stationary short memory alternatives, but goes 

through with stationary long memory alternatives as well). 

It is more difficult to establish the divergence rate of the Augmented Dickey 

Fuller test. We have 

Op(T) and 

Op(l), so 

Op(T). 
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Also, if p does not tend to infinity too fast (see Kramer 1998), we have 

and 

32 P 2 
v~ae' (48) 

where the Et'S are the innovations in the infinite AR-representation of qt = b'Zt 

(see Fuller 1996, p. 374), and the divergence rate of the test statistic follows. 

5 An Empirical Illustration 

Next we apply the tests discussed so far to three time series of German com

mon stocks (logarithms, daily, from Jan. 4, 1960 to Dec. 30, 1991, comprising 

T = 7928 observations adjusted for dividends, stock splits etc.): Chemical com

panies Bayer, BASF and Hoechst. In an efficient market, stock prices cannot 

be cointegrated (since returns would otherwise be predictable, using the Gran

ger representation theorem), but as Figure 1 seems to imply, there is certainly 

cointegration among the stocks above (we show only log prices of Bayer of 

Hoechst in order not to overload the picture). 

Figure 1: 

log prices of Bayer and Hoechst plotted against time 

Figure 2, a three-dimensional scatterplot of all three stocks against each other, 

corroborates this visual impression of cointegration: Prices seem to stick closely 

to a line in R3 (implying two cointegrating relationships). 

Figure 2: 

log prices of Bayer, Hoechst and BASF plotted against each other 
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However, applying formal tests of the null hypothesis of no cointegration to 

the residuals u of the regression 

Rn (Bayer) = ~l Rn (Hoechst) + ~2 Rn (BASF) + u (49) 

(and similarly to the residuals of alternative regressions where the roles of de

pendent and independent variables are reversed), one scarcely can reject: Table 

1 gives the test statistics and the respective 5%-values of the tests discussed 

above - more often than not, the null hypothesis of no cointegration cannot 

be rejected. 

Table 1: Residual based cointegration test applied to 

in (Bayer), in (BASF) and Rn (Hoechst) 

test statistic critical values rejection 

(5 %) 
ADF(p=3) -2,97 -3,76 no 

ADF(p=7) -2,82 -3,76 no 

Zo: -7,94 -22,27 no 

Zt -1,87 -3,33 no 

i>u 20,73 53,97 no 

Pz 100,46 89,87 yes 

The reason for this apparant failure to recognize a cointegrating relationship 

when visual inspection strongly suggests that one exists appears to be the long 

memory in the cointegrating residuals: Figure 3 gives the first 100 empirical 

autocorrelations of the residuals from the regression (37), and Figure 4 the 

estimated spectral density: Both figures strongly suggest that the cointegra

ting residuals are best modelled as an I(d)-process, and that the conventional 

cointegration theory with ARMA-residuals does not apply. 

Figure 3: 

Empirical autocorrelations of estimated cointegration residuals 
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Figure 4: 

Estimated spectral density of estimated cointegration residuals 

We also estimated the d-parameter by both the Geweke-Porter-Hudak method 

and by Range-Scale analysis, with estimated values clustering around 0.5. The 

lesson from this empirical application therefore seems to be that even blatant 

cointegration (in the sense that trending variables stick very close to each 

other) is easily overlooked by standard tests when the cointegrating residuals 

are fractionally integrated. 
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Figure 1: 
log prices of Bayer and Hoechst plotted against time 
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Figure 2: 
log prices of Bayer. Hoechst and BASF plotted against each other 
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Figure 3: 
Empirical autocorrelations of estimated cointegration residuals 
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Figure 4: 
Estimated spectral density of estimated cointegration residuals 
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