
Working Paper 99-23 

Statistics and Econometrics Series 05 

March 1999 

Departamento de Estadfstica y Econometrfa 

UniversidadCarlos III de Madrid 

Calle Madrid, 126 

28903 Getafe (Spain) 

Fax (34-91) 624-9849 

OLS-BASED ASYMPTOTIC INFERENCE IN LINEAR REGRESSION MODELS 

WITH TRENDING REGRESSORS AND AR(P)-DISTURBANCES 

WaIter Kramer and Francesc Marmol* 

Abstract ___________________________ _ 

We show that OLS and GLS are asymptotically equivalent in the linear regression 

model with AR(p)-9isturbances and a wide range of trending regressors, and that 

OLS-based statistical inference is still meaningful after proper adjustment of the test­

statistics. 

Keywords: OLS; GLS; Trending Regressors. 

*Kramer, Fachbereich Statistik, Universitat Dortmund, D-44221 Dortmund, 

Germany; Marmol, Departamento de Estadistica y Econometria, Universidad CarIos 

III de Madrid. Cl Madrid, 12628903 Getafe -Madrid-. Spain. Ph: 34-91-624.98.63, 

Fax: 34-91-624.98.49, e-mail: fmarmol@est-econ.uc3m.es. 



OLS-based Asymptotic Inference in Linear Regression 
Models with Trending Regressors and 

AR(p )-Disturbances1 

\\falter Kramer 
Fachbereich Statistik, Universitat Dortmund, D-44221 Dortmund, Germany 
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Summary 

\\re show that OLS and GLS are asymptotically equivalent in the 

linear regression model with AR(p)-disturbances and a wide range 

of trending regressors, and that OLS-based statistical inference is 

still meaningful after proper adjustment of the test-statistics. 

1 Notation and assumptions 

\\re consider the standard linear regression model 

Yt = x~f3 + Ut ,t = 1,2, ... , 

where Xt and f3 are k x 1 and Ut is a stationary, zero mean AR(p )-process, 
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with iid(O, ()2) et'S and all roots of the polynomial I + P1Z + ... + PpzP outside 

the unit circle. Our main concern is OLS-based statistical inference when the 

regressors Xt are independent of the disturbances and" trending" , by which we 

mean that they satisfy an invariance principle 

(3) 

where ~ denotes convergence in distribution, [Tr] is the integer part of 

Tr, gi(T) -7 00 and Bi(r) is some non-zero, possibly degenerate random ele­

ment in D[O, 1] (the set of all real-valued functions on the unit interval who 

are right continuous and have left-hand-limits, endowed with the Skorohod­

Topology; see Billingsley 1968, chapter 3). Also, ,ye assume that 

(4) 

where g(T) = diag(g1(T), ... ,gdT)) and where B(r) is a random element 

in D[O, IJk with components Bi(r), and that fa1 B(r)B(r)'dr is invertible with 

probability 1. 

The crucial condition (3) covers various special cases: (i) Stochastic £(1)­

regressors, where gi(T) = VT and where (under suitable regularity conditi­

ons) Bi(r) is Brmvnian Motion. (ii) Nonstochastic polynomial regressors, where 

Xit = t i and gi(T) = T i, and where Bi(r) = ri. (iii) Nonstationary fractionally 

integrated regressors, where (1- L )dXti = eti with d > ~ and stationary ARMA 

cti'S, where gi(T) = JT2d-1 and where Bi(r) is fractional Brownian Motion 

(So\\'e11 1990, Chung 1995, Dolado and Marmol1998). It does not cover expo­

nential trends, as it is easily seen that invariance principles like (3) do then no 

longer hold. 

The topic of the paper is the asymptotic performance of the OLS-estimator 

T -1 T 

S = (L: XtX~) L: XtYt, 
t=1 t=1 

(5) 

both relative to GLS and as regarding inference, generalizing Grenander 

(1954), Rosenblatt (1956), Kramer (1985, 1998), Phillips and Park (1988), 
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Kramer and Hassler (1998) or Dolado and Marmol (1998), who either consi­

der only special cases of trend or focus on the asymptotic efficiency of OLS, 

disregarding inference. 'Ve show that OLS is asymptotically efficient, thus esta­

blishing the invariance principle (3) as the heart of the well known efficiency 

results in the papers above, and show that OLS-based F-tests are still asymp­

totically valid in the context of autocorrelated disturbances if the OLS-based 

variance estimator is divided by an estimator of the long-term variance of the 

disturbances. This was first noted by Kramer (1987) and Phillips and Park 

(1988) in the context of polynomial and I(l)-regressors, but extends to all 

types of trend comprised by (3). 

2 Asymptotic properties of OLS-based 

coefficient estimates 

,re first compare the properties ofOLS to those of the GLS-estimator~, which 

in the present context is obtained by applying OLS to 

Yt i;~,8 + Ct, where (6) 

Xt Xt + PI Xt-l + ... + PpXt-p and (7) 

Yt Yt + PIYt-l + ... + PPYt-p (t > p) (8) 

and where observations t = 1, ... ,p, which are asymptotically irrelevant, are 

ignored. 

THEOREM 1: Let lV(r) be Brownian Motion, independent of B(r), with va­

riance 0-2 = (72/(1 + PI + ... + pp)2. The limiting distributions as T --+ 00 of 

v'Tg(T)(/J -,B) and v'Tg(T)(~ -,8) are then identical and given by 

[fol B(r)B(r)'drt1 fol B(r)dW(r). 
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PROOF: \Ve have 

(10) 

( 
g(T)-l X[Tr] ) ~ ( B(r) ) 
T - 1 ",[Tr] W()' 

2 L....s=l Us r 
(11) 

1 T 101 _g(T)-l L XtX~g(T)-l ~ B(r)B(r)'dr and 
T t=l 0 

(12) 

1 T 1 

fmg(Tt 1 LXtUt ~ r B(r)dlV(r), 
vT t=l 10 

(13) 

where (12) follows from (4) and the continuous mapping theorem (Billingsley 

1968, p. 30) and where (13) follows from the independence of vV(r) and B(r) 

and a general theorem on the convergence to stochastic integrals in Hansen 

(1992, p. 491). Taken together, (12) and (13) give (9) as the limiting distribu­

tion of OLS. 

As to GLS, we have 

g(T)-lX[Tr] 
[Tr] 

T-! Lcs 
s=l 

g(T)-l(1 + PI + ... + pp)X[Tr] + op(l) and 
[Tr] 

T-!(l + PI + ... + pp) L Us + Op(I), 
8=1 

(14) 

(15) 

which implies, emulating the proof of Theorem 2.2 in Phillips and Park (1988, 

p. 114) that 

( 
g(T)-IX[Tr] ) ~ ( B(r) ) . 

(T) -l ",[Tr] -( ) 
L....s=1 Cs U r 

However, 

B(r) 

IV(r) 

(1 + PI + ... + pp)B(r) and 

(1 + PI + ... + pp)W(r), 
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where B(r) is independent of vV(r). In view of 

(19) 

this implies that 

VTg(T)(~ - (3) ~ [fo1 B(r)B(r)'drt1 fo1B(r)dTV(r) 

[fo1 B(r)B(r)'drt1 fo1 B(r)dW(r), (20) 

as the term 1 + PI + ... + Pp cancels out. o 

Theorem 1 shows also, in view of g(T) -f 00, that OL8 and GL8 are con­

sistent and converge to the true parameter vector faster than in the case of 

nontrending regressors, confirming well known results from regression analysis 

(" superconsistency"). One can also extend Theorem 1 to include the feasible 

GL8-estimator, which is obtained by plugging estimated p's into (7) and (8). 

It is easy to show that these estimates, if based on OL8-residuals Yt - x~/3, are 

consistent, and that the limiting distribution (9) obtains for feasible GL8 as 

well. 

To derive the limiting null distribution of the F-test, which will be the 

concern of section 3, it is more useful to normalize the estimation errors f3 - f3 

differently, as is done in our next result. 

THEORElVI 2: Assume that B(r) can be expressed as a uniformly continuous 

functional of a K -dimensional Brownian Motion. Then, as T -f 00, both 

(I;xtxD-~(/3 - (3) and (I;(xtxD)-~(~ - (3) tend in distribution to N(O, (j2I). 

PROOF: From Theorem 1 and the continuous mapping theorem, we deduce 

that 

(I;xtx~)~(/3 - (3) ~ (fo1 B(r)B(r)'dr))-~ fo1 B(r)dW(r). 
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As B(r) is by assumption a continuous functional of Brownian Motion E, we 

deduce from Phillips and Park (1988, p. 114) that 

fol B(r)dTV(r)la(S) rv N (°,02 fol B(r)B(r)'dr) , (22) 

from which (21) follows. 

As to GLS, we have 

where the first term tends to (1 + PI + ... + pp)-l h and the second term tends 

to N(O, (J21), \vhich completes the proof of the theorem. 0 

The additional requirement in Theorem 2 that B(r) can be written as a functio­

nal of Brownian ~Iotion does not seem to be very restrictive. It is for instance 

satisfied for arbitrary J(d) regressors (d> 1/2), including d = 1, so the cases 

that are of interest in practice are covered. Also, an analogous version of Theo­

rem 2 holds which establishes that both (I:.it.i~) t (~ - (J) and (I:.i~.it) t (~ - (J) 

tend in distribution to N(O, (521). 

3 Asymptotic inference 

:\ext we consider the standard OLS-based F-Test of the hypothesis 

Ho : R{J = r, (24) 

where R is q x k with rank q( q < k). The test statistic is 

(25) 

where 

T 

8
2 = 2:)Yt - X~~)2 /(T - k). (26) 

t=l 
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It has long been known that the most serious implications of auto correlated 

disturbances is not the resulting inefficiency of OL8 but the misleading 

inference when standard tests are used. One way out of this dilemma are the 

well known auto correlation-consistent covariance matrix estimates, but in the 

present context, the remedy is much simpler. 

THEOREM 3: Given Ho and the assumptions from Theorem 2, we have, as 

T-too 

(27) 

PROOF: \Ve have 

1 

[R (~XtX~)-l R'f2 (R~ - r) 
1 

[R (~g(T)-l~XtX~g(T)-l) -1 R'j-2 VTg(T)(R~ - r) 

1 

[R (~g(T)-lI:XtX~g(T)-l) -1 R'j-2 R..JTg(T)(~ - f3) (underHo). 

Using (9), (12) and the continuous mapping theorem, we have that under Ho, 

1 

[R (I:XtX~r1 R'] -2 (R~ - r) 
1 

~ [R (fo1 B(r)B(r)'dr) -1 R'j-2 R (fo1 B(r)B(r),dr) -1 fo1 B(r)dTV(r) 

= [R (l B(r)B(r),dr) -1 R'j-' R (l B(r)B(r)'dr) -I N(O,u'h), (28) 

where" =" denotes equality in distribution. 

Expression (28) implies that 
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(28) N [0,0'2 (R (10' B(r)B(r)'dr) -1 R')-1 

X R (101 
B(r)B(r)'dr) -1 RI] 

N(O, (j2 Iq). 

On the other hand we have 

2 1 ~( I A)2 
S T _ k ~ Yt - xtf3 

t=l 

(29) 

The theorem then follows from (25), (29), (30) and standard results. 0 

Theorem 3 immediately yields an operational test as follows: Let 

A2 1 ~( '{3-)2 
(5 = T _ k ~ Yt - xt 

t==l 

(31 ) 

be an estimator for (52 based on GLS-residuals; and let 

-2 A2/(1 A A2)2 
S = (5 + P1 + ... Pp , 

(32) 

where Pi, i = ... ,p denote the OLS-based estimates of Pi in (1) - (2). 
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Then, it is easy to show that 

&2 ~ a2, 

1? ~ (j2. 

Together (27) and (33) - (34) imply that, under Ho 

2 
S d 2 
-2 F --t Xq , s 

which gives an operational and asymptotically valid test. 

Likewise, it is easy to show that the \"ald statistics 

Fl = (R(J - rl' [R (EXIX;) -l R'j-l (R(J - r)/if' 

and 

are both asymptotically X~ under Ho. 
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