RATE OF CONVERGENCE OF GENERALIZED HERMITE-PADE
APPROXIMANTS OF NIKISHIN SYSTEMS

U. FIDALGO PRIETO AND G. LOPEZ LAGOMASINO

ABSTRACT. We study the rate of convergence of interpolating simultaneous rational approxima-
tions with partially prescribed poles to so called Nikishin systems of functions. To this end, a
vector equilibrium problem in the presence of a vector external field is solved which is used to
describe the asymptotic behavior of the corresponding second type functions which appear.

1. GENERALIZED HERMITE-PADE APPROXIMANTS

Let A; be a bounded interval of the real line R. By M(A;) we denote the set of all Borel
measures with constant sign (positive or negative) whose support supp(-) is contained in A; and
contains infinitely many points. Let s = (s1,- - $;) be a vector of measures belonging to M(Ay).
The Markov function corresponding to the measure s; € M(A1) is given by

5i(2) = /A dsi(w) (1)

Z—x

Certainly, 3; is a holomorphic function in C\ A;.

We restrict our attention to a special class of vector measures introduced by E. M. Nikishin in
[11] and adopt the notation introduced in [8]. Let o1 and o2 be two measures supported on R with
constant sign and let Ay, Ay denote the convex hull of supp(cy) and supp(oz) respectively; that
is, A; = Co(supp(c;)). Suppose that Ay N Ay = . Set

dlor, 02)(z) = / 9921) 41 () = G ()do ().

r—t

When it is convenient we use the differential notation of a measure. Then (o1, 03) is a measure
with constant sign and supported on supp(o1) C Aj.

DEFINITION 1. Given a system of closed bounded intervals Ay,... ,A,, satisfying A;_1 NA; =
0, j=2,...,m, and finite Borel measures o1, ... , 0, with constant sign and Co(supp(c;)) = A,
we define inductively

s; = <0’1’0-27... an> — <0’1’<0'2’... 7Uj>>7 ) — 27’]’77,
We say that S = (s1, -+ ,8m) =N (o1, - ,0m) with s; = o7 is the Nikishin system generated by
the measures (o1,... ,0m).

Given a Nikishin system S = (s1,...,8,) = N(o1, -+ ,0,) denote by S = (81,...5m) the
vector whose components are the Markov functions corresponding to each one of the measures s;,

i=1,...,m. The functions s;, i = 1,... ,m, are holomorphic in D = C\ A;. Fix a multi-index
n = (ny, - ,nm) € Z7, where Z; = {0,1,2,...}, and an even integer x. Set |n| = >, n,.

Let a and 8 be two monic polynomials with real coefficients such that deg 3 = k and dega <
|n| + & 4+ min{n;}. The zeros of a belong to D and the zeros of 3 have even multiplicity and lie on
Ajp. There exists a vector of rational functions R = (P1/5Q,--- , P,,/8@), such that

1) degQ§|n\, Q?éo, degpig‘n|+/€71a i=1---,m,

i) (PTG ot enw), i=1om.
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Proving the existence of R reduces to solving a system of (m + 1)|n| + mk homogeneous linear
equations on (m + 1)|n| + mk + 1 unknowns, and this always has a non trivial solution. We call
the vector rational function R a generalized Hermite-Padé approximant (GHPA) of S relative to
(n,a, 3). When a = 8 = 1 generalized Hermite-Padé reduce to classical Hermite-Padé.

It is well known that the denominator @ of classical Hermite-Padé approximants share orthogo-
nality relations with each measure in the system S. An analogous result takes place for GHPA. In
fact, from ii) we have that

5i— P 1 ;
z”[msi](z):O(—Q)eH(D), v=20,...,n; —1, i=1,...m. (2)
o z
Let I be a closed curve with winding number 1 for all its interior points such that all the zeros of «
lie exterior to T and A; is surrounded by I'. Integrating (2) along I" and using Cauchy’s Theorem,
we obtain

Oﬁzy[[m}(z)dz/zym(z)dz, v=0,...,n;—1, i=1,...m. (3)

«

Substituting (1) in (3), using Fubini’s Theorem, and Cauchy’s Integral Formula, it follows that

ﬁx)dsl()_ 2V 2)ds: (x) = v = n; — 1= m
/A1 Qlz)————= o) —/A1 Q(z)ds;(x) =0, 0,...,n; —1, 1,...,m,

(4)
where
d’svl:—dsz, 1:1,,m
«

Notice that 5; = (51,... ,5m) = N(V1,02,... ,0m), where
d191 = ﬁdUl.
o

In Section 6 we study the rate of convergence of sequences {R, },n € A, of GHPA (see Theorem
7 and Corollary 2) where A C Z7 is a sequence of multi-indices. To this end, it is important
to study the logarithmic asymptotic behavior of the corresponding sequence {Q,},n € A, of
common denominators which is done in Section 5 (see Theorem 5). The instruments used are
potential theoretic arguments developed in Section 4 (see Theorem 4) relative to the existence of
the solution of a vector equilibrium problem in the presence of a vector external field and some
orthogonality relations satisfied by second type functions associated with the Nikishin system of
functions described in Section 3 (see Theorems 2 and 3). In all this the normality of the multi—
indices considered play a crucial role. The class of multi-indices from which the sequence A is
extracted is introduced in Section 2.

2. NORMALITY OF INDICES OF GHPA.

In general, the uniqueness of @ is not known to occur. When for a multi-index n, @ is uniquely
determined, we say that n is weakly normal. A multi-index n is said to be normal if the conditions
i)-ii) imply that deg @ = |n|. If additionally the |n| zeros of @) are simple and lie in the interior of
the interval A; then n is said to be strongly normal. (In reference to the interior of intervals of
the real line we consider the usual Euclidean topology of R.) Obviously, strong normality implies
normality and this in turn implies weak normality. Systems S for which all multi-indices n are
weakly normal, normal, or strongly normal are called weakly perfect, perfect, or strongly perfect,
respectively.

In [11], E. M. Nikishin defines AT systems. This concept is very appropriate in proving strong
normality .

DEFINITION 2. Let g;,¢ = 1,...,m, be continuous functions with constant sign on an interval
F. We say that (g1,...,gm) defines an AT system for the multi-index n = (ny,... ,n,) on F
if for any polynomials hy,--- , h,, such that degh; < n; —1,i = 1,--- ,m, not all simultaneously

identically equal to zero, the function

Hn(x) = H(hla s 7h’m; 1‘) = hl (x)gl (.13) +--+ hm(33)97n($)~
has at most |n| — 1 zeros on F' (degh; < —1 means that h; = 0). The system (g1,...,6m) is an
AT system on F, if it defines an AT system on that interval for all multi-indices n € Z}".



We denote
o 77 (%) = {n € Z7 : there do not exist i < j < k such that n; < n; < ng}.
e For each i =1,...,m, we introduce the measures

Sij = A(Ciyeee,05),  J=d...,m;

Denoting $2 1 = 1, according to the orthogonality conditions (4), we have

(I)(hlgg,l + -4 hm§27m)($)d’l91(l’) == 0, (5)
/AN
where degh; < n; — 1,4 = 1,... ,m. Assume that for n = (n1,...,n,,) the system of functions

(52,1,82,2,-- . , 52.m) defines an AT system on A;. Using (5) it follows that deg @, = |n| and |n| is
strongly normal. Using this argument, in [4] and [5] a large class of strongly normal multi-indices
is proved to exist. For convenience of the reader, we state the corresponding result.

THEOREM 1. Assume that either 1 < m < 3 and n € ZT', or m > 4 and n € ZT(*), then
(52,1,82,2, .. ,52.m) defines an AT system with respect to n on any interval disjoint from Ao and,
consequently, n is strongly normal.

Notice that this means that under the assumptions of Theorem 1 a system of functions formed
by 1 and a Nikishin system of functions determines an AT system on any closed interval disjoint
from the support of the measures integrating the Nikishin system of measures. In this form this
result will be used below in the proof of Theorem 2 (see the last statement of the proof).

3. FUNCTIONS OF SECOND TYPE AND ORTHOGONALITY

Let n € Z7'(%) and ¥ = (01,...,0,) be given such that S = N(X) forms a Nikishin system
of measures. Take Uy = Qf/a where @ is the common denominator of the GHPA of S relative
to (n,a,3). Set n = n® and ¥ = X°. Inductively, we will construct multi-indices n/ € Z7" ™7 (x),

vectors of measures Y7 = (U§+1,... ,0) ), and second type functions V7 =1,...,m—1, as
described below. _ _
Assume that n/ = (n},,...,n),),% = (0},4,...,0},), and ¥; have been defined, where
0 <7 <m—2. Then,
nitl = (niié, condihy ezt

is the multi-index obtained extracting from n/ the first component niJ satisfying

”3«1 =max{n} : j+1 <k <m}. (6)
Therefore,
n?_H = n?ié, ce 77%];_7-71 = nijlaniﬂrl = nijﬁl’ s 7nzn = njwirl
and when r; > j +2
nij > max{n§+17 . ,nij_l} .
Notice that if n € Z(x) then
nzi; >...> nijl

since otherwise n’ ¢ Zf_j(*). Set

V() 5
i) = [ a5 ), @
Aj 7T
where sij = <a§+1, e ,UZj> is the component of N'(¥7) = (3§+17 ...,80) = 87 corresponding to
the subindex r;.
Before defining 3/*!, we need some more notation. For the system ¥/ = (o7 ,,...,0},) we
define

sl.o={dl,....0), j+1<k<i<m.

(3
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In particular, the measures in A'(37) are s} = shy1.40d +1<i<m. Given any measure s{m there

exists a first degree polynomial Ei) , and a measure with constant sign T,g’i such that

1 , "
=~ = %z(@ + ng(z)
81.i(%)
For a proof see the Appendix in [9].
Suppose that r; = j 4 1, then
. . , - ,
»itl = (0F 40y 00,) = (05127 N

is the vector of m — j — 1 measures which is obtained deleting from X7 its first component. If
Jj+2<r; <m, then
J+1 _ (- i~ J = J J
by - (Tj+2,rj7Sj+2,rjd7-j+3,rj’ T 787"]'71,7‘]-(‘17—7“] r]7 7“ ST dar +1 r 420 ’Jm)'

The two results that follow are analogous to Propositions 1-3 in [8] but their proof is technically
more complicated.

THEOREM 2. Assume that n € Z7'(x). For each j =0,... ,m — 1, we have that ¥; satisfies the
orthogonality relations
/ 2", (x)ds) (z) = 0, v=0,...,n —1, i=j7+1,...,m. (8)
Aji1
Consequently, we can write,
¥; (@) C\A; =1 -
_¢]()€H( \ j)7 .7_ 7"'m 1) (9)
(JJ+1( )

where q;j41 15 a monic polynomial whose zeros are simple, lie in the interior of Aj 1, degqjt1 > |n|
and 1); preserves the same sign on Ajiq .

Proof. We shall prove (8) by induction on j. For j = 0 the relations (8) coincide with (4).
Thus, for j = 0 the statement holds, and if m = 1 we have concluded the proof. Let us assume
that these relations are verified for some fixed 7,0 < j < m — 2,m > 2, and let us prove that

/ U (x)ds T (@) =0,  v=0,....,07T" =1,  i=j+2...,m (10)
Ajio

Take i € {j+2,... ,m} and 0 < v < n/T' — 1. Substituting Uit defined by (7) into the left
hand of (10), we have

/ 2 (x)ds] T (@ / / —t ds], (t)ds] " (x) =
Aji2 Ajye JAVES x

— .
[owo [ EEEE g w0 -
Ajtr Ajo T—1 !

/ nwwwm%m—/ £ (051 (1)dsi (1),
JAVEST

AVES]
where degp, < n?™' — 2. Taking into consideration that n/ ™" —2 < n] —1 (see the definition (6)
of r;) and the induction hypothesis, the first of the last two integrals equals zero. Therefore,

/ 2’ (x)dst T (z) = —/ 05657 (t)ds] (t) - (11)
AVES Aj+r
_If Tj :j_.‘_ 1 then ¥/+! = (U;i_é, yolthy = (o§+2,... ,ol) and /Tt = (n gié, ,nithy =
(749, ,n),). Then,
i1 , . . , .
s/ (t)ds] (1) = (0741, (040, 1 0])) = 1.

Since in this case nf“ = ng, the right hand of (11) equals zero by the induction hypothesis and
we have proved what we needed.



Let us suppose that r; > j + 2. In order to consider this situation we need some less obvious
relations between the measures in S7 and S7T1. Their proof may be found in Theorem 3.1.3 of [3].
In order to avoid confusion, we state these relations with the notation introduced above. We have

=~/
s% .
j+2,i—1 +1 +1 : ;
Aji—aw—i—sj + 8 Jt+3<i<ry, (12)
Sj+2,r;
1 =0+ 57 13
~j - +5 j+2’ ( )
Sj+21T]
and
5 ,
1 .
/\JJ+ : *az,J+5J+ ) rjptl<i<m, (14)
]+2 Tj

where a; ;,¢; ; are constants and ¢; is a first degree polynomial. Relation (13) was already men-
tioned above in a more general context. We repeat it here to unify the notation.

First let us consider that r; +1 <4 < m. If r; = m this is an empty set and we have nothing to
prove. Assume that j +2 < r; < m — 1. Substituting (14) into the right hand of (11), we obtain

, GG, }
/ Wy () dsi T (2) = — / (1) (ﬁ() - )d (t) =
Aj+2 Aj+1 Sit2,r; (t)

/ £, (t)ds, () — / U (05 (D)o (1)
Ajia Aji

Since S]-s—Zz( )dO'J+1( )=dsit)and 0 < v <l -1 =n! —1< nJ — 1, by the induction
hypothesis the last two integrals vanish and we obtain (10) for these 1ndlces 1.

Now, let j+ 2 < i <r;. Using (12) several times until ¢ — 1 reduces to j + 2 (when ¢ > j + 3)
and once (13), we obtain

~j+1  Zj+2,i—1 o gl
P T g Qi — CGigSig = (15)
Sj+2,r
5 2 5 2,i—2
Jj+2,i—-1 . . Sj+2,i— . ) ) P~ O _ .
P —Gij — Ciy & —@i-1j — Cim13Si g | == Liy E , CkSJJr2 k>
Sj+2,rj j+2 T j+2 i k=j+1
where £; ; denotes a first degree polynomial, §;+2)j+1 =1,and ¢;, k= j+1,... ,i—1, are constants
and ¢;_1 = 1. Notice that
S o 1.ds
JH2,E7°r; . .
o ]+2kd0 1fdsk, k=j74+1,...,i—1. (16)

G

Jt+2,r;
Substituting (15) into the right hand of (11) and using (16), we have
i—1

[ wwa@asitie = / L0000 - S [ rundse),
Ajiz Ajia k=j+1 7 Ai+1
Since v+1<ni™ =nl_ <nit] =nl , <... < n;ié = nJ+1 < nj all the integrals in the

right hand of this equality vanish and we conclude the proof of (10). Therefore the induction is
complete and (8) takes place.
According to (8)

[ W) Y hi@)s)s (oo (@) =0, a7)
Ajtr i=j+1
where 57 2 j1(@) =Tland hyyi = j+1,...,m, denote polynomials such that deg h; < nf —1. Since

n’ € Zm 7 (%), by Theorem 1 the system of functions (&7 041 Sfan s 7§§+27m) forms an AT

system on A, with respect to n/ and, consequently, from (17) it follows that ¥; must have in the
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interior of Aj4q at least |n’| sign changes. Since U, is not identically equal to zero, it may have

only a finite number of sign changes inside A;1;. Let g;41 be the monic polynomial whose zeros

are the distinct points inside A where ¥; changes sign inside Aj;y;. We immediately obtain

(9), that deggjy1 > [ni], and the sign preserving property of );. O
To complete the notation, set

V,.(z) = /A Mdsz_l(x).

zZ—XT

Notice that according to (6), 7p,—1 = m. From (8) we have that

/ M\I/j(x)dsj, (z) =0,
AVES]

Z—X

where h is an arbitrary polynomial such that degh < nf;j, j=0,...,m—1. Using (7) and the
definition of ¥,, given above, this last relation may be rewritten as

h(x)ds) (x _
\I/jJrl(Z): h(lz)/AjJrl \P](x)()TJ():O( j1+1> eH(C\Aj+1>7 ij,m—l

Z2—x s (18)
THEOREM 3. Assume that n € Z'7'(x). For each j =0,... ,m —1
/ x”mj(x)wzo, v=0,...]n7| - 1. (19)
Ajia j+2()

where qji2, is given in (9), (gm+1 = 1). Consequently, deggjt1 = [n’|,j =0,... ,m—1,(¢1 = Q).
Proof. From (8) and (18), it follows that

Yjsr _
gj+2 Znij +deg gji2+1

)eH(C\Aj+1), j=0,...m—1,

Therefore,

¥ 1 — ,
z”L(z) O(=) e H(C\ Aj11), v=0,...,n. +deggjys —1, j=0,...m—1.
j+2(2) z !

Integrating along a simple closed curve I" with winding number one for all its interior points which
surrounds Ajy; such that Ajys lies in the exterior of I', using Cauchy’s Theorem, the definition
of ¥, 41, Fubini’s Theorem, and Cauchy’s Integral formula, we find that

Oz/z”wdz:/ : / \Ijj(x)ds{;,(x)dz:/ xpj(x)/ 24z g (a) =
r gj+2(2) rqj+2(2) Ja,,, 22 7 N rgj42(2) 2 —z

dsi (z) ,
2m’/ "W (x)— , v=0,...,n. +deggjia—1, j=0,...,m—1.
Ajia dj+2 (‘T) ! (20)
Since n{j +deggjt2 > nij + |n?*| = |n?|, we obtain (19).
In order to prove the last statement, let us assume that for some 57 = 0,... ,m — 1, we have that

deggji2 > [niT1|. From (20) it follows that ¥; has at least |n/| + 1 sign changes on Ajq. This
means that deggj+1 > |n?|. Continuing downwards on the index j we obtain that ¥y has more
than |n°| sign changes on A;. But this is impossible since ¥, changes sign on A; exactly at the
|n®| zeros of Q. With this we conclude the proof. a

REMARK . Notice that Z1 = Z% (x) and Z2 = Z2 (x). For m = 3 the only indices left out in Z3 ()
are those strictly increasing (n1 < ng < ng). For those indices it is also possible to prove analogues
of Theorems 2 and 3 using the type of transformation employed in [4] to solve strong normality
for such multi-indices.



4. VECTOR EQUILIBRIUM PROBLEM IN THE PRESENCE OF AN EXTERNAL FIELD

Let

(1) A =(Aq,---,A,) be a set of m closed bounded intervals of the real line (which do not
reduce to points) and m € N;
(2) 0 =(01,....,0m) € RT, Ry = (0,+00), and denote 0] = >_1", 6;;

(3) A =||a;;||, is a real (m x m) symmetric matrix which is positive definite and a, ; > 0, if
A; N Aj 7’5 @;
4) f=(f1, -, fm), where f;;i=1,---m, is a real lower semi-continuous function on A;.

Let o be a finite positive Borel measure with compact support supp(o) contained in R and |o]|
its total variation. For each i = 1,---m, My, (4;) is the set of all positive Borel measures o such
that supp(o) C A; and |o| = 6;. By Mg(A) we denote the product Mg(A) =[]~ Mg, (A;).

For g = (p1,- .., ftm) € Mg(A) we define the vector function

WH(z) = (VA + f)(z) = /m p%

m|dAu(x) + f(2), z e C.

The i-th component of W is given by

m
quzzahjvﬂj—i_fiv i:1,~-~m,
j=1

where V#i is the logarithmic potential of the measure y;,
. 1
V/“J (Z) = /ln mdu](x), z € C.

We define the mutual energy of two vector measures u!, u? € My(A) in the presence of f to be

Z//[“w Zix| it )|Z|fj( )} i (2)dps; (). (21)

2,7=1

The energy of the vector measure p € My(A) can be written as

J( ) Aﬁ' ) +2/fdu_ Z a’L,] Nu/’cj +2Z/fl dﬂz (22)

i,7=1

where

Hony) = [ [0 =)y o). (23)

These formulas may be rewritten as
D= [ W @it ) + [ st (24)

J() = / (W + £)(2)du(z), (25)

and

where

W (2)dp ( W (2)du (2) | f@)dp( Z fi(@)dps (=
/ >/ f 7 [

These concepts may be interpreted in electrostatic terms. A is a system of charge conductors
where on each conductor A; acts an external field f;, i = 1,---m. The vector 6 characterizes how
much charge is allowed on each conductor. The measure p € My(A) gives the distribution of the
charges. The entry a; ; of the matrix A represents the law of interaction between the conductors
Ai, Aj, ’L,]:]., ,m

For each 1 € Mg(A), we define

wf—;renAnW”() i

Il
3
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In the sequel, we will assume that f is such that there exists p € Mg(A) with I(p;, p;) < +00,i =
1,...,m, and

/f(x)d,u(x) < +00. (26)

THEOREM 4. Each of the following problems (1) — (3) has a unique solution 1 € My(A); the
solution of all these problems is the same.

(1) J(7) = mingepy(a) J (1),

(2) Wzﬂ(x):wiL, szupp(ﬁi), i=1,...,m,
(3) MaXy, e Mi(7) wét = ’wét, t1=1,...,m,

where
Mi(E) = {p € Mo(A) s g =Tiy, j =1, ym, j £}

The measure 1 = Ti(A, 0, A, f) is called extremal or equilibrium measure with respect to the
initial data (A, 0, A, f). For applications, the second statement is the most important. This part
may be restated as follows: there exists a unique measure @ € My(A) and certain constants w;,
such that W/ (z) = w; on supp(f;) and W/ (z) > w; on A, i = 1,... ,m. Theorem 4 extends to
the vector case a known result concerning the existence of an equilibrium measure in the presence
of an external field. The vector case without external field has been treated in [6] and [12]. Our
proof for the general case follows the scheme proposed in [12]. A similar result also holds for
general regular compacts sets in the complex plane.

Of particular interest is the scalar case (m = 1) which we state in the form of a corollary,
since it formally follows from the statement above, but will be used in proving Theorem 4. Here
A =A1,0 >0A=a>0,fis a lower semi-continuous function on A, W# = aV* + f and
wh = mingea WH(x).

COROLLARY 1. FEach of the following problems (1) — (3) has a unique solution i € My(A); the
solution of all these problems is the same.

(1) J(1) = mingemy(a) J (1),
(2) aVF + f=wh,  x€supp(f),
(3") max, e, (a) wh = wh.

Before proving Theorem 4 we need some auxiliary results.

LEMMA 1. The functionals (21) and (22) are lower semi-continuous in the weak star topology of

Mo(A).

Proof. It is sufficient to show that the mutual energy is lower semi-continuous since J(u) =
J(u, ). Since the components of f are lower semi-continuous functions, it is easy to prove that
each one of the integrals associated with these components in (21) defines a lower semi-continuous
functional on My, (A;) respectively. Therefore, it is sufficient to prove the lower semi-continuity
property for the sum 377", ai g I(ui, p3).

Let us separate this sum in two. ), contains all the terms for which a;; > 0, and ), the
rest which have a; ; < 0. By Theorem 2.1 page 168 in [12] each term of the first sum is lower
semi-continuous and, therefore, so is ) ;. In the second sum all the terms are continuous because
by assumption if a; ; < 0 then A;NA; = () and, hence, the logarithmic kernel is continuous on the
compact set A; x Aj. O

Let us consider the following problem. Find

J(m) = w=inf{J(p) : p € My(A)}

and the extremal measure i for which the infimum is attained.

Since the intervals A;,i = 1,... ,m, do not reduce to points they have positive logarithmic
capacity. Therefore there exist vector measures p = (f41,. .. , ftm, ) Whose components have finite
energy

1 .
I(pi) = I(pa pi) = //ln mdﬂi(z)dﬂi(x) < too, i=1,...,m.



By assumption, for at least one such vector measure | fdu < +oo. Therefore,
w=1inf{J(u) : p € Mp(A)} =inf{J(p) : p € M}(A)} < 400,
where
MG(A) ={p e Mo(A) : I(py) < o0,i=1,...,m}.
Let
M) = |J M)
OERT

LEMMA 2. The extremal measure Tt in Mj(A) exists and is unique. This is the unique measure
satisfying

[wian-m =0, pemia). (27)

Proof. The existence of {1 is an immediate consequence of the weak star compactness of My(A)
and the lower semi-continuity of the functional (22).
Set

m
Iph 1) = > aiI(ul,p3). (28)
i,j=1
This quantity represents the mutual energy of the vector measures u',u? in the absence of an

external vector field. Let u = (p1,...,um) be a vector charge; that is, each component of p is a
signed measure (charge). It is well known that each p; admits a unique decomposition

Hi = iy = fhi,— i=1,...,m.
into two (positive) measures p; 1, tt;, —. Let us assume that p; 4, p1; —, have finite energy, then there
is no problem in defining I'(u;, p1;) according to (21). In fact,

Iy i) = T (i e g4) + 1= g =) = Tt =) = T(phi,— 4 -
Therefore, if p', u? are two vector charges whose components decompose into positive measures
with finite energy we can define for them their mutual energy through formula (28). Set

M (D) ={p=p" —p?: pt p? € MH(A)}
Obviously, M (A) is the vector space of all vector charges whose components decompose into

measures with finite energy.
Let 0 <e<1. If p € Mj(A) then i = ep+ (1 — ¢)i € M} (A). Therefore,

J(i) = (@) = 0
or, equivalently (see (22)),
1) +2 [ fdi~ 1) -2 [ pam =

Substituting @ by its expression in terms of p and @, we have

E1(u—m) + 261(u— i) + 2¢ [ falu—m) > 0
therefore,

IE) = I@) = s =) + 2¢ [ Wod(— ) = 0. (29)
Dividing by € and letting € tend to zero, it follows that

/ WHhd(u — ) > 0.

which is (27).
Making an appropriate change of variables, it is easy to verify that there is no loss of generality
in the proof if we restrict to the case when

max{|z|:z€ A;,i=1,... , m} <1 (30)
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Propositién 4.2, page 178, in [12] (here, the assumptions on A are used) states that if (30) takes
place, then I(u) = I(p, ) > 0 for all p € M*(A) and I(p) = 0 if and only if 4 = 0.

Let us assume that p is another vector extremal measure. Take € = 1. We have that J(i) =
J(u) = J(@). From (29) we deduce that

o:Ime/Wﬁd(u—m,

which together with (27) implies that I(x— ) < 0. Hence, I(x— @) = 0 and, consequently, ;1 = T,
as we needed to prove. ~
Now, let us assume that a certain vector measure A\ € Mj(A) satisfies

/de(x N0, AeMi(A).
Proceeding as above, we obtain
JO) = JON) = I(A =) +2/WX4(A—X) >0,

since both terms on the right hand are non-negative. This implies that X is the extremal measure
and the proof is complete. O.

We say that a property holds quasi everywhere (q.e.) if it is true except on a set of capacity
zero. For p € Mj(A), set

T = [V + Fodu
and
w; = 0; [ Ji() — /fidﬁi] = 9;1/Wiﬁdﬁi‘
LEMMA 3. For each j =1,---m,
W]ﬁ(x) > wj, g.e. T EAN;. (31)

Proof. To the contrary, let us assume that for some i there is a compact subset K C A; with
positive logarithmic capacity such that

WH(x) < w;, x e K.

?

Take an arbitrary measure p; € Mj (K). The existence of such a measure is guaranteed by the
positivity of the logarithmic capacity of K. Consider the vector measure p = (u1,- - , i), where

Wi =, j #i. Then
which contradicts (27). a

LEMMA 4. For each j=1,...m,
Wl(x) <wj, = €supp(f;). (32)

Proof. Suppose that for some j there exists xo € supp(fz;) such that Wjﬁ(xo) > wj. Since VVJF
is lower semi-continuous it follows that there exists a neighborhood V of xq such that for all x € V
we have that W/'(x) > w;. On the other hand, xo € supp(fi;); therefore, 7i;(V) > 0.

Using Lemma 3 and that a measure of finite energy has measure zero on any set of capacity
zero, we obtain

ijj = / Wj'udﬁj = / Wj'udﬁj -+ Wjﬂdﬁ] > wjﬁj (V) —+ wjﬁj(Aj \ V) = 0jwj ,
Aj % A\V
which is absurd. |
Proof of Theorem 4. By Lemma 2 we know that problem 1 has a unique solution. Let us
show that this solution solves problem 2.
In fact, since an interval is a regular set in the sense of the solution of Dirichlet’s problem, from
(31) it follows that

Wi(z) > wy, reN;, j=1,...,m.
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Consequently, using (32), we obtain that
Wjﬁ(x):wj, r € A} = supp(f;) , ji=1,...,m.

Therefore, w; = wjH and 1 solves the second problem in Theorem 4.
Let us show that any solution A of problem 2 also solves problem 1. Notice that

/ WX =" wo; .
j=1

On the other hand, if A € M} (A) since WJX > w?,x € Aj,j=1,...,m, it follows that

/ WAAA > > wo; .
j=1

Hence, (27) takes place and by Lemma 2, A = 7 as needed.

In order to solve problem 3 let us start with the scalar case. Of course, from what was proved
above we know that problems 1’ and 2’ of the corollary are equivalent and have the same solution.
Let us prove that problem 3’ has as unique solution the equilibrium measure 1 € My(A) in the
presence of the external field f.

Since fi € Mp(A), obviously sup,,eaq,(a) w* > w”. Let us assume that there exists p € Mg(A)
such that

wh > wh
and show that then g = . This would prove that the supremum in 3’ is certainly attained and
only by the equilibrium measure.

We know that (aV# + f)(z) = wP,x € suppi C A; therefore,

a(VE = Vi)(x) = (aVP + f)(x) — (@V* + f)(z) <0, € supp(f). (33)

The function a(V# — V#) is subharmonic in C \ supp(fz). Recall that a > 0 and potentials are
superharmonic everywhere and harmonic in the complement of their support.

On supp(fz) the function (aV#+ f) is continuous since it takes a constant value on that set, and f
is lower semi-continuous. Hence on supp(f), aV* is upper semi-continuous but being a potential it
is also lower semi-continuous; therefore, it is continuous on supp iz and by the continuity principle
for potentials it is continuous on all C. This yields that a(VF — V#)(x) is upper semi-continuous
on all C. In particular, for « € supp(f), because of (33)

limsup a(VF — V*)(2) < a(VF - V*)(z) <0.

zZ2—x

By the maximum principle for subharmonic functions it follows that
a(VF —VH)(z) <0, ze€C.

Moreover, a(V# — V#)(oco) = 0; consequently,

a(VE —-VH)(z) =0, x € C\ supp(f) - (34)
Taking limit as z — x € supp(), z € C \ supp [z, we obtain
a(VF —VH)(z) > limsup a(VF — V#)(2) >0, x € supp(fr) .

From all these relations, we have that
a(VF —VH)(z) =0, z€C,

from which follows that indeed g = 7i. We have completed the proof of the corollary.
Following the proof of the scalar case, it is easy to verify that the equilibrium vector measure

7= (fiy,--- M, is a solution of problem 3. Let A = (A1,..., ;) be any other solution of this
problem. Fix i € {1,...,m} and let A € M?()\). We have that

Wi = ai V> + Zai,jvxj +fi=ai VN + F
J#i
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and F; is lower semi-continuous on A;; therefore, ); is the solution of the scalar equilibrium
problem in the presence of the external field F;. Since for the scalar case problem 3’ is equivalent
to 2’, this means that

W;(x):wzngmAnW;(t), x € supp(\i), i=1,...,m.

€A,

Therefore, ) solves problem 2 and by the uniqueness of the solution of this problem we conclude
that A is the solution of the vector equilibrium problem which is what we wanted to prove. O

5. ASYMPTOTIC BEHAVIOR OF THE SECOND TYPE FUNCTIONS

In this section, we study the logarithmic asymptotic behavior of sequences of second type func-
tions {¥, ;} along certain sequences A C Z7'(x) of multi-indices such that |n| — +oco. To this
end we must consider the logarithmic asymptotic behavior of the sequences of monic polynomials
{Gn,j},n € A, as defined in Theorem 2. In the sequel, we explicitly indicate the dependence of all
quantities on the multi-index n.

Let us fix a probability distribution p = (p1,- - , pm) with the property that there do not exist
1 <k < j <i<msuch that p, < p; < p;. Set p® = p. Assume that p/ = (p§+1, ..., pl.) has been
defined, where 7 =0,... ,m — 2. Then,

j+1 j+1 i+1
pj+ = (p§'+27' . 7p]7rj )
is the vector obtained from p’ extracting the first component p,lj such that
ﬁ_j >max{p], :j+1<k<m}.

We consider the vector equilibrium problem with the initial data given by:

(1) A = (Aq,...,A) is a set of m closed intervals contained in the real line such that
AjﬂAj.H =0,7=1,...,m—1.
(2) 0= (04,...,0,,), where

0; =[p’ 1, j=1,...,m.
(3) A = ||a; || is the interaction matrix for which apr = 2, aj, = —1, if |[j — k| = 1, and
aj 1 = 0 otherwise.
4) f = (f1,---, fm), where f1 is a real lower semi-continuous function on A; such that

there exists p1 € Mg, (A1) with I(p1, 1) < +oo for which [ fi(z)dpi(z) < +oo and
fi=0,i=2... ,m,on A,;.
By 7t we denote the extremal measure of the equilibrium problem given by Theorem 4 corresponding
to this initial data.

Let A C ZT!(x) be a sequence of multi-indices n = (n4,... ,n,,) such that [n| — oo and
ng
2k >0, k=1,...m. 35
lim 05 = m (3)

Let ¢; = ¢;,5 = 1,...,m + 1, be the polynomials defined in (9). Recall that ¢, 1 = @, and
gn,m+1 = 1. Therefore, ¢, ; has simple zeros all lying in the interior of A; and

deggn; =[n'"',  j=T,....m+1
(In™| = 0). Notice that by assumption

_|nd ! .
7111é111\n||:9j, j=1...m.

Let x(q) be the zero counting measure associated with the monic polynomial g. That is, x(q)
assigns measure 1 to each point which is a zero of ¢ (counting multiplicities) and measure zero to
all other points.

We are given two sequences of monic polynomials {a, }, {8, },n € A, with real coefficients such
that deg 3, = kn,degay, < |n|+ &pn + min{ni,... ,n,}. The zeros of 3, have even multiplicity
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and lie on A; and the zeros of a,, belong to a compact subset E of D = C\ A;. We assume that
there exist measures «, 8 with support contained in £ C D and A; respectively such that

X(Bn) = 8. (36)

1
lim —x(a,) = a,

neA |n| eA | |

The convergence of measures is in the weak star sense.
Set

Fral@) = TV @) = VX (2)).

By (36) and known properties of the potential (see [7] and [10]), it follows that:

[nl

o fi(z) = limyep fn1(x) = VA(z) — Ve(z), 2 € Ay, where convergence is in measure on
Aq.

e Each f, ; as well as f; is lower semi-continuous on A;.

e Each f,; and f; is weakly approximatively continuous on A;. A function g is weakly
approximatively continuous at zg € Ay, if there exists a set e(zg) C A; of positive measure
such that

liminf g(z) = lim  g(z) = g(z) .

T—x0,TEA] x—x0,x€e(x0)

o lim,, oo mina, fp1(x) =mina, f1(z).

This type of convergence will be denoted
F* hm fml = f1~

This function f; is taken for the first component of f above. We must verify that (26) takes place.
In fact, take any p € M} (A) such that py is the equilibrium measure on A in the absence of an
external field. Then

/ f(@)dp(z) = /A (VP — V) () dpa () = /A Vi () () — /A Ve (@)dpn (z) < oo

since V#1 and V' are continuous on Aj.
Let o be a finite positive Borel measure supported on a compact subset of the real line. We say
that o € Reg if

hmml —Cap(supp( ),

where x; > 0 denotes the leading coefficient of the orthonormal polynomial of degree | with respect
to o and Cap(-) the logarithmic capacity of the indicated set. For more details on this definition
and properties of the so called class of regular measures see Chapter 2 in [13]. In particular, it is
well known that ¢’ > 0 almost everywhere (on its support) implies that o € Reg. Moreover, the
class of regular measures is substantially larger than the class of measures for which ¢’ > 0 almost
everywhere.

We have the following result which generalizes Theorems 3 to 5 from [8] in the case of Nikishin
systems of measures. The proof follows the same scheme but taking into consideration the solution
of the vector equilibrium problem in the presence of an external vector field.

THEOREM 5. Let us assume that o1 > 0 almost everywhere on Aq, and o; € Reg forj=2,... ,m,.
We also assume that (35) and (36) take place. For each j =1,... ,m, we have
1 _
limy o) = - (37)
Therefore,
lim |, (2)|PT = exp(~V(2)),  j=1,....m, (38)

uniformly on compact subsets of C\ A;. Moreover,

L
P ds Inl
lim q M =e Y, j=1,...,m. (39)
ne 7 gn gl
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where v; = wh 4+ 4 w?, and
lim [@,,,;| 7 = exp(V7 — Vs — ;). (40)
ne

uniformly on each compact subset of the complement of A; U ANj11. (Apyq =0, VFEmi1 =0.)

Proof. Different multi-indices n € A C Z'(x) may have associated different ¥ and r;,j =
0,...,m—1. See the definitions in the beginning of Section 3. In particular, the measures s{,j ,j=
0,...,m — 1 may depend on n. For simplicity in the notation, we have not indicated this above.
So far this has not been important because the preceding results were proved for fixed n, but
now we are taking limit on n. Nevertheless, under the assumptions of theorem 5 this fact has no
influence. Notice that according to the construction, there are only a finite number of possible
systems 7,5 = 0,... ,m — 1, and measures sf;j,j =0,...,m — 1, associated to different multi—
indices. We will assume that we have taken a subsequence of multi-indices A’ C A, with an infinite
number of elements, such that for all n € A’ we obtain the same measures slj,j =0,...,m—1,
and prove that (37)-(40) hold true. Since the right hand sides of (37)-(40) only depend on the
initial data of the equilibrium problem, which is independent of the construction of the auxiliary

systems 7,5 = 0,... ,m — 1, and A may be partitioned into a finite number of A’ plus a finite
number of multi-indices, the result holds true as stated. In the sequel, without loss of generality,
we will assume that all n € A have associated the same ¥/, =0,... ,m — 1.
Using (9) and (19) it follows that
. dsi, () ) |
&’ @ j1(2)n j(v) ———= =0, v=0,...,|n| -1, j=0,...m—1.
Aj+1 qn7]+2 (x)
That is
/ x”qn,j_s_l(x)hn’j(x)dsf;j(33) =0, v=0,...,|n7| -1, j=0,...m—1,
Aj+1 (41)
where
n,J:7‘wn,j| s :O7...,m_1.
|qn.j+2]
(Recall that v, ; and ¢y, ;12 have constant sign on Aj1.)
The polynomial gy, ;41 is orthogonal with respect to the varying measure
dO’n7j+1 :hmjdsij 5 j :0,... ,m—l.
Define )
,u‘n,j:WX(qn,j)’ j:]-,"'ama
and set fi, = (Wn,1,--- , fin,m). Since the sequence {un,},n € A, is weakly compact, in order to

prove (37) it is sufficient to show that any convergent subsequence {u,},n € A, A’ C A, satisfies
li =0.
i, i =1
Therefore, without loss of generality, we can assume that there exists
li =pu= . . 42
lim pn = g = (pa, s pim) (42)

and we must show that p = 7. To this end we make use of Theorem 1 in [7] and Theorem 3.3.3
in [13] related with the nth root asymptotic behavior of orthogonal polynomials with respect to
varying measures. For convenience of the reader, we state the corresponding result in a combined
statement. The result with weaker assumptions on the sequence of functions {g; };ea follows [7]
whereas the weaker assumptions on o correspond to [13].

THEOREM 6. Let A C N. Suppose that a sequence of monic polynomials {q }ien satisfies the
orthogonality relations

/xkql(m)dal(m) =0, k=0,...,degq—1, leA, (43)
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where

doy = exp(—g;)do .
Let us assume that either o' > 0 almost everywhere on its support given by an interval A, the
functions in the sequence {g;}1ca as well as g are lower semi-continuous functions on A and verify

1
F —lim - = , €A,
lim ~gi(2) = g(z) x
or o € Reg, the functions in the sequence {g;}1ea as well as g are continuous functions on A and
satisfy

1
lim 7gz(:ﬁ) = g(x), reA,

uniformly on A. Assume that there exists

Jim 984 _ 4

leh 1
Then

.1 _

lim >x(a) =7, (44)
and

lim (/ q%m(ﬂf)) e, (45)

where T = TW(A, 0,2, g) is the solution of the scalar equilibrium problem given by Corollary 1 with
a = 2, external field given by g, and w = w#” is the associated equilibrium constant.

From (42) it follows that
1
lim —
neA |7’l|

uniformly on each compact subset of C\ Aj;. Since 9, 9 = 5—" , from (36) we get

log |qn,;| = }ng}\ Vhni = _VHi

1
F — lim — log [¢),,
N 0g [thn.0

=h

on Aq. Set
VI _Vh 4 fy = W
Using (41) for j = 0 and Theorem 6 (see (42), (44) and (45)), we obtain that p; satisfies the

equilibrium conditions

Wi (z) = Igin W = wl, x € supp(p1) (46)
1

and

. 1
— Tlllerr}& m log(/ qiyldon,l) =wl".

From (41) it follows that
q(z)/Qn,j—&-l(x) wn,j(x) dsj (m):/Q(aj)Qn,jﬁ-l(x) wn,j(x> de_J(Q?)

2= gngia(z) T 2=x  qnjt2(2)

where ¢ is any polynomial of degree < |n7|. If we use this formula for ¢ = g, j+1 and ¢ = gy, j+2
respectively, we obtain

Gnj+1(T) Un ;(T) & () — 1 G j1(2) by () & (2
[ - e e
and (see also (7))
/qn,jﬂ(fv) nj(2) dsi () = — /qn,j+2($)qn7j+1($) ¥n,j (@) ds? (z) = Vojr1(2)

2= Qnj2(v) Gn,j+2(2) z—x qn,j+2(T) Gn,j12(2)




16 ULISES AND GUILLERMO

Therefore,
1 a ()
Y i(2) = / L~ do, ;(t), zeC\A;, j=1...,m. 47
J( ) Qn,j(z) y—t J() \ J ( )
Let us prove that for each j = 1,... ,m, there exists the limit
o1
v = —}llgl\ m log(/ qiﬁjdcrmj) .

We proceed by induction. We know that v; = w}’ for j = 1. Let us assume that the limit exists
for some 7,1 < j <m — 1 and show that the assertion is also true for j + 1.

It is well known and easy to verify (see, for example, page 158 in [13]) that for each compact
subset I of C\ A; there exist positive constants C1(K) and C2(KC) such that

/ qi’i(?d(’n,j(x)

z

Cy(K)| / (@) ()] <

<Ca)| [ @y @ons@)]. sk
From these inequalities and (47) it follows that
.1 .
= lim o og [V (2)] = =V () + v, (48)
uniformly on each compact subset of C\ A;; in particular, on A;;q. Therefore,
1 . "
—}llérll\mloghn,j =u; — VHit2 —Hi
uniformly on Aj;,. Using (41) and Theorem 6 for j + 1 (notice that now it is only required that
oj+1 € Reg) , it follows that p;41 satisfies the scalar equilibrium problem

Wa (@) + vy = V7551 (@) = VI35 (@) = V¥ ) 40y = uin W (@) + vy =l 0.

(49)

for x € supp ptj41, and

1 )
Vjp1 = — }ngll\ m log(/ G j1(X)dop j11(2)) = Wiy ) +v;.

From (46) and (49) it follows that the vector measure y satisfies the equilibrium conditions for

all j =1,...,m. Therefore, by Theorem 1 we have that ;1 = & and thus obtained (37), (38), and
(39). Formulas (38) and (48) yield (40) and we conclude the proof of Theorem 5. a

REMARK . If 3, = 1,n € A (that is, we do not fix poles), then lim,ea f,,1 = f1 uniformly on A,
and fi is continuous on A;. In this situation we can also use Theorem 3.3.3 in [13] for the initial
step in the proof of Theorem 5 replacing the condition o] > 0 a. e. on A; by the much weaker
one o1 € Reg. If this is the case, regarding the conditions on the measures, in Theorem 5 it is
sufficient to assume that o; € Reg,j =1,... ,m.

6. RATE OF CONVERGENCE OF GHPA

Let S = (s1,...,8m) =N(01,...,0,) be a Nikishin system of measures and S = ($15-+- ,Sm)
the corresponding Nikishin system of functions. We will assume that o, > 0 almost everywhere
on Aj,j=1,...,m, although this assumption may be weakened as explained in the last remark.

Let A C Z7'(*) be such that (35) takes place. For each n € A, let R, = (Ry1,... ,Rym) be the

GHPA associated with S with respect to the monic polynomials «,, 3, as indicated in Section 1,
where the sequences {a, }, {6,},n € A, satisfy (36). The object of this section is to study the rate
of convergence of {R, ;},n € A, to 55,5 = 1,...m. For this purpose, we use an integral formula
for the remainder and the asymptotic formulas obtained in Theorem 5.

According to ii) the function on the left has a zero of order at least one at infinity and is
holomorphic in the complement of A;. Integrating along a close curve I' with winding number
1 for all its interior points such that the zeros of a,, and z lie in the exterior of I', and A is
surrounded by I', we obtain

B’ﬂQTLg] - Pn,j _ 1 611@71:9\] - Pn,j dg _ L ﬁnQngj d(:
( o )(Z)_W/r( o >(C)Z—C_27Ti/r( o >(C)z—<'




Substituting §; by its integral expression and using Fubini’s Theorem, for each j = 1,... ,m, we
have

(00 (2)
(BnQn)(2)

(I)n,j(z) _ A (6nQn)(x) dsj(x) )

ap(z) z-—=

ze€D=C\A;, j=1,...,m, (50)

where

By Theorem 5 (recall that ¢, 1 = Q) and (36) we know that

In]

=exp(V* + f1), (51)

an
BnQn

uniformly on each compact subset of the region D\ E = C\ (E U A;). On compact subsets of
D the same holds taking upper limit instead of limit in (51). Therefore, the problem reduces to
finding the limit of {®,, ;},n € A,j = 1,...,m. To this end we must establish the connection
between the functions ®,, ; and ¥,, ;.

We shall do this in two steps. First, we see the relation between V¥, ; and the remainder of
an auxiliary Nikishin system of functions. Then, we compare the remainder functions of the two
Nikishin systems. Let us introduce the auxiliary Nikishin system.

To each n € ZT! we can associate a permutation 7 = 7, of {1,...,m} as follows. For each

ie{l,...,m}

(@) =3 if {”J’Z”k for’”?} forall ke {l,...,m}\{r(1),... ,7(i — 1)}.

lim
neA

n; >n;, fork<j

When n € ZT(*) there do not exist 1 <1 < j < k < m such that n; < n; < ng. In terms of 7 this
means that there do not exist 1 < ¢ < j < k < m such that 7(¢) > 7(j) > 7(k). In other words,
{1,...,m} may be partitioned into two subsets on which 7 is increasing. We say that 7 € Sy, () if
this property holds true. Obviously, each 7 € S,,(x) is associated to infinitely many multi-indices
in Z7 ().

Let A C Z7'(x). To each n € A we associate the multi-index = (n? ,... ,n~1 ). It is easy to
verify that 7 = (n,(1),... ,Nr(m)). Moreover, 7(j) = r;_1 —d(j) where d(j) is equal to the number
of i,0 <i < j — 1, such that r; > 7(j). In principle, the permutation 7 depends on n € A, but for

simplicity we will not indicate it. Set A = {7 : n € A}.

The auxiliary Nikishin system is (¢1,... ,9,,) where 9, = s{j_}l, 7 = 1,...,m. The measures
51;11 are the ones defined in relation (7) of Section 3. Set (¥11,...,0%1m) = N(O1,...,0,).
Let R; = (%’f ey PSLM> be the sequence of GHPA corresponding to the system of functions

(1/9\1 1,. 1/971 .m), the sequence of multi-indices K and the sequences of polynomials a,, and 3, (the
same polynomlalb as for the initial system considering the correbpondence n < n).

In Theorem 1 of [1] it was proved that the common denominator Q; of R; satisfies the same
orthogonality relations as the common denominator @, of R,,. Therefore, @n = ),,. Moreover, the
functions ¥, ; defined for the initial Nikishin system equal the corresponding ones for the auxiliary
Nikishin system which we have just introduced; therefore, both generate the same polynomials
Gnj,J=1,... ,m.

From (50) applied to the auxiliary Nikishin system, we have that

. _ (an5,)(2)

5n,j(2):(1917j7Rﬁ’j)(Z):m, ZED:C\Al, j:L...,m, (52)

Y 5 _/ (@an)( dﬂl,g / ﬁnQn 371 d191(331)d?92($2)"'d19j($j)
Ay Ay

an(z) z—x an(z1) (2 —21)(@1 —22) - (Tjm1 —25)
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LEMMA 5. Assume that the same permutation T is associated to all n € A C ZT(x). For each
j=1,2,... ,m, we have

Jj—1 J
05 (2) = (=175 (2) + D uik(2)Tak(z), 2 C\ (A, (53)
k=1 k=1
where the functzons wj . are analytic in C\ (U, g _ _1Ay) and do not depend on n. For each j =
1,2,...

) )+ Zej k 2)+4o(z), z2€C\Ay, (54)
where £ 1,k =0,...,7—1, denote polynomials that do not depend onn € A of degree < m —1. If
1£r11<n n;>m-—1, nEA thenfjo_o

sm

Proof. We begin proving (53). From the definition
/ /BnQn x1 di(z1)dV2(z2) - - - dV;(z5)
Ay

an(z1) (w2 —x1) - (vj —aj-1)(z — ;)

For j =1, (bn]()—\l/n]() (= ®y.4,)- When 2 < j < m, we have
~ / ﬁnQn z1) (21— xj)ddi(z1)ds(z2) - - - dY(2;)
Ay

¢ﬁ7j(z)+(_ ap(xr)  (z—x)(x1 —22) -~ (2j—1 — 25)(2 — ) .

Taking (z1 —x;) = (v1 —x2) + -+ + (xj_l — ), we obtain

j—1 J
U j(2) = (177105 5(2) + Y (D 10,0(2)Prnlz), 2 C\ ([ Ak,
k=1 k=1
where ¥, = (9¥5,...,0%41),1 < k < j— 1. Substitute j by 4 in this relation. Using this formula
fori=1,...,j, we obtain a triangular linear system of equations by which we can express ®3 ; in

terms of U,, 1, k=1,...,J, as indicated in (53).

For the proof of (54), the idea is to untangle the transformations we have introduced in defining
the auxiliary Nikishin system. This is done using formulas (12)-(14) backwards. It is sufficient to
show that for each n we have

i1
(I);Lj(z) = (I)n,ﬂ'(j)(z) + Z gj,k(z)q)n,‘r(k)(z) + gj,O(Z) ) (55)
k=1

where Zj7k,k = 0,...,7 — 1, denote polynomials which do not depend on n € A of degree <
m—1. Indeed, from the triangular structure of this relation with respect to j, formula (54) follows
immediately.

First let us obtain a similar formula for the functions 514, j=1,...,m. We will show that for
allj=1,2,... ,m

j—1
015 =5r() + Y LikSre) + 40 (56)
k=1
where €,k =0,...,j—1, denote polynomials of degree < m — 1 which do not depend on n € A.

The proof of (56) is carried out by induction on the number of measures in the original Nikishin
system.

Let us assume that X0 = (0f); that is m = 1. Then for any n € Z! (x) = Z, the associated
permutation is 7(1) = 1 and ¥; = ¢{. Thus, the formula is trivial. Suppose that the formula is valid
forall j = 1,2,... ,m—1 of any Nikishin system of m — 1 elements (m > 2) and n € A C Z" (%),
where A is such that all its multi-indices have associated the same permutation. Let us prove that
the corresponding statement holds if the original Nikishin system has m elements.
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Let X9 = (09,...,0%) be an arbitrary Nikishin System of m > 2 elements and n € A° C Z7(x).
Let (U1, ... ,9m) be the auxiliary Nikishin system and 7° the corresponding permutation. For j = 1

~ ds® (z
V1a(z) = nl®) _ 32y (2)
Ay

Z—x

and the formula holds true. Let j =2,... ,m.

Notice that
~ Og.:(x)d0, (z
ﬁu(Z):/ P24 @)d0 (@), (57)
Ay

Z—T

where U5 j is the (j — 1)th function of the auxiliary Nikishin system (¥2, ... ,¥.,) associated with
the Nikishin system of m—1 elements ¥ = (a%, ...,0}) and the multi-indices n! € A' C Z777 (%)
which are obtained extracting from each n? its nro th component (see Section 3). The permutation
71 of {2,...,m} associated with n! € Al is
O . . 0 .
10 () +1 i 7(j) <o,
T = . . . o8

(J) { 79(4) it 79(5) > ro. (58)

Using the induction hypothesis it follows that

Ooj(x) = 3 0 (@)8h oy (2) + 1 (),

k=2
where degl;, <m—2,k=1,...,j—1, and ¢; ; = 1. Substituting in (57) we get

1( ds? (x i (z)ds? (z
Jh4(2 Z/A Tzk_)(x) ( )+/A1 fule)don @) (Z)ii;( ) (59)

Ifro =1, then s = ol and ! = (03, ... ,03,). Consequently, 7*(k) = 7°(k),k = 2,...,5,7°(1) =
1 =rp,and sio( k) = 58770 (k)" Adding and subtracting in each of the integrals above the polynomials

lir(2),k=1,...,7, respectively, it follows that

) F 1 (2))871 4y (2)dsP, () (U1 (x) F lja(2))dsd ()
SR /.

zZ—x Z—X

ZEJ, 70 )+£]7 ( )

k=1
which is (56) for this case. In fact, ¢; ; = 1,degl;r <m—2,k=2,...,j—1,and degl; o < m—3.
Suppose that ro > 1, then s = (of,...,00), 5! = (03,...,0p,) and S* = N(Z!) =
(s3,...,8L) (see Section 3). Formula (59) may be rewritten as
)87 ) (2)33,, () do] () C;.0(x)ds? (z)
e Z + | e (60)
Aq Z—T Aq zZ—X
Now we need to distinguish those indices k € {2, ... ,j} such that 7°(k) > ro from those for which
(k) < 0.

Let k € {2,...,7} be such that 7°(k) > rq, then 71(k) = 79(k) and Sil(k) = sio(k). Using (14)
with j = 0, it follows that
gql-l(k)gg,ro =35 TO(k) akgg,rg )

where aj, is a constant, and

/ C51:(2)871 ) ()88 1,y () do? () ~
Aq

= 0 k(2)8%0 0y — arl k(2)8%0 1) + Lk (2) (61)

zZ—X

where degl;;, < m — 2 and degzj,k <m-3ifk € {2,...,5 — 1} and if 79(j) > ro then
KM» = 17£j,j =0.
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Suppose that k € {2,...,;} is such that 79(k) < 7o, then 71 (k) = 7°(k)+1 and sil(k) =s
Using (15) with j = 0 we have that

1
70(k)+1"

0 (k)
0 _ po20 <0 0 _
S71(k)S2,m0 = LrS.py + E CkwS2,, S31=1,
v=1

where ¢y, , are constants, ¢ ro(x) = 1, and Ly, is a first degree polynomial. Notice that if (k) < ro
then for all v = 1,... ,7%(k), v = 7°(v') where v/ € {2,... ,k}, otherwise n & Z'"'(x). Proceeding
as above we find that

i e(2)8L ) (2)89 ,, (x)do? (z) (k) -
/ : - - : = (gjak‘ck)(z)ggo(l)(z) + gj,k(z) Z Ck,yﬁo(y/)(Z) + €j7k(z) ,
A1 zZ—X — (62)

where degl; L, < m —1 degéj k<m—2.If k= jand 7°(j) < ro then ¢; ;o(;¢;; = 1. Putting
together the relations (60)-(62) and rearranging the terms we obtain (56).
Formula (55) for j = 1 is trivial since &5 1 = ®,, 7(1). For j = 2,... ,m, using (56) we have that

= / (8,Qn) (@) Va5 () dV () :/ (8nQn)(x) (Ei::zgj:kgil(k)+£ja0)(”3)d’91(33)
A1 Ay

j(2) = an(z) z—x an(z) z—

)

where ¢;; = 1 and 7! is defined in terms of 7 = 70 as indicated in (58). To complete the proof
of (55) one repeats the arguments used in the last part of the proof of (56) considering separately

the cases j = 1 and j = 2,... ,m. That ;o = 0 if 2111<n n; > m—1,n € A, is a consequence of
<i<m

orthogonality. With this we conclude the proof. O

Take any infinite subsequence A’ C A such that the same permutation 7 is associated to all
n € AN. Let {8.},{an}t,n € A, satisfy (36). Let (&y,...,%,,) be the solution of the equilibrium
problem with the initial data (1)-(4) given in Section 5. For each j =1,... ,m, set

U]’.‘ =V — VRt g,

(VEm+1 = 0). Notice that in a neighborhood of z = co we have

Uﬁ(z)z(’)( log|>—>—ooasz—>oo.
Fix j € {1,...m}. For k =1,...,j define the regions
Dl ={2e€D=C\ A :Ul2) >Ul2),i=1,... 5}

Some Di could be empty. By (40) and (53) we have that the following asymptotic formula takes
place on D, except on at most a discrete set of points (where u;j = 0),

T}lerlrxl,@ ]|I " = expU}.
Denote
&(z) =max{Ul'(z) 1 k=1,...5}
then A
iig\l,@nj( )|‘ " =exp&;(z), z € UDi’

except on at most a discrete set of points, and
lim sup |<f>ﬁ](z)|ﬁ <expé&;(z), zeD. (63)
A/

ne

Using (51), (52), and (63) it follows that

J
Tim [3,,5(2)['/1" = exp(VI* + 1 +€5)(2) zekL_JlDé\E»
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except on at most a discrete set of points, and

lim sup \gn,j(z)“/l"‘ <exp(VP + fi + &)(2), zeD. (64)
neN’
Formulas (63) and (64) take place uniformly on compact subsets of D.
The set

Q={zeD: (V" + fi+&)(z) <0}
is the domain of convergence to 51’j of the approximants Eﬁj This set contains a neighborhood
of infinity whenever [a| < 1+ 3| + p;(;) because

_ 1
(VP + i+ )(2) = O (141814 prgy) — o) og 1) = =0 a5 2= 0,
By assumption |a| < 1+ |8 + pr(m) since for all n € A,dega,, < |n| + deg B, + min{n; : i =
1,...,m}. In order to have convergence on a neighborhood of infinity it is sufficient that p.;, >
Dr(m) OT la] <1+ |0 + Pr(m)- The convergence is uniform on compact subsets of Q; and the rate
is geometric. There can also be a non-empty domain of divergence given by

Q={zeD: (V" + f1 +&)(z) > 0}.

THEOREM 7. Let us assume that o > 0 almost everywhere on A1 and o; € Reg for j =2,... ,m.
We also assume that (35) and (36) take place. Take any infinite subsequence A’ C A such that the

same permutation T is associated to allm € A’. Then, for each j =1,... ,m, we have

J
Jimg 0y () = ey (2), e D

except on at most a discrete set of points, and

T <exp&;(z), z€D, (65)

lim sup |®,, -(;y(2)
nenN’

For the remainders

i
Jim, |(57() — Ry =exp(V + fL+&)(2),  z€|JD]\E,

k=1
except on at most a discrete set of points, and
limsup| (3 — R r(3))(2)[V17 < exp(VEE + f1 4 €)(2). (66)

nenN’

In each case the convergence is uniform on compact subsets of the indicated regions. The regions
of convergence and divergence are given by Q5 and Q? respectively.

Proof. Formula (65) and the one above it follow from (54) and (63). Notice that (35) implies
that ;9 = 0 for all n € A. Formula (66) and the previous one are a direct consequence of (50),
(51), and (65). a

In order to guarantee a domain of convergence as large as possible, we will introduce an addi-
tional restriction on the sequence of polynomials {8,},n € A, which carry the fixed poles. This is
a natural restriction because an arbitrary selection of the fixed poles can spoil convergence.

Let us assume that

B < (Fy+a) + (201 + |B] = 02 — |af)wa, , (67)

where (i, + @)’ denotes the balayage of iy + v onto Ay and wa, denotes the equilibrium measure
on A;. The right hand of (67) is a positive measure since 02 + |a| < 0 + 1 + |B] + prm) =
2 + Bl + prm) — Pra) < 201 +[B], because 01 = 1 and pr(,) — pr1y < 0. The inequality in
(67) means that the measure on the right hand dominates the one on the left on any Borel set.
This condition may seem a bit strange since fi, which is on the right hand (67), depends on 3.
Nevertheless, the condition may be checked a fortiori once the equilibrium problem is solved. On
the other hand, it is sufficient to take

B <o’ + (201 + |8 — 02 — |a])wa,
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in order that (67) takes place. Here, before checking the condition on § we only have to determine
how much mass we want it to hold and then select any measure with that much mass dominated
by the right hand side of the inequality. Certainly, if 5 = 0 then (67) is satisfied. This is the case
when no poles are fixed.

LEMMA 6. Let (fiq,.-- ,fi,,) be the solution of the equilibrium problem with the initial data (1) —(4)
given in Section 5. Let us assume that (67) takes place. Then

20y + B = (i + @) + (201 + 8] — 02 — |a])wa, .

In particular,

W+ fi)(x) =uwl, z€A.
Proof. According to Theorem 4 we have that
(W' + fi) (@) = @V + VI = VIRF) (@) = w2 € supp(y) .-

On the other hand, from Corollary 1 we have that A = (fi, + )’ + (201 + |5 — 02 — |a|)wa, is the
unique measure in Mag, ;|/(A1) such that
(VA = VB (@) =w* |z €supp(\) = Ay .
Because of (67) we can write A = 2# + (@ with # € My, (A1) and from the last relation we
obtain that
(VA=A/2 LB _yRtey () =wt |z €supp(\) = A, .
Using again Corollary 1 with the external field (V# — VF2+?)(z), from the uniqueness of the
A5

solution, we obtain that 77; = =5~ which is the first assertion of this lemma and the second

statement immediately follows from the last relation. m]
Under mild additional restrictions, in the following Corollary we obtain convergence in the
largest possible region.

COROLLARY 2. Let us assume that o] > 0 almost everywhere on Ay and o; € Reg for j =
2,...,m. Let (35),(36) and (67) take place and || < 1+4|B|+pr(m). Take any infinite subsequence
N C A such that the same permutation T is associated to all n € A'. Then, Qf = D for each

j =1,...,m. For each j the number of non-empty regions Di,k =1,...,4, in which we have
different asymptotic formulas for {|®,, ) |"/ "1}, {60,V "},n € N, as described in Theorem 7
is at most one more than the number of strict inequalities in the sequence pr(1y 2> =+ 2 pr(j)-

Proof. For j =1 we have that (see (66))
lim sup [0, (1) (2)| /" < exp(Wf(2) —wf),  z€D.
nen’

From Lemma 6 we have that Wlﬂ - w’f = 0 on A;. On the other hand, Wlﬁ is subharmonic in
C\A; and W{A‘(z) =0 ((1 + 18| + pray — |af) log ﬁ) — —o00 as z — 00. Therefore, Wlﬂ —w? <0

on C\ A; which is what we needed to prove.

Let us assume that the Corollary is valid for j — 1 where j € {2,... ,m} and let us prove that
it also holds for j. From Theorem 7 we know that
limsup 8,y ()| /" < exp(V + f1 +6)(z), =€ D.
neN’

Obviously, §;(2) = max{{;_1(2),U;(2)}. Consider the difference U;(2) —U;_1(z) = W}'(2) — wjﬁ =
o ((PT(]') = Pr(j-1)) log ﬁ) , 2 — 00.

% is subharmonic in C\ supp(fz;) and equals zero on supp(fi; ).

If pr(jy = Pr(j—1) then Wi'(z) —w
Hence, U;(z) < Uj_1(2) < &-1(2) on C \ supp(f;). Therefore, using the equilibrium condition,
Uj(z) = Uj_1(2) on Aj and Uj(z) < Uj_1(z) on C\ A;. In this case, &;(z) = &_1(2),2 € D, and
the conclusion follows from the induction hypothesis.

If p(j) < Pr(j—1), in a neighborhood of co we have U;(z) > U;_1(2) since (p-(;)—p-(j—1)) log ﬁ —
+oo as z — oo. Let I' = {# € D : Uj(2) = Uj_1(2)}. This set contains supp(7z;) and di-
vides D in two domains @y = {z € D : Uj(z) > U;_1(2)}, which contains z = oo, and
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Dy ={2€D:Uj(z) <Uj_1(2)}. Since Uj_1(z) < &j_1(z), on Qo UT we have that &;_1(z) = &;(2)
and thus (VF1 + f1 +&;) < 0. On € the function V#1 + f; + U, is subharmonic and on its boundary
T equals VF1 + f; + U;—1 < 0. Since (V#1 + f1 + U;)(z) — —o0 as z — oo it follows that on 4
we have (V71 + f1 +U;)(z) < 0. Therefore, (V#1 4 f1 +&;) < 0 on €. With this we conclude the
proof. O
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