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Abstract. We study the rate of convergence of interpolating simultaneous rational approxima-
tions with partially prescribed poles to so called Nikishin systems of functions. To this end, a
vector equilibrium problem in the presence of a vector external field is solved which is used to
describe the asymptotic behavior of the corresponding second type functions which appear.

1. Generalized Hermite-Padé approximants

Let ∆1 be a bounded interval of the real line R. By M(∆1) we denote the set of all Borel
measures with constant sign (positive or negative) whose support supp(·) is contained in ∆1 and
contains infinitely many points. Let s = (s1, · · · sm) be a vector of measures belonging to M(∆1).
The Markov function corresponding to the measure si ∈M(∆1) is given by

ŝi(z) =
∫

∆1

dsi(x)
z − x

. (1)

Certainly, ŝi is a holomorphic function in C \∆1.
We restrict our attention to a special class of vector measures introduced by E. M. Nikishin in

[11] and adopt the notation introduced in [8]. Let σ1 and σ2 be two measures supported on R with
constant sign and let ∆1, ∆2 denote the convex hull of supp(σ1) and supp(σ2) respectively; that
is, ∆i = Co(supp(σi)). Suppose that ∆1 ∩∆2 = ∅. Set

d〈σ1, σ2〉(x) =
∫

dσ2(t)
x− t

dσ1(x) = σ̂2(x)dσ1(x).

When it is convenient we use the differential notation of a measure. Then 〈σ1, σ2〉 is a measure
with constant sign and supported on supp(σ1) ⊂ ∆1.

Definition 1. Given a system of closed bounded intervals ∆1, . . . , ∆m satisfying ∆j−1 ∩ ∆j =
∅, j = 2, . . . ,m, and finite Borel measures σ1, . . . , σm with constant sign and Co(supp(σj)) = ∆j ,
we define inductively

sj = 〈σ1, σ2, · · · , σj〉 = 〈σ1, 〈σ2, · · · , σj〉〉, j = 2, · · ·m.

We say that S = (s1, · · · , sm) = N (σ1, · · · , σm) with s1 = σ1 is the Nikishin system generated by
the measures (σ1, . . . , σm).

Given a Nikishin system S = (s1, . . . , sm) = N (σ1, · · · , σm) denote by Ŝ = (ŝ1, . . . ŝm) the
vector whose components are the Markov functions corresponding to each one of the measures si,
i = 1, . . . ,m. The functions ŝi, i = 1, . . . ,m, are holomorphic in D = C \∆1. Fix a multi-index
n = (n1, · · · , nm) ∈ Zm

+ , where Z+ = {0, 1, 2, . . . }, and an even integer κ. Set |n| =
∑m

i=1 ni.
Let α and β be two monic polynomials with real coefficients such that deg β = κ and deg α ≤
|n|+ κ + min{ni}. The zeros of α belong to D and the zeros of β have even multiplicity and lie on
∆1. There exists a vector of rational functions R = (P1/βQ, · · · , Pm/βQ), such that

i) deg Q ≤ |n|, Q 6≡ 0, deg Pi ≤ |n|+ κ− 1, i = 1, · · · ,m,

ii) [
βQŝi − Pi

α
](z) = O(

1
zni+1

) ∈ H(D), i = 1, · · ·m.
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Proving the existence of R reduces to solving a system of (m + 1)|n|+ mκ homogeneous linear
equations on (m + 1)|n| + mκ + 1 unknowns, and this always has a non trivial solution. We call
the vector rational function R a generalized Hermite-Padé approximant (GHPA) of Ŝ relative to
(n, α, β). When α ≡ β ≡ 1 generalized Hermite-Padé reduce to classical Hermite-Padé.

It is well known that the denominator Q of classical Hermite-Padé approximants share orthogo-
nality relations with each measure in the system S. An analogous result takes place for GHPA. In
fact, from ii) we have that

zν [
βQŝi − Pi

α
](z) = O(

1
z2

) ∈ H(D), ν = 0, . . . , ni − 1, i = 1, . . .m. (2)

Let Γ be a closed curve with winding number 1 for all its interior points such that all the zeros of α
lie exterior to Γ and ∆1 is surrounded by Γ. Integrating (2) along Γ and using Cauchy’s Theorem,
we obtain

0 =
∫

Γ

zν [
βQŝi − Pi

α
](z)dz =

∫

Γ

zν βQŝi

α
(z)dz, ν = 0, . . . , ni − 1, i = 1, . . . m. (3)

Substituting (1) in (3), using Fubini’s Theorem, and Cauchy’s Integral Formula, it follows that∫

∆1

xνQ(x)
β(x)dsi(x)

α(x)
=

∫

∆1

xνQ(x)ds̃i(x) = 0, ν = 0, . . . , ni − 1, i = 1, . . . ,m,
(4)

where
ds̃i =

β

α
dsi, i = 1, . . . , m.

Notice that s̃i = (s̃1, . . . , s̃m) = N (ϑ1, σ2, . . . , σm), where

dϑ1 =
β

α
dσ1 .

In Section 6 we study the rate of convergence of sequences {Rn}, n ∈ Λ, of GHPA (see Theorem
7 and Corollary 2) where Λ ⊂ Zm

+ is a sequence of multi–indices. To this end, it is important
to study the logarithmic asymptotic behavior of the corresponding sequence {Qn}, n ∈ Λ, of
common denominators which is done in Section 5 (see Theorem 5). The instruments used are
potential theoretic arguments developed in Section 4 (see Theorem 4) relative to the existence of
the solution of a vector equilibrium problem in the presence of a vector external field and some
orthogonality relations satisfied by second type functions associated with the Nikishin system of
functions described in Section 3 (see Theorems 2 and 3). In all this the normality of the multi–
indices considered play a crucial role. The class of multi–indices from which the sequence Λ is
extracted is introduced in Section 2.

2. Normality of indices of GHPA.

In general, the uniqueness of Q is not known to occur. When for a multi-index n, Q is uniquely
determined, we say that n is weakly normal. A multi-index n is said to be normal if the conditions
i)-ii) imply that deg Q = |n|. If additionally the |n| zeros of Q are simple and lie in the interior of
the interval ∆1 then n is said to be strongly normal. (In reference to the interior of intervals of
the real line we consider the usual Euclidean topology of R.) Obviously, strong normality implies
normality and this in turn implies weak normality. Systems S for which all multi-indices n are
weakly normal, normal, or strongly normal are called weakly perfect, perfect, or strongly perfect,
respectively.

In [11], E. M. Nikishin defines AT systems. This concept is very appropriate in proving strong
normality .

Definition 2. Let gi, i = 1, . . . , m, be continuous functions with constant sign on an interval
F . We say that (g1, . . . , gm) defines an AT system for the multi-index n = (n1, . . . , nm) on F
if for any polynomials h1, · · · , hm such that deg hi ≤ ni − 1, i = 1, · · · ,m, not all simultaneously
identically equal to zero, the function

Hn(x) = H(h1, . . . , hm;x) = h1(x)g1(x) + · · ·+ hm(x)gm(x).

has at most |n| − 1 zeros on F (deg hi ≤ −1 means that hi ≡ 0). The system (g1, . . . , gm) is an
AT system on F , if it defines an AT system on that interval for all multi-indices n ∈ Zm

+ .
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We denote

• Zm
+ (∗) = {n ∈ Zm

+ : there do not exist i < j < k such that ni < nj < nk}.
• For each i = 1, . . . , m, we introduce the measures

si,j = 〈σi, . . . , σj〉, j = i, . . . , m;

Denoting ŝ2,1 ≡ 1, according to the orthogonality conditions (4), we have
∫

∆1

Q(x)(h1ŝ2,1 + · · ·+ hmŝ2,m)(x)dϑ1(x) = 0, (5)

where deg hi ≤ ni − 1, i = 1, . . . , m. Assume that for n = (n1, . . . , nm) the system of functions
(ŝ2,1, ŝ2,2, . . . , ŝ2,m) defines an AT system on ∆1. Using (5) it follows that deg Qn = |n| and |n| is
strongly normal. Using this argument, in [4] and [5] a large class of strongly normal multi-indices
is proved to exist. For convenience of the reader, we state the corresponding result.

Theorem 1. Assume that either 1 ≤ m ≤ 3 and n ∈ Zm
+ , or m ≥ 4 and n ∈ Zm

+ (∗), then
(ŝ2,1, ŝ2,2, . . . , ŝ2,m) defines an AT system with respect to n on any interval disjoint from ∆2 and,
consequently, n is strongly normal.

Notice that this means that under the assumptions of Theorem 1 a system of functions formed
by 1 and a Nikishin system of functions determines an AT system on any closed interval disjoint
from the support of the measures integrating the Nikishin system of measures. In this form this
result will be used below in the proof of Theorem 2 (see the last statement of the proof).

3. Functions of second type and orthogonality

Let n ∈ Zm
+ (∗) and Σ = (σ1, . . . , σm) be given such that S = N (Σ) forms a Nikishin system

of measures. Take Ψ0 = Qβ/α where Q is the common denominator of the GHPA of Ŝ relative
to (n, α, β). Set n = n0 and Σ = Σ0. Inductively, we will construct multi-indices nj ∈ Zm−j

+ (∗),
vectors of measures Σj = (σj

j+1, . . . , σj
m), and second type functions Ψj , j = 1, . . . , m − 1, as

described below.
Assume that nj = (nj

j+1, . . . , nj
m), Σj = (σj

j+1, . . . , σj
m), and Ψj have been defined, where

0 ≤ j ≤ m− 2. Then,
nj+1 = (nj+1

j+2, . . . , nj+1
m ) ∈ Zm−j−1

+

is the multi-index obtained extracting from nj the first component nj
rj

satisfying

nj
rj

= max{nj
k : j + 1 ≤ k ≤ m}. (6)

Therefore,
nj

j+1 = nj+1
j+2, . . . , nj

rj−1 = nj+1
rj

, nj
rj+1 = nj+1

rj+1, . . . , nj
m = nj+1

m

and when rj ≥ j + 2

nj
rj

> max{nj
j+1, . . . , nj

rj−1} .

Notice that if n ∈ Zm
+ (∗) then

nj+1
j+2 ≥ · · · ≥ nj+1

rj

since otherwise nj 6∈ Zm−j
+ (∗). Set

Ψj+1(z) =
∫

∆j+1

Ψj(x)
z − x

dsj
rj

(x), (7)

where sj
rj

= 〈σj
j+1, . . . , σj

rj
〉 is the component of N (Σj) = (sj

j+1, . . . , sj
m) = Sj corresponding to

the subindex rj .
Before defining Σj+1, we need some more notation. For the system Σj = (σj

j+1, . . . , σj
m) we

define
sj

k,i = 〈σj
k, . . . , σj

i 〉 , j + 1 ≤ k ≤ i ≤ m.
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In particular, the measures in N (Σj) are sj
i = sj

j+1,i, j + 1 ≤ i ≤ m. Given any measure sj
k,i there

exists a first degree polynomial `j
k,i and a measure with constant sign τ j

k,i such that

1
ŝj

k,i(z)
= `j

k,i(z) + τ̂ j
k,i(z).

For a proof see the Appendix in [9].
Suppose that rj = j + 1, then

Σj+1 = (σj
j+2, . . . , σj

m) = (σj+1
j+2 , . . . , σj+1

m )

is the vector of m − j − 1 measures which is obtained deleting from Σj its first component. If
j + 2 ≤ rj ≤ m, then

Σj+1 = (τ j
j+2,rj

, ŝj
j+2,rj

dτ j
j+3,rj

, . . . , ŝj
rj−1,rj

dτ j
rj ,rj

, ŝj
rj ,rj

dσj
rj+1, σ

j
rj+2, . . . , σj

m).

The two results that follow are analogous to Propositions 1-3 in [8] but their proof is technically
more complicated.

Theorem 2. Assume that n ∈ Zm
+ (∗). For each j = 0, . . . ,m − 1, we have that Ψj satisfies the

orthogonality relations∫

∆j+1

xνΨj(x)dsj
i (x) = 0, ν = 0, . . . , nj

i − 1, i = j + 1, . . . , m. (8)

Consequently, we can write,

Ψj(x)
qj+1(x)

= ψj(x) ∈ H(C \∆j), j = 1, . . . m− 1, (9)

where qj+1 is a monic polynomial whose zeros are simple, lie in the interior of ∆j+1, deg qj+1 ≥ |nj |
and ψj preserves the same sign on ∆j+1 .

Proof. We shall prove (8) by induction on j. For j = 0 the relations (8) coincide with (4).
Thus, for j = 0 the statement holds, and if m = 1 we have concluded the proof. Let us assume
that these relations are verified for some fixed j, 0 ≤ j ≤ m− 2,m ≥ 2, and let us prove that∫

∆j+2

xνΨj+1(x)dsj+1
i (x) = 0, ν = 0, . . . , nj+1

i − 1, i = j + 2, . . . , m. (10)

Take i ∈ {j + 2, . . . ,m} and 0 ≤ ν ≤ nj+1
i − 1. Substituting Ψj+1 defined by (7) into the left

hand of (10), we have
∫

∆j+2

xνΨj+1(x)dsj+1
i (x) =

∫

∆j+2

xν

∫

∆j+1

Ψj(t)
x− t

dsj
rj

(t)dsj+1
i (x) =

∫

∆j+1

Ψj(t)
∫

∆j+2

xν − tν + tν

x− t
dsj+1

i (x)dsj
rj

(t) =

∫

∆j+1

pν(t)Ψj(t)dsj
rj

(t)−
∫

∆j+1

tνΨj(t)ŝ
j+1
i (t)dsj

rj
(t) ,

where deg pν ≤ nj+1
i − 2. Taking into consideration that nj+1

i − 2 ≤ nj
rj
− 1 (see the definition (6)

of rj) and the induction hypothesis, the first of the last two integrals equals zero. Therefore,
∫

∆j+2

xνΨj+1(x)dsj+1
i (x) = −

∫

∆j+1

tνΨj(t)ŝ
j+1
i (t)dsj

rj
(t) . (11)

If rj = j + 1 then Σj+1 = (σj+1
j+2 , . . . , σj+1

m ) = (σj
j+2, . . . , σj

m) and nj+1 = (nj+1
j+2, . . . , nj+1

m ) =
(nj

j+2, . . . , nj
m). Then,

ŝj+1
i (t)dsj

rj
(t) = 〈σj

j+1, 〈σj
j+2, . . . , σj

i 〉〉 = sj
i .

Since in this case nj+1
i = nj

i , the right hand of (11) equals zero by the induction hypothesis and
we have proved what we needed.
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Let us suppose that rj ≥ j + 2. In order to consider this situation we need some less obvious
relations between the measures in Sj and Sj+1. Their proof may be found in Theorem 3.1.3 of [3].
In order to avoid confusion, we state these relations with the notation introduced above. We have

ŝj
j+2,i−1

ŝj
j+2,rj

= ai,j + ŝj+1
i + ci,j ŝ

j+1
i−1 , j + 3 ≤ i ≤ rj , (12)

1
ŝj

j+2,rj

= `j + ŝj+1
j+2 , (13)

and
ŝj

j+2,i

ŝj
j+2,rj

= ai,j + ŝj+1
i , rj + 1 ≤ i ≤ m, (14)

where ai,j , ci,j are constants and `j is a first degree polynomial. Relation (13) was already men-
tioned above in a more general context. We repeat it here to unify the notation.

First let us consider that rj +1 ≤ i ≤ m. If rj = m this is an empty set and we have nothing to
prove. Assume that j + 2 ≤ rj ≤ m− 1. Substituting (14) into the right hand of (11), we obtain

∫

∆j+2

xνΨj+1(x)dsj+1
i (x) = −

∫

∆j+1

tνΨj(t)

(
ŝj

j+2,i(t)

ŝj
j+2,rj

(t)
− ai,j

)
dsj

rj
(t) =

ai,j

∫

∆j+1

tνΨj(t)dsj
rj

(t)−
∫

∆j+1

tνΨj(t)ŝ
j
j+2,i(t)dσj

j+1(t) .

Since ŝj
j+2,i(t)dσj

j+1(t) = dsj
i (t) and 0 ≤ ν ≤ nj+1

i − 1 = nj
i − 1 ≤ nj

rj
− 1, by the induction

hypothesis the last two integrals vanish and we obtain (10) for these indices i.
Now, let j + 2 ≤ i ≤ rj . Using (12) several times until i− 1 reduces to j + 2 (when i ≥ j + 3)

and once (13), we obtain

ŝj+1
i =

ŝj
j+2,i−1

ŝj
j+2,rj

− ai,j − ci,j ŝ
j+1
i−1 = (15)

ŝj
j+2,i−1

ŝj
j+2,rj

− ai,j − ci,j

(
ŝj

j+2,i−2

ŝj
j+2,rj

− ai−1,j − ci−1,j ŝ
j+1
i−2

)
= · · · = Li,j +

1
ŝj

j+2,rj

i−1∑

k=j+1

ckŝj
j+2,k ,

where Li,j denotes a first degree polynomial, ŝj
j+2,j+1 ≡ 1, and ck, k = j+1, . . . , i−1, are constants

and ci−1 = 1. Notice that

ŝj
j+2,kdsj

rj

ŝj
j+2,rj

= ŝj
j+2,kdσj

j+1 = dsj
k , k = j + 1, . . . , i− 1 . (16)

Substituting (15) into the right hand of (11) and using (16), we have
∫

∆j+2

xνΨj+1(x)dsj+1
i (x) = −

∫

∆j+1

tνLi,j(t)Ψj(t)dsj
rj

(t)−
i−1∑

k=j+1

∫

∆j+1

tνΨj(t)dsj
k(t) .

Since ν + 1 ≤ nj+1
i = nj

i−1 ≤ nj+1
i−1 = nj

i−2 ≤ · · · ≤ nj+1
j+2 = nj

j+1 < nj
rj

all the integrals in the
right hand of this equality vanish and we conclude the proof of (10). Therefore, the induction is
complete and (8) takes place.

According to (8)
∫

∆j+1

Ψj(x)
m∑

i=j+1

hi(x)ŝj
j+2,i(x)dσj

j+1(x) = 0 , (17)

where ŝj
j+2,j+1(x) ≡ 1 and hi, i = j+1, . . . , m, denote polynomials such that deg hi ≤ nj

i−1. Since
nj ∈ Zm−j

+ (∗), by Theorem 1 the system of functions (ŝj
j+2,j+1, ŝ

j
j+2,j+2, . . . , ŝj

j+2,m) forms an AT
system on ∆j+1 with respect to nj and, consequently, from (17) it follows that Ψj must have in the
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interior of ∆j+1 at least |nj | sign changes. Since Ψj is not identically equal to zero, it may have
only a finite number of sign changes inside ∆j+1. Let qj+1 be the monic polynomial whose zeros
are the distinct points inside ∆j+1 where Ψj changes sign inside ∆j+1. We immediately obtain
(9), that deg qj+1 ≥ |nj |, and the sign preserving property of ψj . 2

To complete the notation, set

Ψm(z) =
∫

∆m

Ψm−1(x)
z − x

dsm−1
m (x) .

Notice that according to (6), rm−1 = m. From (8) we have that
∫

∆j+1

h(z)− h(x)
z − x

Ψj(x)dsj
rj

(x) = 0,

where h is an arbitrary polynomial such that deg h ≤ nj
rj

, j = 0, . . . ,m − 1. Using (7) and the
definition of Ψm given above, this last relation may be rewritten as

Ψj+1(z) =
1

h(z)

∫

∆j+1

Ψj(x)
h(x)dsj

rj
(x)

z − x
= O

(
1

znj
rj

+1

)
∈ H(C \∆j+1), j = 0, . . . m− 1.

(18)

Theorem 3. Assume that n ∈ Zm
+ (∗). For each j = 0, . . . , m− 1

∫

∆j+1

xνΨj(x)
dsj

rj
(x)

qj+2(x)
= 0, ν = 0, . . . |nj | − 1 . (19)

where qj+2, is given in (9), (qm+1 ≡ 1). Consequently, deg qj+1 = |nj |, j = 0, . . . , m− 1, (q1 = Q).

Proof. From (8) and (18), it follows that

Ψj+1

qj+2
= O

(
1

znj
rj

+deg qj+2+1

)
∈ H(C \∆j+1), j = 0, . . .m− 1 ,

Therefore,

zν Ψj+1(z)
qj+2(z)

= O(
1
z2

) ∈ H(C \∆j+1), ν = 0, . . . , nj
rj

+ deg qj+2 − 1, j = 0, . . .m− 1 .

Integrating along a simple closed curve Γ with winding number one for all its interior points which
surrounds ∆j+1 such that ∆j+2 lies in the exterior of Γ, using Cauchy’s Theorem, the definition
of Ψj+1, Fubini’s Theorem, and Cauchy’s Integral formula, we find that

0 =
∫

Γ

zν Ψj+1(z)
qj+2(z)

dz =
∫

Γ

zν

qj+2(z)

∫

∆j+1

Ψj(x)
z − x

dsj
rj

(x)dz =
∫

∆j+1

Ψj(x)
∫

Γ

zν

qj+2(z)
dz

z − x
dsj

rj
(x) =

2πi

∫

∆j+1

xνΨj(x)
dsj

rj
(x)

qj+2(x)
, ν = 0, . . . , nj

rj
+ deg qj+2 − 1, j = 0, . . . , m− 1 .

(20)

Since nj
rj

+ deg qj+2 ≥ nj
rj

+ |nj+1| = |nj |, we obtain (19).
In order to prove the last statement, let us assume that for some j = 0, . . . , m−1, we have that

deg qj+2 > |nj+1|. From (20) it follows that Ψj has at least |nj | + 1 sign changes on ∆j+1. This
means that deg qj+1 > |nj |. Continuing downwards on the index j we obtain that Ψ0 has more
than |n0| sign changes on ∆1. But this is impossible since Ψ0 changes sign on ∆1 exactly at the
|n0| zeros of Q. With this we conclude the proof. 2

Remark . Notice that Z1
+ = Z1

+(∗) and Z2
+ = Z2

+(∗). For m = 3 the only indices left out in Z3
+(∗)

are those strictly increasing (n1 < n2 < n3). For those indices it is also possible to prove analogues
of Theorems 2 and 3 using the type of transformation employed in [4] to solve strong normality
for such multi–indices.
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4. Vector equilibrium problem in the presence of an external field

Let
(1) ∆ = (∆1, · · · , ∆m) be a set of m closed bounded intervals of the real line (which do not

reduce to points) and m ∈ N;
(2) θ = (θ1, . . . , θm) ∈ Rm

+ , R+ = (0, +∞), and denote |θ| = ∑m
i=1 θi;

(3) A = ||ai,j ||, is a real (m ×m) symmetric matrix which is positive definite and ai,j ≥ 0, if
∆i ∩∆j 6= ∅;

(4) f = (f1, · · · , fm), where fi, i = 1, · · ·m, is a real lower semi-continuous function on ∆i.
Let σ be a finite positive Borel measure with compact support supp(σ) contained in R and |σ|

its total variation. For each i = 1, · · ·m, Mθi(∆i) is the set of all positive Borel measures σ such
that supp(σ) ⊂ ∆i and |σ| = θi. By Mθ(∆) we denote the product Mθ(∆) =

∏m
i=1Mθi(∆i).

For µ = (µ1, . . . , µm) ∈Mθ(∆) we define the vector function

Wµ(z) = (V Aµ + f)(z) =
∫

ln
1

|z − x|dAµ(x) + f(z), z ∈ C.

The i-th component of Wµ is given by

Wµ
i =

m∑

j=1

ai,jV
µj + fi, i = 1, · · ·m,

where V µj is the logarithmic potential of the measure µj ,

V µj (z) =
∫

ln
1

|z − x|dµj(x), z ∈ C.

We define the mutual energy of two vector measures µ1, µ2 ∈Mθ(∆) in the presence of f to be

J(µ1, µ2) =
m∑

i,j=1

∫ ∫ [
ai,j ln

1
|z − x| +

fi(z) + fj(x)
|θ|

]
dµ1

i (z)dµ2
j (x). (21)

The energy of the vector measure µ ∈Mθ(∆) can be written as

J(µ) = (Aµ, µ) + 2
∫

fdµ =
m∑

i,j=1

ai,jI(µi, µj) + 2
m∑

i=1

∫
fi(x)dµi(x), (22)

where

I(µi, µj) =
∫ ∫

ln
1

|z − x|dµi(z)dµj(x). (23)

These formulas may be rewritten as

J(µ1, µ2) =
∫

Wµ2
(z)dµ1(z) +

∫
f(x)dµ2(x). (24)

and

J(µ) =
∫

(Wµ + f)(z)dµ(z), (25)

where
∫

Wµ2
(z)dµ1(z) =

m∑

i=1

∫
Wµ2

i (z)dµ1
i (z) ,

∫
f(x)dµ2(x) =

m∑

j=1

∫
fj(x)dµ2

j (x) .

These concepts may be interpreted in electrostatic terms. ∆ is a system of charge conductors
where on each conductor ∆i acts an external field fi, i = 1, · · ·m. The vector θ characterizes how
much charge is allowed on each conductor. The measure µ ∈ Mθ(∆) gives the distribution of the
charges. The entry ai,j of the matrix A represents the law of interaction between the conductors
∆i, ∆j , i, j = 1, . . . , m.

For each µ ∈Mθ(∆), we define

wµ
i = min

x∈∆i

Wµ
i (x), i = 1, . . . , m.
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In the sequel, we will assume that f is such that there exists µ ∈Mθ(∆) with I(µi, µi) < +∞ , i =
1, . . . ,m, and

∫
f(x)dµ(x) < +∞ . (26)

Theorem 4. Each of the following problems (1) − (3) has a unique solution µ ∈ Mθ(∆); the
solution of all these problems is the same.

(1) J(µ) = minµ∈Mθ(∆) J(µ) ,

(2) Wµ
i (x) = wµ

i , x ∈ supp(µi), i = 1, . . . , m ,

(3) maxµ∈Mi(µ) wµ
i = wµ

i , i = 1, . . . , m ,

where
Mi(µ) = {µ ∈Mθ(∆) : µj = µj , j = 1, . . . , m, j 6= i} .

The measure µ = µ(∆, θ, A, f) is called extremal or equilibrium measure with respect to the
initial data (∆, θ, A, f). For applications, the second statement is the most important. This part
may be restated as follows: there exists a unique measure µ ∈ Mθ(∆) and certain constants wi,
such that Wµ

i (x) = wi on supp(µi) and Wµ
i (x) ≥ wi on ∆i, i = 1, . . . ,m. Theorem 4 extends to

the vector case a known result concerning the existence of an equilibrium measure in the presence
of an external field. The vector case without external field has been treated in [6] and [12]. Our
proof for the general case follows the scheme proposed in [12]. A similar result also holds for
general regular compacts sets in the complex plane.

Of particular interest is the scalar case (m = 1) which we state in the form of a corollary,
since it formally follows from the statement above, but will be used in proving Theorem 4. Here
∆ = ∆1, θ > 0, A = a > 0, f is a lower semi-continuous function on ∆, Wµ = aV µ + f , and
wµ = minx∈∆ Wµ(x).

Corollary 1. Each of the following problems (1) − (3) has a unique solution µ ∈ Mθ(∆); the
solution of all these problems is the same.

(1’) J(µ) = minµ∈Mθ(∆) J(µ) ,

(2’) aV µ + f = wµ, x ∈ supp(µ) ,
(3’) maxµ∈Mθ(∆) wµ = wµ .

Before proving Theorem 4 we need some auxiliary results.

Lemma 1. The functionals (21) and (22) are lower semi-continuous in the weak star topology of
Mθ(∆).

Proof. It is sufficient to show that the mutual energy is lower semi-continuous since J(µ) =
J(µ, µ). Since the components of f are lower semi-continuous functions, it is easy to prove that
each one of the integrals associated with these components in (21) defines a lower semi-continuous
functional on Mθi

(∆i) respectively. Therefore, it is sufficient to prove the lower semi-continuity
property for the sum

∑m
i,j=1 ai,jI(µ1

i , µ
2
j ).

Let us separate this sum in two.
∑

1 contains all the terms for which ai,j ≥ 0, and
∑

2 the
rest which have ai,j < 0. By Theorem 2.1 page 168 in [12] each term of the first sum is lower
semi-continuous and, therefore, so is

∑
1. In the second sum all the terms are continuous because

by assumption if ai,j < 0 then ∆i ∩∆j = ∅ and, hence, the logarithmic kernel is continuous on the
compact set ∆i ×∆j . 2

Let us consider the following problem. Find

J(µ) = w = inf{J(µ) : µ ∈Mθ(∆)}
and the extremal measure µ for which the infimum is attained.

Since the intervals ∆i, i = 1, . . . ,m, do not reduce to points they have positive logarithmic
capacity. Therefore there exist vector measures µ = (µ1, . . . , µm, ) whose components have finite
energy

I(µi) = I(µi, µi) =
∫ ∫

ln
1

|z − x|dµi(z)dµi(x) < +∞ , i = 1, . . . , m .
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By assumption, for at least one such vector measure
∫

fdµ < +∞. Therefore,

w = inf{J(µ) : µ ∈Mθ(∆)} = inf{J(µ) : µ ∈M∗
θ(∆)} < +∞ ,

where
M∗

θ(∆) = {µ ∈Mθ(∆) : I(µi) < ∞, i = 1, . . . , m} .

Let
M∗(∆) =

⋃

θ∈Rm
+

M∗
θ(∆)

Lemma 2. The extremal measure µ in M∗
θ(∆) exists and is unique. This is the unique measure

satisfying ∫
Wµd(µ− µ) ≥ 0 , µ ∈M∗

θ(∆) . (27)

Proof. The existence of µ is an immediate consequence of the weak star compactness of Mθ(∆)
and the lower semi-continuity of the functional (22).

Set

I(µ1, µ2) =
m∑

i,j=1

ai,jI(µ1
i , µ

2
j ) . (28)

This quantity represents the mutual energy of the vector measures µ1, µ2 in the absence of an
external vector field. Let µ = (µ1, . . . , µm) be a vector charge; that is, each component of µ is a
signed measure (charge). It is well known that each µi admits a unique decomposition

µi = µi,+ − µi,− , i = 1, . . . , m .

into two (positive) measures µi,+, µi,−. Let us assume that µi,+, µi,−, have finite energy, then there
is no problem in defining I(µi, µj) according to (21). In fact,

I(µi, µj) = I(µi,+, µj,+) + I(µi,−, µj,−)− I(µi,+, µj,−)− I(µi,−, µj,+) .

Therefore, if µ1, µ2 are two vector charges whose components decompose into positive measures
with finite energy we can define for them their mutual energy through formula (28). Set

M̃∗(∆) = {µ = µ1 − µ2 : µ1, µ2 ∈M∗(∆)}
Obviously, M̃∗(∆) is the vector space of all vector charges whose components decompose into
measures with finite energy.

Let 0 ≤ ε ≤ 1. If µ ∈M∗
θ(∆) then µ̃ = εµ + (1− ε)µ ∈M∗

θ(∆). Therefore,

J(µ̃)− J(µ) ≥ 0

or, equivalently (see (22)),

I(µ̃) + 2
∫

fdµ̃− I(µ)− 2
∫

fdµ ≥ 0.

Substituting µ̃ by its expression in terms of µ and µ, we have

ε2I(µ− µ) + 2εI(µ− µ, µ) + 2ε

∫
fd(µ− µ) ≥ 0,

therefore,

J(µ̃)− J(µ) = ε2I(µ− µ) + 2ε

∫
Wµd(µ− µ) ≥ 0. (29)

Dividing by ε and letting ε tend to zero, it follows that∫
Wµd(µ− µ) ≥ 0.

which is (27).
Making an appropriate change of variables, it is easy to verify that there is no loss of generality

in the proof if we restrict to the case when

max{|z| : z ∈ ∆i, i = 1, . . . ,m} < 1 (30)
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Propositión 4.2, page 178, in [12] (here, the assumptions on A are used) states that if (30) takes
place, then I(µ) = I(µ, µ) ≥ 0 for all µ ∈ M̃∗(∆) and I(µ) = 0 if and only if µ ≡ 0.

Let us assume that µ is another vector extremal measure. Take ε = 1. We have that J(µ̃) =
J(µ) = J(µ). From (29) we deduce that

0 = I(µ− µ) + 2
∫

Wµd(µ− µ),

which together with (27) implies that I(µ−µ) ≤ 0. Hence, I(µ−µ) = 0 and, consequently, µ ≡ µ,
as we needed to prove.

Now, let us assume that a certain vector measure λ ∈M∗
θ(∆) satisfies∫

Wλd(λ− λ) ≥ 0 , λ ∈M∗
θ(∆).

Proceeding as above, we obtain

J(λ)− J(λ) = I(λ− λ) + 2
∫

Wλd(λ− λ) ≥ 0 ,

since both terms on the right hand are non-negative. This implies that λ is the extremal measure
and the proof is complete. 2.

We say that a property holds quasi everywhere (q.e.) if it is true except on a set of capacity
zero. For µ ∈M∗

θ(∆), set

Ji(µ) =
∫

(Wµ
i + fi)dµi

and
wi := θ−1

i [Ji(µ)−
∫

fidµi] = θ−1
i

∫
Wµ

i dµi .

Lemma 3. For each j = 1, · · ·m,

Wµ
j (x) ≥ wj , q.e. x ∈ ∆j . (31)

Proof. To the contrary, let us assume that for some i there is a compact subset K ⊂ ∆i with
positive logarithmic capacity such that

Wµ
i (x) < wi, x ∈ K.

Take an arbitrary measure µi ∈ M∗
θi

(K). The existence of such a measure is guaranteed by the
positivity of the logarithmic capacity of K. Consider the vector measure µ = (µ1, · · · , µm), where
µj = µj , j 6= i. Then

∫
Wµd(µ− µ) =

∫
Wµ

i d(µi − µi) < wiθi − wiθi = 0

which contradicts (27). 2

Lemma 4. For each j = 1, . . . m,

Wµ
j (x) ≤ wj , x ∈ supp(µj) . (32)

Proof. Suppose that for some j there exists x0 ∈ supp(µj) such that Wµ
j (x0) > wj . Since Wµ

j

is lower semi-continuous it follows that there exists a neighborhood V of x0 such that for all x ∈ V
we have that Wµ

j (x) > wj . On the other hand, x0 ∈ supp(µj); therefore, µj(V) > 0.
Using Lemma 3 and that a measure of finite energy has measure zero on any set of capacity

zero, we obtain

θjwj =
∫

∆j

Wµ
j dµj =

∫

V
Wµ

j dµj +
∫

∆j\V
Wµ

j dµj > wjµj(V) + wjµj(∆j \ V) = θjwj ,

which is absurd. 2

Proof of Theorem 4. By Lemma 2 we know that problem 1 has a unique solution. Let us
show that this solution solves problem 2.

In fact, since an interval is a regular set in the sense of the solution of Dirichlet’s problem, from
(31) it follows that

Wµ
j (x) ≥ wj , x ∈ ∆j , j = 1, . . . ,m .
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Consequently, using (32), we obtain that

Wµ
j (x) = wj , x ∈ ∆∗

j = supp(µj) , j = 1, . . . , m .

Therefore, wj = wµ
j and µ solves the second problem in Theorem 4.

Let us show that any solution λ of problem 2 also solves problem 1. Notice that
∫

Wλdλ =
m∑

j=1

wλ
j θj .

On the other hand, if λ ∈M∗
θ(∆) since Wλ

j ≥ wλ
j , x ∈ ∆j , j = 1, . . . , m, it follows that

∫
Wλdλ ≥

m∑

j=1

wλ
j θj .

Hence, (27) takes place and by Lemma 2, λ = µ as needed.
In order to solve problem 3 let us start with the scalar case. Of course, from what was proved

above we know that problems 1’ and 2’ of the corollary are equivalent and have the same solution.
Let us prove that problem 3’ has as unique solution the equilibrium measure µ ∈ Mθ(∆) in the
presence of the external field f .

Since µ ∈Mθ(∆), obviously supµ∈Mθ(∆) wµ ≥ wµ. Let us assume that there exists µ ∈Mθ(∆)
such that

wµ ≥ wµ

and show that then µ = µ. This would prove that the supremum in 3’ is certainly attained and
only by the equilibrium measure.

We know that (aV µ + f)(x) = wµ, x ∈ suppµ ⊂ ∆; therefore,

a(V µ − V µ)(x) = (aV µ + f)(x)− (aV µ + f)(x) ≤ 0 , x ∈ supp(µ). (33)

The function a(V µ − V µ) is subharmonic in C \ supp(µ). Recall that a > 0 and potentials are
superharmonic everywhere and harmonic in the complement of their support.

On supp(µ) the function (aV µ+f) is continuous since it takes a constant value on that set, and f
is lower semi-continuous. Hence on supp(µ), aV µ is upper semi-continuous but being a potential it
is also lower semi-continuous; therefore, it is continuous on suppµ and by the continuity principle
for potentials it is continuous on all C. This yields that a(V µ − V µ)(x) is upper semi-continuous
on all C. In particular, for x ∈ supp(µ), because of (33)

lim sup
z→x

a(V µ − V µ)(z) ≤ a(V µ − V µ)(x) ≤ 0 .

By the maximum principle for subharmonic functions it follows that

a(V µ − V µ)(x) ≤ 0 , x ∈ C.

Moreover, a(V µ − V µ)(∞) = 0 ; consequently,

a(V µ − V µ)(x) ≡ 0 , x ∈ C \ supp(µ) . (34)

Taking limit as z → x ∈ supp(µ), z ∈ C \ suppµ, we obtain

a(V µ − V µ)(x) ≥ lim sup
z→x

a(V µ − V µ)(z) ≥ 0 , x ∈ supp(µ) .

From all these relations, we have that

a(V µ − V µ)(z) ≡ 0 , z ∈ C ,

from which follows that indeed µ = µ. We have completed the proof of the corollary.
Following the proof of the scalar case, it is easy to verify that the equilibrium vector measure

µ = (µ1, . . . , µm) is a solution of problem 3. Let λ = (λ1, . . . , λm) be any other solution of this
problem. Fix i ∈ {1, . . . , m} and let λ ∈Mi(λ). We have that

Wλ
i = ai,iV

λi +
∑

j 6=i

ai,jV
λj + fi = ai,iV

λi + Fi
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and Fi is lower semi-continuous on ∆i ; therefore, λi is the solution of the scalar equilibrium
problem in the presence of the external field Fi. Since for the scalar case problem 3’ is equivalent
to 2’, this means that

Wλ
i (x) = wλ

i = min
t∈∆i

Wλ
i (t) , x ∈ supp(λi) , i = 1, . . . , m .

Therefore, λ solves problem 2 and by the uniqueness of the solution of this problem we conclude
that λ is the solution of the vector equilibrium problem which is what we wanted to prove. 2

5. Asymptotic behavior of the second type functions

In this section, we study the logarithmic asymptotic behavior of sequences of second type func-
tions {Ψn,j} along certain sequences Λ ⊂ Zm

+ (∗) of multi-indices such that |n| → +∞. To this
end we must consider the logarithmic asymptotic behavior of the sequences of monic polynomials
{qn,j}, n ∈ Λ, as defined in Theorem 2. In the sequel, we explicitly indicate the dependence of all
quantities on the multi-index n.

Let us fix a probability distribution p = (p1, · · · , pm) with the property that there do not exist
1 ≤ k < j < i ≤ m such that pk < pj < pi. Set p0 = p. Assume that pj = (pj

j+1, . . . , pj
m) has been

defined, where j = 0, . . . , m− 2. Then,

pj+1 = (pj+1
j+2, . . . , pj+1

m )

is the vector obtained from pj extracting the first component pj
rj

such that

pj
rj
≥ max{pj

k : j + 1 ≤ k ≤ m} .

We consider the vector equilibrium problem with the initial data given by:

(1) ∆ = (∆1, . . . , ∆m) is a set of m closed intervals contained in the real line such that
∆j ∩∆j+1 = ∅, j = 1, . . . ,m− 1.

(2) θ = (θ1, . . . , θm), where

θj = |pj−1| , j = 1, . . . ,m .

(3) A = ||aj,k|| is the interaction matrix for which ak,k = 2, aj,k = −1, if |j − k| = 1, and
aj,k = 0 otherwise.

(4) f = (f1, . . . , fm), where f1 is a real lower semi-continuous function on ∆1 such that
there exists µ1 ∈ Mθ1(∆1) with I(µ1, µ1) < +∞ for which

∫
f1(x)dµ1(x) < +∞ and

fi = 0, i = 2, . . . ,m, on ∆i.

By µ we denote the extremal measure of the equilibrium problem given by Theorem 4 corresponding
to this initial data.

Let Λ ⊂ Zm
+ (∗) be a sequence of multi-indices n = (n1, . . . , nm) such that |n| → ∞ and

lim
n∈Λ

nk

|n| = pk > 0, k = 1, . . . m. (35)

Let qn,j = qj , j = 1, . . . , m + 1, be the polynomials defined in (9). Recall that qn,1 = Qn and
qn,m+1 ≡ 1. Therefore, qn,j has simple zeros all lying in the interior of ∆j and

deg qn,j = |nj−1| , j = 1, . . . ,m + 1

(|nm| = 0). Notice that by assumption

lim
n∈Λ

|nj−1|
|n| = θj , j = 1, . . .m .

Let χ(q) be the zero counting measure associated with the monic polynomial q. That is, χ(q)
assigns measure 1 to each point which is a zero of q (counting multiplicities) and measure zero to
all other points.

We are given two sequences of monic polynomials {αn}, {βn}, n ∈ Λ, with real coefficients such
that deg βn = κn,deg αn ≤ |n| + κn + min{n1, . . . , nm}. The zeros of βn have even multiplicity
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and lie on ∆1 and the zeros of αn belong to a compact subset E of D = C \∆1. We assume that
there exist measures α, β with support contained in E ⊂ D and ∆1 respectively such that

lim
n∈Λ

1
|n|χ(αn) = α , lim

n∈Λ

1
|n|χ(βn) = β . (36)

The convergence of measures is in the weak star sense.
Set

fn,1(x) =
1
|n| (V

χ(βn)(x)− V χ(αn)(x)) .

By (36) and known properties of the potential (see [7] and [10]), it follows that:
• f1(x) = limn∈Λ fn,1(x) = V β(x) − V α(x) , x ∈ ∆1 , where convergence is in measure on

∆1.
• Each fn,1 as well as f1 is lower semi-continuous on ∆1.
• Each fn,1 and f1 is weakly approximatively continuous on ∆1. A function g is weakly

approximatively continuous at x0 ∈ ∆1, if there exists a set e(x0) ⊂ ∆1 of positive measure
such that

lim inf
x→x0,x∈∆1

g(x) = lim
x→x0,x∈e(x0)

g(x) = g(x0) .

• limn→∞min∆1 fn,1(x) = min∆1 f1(x) .

This type of convergence will be denoted

F − lim
n→∞

fn,1 = f1 .

This function f1 is taken for the first component of f above. We must verify that (26) takes place.
In fact, take any µ ∈ M∗

θ(∆) such that µ1 is the equilibrium measure on ∆1 in the absence of an
external field. Then∫

f(x)dµ(x) =
∫

∆1

(V β − V α)(x)dµ1(x) =
∫

∆1

V µ1(x)dβ(x)−
∫

∆1

V α(x)dµ1(x) < ∞

since V µ1 and V α are continuous on ∆1.
Let σ be a finite positive Borel measure supported on a compact subset of the real line. We say

that σ ∈ Reg if
lim

l
κ

1/l
l = Cap(supp(σ)) ,

where κl > 0 denotes the leading coefficient of the orthonormal polynomial of degree l with respect
to σ and Cap(·) the logarithmic capacity of the indicated set. For more details on this definition
and properties of the so called class of regular measures see Chapter 2 in [13]. In particular, it is
well known that σ′ > 0 almost everywhere (on its support) implies that σ ∈ Reg. Moreover, the
class of regular measures is substantially larger than the class of measures for which σ′ > 0 almost
everywhere.

We have the following result which generalizes Theorems 3 to 5 from [8] in the case of Nikishin
systems of measures. The proof follows the same scheme but taking into consideration the solution
of the vector equilibrium problem in the presence of an external vector field.

Theorem 5. Let us assume that σ′1 > 0 almost everywhere on ∆1, and σj ∈ Reg for j = 2, . . . ,m,.
We also assume that (35) and (36) take place. For each j = 1, . . . , m, we have

lim
n∈Λ

1
|n|χ(qn,j) = µj . (37)

Therefore,

lim
n∈Λ

|qn,j(z)| 1
|n| = exp(−V µj (z)), j = 1, . . . , m , (38)

uniformly on compact subsets of C \∆j. Moreover,

lim
n∈Λ

(∫
q2
n,j

|ψn,j−1|dsj−1
rj−1

|qn,j+1|

) 1
|n|

= e−vj , j = 1, . . . , m . (39)
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where vj = wµ
1 + · · ·+ wµ

j , and

lim
n∈Λ

|Ψn,j |
1
|n| = exp(V µj − V µj+1 − vj) . (40)

uniformly on each compact subset of the complement of ∆j ∪∆j+1. (∆m+1 = ∅, V µm+1 ≡ 0.)

Proof. Different multi–indices n ∈ Λ ⊂ Zm
+ (∗) may have associated different Σj and rj , j =

0, . . . ,m− 1. See the definitions in the beginning of Section 3. In particular, the measures sj
rj

, j =
0, . . . ,m − 1 may depend on n. For simplicity in the notation, we have not indicated this above.
So far this has not been important because the preceding results were proved for fixed n, but
now we are taking limit on n. Nevertheless, under the assumptions of theorem 5 this fact has no
influence. Notice that according to the construction, there are only a finite number of possible
systems Σj , j = 0, . . . , m − 1, and measures sj

rj
, j = 0, . . . ,m − 1, associated to different multi–

indices. We will assume that we have taken a subsequence of multi–indices Λ′ ⊂ Λ, with an infinite
number of elements, such that for all n ∈ Λ′ we obtain the same measures sj

rj
, j = 0, . . . , m − 1,

and prove that (37)-(40) hold true. Since the right hand sides of (37)-(40) only depend on the
initial data of the equilibrium problem, which is independent of the construction of the auxiliary
systems Σj , j = 0, . . . ,m − 1, and Λ may be partitioned into a finite number of Λ′ plus a finite
number of multi–indices, the result holds true as stated. In the sequel, without loss of generality,
we will assume that all n ∈ Λ have associated the same Σj , j = 0, . . . , m− 1.

Using (9) and (19) it follows that
∫

∆j+1

xνqn,j+1(x)ψn,j(x)
dsj

rj
(x)

qn,j+2(x)
= 0, ν = 0, . . . , |nj | − 1, j = 0, . . .m− 1.

That is ∫

∆j+1

xνqn,j+1(x)hn,j(x)dsj
rj

(x) = 0, ν = 0, . . . , |nj | − 1, j = 0, . . . m− 1,
(41)

where

hn,j =
|ψn,j |
|qn,j+2| , j = 0, . . . , m− 1 .

(Recall that ψn,j and qn,j+2 have constant sign on ∆j+1.)
The polynomial qn,j+1 is orthogonal with respect to the varying measure

dσn,j+1 = hn,jdsj
rj

, j = 0, . . . ,m− 1 .

Define

µn,j =
1
|n|χ(qn,j) , j = 1, . . . , m ,

and set µn = (µn,1, . . . , µn,m). Since the sequence {µn}, n ∈ Λ, is weakly compact, in order to
prove (37) it is sufficient to show that any convergent subsequence {µn}, n ∈ Λ′, Λ′ ⊂ Λ, satisfies

lim
n∈Λ′

µn = µ .

Therefore, without loss of generality, we can assume that there exists

lim
n∈Λ

µn = µ = (µ1, . . . , µm) . (42)

and we must show that µ = µ. To this end we make use of Theorem 1 in [7] and Theorem 3.3.3
in [13] related with the nth root asymptotic behavior of orthogonal polynomials with respect to
varying measures. For convenience of the reader, we state the corresponding result in a combined
statement. The result with weaker assumptions on the sequence of functions {gl}l∈Λ follows [7]
whereas the weaker assumptions on σ correspond to [13].

Theorem 6. Let Λ ⊂ N. Suppose that a sequence of monic polynomials {ql}l∈Λ satisfies the
orthogonality relations∫

xkql(x)dσl(x) = 0, k = 0, . . . , deg ql − 1, l ∈ Λ , (43)
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where
dσl = exp(−gl)dσ .

Let us assume that either σ′ > 0 almost everywhere on its support given by an interval ∆, the
functions in the sequence {gl}l∈Λ as well as g are lower semi-continuous functions on ∆ and verify

F − lim
l∈Λ

1
l
gl(x) = g(x), x ∈ ∆ ,

or σ ∈ Reg, the functions in the sequence {gl}l∈Λ as well as g are continuous functions on ∆ and
satisfy

lim
l∈Λ

1
l
gl(x) = g(x), x ∈ ∆ ,

uniformly on ∆. Assume that there exists

lim
l∈Λ

deg ql

l
= θ .

Then

lim
l∈Λ

1
l
χ(ql) = µ , (44)

and

lim
l∈Λ

(∫
q2
l dσl(x)

) 1
l

= e−w, (45)

where µ = µ(∆, θ, 2, g) is the solution of the scalar equilibrium problem given by Corollary 1 with
a = 2, external field given by g, and w = wµ is the associated equilibrium constant.

From (42) it follows that

lim
n∈Λ

1
|n| log |qn,j | = lim

n∈Λ
V µn,j = −V µj ,

uniformly on each compact subset of C \∆j . Since ψn,0 = βn

αn
, from (36) we get

F − lim
n∈Λ

1
|n| log |ψn,0|−1 = f1

on ∆1. Set
2V µ1 − V µ2 + f1 = Wµ

1 .

Using (41) for j = 0 and Theorem 6 (see (42), (44) and (45)), we obtain that µ1 satisfies the
equilibrium conditions

Wµ
1 (x) = min

∆1
Wµ

1 = wµ
1 , x ∈ supp(µ1) (46)

and

− lim
n∈Λ

1
|n| log(

∫
q2
n,1dσn,1) = wµ

1 .

From (41) it follows that

q(z)
∫

qn,j+1(x)
z − x

ψn,j(x)
qn,j+2(x)

dsj
rj

(x) =
∫

q(x)qn,j+1(x)
z − x

ψn,j(x)
qn,j+2(x)

dsj
rj

(x)

where q is any polynomial of degree ≤ |nj |. If we use this formula for q = qn,j+1 and q = qn,j+2

respectively, we obtain
∫

qn,j+1(x)
z − x

ψn,j(x)
qn,j+2(x)

dsj
rj

(x) =
1

qn,j+1(z)

∫
q2
n,j+1(x)
z − x

ψn,j(x)
qn,j+2(x)

dsj
rj

(x)

and (see also (7))
∫

qn,j+1(x)
z − x

ψn,j(x)
qn,j+2(x)

dsj
rj

(x) =
1

qn,j+2(z)

∫
qn,j+2(x)qn,j+1(x)

z − x

ψn,j(x)
qn,j+2(x)

dsj
rj

(x) =
Ψn,j+1(z)
qn,j+2(z)

.
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Therefore,

ψn,j(z) =
1

qn,j(z)

∫
q2
n,j(t)
z − t

dσn,j(t), z ∈ C \∆j , j = 1 . . . , m . (47)

Let us prove that for each j = 1, . . . ,m, there exists the limit

vj = − lim
n∈Λ

1
|n| log(

∫
q2
n,jdσn,j) .

We proceed by induction. We know that v1 = wµ
1 for j = 1. Let us assume that the limit exists

for some j, 1 ≤ j ≤ m− 1 and show that the assertion is also true for j + 1.
It is well known and easy to verify (see, for example, page 158 in [13]) that for each compact

subset K of C \∆j there exist positive constants C1(K) and C2(K) such that

C1(K)|
∫

q2
n,j(x)dσn,j(x)| ≤

∣∣∣∣∣
∫

q2
n,j(x)
z − x

dσn,j(x)

∣∣∣∣∣ ≤ C2(K)|
∫

q2
n,j(x)dσn,j(x)| . z ∈ K .

From these inequalities and (47) it follows that

− lim
n∈Λ

1
|n| log |ψn,j(z)| = −V µj (z) + vj , (48)

uniformly on each compact subset of C \∆j ; in particular, on ∆j+1. Therefore,

− lim
n∈Λ

1
|n| log hn,j = vj − V µj+2 − V µj .

uniformly on ∆j+1. Using (41) and Theorem 6 for j + 1 (notice that now it is only required that
σj+1 ∈ Reg) , it follows that µj+1 satisfies the scalar equilibrium problem

Wµ
j+1(x) + vj = 2V µj+1(x)− V µj+2(x)− V µj (x) + vj = min

∆j+1
Wµ

j+1(x) + vj = wµ
j+1 + vj ,

(49)

for x ∈ supp µj+1, and

vj+1 = − lim
n∈Λ

1
|n| log(

∫
q2
n,j+1(x)dσn,j+1(x)) = wµ

j+1 + vj .

From (46) and (49) it follows that the vector measure µ satisfies the equilibrium conditions for
all j = 1, . . . ,m. Therefore, by Theorem 1 we have that µ = µ and thus obtained (37), (38), and
(39). Formulas (38) and (48) yield (40) and we conclude the proof of Theorem 5. 2

Remark . If βn ≡ 1, n ∈ Λ (that is, we do not fix poles), then limn∈Λ fn,1 = f1 uniformly on ∆1

and f1 is continuous on ∆1. In this situation we can also use Theorem 3.3.3 in [13] for the initial
step in the proof of Theorem 5 replacing the condition σ′1 > 0 a. e. on ∆1 by the much weaker
one σ1 ∈ Reg. If this is the case, regarding the conditions on the measures, in Theorem 5 it is
sufficient to assume that σj ∈ Reg, j = 1, . . . , m.

6. Rate of convergence of GHPA

Let S = (s1, . . . , sm) = N (σ1, . . . , σm) be a Nikishin system of measures and Ŝ = (ŝ1, . . . , ŝm)
the corresponding Nikishin system of functions. We will assume that σ′j > 0 almost everywhere
on ∆j , j = 1, . . . ,m, although this assumption may be weakened as explained in the last remark.
Let Λ ⊂ Zm

+ (∗) be such that (35) takes place. For each n ∈ Λ, let Rn = (Rn,1, . . . , Rn,m) be the
GHPA associated with Ŝ with respect to the monic polynomials αn, βn as indicated in Section 1,
where the sequences {αn}, {βn}, n ∈ Λ, satisfy (36). The object of this section is to study the rate
of convergence of {Rn,j}, n ∈ Λ, to ŝj , j = 1, . . . m. For this purpose, we use an integral formula
for the remainder and the asymptotic formulas obtained in Theorem 5.

According to ii) the function on the left has a zero of order at least one at infinity and is
holomorphic in the complement of ∆1. Integrating along a close curve Γ with winding number
1 for all its interior points such that the zeros of αn and z lie in the exterior of Γ, and ∆1 is
surrounded by Γ, we obtain(

βnQnŝj − Pn,j

αn

)
(z) =

1
2πi

∫

Γ

(
βnQnŝj − Pn,j

αn

)
(ζ)

dζ

z − ζ
=

1
2πi

∫

Γ

(
βnQnŝj

αn

)
(ζ)

dζ

z − ζ
.
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Substituting ŝj by its integral expression and using Fubini’s Theorem, for each j = 1, . . . ,m, we
have

δn,j(z) = (ŝj −Rn,j)(z) =
(αnΦn,j)(z)
(βnQn)(z)

, z ∈ D = C \∆1 , j = 1, . . . , m , (50)

where

Φn,j(z) =
∫

∆1

(βnQn)(x)
αn(x)

dsj(x)
z − x

.

By Theorem 5 (recall that qn,1 = Qn) and (36) we know that

lim
n∈Λ

∣∣∣∣
αn

βnQn

∣∣∣∣
1
|n|

= exp(V µ̄1 + f1) , (51)

uniformly on each compact subset of the region D \ E = C \ (E ∪ ∆1). On compact subsets of
D the same holds taking upper limit instead of limit in (51). Therefore, the problem reduces to
finding the limit of {Φn,j}, n ∈ Λ, j = 1, . . . ,m. To this end we must establish the connection
between the functions Φn,j and Ψn,j .

We shall do this in two steps. First, we see the relation between Ψn,j and the remainder of
an auxiliary Nikishin system of functions. Then, we compare the remainder functions of the two
Nikishin systems. Let us introduce the auxiliary Nikishin system.

To each n ∈ Zm
+ we can associate a permutation τ = τn of {1, . . . , m} as follows. For each

i ∈ {1, . . . , m}

τ(i) = j if
{

nj ≥ nk for k > j
nj > nk for k < j

}
for all k ∈ {1, . . . , m} \ {τ(1), . . . , τ(i− 1)} .

When n ∈ Zm
+ (∗) there do not exist 1 ≤ i < j < k ≤ m such that ni < nj < nk. In terms of τ this

means that there do not exist 1 ≤ i < j < k ≤ m such that τ(i) > τ(j) > τ(k). In other words,
{1, . . . ,m} may be partitioned into two subsets on which τ is increasing. We say that τ ∈ Sm(∗) if
this property holds true. Obviously, each τ ∈ Sm(∗) is associated to infinitely many multi–indices
in Zm

+ (∗).
Let Λ ⊂ Zm

+ (∗). To each n ∈ Λ we associate the multi–index ñ = (n0
r0

, . . . , nm−1
rm−1

). It is easy to
verify that ñ = (nτ(1), . . . , nτ(m)). Moreover, τ(j) = rj−1−d(j) where d(j) is equal to the number
of i, 0 ≤ i < j − 1, such that ri > τ(j). In principle, the permutation τ depends on n ∈ Λ, but for
simplicity we will not indicate it. Set Λ̃ = {ñ : n ∈ Λ}.

The auxiliary Nikishin system is (ϑ1, . . . , ϑm) where ϑj = sj−1
rj−1

, j = 1, . . . ,m. The measures
sj−1

rj−1
are the ones defined in relation (7) of Section 3. Set (ϑ1,1, . . . , ϑ1,m) = N (ϑ1, . . . , ϑm).

Let R̃ñ = ( P̃ñ,1

Q̃ñ
, . . . ,

P̃ñ,m

Q̃ñ
) be the sequence of GHPA corresponding to the system of functions

(ϑ̂1,1, . . . ϑ̂1,m), the sequence of multi–indices Λ̃, and the sequences of polynomials αn and βn (the
same polynomials as for the initial system considering the correspondence n ↔ ñ).

In Theorem 1 of [1] it was proved that the common denominator Q̃ñ of R̃ñ satisfies the same
orthogonality relations as the common denominator Qn of Rn. Therefore, Q̃ñ = Qn. Moreover, the
functions Ψn,j defined for the initial Nikishin system equal the corresponding ones for the auxiliary
Nikishin system which we have just introduced; therefore, both generate the same polynomials
qn,j , j = 1, . . . ,m.

From (50) applied to the auxiliary Nikishin system, we have that

δ̃n,j(z) = (ϑ̂1,j − R̃ñ,j)(z) =
(αnΦ̃ñ,j)(z)
(βnQn)(z)

, z ∈ D = C \∆1 , j = 1, . . . , m , (52)

where

Φ̃ñ,j(z) =
∫

∆1

(βnQn)(x)
αn(x)

dϑ1,j(x)
z − x

=
∫

∆1

· · ·
∫

∆j

(βnQn)(x1)
αn(x1)

dϑ1(x1)dϑ2(x2) · · · dϑj(xj)
(z − x1)(x1 − x2) · · · (xj−1 − xj)

.
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Lemma 5. Assume that the same permutation τ is associated to all n ∈ Λ ⊂ Zm
+ (∗). For each

j = 1, 2, . . . ,m, we have

Φ̃ñ,j(z) = (−1)j−1Ψn,j(z) +
j−1∑

k=1

uj,k(z)Ψn,k(z) , z ∈ C \ (
j⋃

k=1

∆k) , (53)

where the functions uj,k are analytic in C \ (
⋃j

k=1 ∆k) and do not depend on n. For each j =
1, 2, . . . , m

Φn,τ(j)(z) = Φ̃ñ,j(z) +
j−1∑

k=1

`j,k(z)Φ̃ñ,k(z) + `j,0(z) , z ∈ C \∆k , (54)

where `j,k, k = 0, . . . , j − 1, denote polynomials that do not depend on n ∈ Λ of degree ≤ m− 1. If
min

1≤i≤m
ni ≥ m− 1, n ∈ Λ, then `j,0 ≡ 0.

Proof. We begin proving (53). From the definition

Ψn,j(z) =
∫

∆1

· · ·
∫

∆j

(βnQn)(x1)
αn(x1)

dϑ1(x1)dϑ2(x2) · · · dϑj(xj)
(x2 − x1) · · · (xj − xj−1)(z − xj)

.

For j = 1, Φ̃ñ,j(z) = Ψn,j(z) (= Φn,r0). When 2 ≤ j ≤ m, we have

Φ̃ñ,j(z) + (−1)jΨn,j(z) =
∫

∆1

· · ·
∫

∆j

(βnQn)(x1)
αn(x1)

(x1 − xj)dϑ1(x1)dϑ2(x2) · · · dϑj(xj)
(z − x1)(x1 − x2) · · · (xj−1 − xj)(z − xj)

.

Taking (x1 − xj) = (x1 − x2) + · · ·+ (xj−1 − xj), we obtain

Ψn,j(z) = (−1)j−1Φ̃ñ,j(z) +
j−1∑

k=1

(−1)k−1ϑ̂j,k(z)Φ̃ñ,k(z), z ∈ C \ (
j⋃

k=1

∆k) ,

where ϑj,k = 〈ϑj , . . . , ϑk+1〉, 1 ≤ k ≤ j − 1. Substitute j by i in this relation. Using this formula
for i = 1, . . . , j, we obtain a triangular linear system of equations by which we can express Φ̃ñ,j in
terms of Ψn,k, k = 1, . . . , j, as indicated in (53).

For the proof of (54), the idea is to untangle the transformations we have introduced in defining
the auxiliary Nikishin system. This is done using formulas (12)-(14) backwards. It is sufficient to
show that for each ñ we have

Φ̃ñ,j(z) = Φn,τ(j)(z) +
j−1∑

k=1

˜̀
j,k(z)Φn,τ(k)(z) + ˜̀

j,0(z) , (55)

where ˜̀
j,k, k = 0, . . . , j − 1, denote polynomials which do not depend on n ∈ Λ of degree ≤

m−1. Indeed, from the triangular structure of this relation with respect to j, formula (54) follows
immediately.

First let us obtain a similar formula for the functions ϑ̂1,j , j = 1, . . . , m. We will show that for
all j = 1, 2, . . . , m

ϑ̂1,j = ŝτ(j) +
j−1∑

k=1

`j,kŝτ(k) + `j,0 , (56)

where `j,k, k = 0, . . . , j − 1, denote polynomials of degree ≤ m− 1 which do not depend on n ∈ Λ.
The proof of (56) is carried out by induction on the number of measures in the original Nikishin
system.

Let us assume that Σ0 = (σ0
1); that is m = 1. Then for any n ∈ Z1

+(∗) = Z+ the associated
permutation is τ(1) = 1 and ϑ1 = σ0

1 . Thus, the formula is trivial. Suppose that the formula is valid
for all j = 1, 2, . . . ,m−1 of any Nikishin system of m−1 elements (m ≥ 2) and n ∈ Λ ⊂ Zm−1

+ (∗),
where Λ is such that all its multi-indices have associated the same permutation. Let us prove that
the corresponding statement holds if the original Nikishin system has m elements.
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Let Σ0 = (σ0
1 , . . . , σ0

m) be an arbitrary Nikishin system of m ≥ 2 elements and n0 ∈ Λ0 ⊂ Zm
+ (∗).

Let (ϑ1, . . . , ϑm) be the auxiliary Nikishin system and τ0 the corresponding permutation. For j = 1

ϑ̂1,1(z) =
∫

∆1

ds0
r0

(x)
z − x

= ŝ0
τ(1)(z) ,

and the formula holds true. Let j = 2, . . . , m.
Notice that

ϑ̂1,j(z) =
∫

∆1

ϑ̂2,j(x)dϑ1(x)
z − x

, (57)

where ϑ̂2,j is the (j − 1)th function of the auxiliary Nikishin system (ϑ2, . . . , ϑm) associated with
the Nikishin system of m−1 elements Σ1 = (σ1

2 , . . . , σ1
m) and the multi–indices n1 ∈ Λ1 ⊂ Zm−1

+ (∗)
which are obtained extracting from each n0 its n0

r0
th component (see Section 3). The permutation

τ1 of {2, . . . , m} associated with n1 ∈ Λ1 is

τ1(j) =
{

τ0(j) + 1 if τ0(j) < r0 ,
τ0(j) if τ0(j) > r0 .

(58)

Using the induction hypothesis it follows that

ϑ̂2,j(x) =
j∑

k=2

`j,k(x)ŝ1
τ1(k)(x) + `j,1(x) , ,

where deg `j,k ≤ m− 2, k = 1, . . . , j − 1, and `j,j ≡ 1. Substituting in (57) we get

ϑ̂1,j(z) =
j∑

k=2

∫

∆1

`j,k(x)ŝ1
τ1(k)(x)ds0

r0
(x)

z − x
+

∫

∆1

`j,1(x)ds0
r0

(x)
z − x

. (59)

If r0 = 1, then s0
r0

= σ0
1 and Σ1 = (σ0

2 , . . . , σ0
m). Consequently, τ1(k) = τ0(k), k = 2, . . . , j, τ0(1) =

1 = r0, and s1
τ0(k) = s0

2,τ0(k). Adding and subtracting in each of the integrals above the polynomials
`j,k(z), k = 1, . . . , j, respectively, it follows that

ϑ̂1,j(z) =
j∑

k=2

∫

∆1

(`j,k(x)∓ `j,k(z))ŝ1
τ1(k)(x)ds0

r0
(x)

z − x
+

∫

∆1

(`j,1(x)∓ `j,1(z))ds0
r0

(x)
z − x

=

j∑

k=1

`j,k(z)ŝ0
τ0(k)(z) + `j,0(z)

which is (56) for this case. In fact, `j,j ≡ 1, deg `j,k ≤ m−2, k = 2, . . . , j−1, and deg `j,0 ≤ m−3.
Suppose that r0 > 1, then s0

r0
= 〈σ0

1 , . . . , σ0
r0
〉, Σ1 = (σ1

2 , . . . , σ1
m) and S1 = N (Σ1) =

(s1
2, . . . , s1

m) (see Section 3). Formula (59) may be rewritten as

ϑ̂1,j(z) =
j∑

k=2

∫

∆1

`j,k(x)ŝ1
τ1(k)(x)ŝ0

2,r0
(x)dσ0

1(x)

z − x
+

∫

∆1

`j,0(x)ds0
r0

(x)
z − x

. (60)

Now we need to distinguish those indices k ∈ {2, . . . , j} such that τ0(k) > r0 from those for which
τ0(k) < r0.

Let k ∈ {2, . . . , j} be such that τ0(k) > r0, then τ1(k) = τ0(k) and s1
τ1(k) = s1

τ0(k). Using (14)
with j = 0, it follows that

ŝ1
τ1(k)ŝ

0
2,r0

= ŝ0
2,τ0(k) − akŝ0

2,r0
,

where ak is a constant, and
∫

∆1

`j,k(x)ŝ1
τ1(k)(x)ŝ0

2,r0
(x)dσ0

1(x)

z − x
= `j,k(z)ŝ0

τ0(k) − ak`j,k(z)ŝ0
τ0(1) + ˜̀

j,k(z) , (61)

where deg `j,k ≤ m − 2 and deg ˜̀
j,k ≤ m − 3 if k ∈ {2, . . . , j − 1} and if τ0(j) > r0 then

`j,j ≡ 1, ˜̀j,j ≡ 0.
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Suppose that k ∈ {2, . . . , j} is such that τ0(k) < r0, then τ1(k) = τ0(k)+1 and s1
τ1(k) = s1

τ0(k)+1.
Using (15) with j = 0 we have that

ŝ1
τ1(k)ŝ

0
2,r0

= Lkŝ0
2,r0

+
τ0(k)∑
ν=1

ck,ν ŝ0
2,ν , ŝ0

2,1 ≡ 1 ,

where ck,ν are constants, ck,τ0(k) = 1, and Lk is a first degree polynomial. Notice that if τ0(k) < r0

then for all ν = 1, . . . , τ0(k), ν = τ0(ν′) where ν′ ∈ {2, . . . , k}, otherwise n 6∈ Zm
+ (∗). Proceeding

as above we find that
∫

∆1

`j,k(x)ŝ1
τ1(k)(x)ŝ0

2,r0
(x)dσ0

1(x)

z − x
= (`j,kLk)(z)ŝ0

τ0(1)(z) + `j,k(z)
τ0(k)∑
ν=1

ck,ν ŝ0
τ0(ν′)(z) + ˜̀

j,k(z) ,
(62)

where deg `j,kLk ≤ m− 1,deg ˜̀
j,k ≤ m− 2. If k = j and τ0(j) < r0 then cj,τ0(j)`j,j ≡ 1. Putting

together the relations (60)-(62) and rearranging the terms we obtain (56).
Formula (55) for j = 1 is trivial since Φ̃ñ,1 = Φn,τ(1). For j = 2, . . . , m, using (56) we have that

Φ̃ñ,j(z) =
∫

∆1

(βnQn)(x)
αn(x)

ϑ̂2,j(x)dϑ1(x)
z − x

=
∫

∆1

(βnQn)(x)
αn(x)

(
∑j

k=2 `j,kŝ1
τ1(k) + `j,0)(x)dϑ1(x)

z − x
,

where `j,j ≡ 1 and τ1 is defined in terms of τ = τ0 as indicated in (58). To complete the proof
of (55) one repeats the arguments used in the last part of the proof of (56) considering separately
the cases j = 1 and j = 2, . . . , m. That `j,0 ≡ 0 if min

1≤i≤m
ni ≥ m − 1, n ∈ Λ, is a consequence of

orthogonality. With this we conclude the proof. 2

Take any infinite subsequence Λ′ ⊂ Λ such that the same permutation τ is associated to all
n ∈ Λ′. Let {βn}, {αn}, n ∈ Λ, satisfy (36). Let (µ1, . . . , µm) be the solution of the equilibrium
problem with the initial data (1)-(4) given in Section 5. For each j = 1, . . . , m, set

U µ̄
j = V µ̄j − V µ̄j+1 − vj ,

(V µ̂m+1 ≡ 0). Notice that in a neighborhood of z = ∞ we have

U µ̄
j (z) = O

(
pτ(j) log

1
|z|

)
→ −∞ as z →∞ .

Fix j ∈ {1, . . .m}. For k = 1, . . . , j define the regions

Dj
k = {z ∈ D = C \∆1 : U µ̄

k (z) > U µ̄
i (z), i = 1, . . . , j}.

Some Dj
k could be empty. By (40) and (53) we have that the following asymptotic formula takes

place on Dj
k, except on at most a discrete set of points (where uj,k = 0),

lim
n∈Λ′

|Φ̃ñ,j |
1
|n| = expU µ̄

k .

Denote
ξj(z) = max{U µ̄

k (z) : k = 1, . . . j};
then

lim
n∈Λ′

|Φ̃ñ,j(z)| 1
|n| = exp ξj(z) , z ∈

j⋃

k=1

Dj
k ,

except on at most a discrete set of points, and

lim sup
n∈Λ′

|Φ̃ñ,j(z)| 1
|n| ≤ exp ξj(z) , z ∈ D . (63)

Using (51), (52), and (63) it follows that

lim
n∈Λ′

|δ̃n,j(z)|1/|n| = exp(V µ̂1 + f1 + ξj)(z) , z ∈
j⋃

k=1

Dj
k \ E ,
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except on at most a discrete set of points, and

lim sup
n∈Λ′

|δ̃n,j(z)|1/|n| ≤ exp(V µ̂1 + f1 + ξj)(z) , z ∈ D . (64)

Formulas (63) and (64) take place uniformly on compact subsets of D.
The set

Ωc
j = {z ∈ D : (V µ̂1 + f1 + ξj)(z) < 0}

is the domain of convergence to ϑ̂1,j of the approximants R̃ñ,j . This set contains a neighborhood
of infinity whenever |α| < 1 + |β|+ pτ(j) because

(V µ̂1 + f1 + ξj)(z) = O
(

(1 + |β|+ pτ(j) − |α|) log
1
|z|

)
→ −∞ as z →∞ .

By assumption |α| ≤ 1 + |β| + pτ(m) since for all n ∈ Λ,deg αn ≤ |n| + deg βn + min{ni : i =
1, . . . ,m}. In order to have convergence on a neighborhood of infinity it is sufficient that pτ(j) >
pτ(m) or |α| < 1 + |β|+ pτ(m). The convergence is uniform on compact subsets of Ωc

j and the rate
is geometric. There can also be a non-empty domain of divergence given by

Ωd
j = {z ∈ D : (V µ̂1 + f1 + ξj)(z) > 0} .

Theorem 7. Let us assume that σ′1 > 0 almost everywhere on ∆1 and σj ∈ Reg for j = 2, . . . , m.
We also assume that (35) and (36) take place. Take any infinite subsequence Λ′ ⊂ Λ such that the
same permutation τ is associated to all n ∈ Λ′. Then, for each j = 1, . . . , m, we have

lim
n∈Λ′

|Φn,τ(j)(z)| 1
|n| = exp ξj(z) , z ∈

j⋃

k=1

Dj
k ,

except on at most a discrete set of points, and

lim sup
n∈Λ′

|Φn,τ(j)(z)| 1
|n| ≤ exp ξj(z) , z ∈ D , (65)

For the remainders

lim
n∈Λ′

|(ŝτ(j) −Rn,τ(j))(z)|1/|n| = exp(V µ̂1 + f1 + ξj)(z) , z ∈
j⋃

k=1

Dj
k \ E ,

except on at most a discrete set of points, and

lim sup
n∈Λ′

|(ŝτ(j) −Rn,τ(j))(z)|1/|n| ≤ exp(V µ̂1 + f1 + ξj)(z) . (66)

In each case the convergence is uniform on compact subsets of the indicated regions. The regions
of convergence and divergence are given by Ωc

j and Ωd
j respectively.

Proof. Formula (65) and the one above it follow from (54) and (63). Notice that (35) implies
that `j,0 ≡ 0 for all n ∈ Λ. Formula (66) and the previous one are a direct consequence of (50),
(51), and (65). 2

In order to guarantee a domain of convergence as large as possible, we will introduce an addi-
tional restriction on the sequence of polynomials {βn}, n ∈ Λ, which carry the fixed poles. This is
a natural restriction because an arbitrary selection of the fixed poles can spoil convergence.

Let us assume that

β ≤ (µ2 + α)′ + (2θ1 + |β| − θ2 − |α|)ω∆1 , (67)

where (µ2 + α)′ denotes the balayage of µ2 + α onto ∆1 and ω∆1 denotes the equilibrium measure
on ∆1. The right hand of (67) is a positive measure since θ2 + |α| ≤ θ2 + 1 + |β| + pτ(m) =
2 + |β| + pτ(m) − pτ(1) ≤ 2θ1 + |β|, because θ1 = 1 and pτ(m) − pτ(1) ≤ 0. The inequality in
(67) means that the measure on the right hand dominates the one on the left on any Borel set.
This condition may seem a bit strange since µ2, which is on the right hand (67), depends on β.
Nevertheless, the condition may be checked a fortiori once the equilibrium problem is solved. On
the other hand, it is sufficient to take

β ≤ α′ + (2θ1 + |β| − θ2 − |α|)ω∆1
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in order that (67) takes place. Here, before checking the condition on β we only have to determine
how much mass we want it to hold and then select any measure with that much mass dominated
by the right hand side of the inequality. Certainly, if β = 0 then (67) is satisfied. This is the case
when no poles are fixed.

Lemma 6. Let (µ1, . . . , µm) be the solution of the equilibrium problem with the initial data (1)−(4)
given in Section 5. Let us assume that (67) takes place. Then

2µ1 + β = (µ2 + α)′ + (2θ1 + |β| − θ2 − |α|)ω∆1 .

In particular,
(Wµ

1 + f1)(x) = wµ
1 , x ∈ ∆1 .

Proof. According to Theorem 4 we have that

(Wµ
1 + f1)(x) = (2V µ1 + V β − V µ2+α)(x) = wµ1 , x ∈ supp(µ1) .

On the other hand, from Corollary 1 we have that λ = (µ2 + α)′ + (2θ1 + |β| − θ2 − |α|)ω∆1 is the
unique measure in M2θ1+|β|(∆1) such that

(V λ − V µ2+α)(x) = wλ , x ∈ supp(λ) = ∆1 .

Because of (67) we can write λ = 2λ−β
2 + β with λ−β

2 ∈ Mθ1(∆1) and from the last relation we
obtain that

(2V (λ−β)/2 + V β − V µ2+α)(x) = wλ , x ∈ supp(λ) = ∆1 .

Using again Corollary 1 with the external field (V β − V µ2+α)(x), from the uniqueness of the
solution, we obtain that µ1 = λ−β

2 which is the first assertion of this lemma and the second
statement immediately follows from the last relation. 2

Under mild additional restrictions, in the following Corollary we obtain convergence in the
largest possible region.

Corollary 2. Let us assume that σ′1 > 0 almost everywhere on ∆1 and σj ∈ Reg for j =
2, . . . ,m. Let (35), (36) and (67) take place and |α| < 1+ |β|+pτ(m). Take any infinite subsequence
Λ′ ⊂ Λ such that the same permutation τ is associated to all n ∈ Λ′. Then, Ωc

j = D for each
j = 1, . . . , m. For each j the number of non-empty regions Dj

k, k = 1, . . . , j, in which we have
different asymptotic formulas for {|Φn,τ(j)|1/|n|}, {|δn,τ(j)|1/|n|}, n ∈ Λ′, as described in Theorem 7
is at most one more than the number of strict inequalities in the sequence pτ(1) ≥ · · · ≥ pτ(j).

Proof. For j = 1 we have that (see (66))

lim sup
n∈Λ′

|δn,τ(1)(z)|1/|n| ≤ exp(W µ̂
1 (z)− wµ̂

1 ) , z ∈ D .

From Lemma 6 we have that W µ̂
1 − wµ̂

1 = 0 on ∆1. On the other hand, W µ̂
1 is subharmonic in

C\∆1 and W µ̂
1 (z) = O

(
(1 + |β|+ pτ(1) − |α|) log 1

|z|
)
→ −∞ as z →∞. Therefore, W µ̂

1 −wµ̂
1 < 0

on C \∆1 which is what we needed to prove.
Let us assume that the Corollary is valid for j − 1 where j ∈ {2, . . . , m} and let us prove that

it also holds for j. From Theorem 7 we know that

lim sup
n∈Λ′

|δn,τ(j)(z)|1/|n| ≤ exp(V µ̂
1 + f1 + ξj)(z) , z ∈ D .

Obviously, ξj(z) = max{ξj−1(z), Uj(z)}. Consider the difference Uj(z)−Uj−1(z) = Wµ
j (z)−wµ

j =

O
(
(pτ(j) − pτ(j−1)) log 1

|z|
)

, z →∞.

If pτ(j) = pτ(j−1) then Wµ
j (z)−wµ

j is subharmonic in C\ supp(µj) and equals zero on supp(µj).
Hence, Uj(z) ≤ Uj−1(z) ≤ ξj−1(z) on C \ supp(µj). Therefore, using the equilibrium condition,
Uj(z) = Uj−1(z) on ∆j and Uj(z) < Uj−1(z) on C \∆j . In this case, ξj(z) = ξj−1(z), z ∈ D, and
the conclusion follows from the induction hypothesis.

If pτ(j) < pτ(j−1), in a neighborhood of∞ we have Uj(z) > Uj−1(z) since (pτ(j)−pτ(j−1)) log 1
|z| →

+∞ as z → ∞. Let Γ = {z ∈ D : Uj(z) = Uj−1(z)}. This set contains supp(µj) and di-
vides D in two domains Ω1 = {z ∈ D : Uj(z) > Uj−1(z)}, which contains z = ∞, and
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Ω2 = {z ∈ D : Uj(z) < Uj−1(z)}. Since Uj−1(z) ≤ ξj−1(z), on Ω2∪Γ we have that ξj−1(z) = ξj(z)
and thus (V µ1 +f1+ξj) < 0. On Ω1 the function V µ1 +f1+Uj is subharmonic and on its boundary
Γ equals V µ1 + f1 + Uj−1 < 0. Since (V µ1 + f1 + Uj)(z) → −∞ as z → ∞ it follows that on Ω1

we have (V µ1 + f1 + Uj)(z) < 0. Therefore, (V µ1 + f1 + ξj) < 0 on Ω1. With this we conclude the
proof. 2
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