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1. INTRODUCTION 

Forecasting is one of the main goals in univariate time series analysis. The problem 

consists in providing information about the distribution of the variable YT+k conditional 

on a realization of the past variables Y T = {Y1 , ... ,YT } . In particular, the objective 

is to construct prediction intervals I (Y T) = [L (Y T ), U (Y T )] designed to capture the 

future value of YT+k with a fixed probability (the nominal coverage). We will focus 

on prediction of future values of time series generated by autoregressive integrated 

moving average processes (ARIMA) with possibly non-Gaussian innovations. 

The standard prediction approach for ARIMA processes (Box and Jenkins 1976) 

assumes Gaussian innovations and known parameters. Consequently, the resulting 

prediction intervals are centered around the conditional expectation which is a linear 

function of past observations and do not incorporate the uncertainty due to parameter 

estimation. Thus, their accuracy may be very low if the variables are not normally 

distributed. 

Alternatively, bootstrap based methods provide prediction intervals without any 

distributional assumption on the innovations. There are several bootstrap alternatives 

in the literature to construct prediction intervals for autoregressive models of order p 

(AR(p)). Findley (1986), Stine (1987), Masarotto (1990) and Grigoletto (1998) use 

bootstrap methods to estimate the density of the prediction errors considering the 

uncertainty due to parameter estimation. As in the standard method, they center the 

forecast intervals at a linear combination of past observations. However, when the er

rors are nonnormal, the conditional expectation may not be linear and, consequently, 

these intervals may not be correctly centered. Alternatively, Thombs and Schucany 

(1990) and Breidt et al. (1995) estimate directly the distribution of YT+k conditional 

on Y T. In an AR(p) process, conditioning on Y T is equivalent to conditioning on 

the last p observations. Consequently, Thombs and Schucany (1990) and Breidt et 
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al. (1995) use the backward representation of AR(p) models (Box and Jenkins 1976) 

to generate bootstrap series that mimic the structure of the original data with fixed 

last p observations. McCullogh (1994) applies the results in Thombs and Schucany 

and Breidt et al. (1995) to real data implementing also the bias-correction boot

strap of Efron (1982). Garcia-Jurado et al. (1995) extend the bootstrap approach 

of Thombs and Schucany (1990) to autoregressive integrated (ARI) processes. They 

use the backward representation of the autoregressive model to construct bootstrap 

replicates of the differenced variable k periods ahead and then obtain bootstrap sam

ples of the original variable, YT +k , by solving a (k + d) x (k + d) linear system, where 

d is the number of unit roots. When forecasting far ahead, the huge dimension makes 

the system difficult to handle. The need to use the backward representation to gener

ate bootstrap series makes all these methods computationally expensive and, what is 

more important, restricts their applicability to models having a backward representa

tion, excluding, for example, generalized autoregressive conditionally heteroscedastic 

processes (GARCH). Furthermore, the prediction of moving average (MA) processes 

can not be handled by these methods because the infinite order of their autoregres

sive representation requires that, at least theoretically, the whole sample should be 

fixed to generate bootstrap replicates. An additional difficulty with this backward 

representation approach is that, although in AR(P) processes the distribution of YT +k 

conditional on Y T coincides with the distribution conditional on the last p observa

tions under known parameters, if the parameters are estimated these distributions are 

different in finite sample sizes. Kabaila (1993) questions whether predictive inference 

should be carried out conditioning on the last p observed values. Finally, Cao et al. 

(1997) present an alternative bootstrap method for constructing prediction intervals 

for stationary AR(P) models which does not requires the backward representation. 

However, their intervals do not incorporate the variability due to parameter estima

tion. 
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In this paper, we propose a simple resampling procedure for ARIMA processes 

to estimate the conditional distribution of YT+k incorporating the variability due to 

parameter estimation. Our strategy makes unnecessary the backward representation 

and, as a consequence, this bootstrap procedure can be easily extended to forecasting 

with more general models. 

The paper is organized as follows. Section 2 presents the resampling procedure 

to estimate prediction distributions and establishes its asymptotic validity for AR(p) 

processes. In section 3, we prove the asymptotic validity of this method when it is 

extended to ARI processes. Section 4 contains an extensive Monte Carlo simulation 

study which compares the performance of all available bootstrap prediction techniques 

for different ARIMA models and error distributions. Finally, the conclusions and some 

ideas for further research can be found in Section 5. 

2. BOOTSTRAP PREDICTION INTERVALS FOR STATIONARY 

ARCP) PROCESSES 

Let YT = {Yl,"" YT} be a sequence of T observations generated by an AR(p) 

process given by 

Yt = <Po + <PI Yt-I + ... + <PpYt-p + at, t = ... , -2, -1,0,1,2, ... , (1) 

where {at} is a sequence of zero-mean independent random variables with common 

distribution function Fa such that E[a;] = a~ < 00 and (<Po, <PI" .. ,<Pp) are unknown 

parameters. In this section, we assume stationarity, i.e., all the roots of the polynomial 

<p(z) = 1 - <PIZ - ... - <PpzP lie outside the unit circle. 

Given Y T = {Yi, ... , YT }, the predictor of YT+k with minimum mean square error 

(MSE) is given by the conditional mean of YT+k , 
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(2) 

Under normality of at, the conditional mean is a linear function of past observations 

and the minimum MSE predictor of YT+k is given by 

(3) 

where YT+j = YT+j for j :s; O. The prediction error is a combination of future 

innovations aT+j, j = 1, ... , k, given by 

k-l 

eT+k = YT+k - Y"T+k = L WiaT+k-i, 
i=O 

(4) 

where W i are the coefficients of the moving average representation of the AR(p) model 

obtained from W(B) = <I>(B)-l, where B is the backshift operator. The prediction 

MSE is given by 

k-l 

MSE(eT+k) = O"~ L wr (5) 
i=O 

In practice, predictions are made with estimated parameters. The actual predictor is 

then given by 

(6) 

where (~O, ~l' ... ,~p) are the parameter estimators and YT+j = YT+j for j :s; o. The 

corresponding prediction error can be decomposed into two parts by writing 

(7) 

The first term in (7) is the prediction error in (4). The second term appears because 

parameter estimates are used instead of true values. So, in practice, this uncertainty 
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due to parameter estimation has to be included in the expression of the prediction 

MSE. 

The prediction intervals for YT+k constructed using the Box-Jenkins (1976) proce

dure are given by 

[ ( 

k-1 ) 1/2 
YT +k - Zo/2 &~ f; ~; , 

( 

k-1 ) 1/2] 
YT+k + Z~/2 &~.r;~; , (8) 

where Zo/2 is the 1 - a/2 quantile of the standard normal distribution, &~ is the 

usual estimate of the innovations variance and ~ j are the estimated coefficients of 

the moving average representation. The prediction intervals in (8) just consider the 

MSE in (5) and replace the unknown parameters by appropriate estimates. However, 

they do not incorporate the variability due to parameter estimation. Moreover, these 

intervals have two additional problems when the distribution of at is not normal. 

First, the value of the standard normal quantile may not be appropriate. To handle 

this question, Findley (1986), Stine (1987), Masarotto (1990) and Grigoletto (1998) 

proposed different ways of bootstrapping from the residuals of the estimated model, 

at = Yt - ~o - ~lYt-1 - ... - ~PYt-p, t = P + 1, ... , T, (9) 

to estimate the distribution function of the prediction error. The second difficulty 

is that these bootstrap prediction intervals are still centered in (6) and when the 

innovation distribution is not normal, the conditional mean in (2) may not be a 

linear combination of past observations. 

To solve this problem, Thombs and Schucany (1990) introduced a bootstrap method 

based on directly estimating the distribution of YT+k conditional on the available 

variables Y T. To incorporate the uncertainty due to parameter estimation in the 

prediction intervals, they generated bootstrap replicates YT = {Yi, ... , YT} that mimic 

the structure of the original series. Since the prediction is conditional on the last p 

values of the series, all the bootstrap replicates are generated fixing the last p values. 

6 



Consequently, they needed to use the backward representation of stationary AR(p) 

models, where Yt is expressed as a linear combination of future values plus an error 

term. Using the backward representation makes the procedure computationally de

manding and it constitutes an obstacle to extend the resampling procedure to models 

without backward representation. To overcome this problem, Cao et al. (1997) pro

posed a fast procedure (called conditional bootstrap) to generate prediction intervals 

based on resampling residuals but their method does not incorporate variability due 

to parameter estimation. 

In this section, we introduce a new resampling strategy to build prediction intervals 

in AR(p) models. Our method is based on fixing the last p observations to obtain 

bootstrap replicates of future values YT+k but the estimated parameters are boot

straped without fixing any observation in the sample. As a consequence, we do not 

need the backward representation of the model and, therefore, the method can be 

easily extended to more general models. 

Our proposal to obtain bootstrap replicates of the series is as follows. Given a set 

of estimates of the AR(p) model, obtain the residuals by (9) and centre and rescale 

them, as suggested by Stine (1987), by the factor [(T - p)/(T - 2p)P/2. Fi-om a set 

of p initial values, say Yo = {y:'p+1' ... ' Yo}, construct a bootstrap series {Yi,···, YT} 

from 

(10) 

where a; are independent observations obtained by resampling from Fa, the empirical 

distribution function of the centered and rescaled residuals. Once the parameters 
-* -* -* of this bootstrap series are estimated, say (<Po, <PI' . .• , <Pp), we forecast through the 

recursion of the autoregressive model with the bootstrap parameters and fixing the 

last p observations of the original series, 

P 
y;* ').* '" ').*Y;* ~* 

T+k = 'f'0 + w'f'j T+k-j + ClT+k' (11) 
j=1 
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with aT+k being a random draw from Fa and YT+h = YT+h , h ~ o. Once we obtain 

a set of B bootstrap replicates {Y;~t, ... , y;<:2} , we proceed as in Thombs and 

Schucany (1990). The prediction limits are defined as the quantiles of the bootstrap 

distribution function of YT+k. More specifically, if G*(h) = Pr(YT+k ~ h) is the 

distribution function of YT+k and its Monte Carlo estimate is GB(h) = #(y;Cl}k ~ 

h)j B, a 100,8% prediction interval for YT+k is given by 

[L B (Y), Us (y)) = [QB (
1 

; ,8) ,QB (
1 ~ ,8) 1 ' (12) 

where QB = GB-I. The main difference between our bootstrap strategy and Thombs 

and Schucany's (1990) is that our bootstrap parameter estimates are not conditional 

on the last p observations and this allows us to overcome the computational bur

den associated with resampling through the backward representation; moreover, this 

procedure can be extended to forecasting with more general and complex models. 

Summarizing, the steps for obtaining bootstrap prediction intervals are: 

Step 1. Compute the residuals at as in (9). Let Fa be the empirical distribution 

function of the centered and rescaled residuals. 

Step 2. Generate a bootstrap series using the forward recursion in (10) and compute 
-* -* -* 

the estimates (cPo, cPI' ... , cPp ). 

Step 3. Compute a bootstrap future value by expression (11). (Note that the last 

p values of the series are fixed in this step but not in the previous one.) 

Step 4. Repeat the last two steps B times and then go to Step 5. 

Step 5. The endpoints of the prediction interval are given by quantiles of GB, the 

bootstrap distribution function of YT+k. 

Next, we study the asymptotic properties of this bootstrap resampling strategy. 

Theorem 1. Let {YT-n+1, ... , YT} be a realization from a stationary p-th order 

auto regressive process {yt} with E[at} = 0 and E[laflJ < 00, for some a > 2. 
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(aJ Let (~o, ~l'···' ~p) be the OLS estimate of (<Po, <PI'···' <Pp) and let YT+k be 

obtained following steps 1 to 5. Then, for almost all sample sequences, YT+k ~ YT+k 

in distribution as n ~ 00. 

(bJ Let (~o, ~l' ... , ~p) be any M-estimate of (<Po, <PI,· .. ,<Pp) and let YT+k be ob

tained following steps 1 to 5. Then, for any distance d metrizing weak convergence, 

d(YT+k , YT+k ) ~ 0 in probability as n ~ 00. 

Proof. (a) Consistency of the OLS bootstrap estimate in conditional probability 

for almost all sample sequences follows from Freedman (1985). We will express YT+k 

as a sum involving the available and fixed values YT-n+1, ... , YT, continuous functions 
-* -* -* 

of the bootstrap parameter estimates (<Po, <PI' ... ,<Pp) and the independent random 

draws aT+j . Before proving the result for a general k, we present the idea for k = 1 

and k = 2. If k = 1, we have 

-* -* -* 
Y;+l = <Po + <PIYT + ... + <PpYT-p+1 + a~+1. 

~* 

The first term <Po, converges in conditional probability to <Po for almost all samples. 
~* 

Also, <PjYT-i+1 ~ <PjYT-i+bj = 1, ... ,p in conditional probability, for almost all 

samples. Thus, YT+1 is a sum whose first p + 1 terms converge in probability to <Po + 
l::: <PjYT-i+lalmost surely and aT+1 ~ aT+I in distribution almost surely. Therefore, 

from the bootstrap version of Slutsky's Theorem, YT+1 ~ YT+1 in distribution as 

n ~ 00 almost surely. For k = 2, 

The sum involving the first p + 1 terms converges in conditional probability to 

<Po (1 + <PI) + l:::gj (<PI' ... ' <pp) YT-j+1 almost surely. Moreover, ~~aT+1 ~ <PlaT+1 

and aT+2 ~ aT+2, both in distribution almost surely. Furthermore, these last two 
~* 

terms are independent, so <PI aT+1 + aT+2 ~ <PI aT+1 + aT+2 .in distribution almost 
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surely. Hence, YT+2 -t YT +2 in distribution as n -t 00 almost surely. Similarly, for a 

general k, we have that 

YT+k = 90 (~~, ... , ~;) + 91 (~~, ... , ~;) YT + ... + 9p (~~, ... , ~;) YT-p+! + 

The functions hj and 9j are different for each prediction horizon, but for simplic

ity we use the same notation. First, 90 (~~, ... ,~;) converges in probability al

most surely to 90 (<PI' ... , <pp). The products of fixed values YT-j and the bootstrap 

parameter estimates 9j (~~, ... , ~;) YT-j+I converge in probability almost surely to 

9j (<PI' ... , <pp) YT-j+!· The terms aT+j converge in distribution almost surely to aT+j 

and the products hj (~~, ... , ~;) aT+j converge in distribution to hj (<PI' ... , <pp) aT+h 

by Slutsky's Theorem. Since these last terms are independent, part (a) follows. 

(b) Kreiss and Franke (1992) proved weak consistency in probability for the boot

strap version of any M -estimate of (<Po, <PI' ... , <Pp). Part (b) follows by using the 

distance d metrizing weak convergence and arguing as in the proof of part (a) .• 

3. EXTENSION TO INTEGRATED AUTOREGRESSIVE PROCESSES 

In this section we generalize the resampling scheme introduced above to ARI(p, d) 

processes given by 

where \7 = (1- B). To obtain the conditional density of YT +k , we replace expressions 

(10) and (11) of the bootstrap procedure described in Section 2 by the appropriate 

recursions. For example, for the ARI(l, 1) model, (10) becomes 

t= 1, ... ,T, (14) 
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and (11) is replaced by the following recursions, 

-* -* -* 
- <Po + (1 + <PI)YT - <PIYT-I + (l~+1' (15) 

and so on. The validity of the proposed method is established in the following theo-

rem. 

Theorem 2 Let {YT-n+1, ... , YT} be a realization of an ARI(p, d) process with E[atl = 

o and E[latlCl:] < 00, for some a > 2. 

(a) Let (~o, ~l"'" ~p) be the OLS estimate of (<Po, <PI"'" <Pp) and let YT+k be 

obtained following steps 1 to 5. Then, for almost all sample sequences, YT+k -+ YT+k 

in distribution as n -+ 00. 

(b) Let (~o, ~l"'" ~p) be any M-estimate of (<Po, <PI"'" <Pp) and let YT+k be ob

tained following steps 1 to 5. Then, for any distance d metrizing weak convergence, 

d(YT+k , YT+k) -+ 0 in probability as n -+ 00. 

Proof. (a) We express YT+k as a sum involving the available and fixed last p + d 

values YT-j+1 for j = 1, ... ,p + d, continuous functions of the bootstrap parameter 

estimates (~~, ~~, ... ,~;) and the independent random draws (IT+j' To illustrate the 

proof, consider first an ARI(1, 1) process without constant. For the prediction horizon 

k = 1, we have 

The values (YT-I, YT) can be seen as constants in the first two terms. Thus, (1 + 
~* 

<PI)YT -+ (1 + <PI)YT in conditional probability as n -+ 00 for almost all sample paths; 

the same holds for the second term and, finally, ar+1 -+ aT+1 in distribution as n -+ 00 

almost surely. Therefore, from Slutsky's Theorem, YT+1 -+ YT+1 in distribution as 

n -+ 00 almost surely. For k = 2, we have 
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The sum involving the first two terms converges in conditional probability almost 

2 ( ~*) surely to (1 + <PI + <PI)YT - <PI (1 + <PI)YT-I. Moreover, 1 + <PI aT+! --+ (1 + <PI) aT+! 

and aT+2 --+ aT+2, both in distribution for almost all sample paths and, since these two 

terms are independent, (1 + ~~) aT+! + aT+2 --+ (1 + <PI) aT+! + aT+2 in distribution 

almost surely; it follows that YT+2 --+ YT +2 in distribution as n --+ 00 almost surely. 

For a general lead k the proof is similar. In this case, we have that 

YT+k = gI (~~, ... , ~;) YT + g2 (~~, ... , ~;) YT-I + 

+hI (~~, ... , ~;) aT+! + ... + hk- I (~~, ... , ~;) aT+k- I + aT+k· 

As before, the products of fixed values (YT-I, YT) and continuous functions of the boot-

strap parameter estimates, denoted by gI (~~, ... ,~;) YT and g2 (~~, ... ,~;) YT-I, 

converge in probability almost surely to gI (<PI' ... , <pp) YT and g2 (<PI' ... , <pp) YT-I, 

respectively. For the remaining terms, aT+k --+ aT+k in distribution almost surely, and 

the products hj (~~, ... , ~;) aT+j converge in distribution almost surely to hj (<PI' ... , <pp) aT+j. 

Finally, independence gives, as above, that YT+k --+ YT+k in distribution as n ---+ 00 

almost surely. The proof for a general ARI(p, d) process is straightforward, following 

the previous steps. 

(b) The proof follows along the lines of the proof of part (a), as in Theorem 1 .• 

4. SIMULATION RESULTS 

The coverage of prediction intervals for finite samples is usually different from the 

asymptotic nominal coverage and depends on the model, the distribution of the in

novations and the parameter estimation method. In this section, we present several 

Monte Carlo experiments carried out to analyze the finite sample behavior of the pro

posed bootstrap estimates of prediction densities of ARIMA(p, d, q) processes. First, 

we will focus on stationary AR(p) processes and we will compare our proposal (PRR) 

with Box-Jenkins intervals (BJ) and with alternative bootstrap intervals introduced 
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by Thombs and Schucany (1990) (TS), Breidt, Davis and Dunsmuir (1995) (BDD) 

and Kabaila (1993)(KAB) and Stine (1987) (STI). Then, we will consider integrated 

autoregressive models and compare PRR intervals with BJ intervals and with inter

vals constructed following Garcia-Jurado et al. (1995) (GGP). Finally, the behavior 

of our technique will be analyzed in forecasting future values of MA(q) models. As 

far as we know, the prediction density of MA(q) models has not been previously es

timated by bootstrap methods; therefore, we only present PRR and BJ prediction 

intervals. 

To compare the different prediction intervals, we use their coverage and length, 

and the proportion of observations lying out to the left and to the right of them. 

We compare these measures with those corresponding to the empirical prediction 

distribution obtained for a particular series generated by a specified process, sample 

size and error distribution Fa, generating R=1000 future values YT+k from that series. 

Then, for that particular series and for each of the methods considered, we obtain a 

100,8% prediction interval denoted by (L*, U*) (based on B=1000 replicates in the 

case of bootstrap intervals) and estimate the conditional coverage for each procedure 

by 

~* = # {L* :::; YT+k :::; U*} / R, 

where YT+k (r = 1, .. . ,R) are the series values generated previously. We have carried 

out 1000 Monte Carlo experiments and report average coverage, average length and 

average proportion of observations on the left and on the right for each method and 

for the empirical distribution. 

4.1 Autoregressive models 

First, we consider the AR(2) process in Thombs and Schucany (1990), 

Yt = 1.75Yt-l - 0.76Yt-2 + at· 
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The innovations distributions Fa are normal, exponential and a contaminated dis

tribution .9F1 +.lF2' with Fl rv N( -1,1) and F2 rv N(9,1). Each distribution has 

been centered to have zero mean. The sample sizes considered are 25, 50 and 100, 

the prediction horizons are k=l and 3, and we construct intervals with nominal cov

erage f3 equal to 0.80 and 0.95. The results of these experiments appear in tables 1 

to 12 where can be observed that the behavior of all bootstrap prediction intervals, 

except for Kabaila (1993), is rather similar for all horizons, nominal cover ages and 

distributions considered. The intervals constructed by Kabaila's method, although 

asymptotically correct, are, in general, too wide for moderate sample sizes. When 

looking at the results for Gaussian innovations, we may see that even though the 

standard intervals are built assuming the correct error distribution, the bootstrap 

intervals have better properties for a 80% nominal coverage. This may be due to 

the fact that standard intervals do not incorporate the variability due to parameter 

estimation and bootstrap intervals do; also, to the well known good bootstrap be

havior for small samples. Moreover, we may observe that the standard intervals have 

worse coverage properties than PRR intervals when forecasting three periods ahead. 

Notice that when model parameters are estimated, the distribution of the forecasting 

errors is not normal even if the innovations are Gaussian. This is due to the fact that 

the predictors are linear combinations of products of asymptotically normal random 

variables which, in general, are nonnormal. This is the reason why, even for Gaussian 

innovations distribution, constructing bootstrap forecasting intervals could improve 

the forecast properties. Looking at tables 5 to 8 which report results for the conta

minated distribution, we observe that the standard intervals are too wide and still 

are not able to cope with the shape of the error distribution. This can be seen more 

clearly in Figure 1 where we represent the prediction densities of the one-step ahead 

predictions when the sample size is 100, estimated by our bootstrap procedure and 

by the standard methodology together with the empirical density. Finally, comparing 
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the PRR, TS and BDD intervals, we may observe that for all distributions, sample 

sizes and cover ages considered, the behavior of the three methods is very similar. Our 

procedure does not work worse and, in some cases, seems to be slightly better than 

the others. The potential gains of PRR over TS and BDD could be due to the fact 

that the variance of the parameter estimates is reduced when the last p observations 

are not fixed to obtain bootstrap estimates of the parameters. Since our method 

is much simpler to implement and less computationally demanding than the other 

bootstrap methods, it seems to be an interesting alternative even for AR(p) models. 

Similar results and comments apply to innovations with exponential distribution. 

4.2 Integrated models 

We analyze the behavior of our bootstrap method for non-stationary series with 

the ARl(l, 2) process 

We use the same error distributions, sample sizes and nominal cover ages than before, 

and compare PRR forecast intervals with standard intervals and intervals built by the 

method proposed by Garcia-Jurado et al. (1995). The results of our simulation study 

appear in tables 13 to 18. In these tables, we may observe that, even for Gaussian 

errors, the standard intervals deteriorate very seriously when predicting three-steps 

ahead. As expected from results in the stationary case, the behavior of standard inter

vals is even worse when the error distribution is not Gaussian. Comparing PRR and 

GGP intervals, we observe that both are very similar. However, constructing GGP 

intervals requires solving a system which could be difficult to handle when forecasting 

far in the future, complicating the implementation of the method. Furthermore, in 

the cases considered in this paper, the PRR intervals slightly outperforms the GGP 

intervals. The simulation results for ARI(p, d) models are illustrated in Figure 2 where 
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we represent the one-step ahead prediction densities estimated using the standard, 

GGP and PRR proposals together with the empirical density for a sample size of 100 

and exponential innovations. 

Finally, as in the stationary case, we may observe that as the sample size increases, 

the average coverage and average length converge to the empirical values supporting 

the asymptotic properties stated in section 2. 

4.3 Moving average models 

Finally, we carry out Monte Carlo experiments to check the behavior of our tech

nique when predicting the future of processes with moving average components. In 

this case, there are no other alternative bootstrap methods proposed in the literature 

and, consequently, we only compare our strategy with standard intervals. 

To predict future values of a moving average process, we need estimates of the 

within-sample innovations. This is an additional source of uncertainty in forecast

ing MA processes which makes the construction of forecast intervals a difficult task. 

However, our bootstrap method is easy to implement even in the presence of moving 

average components and, as we will see, it works reasonably well. There are several 

alternatives to estimate the innovations of MA processes and, in this paper, we con

sider the simplest one which consists in cpnditioning on the value of all innovations 

previous to the sample period being equal to their expected value zero. The estima

tion of model parameters is carried out by conditional quasi-maximum likelohood. 

We analyze the model 

Yt = at - .3~-1 + .7~-2 

under the same design as in previous Monte Carlo experiments. The results of the 

Monte Carlo simulations, reported in tables 19 to 24, are similar to those previously 

obtained. Standard intervals are not able to deal with asymmetric distributions. Fig-
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ure 3 shows the standard and bootstrap densities together with the empirical density 

for the one-step ahead predictions built with a sample size of 100 and exponential 

innovations; it is clear that the standard density does not mimic the empirical pre

diction distribution. 

Finally, we check our method for ARMA(p, q) processes by considering the ARMA(l, 1) 

process 

Yt = .7Yt-l + at - .3at-l· 

The corresponding Monte Carlo results can be found in tables 25 to 30. Conclusions 

are the same as for the pure moving average model. Again, in the Gaussian case our 

bootstrap intervals compite well with the standard intervals, but when the error 

distribution is not Gaussian, the bootstrap intervals are more accurate than the 

standard ones. 

It is important to note that the results presented in this section have been obtained 

using OL8 or conditional quasi-maximum likelihood estimates of the parameters. It 

seems clear that these results could be improved by using estimates more appropriate 

for nonnormal innovations. Moreover, in moving average models we estimated the 

innovations conditioning on pre-sample values being zero. These estimates can be 

improved resampling from the unconditional residuals, which can be obtained, for 

example, via the Kalman filter. In this paper, our goal is just to present the resam

pling plan for ARlMA processes and the technical question of estimation will be the 

subject for further research. 

5. CONCLUSIONS 

A new bootstrap approach to estimate the prediction density of ARlMA processes 

has been presented in this paper. The density is estimated directly from the bootstrap 

predictions and thus the intervals are not centered around the point linear predic-
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tor which could be incorrect under nonnormal error distributions. The proposed 

bootstrap prediction intervals also incorporate the uncertainty due to parameter es

timation. The main advantage of this prediction resampling strategy with respect 

to previous bootstrap prediction methods with similar properties is that the process 

backward representation is not required to obtain bootstrap replicates of the series. 

Consequently, our method is flexible and easy to implement, allowing the general

ization to models with moving average components and also to processes without 

a backward representation. We have established the asymptotic properties of the 

bootstrap prediction intervals and carried out Monte Carlo experiments to analyze 

their behavior for finite samples. We have compared them with standard intervals as 

proposed by Box and Jenkins (1976) and with bootstrap intervals based on Thombs 

and Schucany (1990). The results of these experiments show that for nonnormal in

novations, Box-Jenkins prediction intervals can be heavily distorted. We have seen 

that all bootstrap intervals have rather similar properties for ARI(p, d) processes and 

our intervals are slightly better in some cases. Moreover, our proposal is more flexible 

allowing for the construction of prediction densities for processes with moving aver

age components which previous methods cannot handle. Monte Carlo simulations 

show that the proposed bootstrap prediction intervals work well in forecasting future 

values of processes with MA components. 

Finally, the flexibility of this method allows to extend the construction of prediction 

intervals even for models without a backward representation, such as GARCH models. 

Miguel and Olave (1998) study a bootstrap procedure for GARCH processes based 

on Cao et al. (1995), where the resampling is conditional on the parameter estimates. 

Presently, we are investigating the application of our bootstrap strategy to prediction 

densities of GARCH processes with very promising results. 
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FIG. 1. Empirical, standard and bootstrap densities of one-step ahead predictions of 

AR(2) process with contaminated normal distribution and sample size 100. 
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ARl(1,2) process with exponential distribution and sample size 100. 
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Sample Average Coverage Average 

Size Method Coverage{se) below/above Length 

n Empirical 95% 2.5%/2.5% 3.92 

25 PRR 92.07{.07) 4.2/3.7 4.16{.94) 

TS 90.67{.07) 5.0/4.3 3.84{.68) 

BDD 91.04{.06) 4.7/4.3 3.81{.67) 

KAB 90.65{.09) 4.9/4.4 7.51{7.43) 

ST 92.16{.06) 4.1/3.7 3.88{.60) 

50 PRR 93.58{.03) 3.3/3.1 3.97{.53) 

TS 92.97{.04) 3.6/3,4 3.86{.51) 

BDD 92.83{.04) 3.6/3.6 3.85{.51) 

KAB 92.73{.05) 3.9/3.4 5.11{2.13) 

ST 93.88{.03) 3.1/3.0 3.92{.42) 

100 PRR 94.06{.02) 2.9/3.1 3.92{.38) 

TS 93.90{.02) 2.97/3.12 3.90{.38) 

BDD 93.92{.03) 3.0/3.1 3.90{.38) 

KAB 93.36{.03) 3.2/3.4 4.31{.68) 

ST 94.50{.02) 2.7/2.8 3.92{.29) 

Table 1. Model Yt = 1.75Yt-l - .76Yt-2 + at; Gaussian errors; Forecast horizont 1. 

Nominal coverage 95%. 

Sam pIe Average Coverage Average 

Size ~Iethod Coverage(se) below/above Length 

n Empirical 95% 2.5%/2.5% 11.98 

25 PRR 89.27{.11) 5.7/5.1 12.57{4.10) 

TS 87.54{.10) 6.6/5.8 11.12{2.48) 

BDD 89.22{.09) 5.7/5.1 11.31{2.25) 

KAB 83.01{.13) 8.9/8.1 16.84{16.82) 

ST 87.44{.11) 6.7/5.9 11.19{2.35) 

50 PRR 92.66{.05) 3.7/3.6 12.03{2.01) 

TS 91.54{.05) 4.3/4.2 11.43{1.69) 

BDD 92.22{.05) 3.9/3.9 11.72{1.73) 

KAB 86.72{.07) 6.9/6.4 12.46{5.8) 

ST 92.02{.05) 4.1/3.9 11.63{1.60) 

100 PRR 93.73{.03) 2.9/3.3 11.92{1.23) 

TS 93.35{.03) 3.1/3.6 11. 76{1.19) 

BDD 93.54{.03) 3.05/3.4 11.82{1.21) 

KAB 88.23{.04) 5.7/6.1 10.75(1.87) 

ST 93.72{.03) 3.0/3.1 11.85{1.11) 

Table 2. Model Yt = 1.75Yt-l - .76Yt-2 + at; Gaussian errors; Forecast horizont 3. 

Nominal coverage 95%. 
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Sample Average Coverage Average 

Size Method Coverage(se) below / above Length 

n Empirical 80% 10%/10% 2.56 

25 PRR 77.84(.09) 11.5/10.6 2.71(.54) 

TS 75.63(.09) 12.6/11.8 2.55(.44) 

BOO 76.11(.09) 12.3/11.6 2.53(.45) 

KAB 75.38(.15) 12.7/11.9 4.38(3.68) 

ST 76.01(.08) 12.4/11.6 2.53(.39) 

50 PRR 78.89(.06) 10.7/10.4 2.61(.34) 

TS 78.06(.06) 11.1/1.0.8 2.55(.32) 

BOO 77.89(.06) 11.1/11.0 2.54(.33) 

KAB 77.04(.10) 12.0/10.1 3.20(1.06) 

ST 78.37(.05) 10.9/10.7 2.55(.27) 

100 PRR 79.37(.04) 10.1/10.5 2.58(.23) 

TS 79.10(.04) 10.2/10.7 2.56(.23) 

BOO 79.07(.04) 10.3/10.6 2.56(.23) 

KAB 77.58(.06) 11.1/11.3 2.81(.39) 

ST 79.26(.04) 10.1/10.6 2.56(.19) 

Table 3. Model Yt = l.75Yt-l - .76Yt-2 + at; Gaussian errors; Forecast horizont l. 

Nominal coverage 80%. 

Sam pie Average Coverage Average 

Size ~[ethod Coverage(se) below/above Length 

11 Empirical 80% 10%/10% 7.83 

25 PRR 73.31(.14) 13.9/12.8 8.07(2.43) 

TS 70.14(.13) 15.8/14.1 7.28(1.67) 

BOO 72.73(.11) 14.4/12.9 7.44(1.52) 

KAB 63.68(.19) 18.8/17.5 10.30(9.70) 

ST 70.01(.13) 15.8/14.2 7.31(1.54) 

50 PRR 76.92(.08) 11.7/11.3 7.83(1.27) 

TS 75.22(.07) 12.6/12.2 7.49(1.12) 

BOO 76.26(.07) 12.0/11.7 7.68(1.15) 

KAB 66.38(.12) 17.5/16.1 7.70(3.16) 

ST 75.67(.08) 12.3/12.0 7.60(1.04) 

100 PRR 78.29(.05) 10.6/11.1 7.80(.79) 

TS 77.64(.05) 10.8/11.6 7.70(.78) 

BOO 77.98(.05) 10.7/11.3 7.74(.79) 

KAB 67.67(.07) 15.9/16.4 6.86(1.10) 

ST 78.03(.05) 10.7/11.3 7.74(.73) 

Table 4. Model Yt = l.75Yt-l - .76Yt-2 + at; Gaussian errors; Forecast horizont 3. 

Nominal coverage 80%. 
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Sample Average Coverage Average 

Size Method Coverage(se) below /above Length 

n Empirical 95% 2.5%/2.5% 12.57 

25 PRR 91.19(.08) 3.9/4.9 13.28(3.88) 

TS 90.32(.10) 4.7/5.0 12.38(2.87) 

BDD 90.92(.08) 4.1/5.0 12.27(2.81) 

KAB 87.98(.14) 7.7/4.3 22.00 

ST 89.98(.05) .69/9.33 11.89 

50 PRR 92.38(.07) 3.4/4.2 12.85(1.97) 

TS 91.55(.08) 4.3/4,2 12.42(1.88) 

BDD 91.76(.08) 4.0/4.3 12.37(1.89) 

KAB 90.05(.09) 6.3/3.6 16.24(6.09) 

ST 90.10(.04) .35/9.54 12.20(2.38) 

100 PRR 93.77(.04) 2.8/3.4 12.77(.80) 

TS 93.53(.05) 3.1/3.4 12.67(.76) 

BDD 93.56(.05) 3.05/3.4 12.64(.74) 

KAB 91.55(.06) 5.25/3.2 14.18(2.39) 

ST 90.17(.01) .01/9.82 12.29(1.61) 

Table 5. Model Yt = 1.75Yt-l - .76Yt-2 + at;Contaminated errors; Forecast horizont 

1. Nominal coverage 95%. 

Sample Average Coverage Average 

Size Method Coverage(se) below/above Length 

n Empirical 95% 2.5%/2.5% 34.05 

25 PRR 87.73(.13) 6.25/6.02 37.75(15.3) 

TS 86.02(.14) 7.1/6.8 33.99(10.6) 

BDD 88.53(.13) 5.7/5.8 35.33(10.5) 

KAB 78.65(.20) 12.9/8.4 48.20(49.2) 

ST 87.46(.11) 2.3/10.2 34.27(10.8) 

50 PRR 91.13(.09) 4.9/4.0 36.57(8.3) 

TS 89.46(.11) 6.3/4.2 34.73(7.07) 

BDD 90.67(.10) 5.5/3.8 35.45(6.92) 

KAB 82.73(.14) 10.5/6.7 37.60(16.9) 

ST 91.03(.08) .83/8.14 36.34(7.52) 

100 PRR 93.03(.06) 3.8/3.2 35.54(5.16) 

TS 92.57(.07) 4.2/3.2 34.93(4.85) 

BDD 92.86(.07) 4.0/3.1 35.06(4.71) 

KAB 85.49(.10) 8.5/6.0 32.69(7.24) 

ST 92.74(.04) .09/7.16 37.14(5.35) 

Table 6. Model Yt = 1.75Yt-l - .76Yt-2 + at;Contaminated errors; Forecast horizont 

3. Nominal coverage 95%. 
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Sample Average Coverage Average 

Size Method Coverage(se) below /above Length 

n Empirical 80% 10%/10% 6.50 

25 PRR 77.57(.16) 12.1/10.3 7.34(3.64) 

TS 76.32(.17) 13.2/10.5 6.77(3.43) 

BOO 77.49(.15) 12.3/10.2 6.74(3.39) 

KAB 70.40(.26) 19.1/10.5 12.22(11.5) 

ST 85.77(.10) 3.5/10.7 7.78(2.32) 

50 PRR 78.95(.13) 11.1/9.9 7.07(3.34) 

TS 77.17(.15) 12.7/10'.1 6.81(3.39) 

BOO 77.52(.14) 12.3/10.2 6.80(3.39) 

KAB 71.77(.22) 18.2/10.02 9.32(4.17) 

ST 88.31(.07) 1.6/10.1 7.69(1.55) 

100 PRR 79.47(.09) 10.5/10.02 6.75(3.31) 

TS 78.97(.10) 10.9/10.1 6.67(3.34) 

BOO 79.05(.10) 10.8/10.1 6.66(3.35) 

KAB 73.12(.17) 16.9/10.0 7.81(3.05) 

ST 89.41(.02) .55/10.03 8.03(1.05) 

Table 7. Model Yt = 1.75Yt-l - .76Yt-2 + at; Contaminated errors; Forecast horizont 

1. Nominal coverage 80%. 

Sample Average Coverage Average 

Size Method Coverage(se) below/above Length 

n Empirical 80% 10%/10% 24.20 

25 PRR 69.46(.20) 15.9/14.6 23.81(9.23) 

TS 67.35(.20) 17.2/15.4 21.64(7.28) 

BOO 69.85(.19) 15.6/14.5 22.42(7.49) 

KAB 58.67(.27) 24.4/16.9 29.41(28.6) 

ST 72.57(.17) 10.4/17.1 22.38(7.07) 

50 PRR 73.26(.16) 13.8/12.9 23.61(5.46) 

TS 70.72(.17) 15.9/13.3 22.42(5.41) 

BOO 71.98(.17) 14.9/13.1 22.84(5.49) 

KAB 60.65(.21) 24.02/15.3 23.36(14.2) 

ST 79.19(.11) 5.3/15.5 23.73(4.91) 

100 PRR 75.97(.12) 12.1/11.9 23.60(3.72) 

TS 75.15(.12) 12.9/11.9 23.22(3.73) 

BOO 75.64(.12) 12.4/11.9 23.31(3.68) 

KAB 62.52(.16) 22.5/14.9 20.94(4.l3) 

ST 82.17(.06) 2.7/15.2 24.25(3.49) 

Table 8. Model Yt = 1.75Yt-l - .76Yt-2 + at; Contaminated errors; Forecast horizont 

3. Nominal coverage 80%. 
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Sample Average Coverage Average 

Size Method Coverage(se) below/above Length 

n Empirical 95% 2.5%/2.5% 3.65 

25 PRR 91.61(.10) 4.3/4.1 4.18(1.52) 

TS 90.34(.11) 5.2/4.5 3.85(1.31) 

BDD 90.67(.10) 4.9/4.4 3.80(1.29) 

KAB 88.46(.14) 7.9/3.6 7.37(6.96) 

ST 92.28(.07) .57/7.15 3.77(1.04) 

50 PRR 93.27(.07) 3.3/3.4 3.90(.94) 

TS 92.38(.08) 4.05/3.6 3.77(.90) 

BDD 92.39(.08) 4.0/3.6 3.75(.90) 

KAB 90.29(.11) 6.6/3.1 5.08(2.26) 

ST 93.90(.04) .05/6.04 3.85(.72) 

100 PRR 93.88(.06) 3.09/3.03 3.79(.68) 

TS 93.54(.06) 3.4/3.1 3.75(.66) 

BDD 93.46(.06) 3.4/3.1 3.74(.67) 

KAB 91.20(.09) 5.8/3.02 4.25(.94) 

ST 94.37(.02) .00/5.63 3.87(.53) 

Table 9. Model Yt = l.75Yt-l - .76Yt-2 + at; Exponential errors; Forecast horizont l. 

Nominal coverage 95%. 

Sample Average Coverage Average 

Size Method Coverage(se) below / a hove Length 

n Empirical 95% 2.5%/2.5% 11.62 

25 PRR 88.14(.12) 5.9/5.9 12.13(5.01) 

TS 85.99(.12) 7.3/6.7 10.65(3.64) 

BDD 87.96(.11) 6.2/5.8 10.91(3.50) 

KAB 81.38(.16) 10.7/7.9 16.23(16.2) 

ST 87.08(.12) 3.6/9.3 10.79(3.49) 

50 PRR 91.56(.07) 4.4/4.1 11.81(2.78) 

TS 90.17(.08) 5.4/4.4 11.23(2.75) 

BDD 91.07(.07) 4.8/4.1 11.48(2.47) 

KAB 85.24(.10) 8.6/6.1 12.22(6.01) 

ST 92.33(.06) 1.08/6.6 11.43(2.31) 

100 PRR 93.07(.05) 3.6/3.4 11.65(1.91) 

TS 92.57(.05) 4.0/3.45 11.45(1.85) 

BDD 92.77(.05) 3.87/3.36 11.55(1.88) 

KAB 86.93(.08) 7.57/5.5 10.56(2.30) 

ST 94.17(.03) .25/5.57 11.70(1.71) 

Table 10. Model Yt = l.75Yt-l - .76Yt-2 + at; Exponential errors; Forecast horizont 3. 

Nominal coverage 95%. 
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Sample Average Coverage Average 

Size Method Coverage(se) below/above Length 

n Empirical 80% 10%/10% 2.19 

25 PRR 77.08(.16) 11.7/11.2 2.44(.67) 

TS 74.71(.16) 13.8/12.5 2.27(.59) 

BOO 75.25(.16) 13.3/11.4 2.25(.58) 

KAB 73.03(.21) 15.6/11.4 4.11(3.6) 

ST 82.02(.13) 5.2/12.8 2.46(.68) 

50 PRR 77.90(.12) 11.4/10.7 2.28(.41} 

TS 76.84(.13) 12.3/10.9 2.22(.41) 

BOO 76.94(.13) 12.1/11.0 2.21(.41} 

KAB 73.74(.16) 15.5/10.7 2.96(1.15) 

ST 86.33(.07) 2.36/11.31 2.51(.47) 

100 PRR 78.76(.11) 10.8/10.4 2.23(.30) 

TS 78.22(.10) 11.3/10.4 2.21(.30) 

BOO 78.15(.10) 11.4/10.4 2.21(.31) 

KAB 74.04(.13) 15.2/10.8 2.52(.49) 

ST 88.43(.04) .81/10.76 2.53(.34) 

Table 11. Model Yt = 1.75Yt-l - .76Yt-2 + at; Exponential errors; Forecast horizont 1. 

Nominal coverage 80%. 

Sample Average Coverage Average 

Size Method C overage( se) below/above Length 

n Empirical 80% 10%/10% 7.33 

25 PRR 72.56(.17) 13.8/13.6 7.66(2.80) 

TS 69.41(.16) 16.24/14.34 6.88(2.20) 

BOO 72.27(.15) 14.6/13.1 7.08(2.14) 

KAB 62(.95(.22) 19.4/17.6 9.85(9.30) 

ST 71.11(.16) 12.5/16.4 7.05(2.28) 

50 PRR 76.08(.11) 12.2/11.7 7.41(1.53) 

TS 74.02(.12) 13.8/12.1 7.09(1.45) 

BOO 75.33(.11) 12.8/11.8 7.23(1.45) 

KAB 65.34(.15) 19.0/15.7 7.46(3.31) 

ST 78.40(.11) 8.5/13.1 7.46(1.51) 

100 PRR 77.67(.08) 11.4/10.9 7.32(1.01) 

TS 76.76(.08) 12.1/11.1 7.20(1.02) 

BOO 77.07(.08) 11.9/11.1 7.26(1.03) 

KAB 66.17(.10) 18.8/15.0 6.56(1.29) 

ST 81.82(.07) 6.4/11.8 7.64(1.12) 

Table 12. Model Yt = 1.75Yt_l - .76Yt-2 + at; Exponential errors; Forecast horizont 3. 

Nominal coverage 80%. 
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Lead Sample Average Coverage Average 

time Size Method Coverage(se) below/above Length 

1 n Empirical 80% 10%/10% 2.56 

25 PRR 76.83(.08) 11.6/11.6 2.52(.45) 

GGP 76.53(.09) 11.8/11.7 2.51(.45) 

ST 77.80(.07) 11.22/10.97 2.54(.38) 

50 PRR 78.61(.06) 10.7/10.7 2.56(.34) 

GGP 78.54(.06) 10.7/10.7 2.56(.34) 

ST 79.01(.05) 10.56/10.44 2.56(.27) 

100 PRR 79.34(.04) 10.25/10.41 2.56(.23) 

GGP 79.33(.04) 10.2,6/10.40 2.56(.24) 

ST 79.52(.03) 10.15/10.33 2.56(.19) 

3 n Empirical 80% 10%/10% 12.89 

25 PRR 75.68(.09) 12.3/12.05 12.34(2.42) 

GGP 75.24(.10) 12.5/12.3 12.35(2.49) 

ST 89.42(.08) 5.3/5.3 17.70(3.60) 

50 PRR 77.82(.06) 11.11/11.07 12.63(1.71) 

GGP 77.74(.07) 11.16/11.10 12.64(1.73) 

ST 91.23(.05) 4.4/4.3 17.94(2.51) 

100 PRR 78.91(.04) 10.4/10.6 12.78(1.22) 

GGP 78.89(.05) 10.5/10.6 12.77(1.22) 

ST 92.09(.03) 3.9/4.01 18.06(1.77) 

Table 13. Model (1 - B)2(1 - 0.5B)Yt = at; Gaussian errors; Nominal coverage 80%. 

Lead Sample Average Coverage Average 

time Size Method Coverage(se) below / above Length 

1 n Empirical 95% 2.5%/2.5% 3.92 

25 PRR 91.63(.05) 4.3/4.06 3.82(.68) 

GGP 91.39(.06) 4.43/4.2 3.81(.68) 

ST 93.25(.04) 3.44/3.31 3.89(.59) 

50 PRR 93.08(.04) 3.5/3.4 3.87(.54) 

GGP 93.06(.04) 3.5/3.5 3.87(.54) 

ST 94.22(.03) 2.9/2.9 3.92(.41) 

100 PRR 94.04(.03) 2.9/3.04 3.90(.39) 

GGP 94.01(.03) 2.9/3.05 3.90(.39) 

ST 94.64(.02) 2.6/2.7 3.92(.29) 

3 n Empirical 95% 2.5%2.5% 19.72 

25 PRR 91.29(.06) 4.09/4.2 18.77(3.61) 

GGP 90.93(.07) 4.5/4.5 18.76(3.69) 

ST 97.91(.04) 1.05/1.03 27.10(5.52) 

50 PRR 93.21(.04) 3.4/3.4 19.32(2.62) 

GGP 93.16(.04) 3.4/3.4 19.31(2.64) 

ST 98.79(.02) .62/ .58 27.47(3.84) 

100 PRR 94.05(.03) 2.9/3.04 19.50(1.89) 

GGP 94.04(.03) 2.9/3.04 19.50(1.90) 

ST 99.16(.01) .41/ .43 27.66(2.71) 

Table 14. Model (1 - B)2(1 - 0.5B)Yt = at; Gaussian errors; Nominal coverage 95%. 
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Lead Sample Average Coverage Average 

time Size Method Coverage(se) below /above Length 

1 n Empirical 80% 10%/10% 6.50 

25 PRR 78.61(.11) 10.85/10.54 6.46(3.70) 

GGP 76.85(.14) 12.66/10.48 6.46(3.71) 

ST 87.12(.07) 2.3/10.6 7.79(2.35) 

50 PRR 78.55(.11) 11.4/10.07 6.76(3.60) 

GGP 77.43(.12) 12.64/9.93 6.76(3.60) 

ST 88.54(.06) 1.41/10.04 7.96((1.55) 

100 PRR 79.41(.08) 10.5/10.1 6.64(3.44) 

GGP 79.11(.09) 10.9/10.0 6.63(3.44) 

ST 98.51(.02) .46/10.03 8.02(1.04) 

3 n Empirical 80% 10%/10% 40.47 

25 PRR 75.00(.14) 11.46/13.53 35.43(12.8) 

GGP 72.70(.16) 13.9/13.4 35.26(13.1) 

ST 88.94(.06) .66/10.4 54.41(16.6) 

50 PRR 75.64(.13) 12.31/12.04 37.02(10.1) 

GGP 74.38(.14) 13.7/12.0 36.93(10.2) 

ST 89.98(.05) .49/9.53 55.98(11.3) 

100 PRR 77.51(.10) 11.16/11.3 38.19(7.73) 

GGP 77.14(.10) 11.6/11.24 38.17(7.75) 

ST 90.45(.02) .06/9.5 56.63(8.12) 

Table 15. Model (1 - B)2(1 - 0.5B)Yt - at;Contaminated errors; Nominal coverage 

80%. 

Lead Sample Average Coverage Average 

time Size Method Coverage{se) below / a hove Length 

1 n Empirical 95% 2.5%/2.5% 12.57 

25 PRR 91.46(.07) 3.8/4.7 1.99(2.79) 

GGP 90.68(.09) 4.8/4.5 12.03(2.85) 

ST 90.05(.04) .45/9.5 11.94(3.59) 

50 PRR 92.40(.06) 3.7/3.9 12.26(1.90) 

GGP 91.76(.09) 4.4/3.8 12.27(1.89) 

ST 90.03(.04) .32/9.7 12.19(2.37) 

100 PRR 93.80(.03) 2.9/3.3 12.58(.74) 

GGP 93.66(.05) 3.2/3.1 12.59(.75) 

ST 90.12(.01 ) .00/9.87 12.28(1.60) 

3 n Empirical 95% 2.5%/2.5% 58.07 

25 PRR 91.63(.09) 2.9/4.9 58.45(15.1) 

GGP 89.98(.10) 4.9/5.1 57.82(15.9) 

ST 95.14(.05) .08/4.8 83.31(25.3) 

50 PRR 92.76(.07) 3.7/3.5 59.15(9.64) 

GGP 91.81(.09) 4.7/3.5 59.01(10.12) 

ST 96.47(.04) .18/3.35 85.72(17.2) 

100 PRR 93.83(.04) 3.3/2.9 59.07(6.4) 

GGP 93.60(.05) 3.5/2.9 59.04(6.47) 

ST 97.24(.02) .00/2.75 86.71(12.44) 

Table 16. Model (1 - B)2(1 - 0.5B)Yt = at;Contaminated errors; Nominal coverage 

95%. 
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Lead Sample Average Coverage Average 

time Size Method Coverage(se) below / above Length 

1 n Empirical 80% 10%/10% 2.19 

25 PRR 76.06(.14) 12.72/11.21 2.23(.61) 

GGP 75.23(.15) 13.68/11.09 2.23(.62) 

ST 84.60(.10) 3.7/11.7 2.46(.68) 

50 PRR 77.96(.11) 11.25/10.97 2.20(.42) 

GGP 77.53(.12) 11.76/10.70 2.20(.42) 

ST 87.44(.07) 1.6/10.98 2.51(.47) 

100 PRR 78.62(.09) 10.99/10.4 2.19(.31) 

GGP 78.27(.10) 11.40/10.33 2.20(.31) 

ST 88.86(.03) .52}10.62 2.53(.35) 

3 n Empirical 80% 10%/10% 11.82 

25 PRR 75.12(.13) 12.92/11.94 11.47(3.16) 

GGP 74.07(.13) 14.02/11.91 11.46(3.46) 

ST 90.14(.08) 1.97/7.9 17.03(5.10) 

50 PRR 77.37(.090) 11.55/11.07 11.63(2.15) 

GGP 76.89(.10) 12.11/11.00 11.61(2.15) 

ST 92.51(.04) .69/6.8 17.60(3.51) 

100 PRR 78.48(.07) 10.99/10.5 11.73(1.58) 

GGP 78.15(.07) 11.42/10.42 11.74(1.58) 

ST 93.54(.02) .17/6.3 17.86(2.63) 

Table 17. Model (1 - B)2(1 - 0.5B)Yt - at; Exponential errors; Nominal coverage 

80%. 

Lead Sample Average Coverage Average 

time Size ~Iethod Coverage(se) below / above Length 

1 n Empirical 95% 2.5%/2.5% 3.65 

25 PRR 91.02(.09) 4.7/4.3 3.72(1.26) 

GGP 90.59(.10) 5.1/4.3 3.72(1.28) 

ST 93.33(.04) .14/6.5 3.77(1.04) 

50 PRR 92.65(.07) 3.8/3.5 3.70(.89) 

GGP 92.38(.08) 4.1/3.5 3.70(.91) 

ST 94.03(.03) .11/5.9 3.84(.72) 

100 PRR 93.45(.06) 3.5/3.05 3.72(.68) 

GGP 93.27(.06) 3.7/3.0 3.72(.68) 

ST 94.44(.02) .00/5.56 3.87(.53) 

3 n Empirical 95% 2.5%/2.5% 19.05 

25 PRR 90.46(.08) 4.4/5.1 18.01(5.72) 

GGP 89.72(.09) 5.13/5.14 17.96(6.13) 

ST 96.48(.03) .18/3.34 26.09(7.82) 

50 PRR 92.75(.06) 3.7/3.6 18.85(3.90) 

GGP 92.42(.07) 4.01/3.56 18.82(3.91) 

ST 97.41(.02) .01/2.6 26.96(5.37) 

100 PRR 93.55(.04) 3.3/3.13 18.89(2.96) 

GGP 93.40(.05) 3.5/3.1 18.87(2.95) 

ST 97.75(.01) .00/2.25 27.35(4.02) 

Table 18. Model (1 - B)2(1 - 0.5B)Yt - at; Exponential errors; Nominal coverage 

95%. 
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Lead Sample Average Coverage Average 

time Size Method Coverage{se} below labove Length 

1 n Empirical 80% 10%/10% 2.55 

25 PRR 76.03{.1O} 12.29/11.69 2.57(.45} 

ST 76.55(.10} 12.16/11.28 2.60{.40} 

50 PRR 78.15{.06} 11.1/10.7 2.57{.32} 

ST 78.75(.06} 10.8/10.4 2.59(.27} 

100 PRR 79.10(.04} 1().5/10.4 2.57{.23} 

ST 79.50(.04} 10.3/10.2 2.58(.19} 

3 n Empirical 80% 10%/10% 3.22 

25 PRR 78.63{.07} 10.61/10.75 3.19{.52} 

ST 81.11{.08} 9.43/9.46 3.38{.58} 

50 PRR 79.51{.05} 10.27/10.22 3.22(.38} 

ST 80.62{.05} 9.72/9.66 3.30(.39} 

100 PRR 79.83{.04} 10.06/10.10 3.23{.27} 

ST 80.29{.04} 9.89/9.81 3.26(.27} 

Table 19. Model Yt = at - .3at-l + .7at-2; Gaussian errors; Nominal coverage 80%. 

Lead Sample Average Coverage Average 

time Size Method Coverage{se} below/above Length 

1 n Empirical 95% 2.5%/2.5% 3.92 

25 PRR 91.63{.07} 4.3/4.1 3.99(.74} 

ST 92.38{.07} 4.1/3.5 3.99{.61} 

50 PRR 93.05{.04} 3.5/3.5 3.93{.54} 

ST 94.06{.03} 3.02/2.91 3.97(.42} 

100 PRR 94.05(.02} 2.9/3.0 3.93(.38} 

ST 94.65{.02} 2.7/2.7 3.95{.30} 

3 n Empirical 95% 2.5%/2.5% 4.91 

25 PRR 93.42(.04} 3.25/3.33 4.90(.82} 

ST 94.85{.04} 2.57/2.57 5.18(.89} 

50 PRR 94.34(.03} 2.82/2.84 4.95(.60} 

ST 95.03{.03} 2.48/2.49 5.06(.60} 

100 PRR 94.70(.02} 2.59/2.71 4.94(.43} 

ST 95.02(.02} 2.48/2.50 4.99(.41} 

Table 20. Model Yt = at - .3at-l + .7at-2; Gaussian errors; Nominal coverage 95%. 
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Lead Sample Average Coverage Average 

time Size Method Coverage(se) below/above Length 

1 n Empirical 80% 10%/10% 2.19 

25 PRR 76.24(.17) 12.7/11.1 2.36(.63) 

ST 82.75(.13) 5.75/11.51 2.55(.66) 

50 PRR 76.60(.14) 12.8/10.6 2.26(.44) 

ST 86.15(.09) 3.1/10.7 2.57(.51) 

100 PRR 78.11(.11) U.5/10.4 2.22(.31) 

ST 88.56(.05) .94/10.5 2.55(.36) 

3 n Empirical 80% 10%/10% 2.93 

25 PRR 78.55(.11) 10.37/11.08 2.98(.74) 

ST 83.44(.09) 5.81/10.75 3.30(.90) 

50 PRR 79.35(.09) 10.08/10.56 2.98(.58) 

ST 84.48(.07) 4.97/10.54 3.28(.69) 

100 PRR 79.63(.07) 10.02/10.34 2.95(.40) 

ST 85.15(.05) 4.31/10.53 3.23(.47) 

Table 21. Model Yt = at - .3at-l + .7at-2; Exponential errors; Nominal coverage 80%. 

Lead Sample Average Coverage Average 

time Size ~Iethod Coverage(se) below/above Length 

1 n Empirical 95% 2.5%/2.5% 3.64 

25 PRR 91.60(.11) 4.25/4.16 4.03(1.35) 

ST 93.02(.07) .71/6.26 3.91(1.01) 

50 PRR 92.25(.09) 4.2/3.6 3.86(1.03) 

ST 94.23(.03) .19/5.6 3.94(.78) 

100 PRR 93.60(.07) 3.4/3.1 3.77(.67) 

ST 94.57(.55) .01/5.42 3.92(.55) 

3 n Empirical 95% 2.5%/2.5% 4.82 

25 PRR 92.80(.06) 2.66/4.54 4.82(1.43) 

ST 94.03(.04) .72/5.25 5.06(1.38) 

50 PRR 93.98(.05) 2.60/3.43 4.97(1.18) 

ST 94.49(.03) .50/5.01 5.02(1.06) 

100 PRR 94.48(.03) 2.47/3.05 4.88(.79) 

ST 94.71(.02) .34/4.95 4.95(.73) 

Table 22. Model Yt = at - .3at-l + .7at-2; Exponential errors; Nominal coverage 95%. 
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Lead Sample Average Coverage Average 

time Size Method Coyerage(se) below /aboye Length 

1 n Empirical 80% 10%/10% 6.51 

25 PRR 75.63(.19) 14.2/10.4 7.06(3.32) 

ST 85.62(.12) 4.2/10.2 7.99(2.11) 

50 PRR 78.11(.14) 11.9/9.97 7.03(3.32) 

ST 87.97(.06) 1.96/10.06 8.06(1.49) 

100 PRR 79.03(.10) 10.9/10.1 6.76(3.23) 

ST 88.42(.03) .59/9.98 8.08(1.04) 

3 n Empirical 80% 10%/10% 10.24 

25 PRR 75.38(.14) 11.52/13.10 9.13(3.32) 

ST 81.12(.09) 4.66/14.23 10.29(2.93) 

50 PRR 77.73(.10) 10.37/11.89 9.64(2.57) 

ST 82.17(.06) 3.32/14.51 10.28(2.01) 

100 PRR 78.60(.08) 10.28/11.12 9.91(1.83) 

ST 82.38(.04) 2.87/14.75 10.21 (1.36) 

Table 23. Model Yt - at - .3at-l + .7at-2; Contaminated errors; Nominal coverage 

80%. 

Lead Sample Average Coverage Average 

time Size Method Coyerage(se) below I above Length 

1 n Empirical 95% 2.5%/2.5% 12.56 

25 PRR 89.60(.11) 5.45/4.95 12.83(3.10) 

ST 89.84(.07) .97/9.19 12.23(3.23) 

50 PRR 91.72(.08) 3.9/4.4 12.65(1.93) 

ST 90.31(.03) .18/9.50 12.35(2.28) 

100 PRR 93.61(.05) 3.02/3.4 12.75(.85) 

ST 90.20(.02) .01/9.8 12.37(1.59) 

3 n Empirical 95% 2.5%/2.5% 14.80 

25 PRR 91.99(.09) 3.67/4.35 15.19(3.92) 

ST 91.34(.07) .98/7.68 15.75(4.49) 

50 PRR 94.08(.05) 2.78/3.14 15.30(2.41) 

ST 92.30(.05) .37/7.33 15.75(3.06) 

100 PRR 94.70(.03) 2.60/2.70 15.16(1.56) 

ST 92.53(.03) .15/7.32 15.64(2.09) 

Table 24. Model Yt - at - .3at-l + .7at-2j Contaminated errorSj Nominal coverage 

95%. 
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Lead Sample Average Coverage Average 

time Size Method Coverage(se) below/above Length 

1 n Empirical 80% 10%/10% 2.18 

25 PRR 78.24(.14) 10.5/11.2 2.31(.62) 

ST 83.69(.12) 4.5/11.8 2.50(.67) 

50 PRR 79.04(.11) 11.1/10.86 2.25(.44) 

ST 86.84(.07) 2.16/10.99 2.53(.51) 

100 PRR 79.59(.09) 9,06/3.06 2.20(.30) 

ST 88.71(.04) .55/10.73 2.54(.36) 

3 n Empirical 80% 10%/10% 2.57 

25 PRR 78.25(.11) 10.61/11.13 2.65(.72) 

ST 82.22(.10) 6.2/11.6 2.87(.81) 

50 PRR 77.97(.09) 11.1/10.86 2.58(.49) 

ST 84.20(.08) 4.7/11.1 2.86(.59) 

100 PRR 78.46(.07) 10.9/10.6 2.55(.35) 

ST 86.04(.06) 3.3/10.7 2.86(.42) 

Table 25. Model Yt - .7Yt-l +at - .3at-l; Exponential errors; Nominal coverage 80%. 

Lead Sample Average Coverage Average 

time Size Method Coverage(se) below/above Length 

1 n Empirical 95% 2.5%/2.5% 3.64 

25 PRR 93.28(.08) 2.8/3.9 4.05(1.39) 

ST 92.97(.06) .58/6.44 3.83(1.02) 

50 PRR 94.27(.06) 2.2/3.5 3.86(1.04) 

ST 94.09(.03) .01/5.81 3.88(.79) 

100 PRR 94.91(.05) 1.97/3.12 3.74(.66) 

ST 94.44(.02) 0.0/5.56 3.89(.55) 

3 n Empirical 95% 2.5%/2.5% 4.20 

25 PRR 93.25(.06) 2.7/4.07 4.39(1.39) 

ST 93.64(.04) .39/5.96 4.40(1.25) 

50 PRR 93.48(.05) 3.08/3.4 4.30(1.01) 

ST 94.28(.03) .02/5.53 4.38(.91) 

100 PRR 93.94(.04} 2.98/3.08 4.22(.69) 

ST 94.83(.02) .003/5.14 4.38(.64) 

Table 26. Model Yt = .7Yt-l +at - .3at-l; Exponential errors; Nominal coverage 95%. 

36 



Lead Sample Average Coverage Average 

time Size Method Coverage{se) below/above Length 

1 n Empirical 80% 10%/10% 2.56 

25 PRR 77.68{.08) 11.4/10.9 2.59{.(4) 

ST 76.92{.08) 11.9/11.1 2.55{.37) 

50 PRR 78.65{.06) 11.01/10.34 5.57{.30) 

ST 78.62{.05) 11.3/10.3 2.56{.25) 

100 PRR 79.1O{.04) 19.4/10.4 2.56{.23) 

ST 79.29{.04) 10.4/10.3 2.56{.19) 

3 n Empirical 80% 10%/10% 2.85 

25 PRR 78.61{.07) 10.8/10.6 2.88{.(9) 

ST 78.59{.08) 11.1/10.3 2.93{.51) 

50 PRR 78.89{.05) 10.7/10.3 2.85{.35) 

ST 79.45{.06) 10.6/9.9 2.90{.36) 

100 PRR 79.24{.04) 10.3/10.5 2.84{.26) 

ST 79.92{.0(2) 9.96/10.1 2.88{.26) 

Table 27. Model Yt = .7Yt-l + at - .3at-l; Gaussian errors; Nominal coverage 80%. 

Lead Sample Average Coverage Average 

time Size Method Coverage{se) below/above Length 

1 n Empirical 95% 2.5%/2.5% 3.92 

25 PRR 92.70{.05) 3.7/3.6 3.99{.70) 

ST 92.74{.05) 3.8/3.4 3.90{.57) 

50 PRR 93.46{.03) 3.3/3.2 3.93{.51) 

ST 94.04{.03) 3.1/2.8 3.92{.39) 

100 PRR 94.04{.02) 2.91/3.05 3.91{.37) 

ST 94.49{.02) 2.7/2.7 3.92{.29) 

3 n Empirical 95% 2.5%/2.5% 4.35 

25 PRR 93.14{.04) 3.4/3.4 4.38{.77) 

ST 93.59{.05) 3.4/3.0 4.48{.79) 

50 PRR 93.84{.03) 3.1/3.1 4.36{.55) 

ST 94.39{.03) 2.9/2.8 4.44{.54) 

100 PRR 94.27{.02) 2.8/2.9 4.34{.(1) 

ST 94.78{.02) 2.6/2.6 4.42{.39) 

Table 28. Model Yt = .7Yt-l + at - .3at-l; Gaussian errors; Nominal coverage 95%. 
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Lead Sample Average Coverage Average 

time Size Method Coverage(se) below/above Length 

1 n Empirical 80% 10%/10% 6.51 

25 PRR 79.90(.12) 9.95/10.1 6.95(3.53) 

ST 86.92(.09) 2.6/10.4 7.74(2.21) 

50 PRR 79.91(.11) 9.99/10.1 6.89(3.36) 

ST 88.47(.06) 1.5/10.1 7.95{1.52) 

100 PRR 80.20{.07) 9.7/10.1 6.66{3.29) 

ST 89.55(.02) .46/9.98 8.02(1.04) 

3 n Empirical 80% 10%/10% 8.62 

25 PRR 77.60(.12) 9.9/12.5 8.08(3.17) 

ST 84.83(.08) 2.7/12.4 8.82(2.49) 

50 PRR 77.58{.1l) 10.7/11.6 8.23{2.71) 

ST 86.46(.07) 2.1/11.4 9.00(1.77) 

100 PRR 78.38(.09) 10.6/11.0 8.22(2.30) 

ST 87.86(.03) 1.05/11.1 9.05(1.24) 

Table 29. Model Yt - .7Yt-l + at - .3at_l;Contaminated errors; Nominal coverage 

80%. 

Lead Sam pIe Average Coverage Average 

time Size Method Coverage(se} below/above Length 

1 n Empirical 95% 2.5%/2.5% 12.56 

25 PRR 92.17(.07) 3.03/4.8 12.60(2.93) 

ST 90.01(.05) .58/9.40 11.86(3.38) 

50 PRR 93.16(.06) 2.8/4.1 12.59(1.88) 

ST 90.11{.04) .33/9.56 12.17(2.33) 

100 PRR 94.37(.03) 2.3/3.3 12.72(.84) 

ST 90.19(.01) .01/9.8 12.27(1.59) 

3 n Empirical 95% 2.5%/2.5% 13.52 

25 PRR 92.81(.06) 2.52/4.66 13.51(3.15) 

ST 90.81(.05) .17/9.02 13.51(3.82) 

50 PRR 93.54(.05) 2.8/3.6 13.62(2.05) 

ST 91.21(.04) .25/8.54 13.79(2.72) 

100 PRR 94.22(.03) 2.7/3.02 13.67(1.22) 

ST 91.30(.02) .01/8.68 13.86(1.99) 

Table 30. Model Yt - .7Yt-l + at - .3at_l;Contaminated errors; Nominal coverage 

95%. 
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