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Abstract. We discuss the theoretical convergence and numerical evaluation of simultaneous
interpolation quadrature formulas which are exact for rational functions. Basically, the problem
consists in integrating a single function with respect to different measures by using a common set of
quadrature nodes. Given a multi-index n, the nodes of the integration rule are the zeros of the multi-
orthogonal Hermite-Padé polynomial with respect to (S, α,n), where S is a collection of measures,
and α is a polynomial which modifies S. The theory is based on the connection between Gauss-
like simultaneous quadrature formulas of rational type and multipoint Hermite-Padé approximation.
As for the numerical treatment we present a procedure based on the technique of modifying the
integrand by means of a change of variable when the integrand has real poles close to the integration
interval. The output of some tests show the power of this approach when compared to other ones.
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1. Introduction. Simultaneous integration is a problem which arises in com-
puter graphics to determinate the color of light which emanates from a given point
on a surface toward the viewer (see Borges [4] and the bibliography therein). In an
abstract setting, this problem was earlier studied by Nikishin [19] in connection with
Hermite-Padé approximation. Simultaneous integration means that we are integrat-
ing a single function f : I → R, with respect to m distinct measures ds1, ..., dsm on
I, respectively.

A reference index Φ = (Ov + 1)/Nu (performance ratio) is considered in [4] to
state the efficiency of the procedure. Here Ov is the overall degree of exactness and
Nu is the number of integrand evaluations. Borges [4] remarked that when m ≥ 3 the
use of the m corresponding Gaussian rules of polynomial type yields Φ < 1, which
indicates a low performance. Instead he suggests quadrature rules whose nodes are
the zeros of multi-orthogonal polynomials for which Φ > 1 holds.

Geometric rate of convergence has been proved by the authors in [8] for polyno-
mials methods when the integrand is analytic in a neighborhood of I. Nevertheless,
instability shows up when the corresponding numerical method is applied to mero-
morphic integrands with poles close to I. Several methods to integrate functions with
singularities on or near the integration interval have been developed in the past few
years.

An interesting approach, whose starting point seems to be [13], is that based
on the use of rational Gaussian integration rules connected with multipoint Padé
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†Departamento de Matemáticas, Universidad Carlos III de Madrid, c/ Universidad 30, 28911
Leganés, Spain (ulises@math.uc3m.es).,
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approximation of Markov functions (cf. [9, 10, 11, 14, 15, 22]). In what follows we
will remark on some general features of the rational integration rules.

Let {αN}∞N=1 be a sequence of algebraic polynomials with real coefficients, such
that deg αN ≤ 2N and αN (x) > 0, for all N ∈ N, x ∈ [a, b].

Let σ be a finite and positive measure on the Borel sets of the interval [a, b] and
xN,j , j = 1, ..., N , be N distinct points in [a, b]. Let ΠN be the finite dimensional
space of all polynomials of degree at most N . We say that the following quadrature
formula

∫ b

a

f(x)dσ(x) ≈
N∑

j=1

λN,jf(xN,j),(1.1)

is an interpolation formula of rational type with respect to αN if the equality
holds in (1.1) for all f of the form f = P/αN , where P ∈ ΠN−1.

If αN ≡ 1 then (1.1) corresponds to the classical polynomial scheme. For every
αN it can also be considered as a the well known polynomial statement with respect
to varying measures of the form dσ(x)/αN (x).

Let us assume that f is meromorphic in a neighborhood V of [a, b], and that
{z; f(z) = ∞} ⊂ V \[a, b]. We call difficult poles to those closest to [a, b] and benign
to the rest. We accept such a classification of poles, though it is not rigorous at all.
Under these conditions the efficiency of any numerical version of (1.1) could depend a
lot on the design of polynomials αN . The presence of difficult poles in the integrand
causes slow convergence of the procedure, so we have to choose a suitable strategy as
that of selecting some zeros of αN as difficult poles (cf. [9, 10, 11]).

In order to appraise in more detail the nature of this approach we consider a
triangular array of complex numbers T = {zN,j ; j = 1, ..., 2N, N ∈ N}, T ⊂ C\[a, b],
0 6∈ T, such that all its rows are symmetric with respect to the real axis. The table
T is associated to the polynomials αN by

αN (x) =
2N∏

j=1

(
1− x

zN,j

)
.

Notice that all these polynomials αN have real coefficients.
For the moment we assume: zN,ν ∈ R\[a, b], if ν = 1, ..., N , and zN,ν = ∞ if

ν = N + 1, ..., 2N , N ∈ N. In addition, zN,ν 6= zN,η for ν 6= η. Set PN−1(x) =∏
j 6=ν(1 − x/zN,j), ν = 1, ..., N . Thus we can achieve to the value of every λN,j by

solving the following linear system

∫ b

a

dσ(x)
(1− x/zN,ν)

=
N∑

j=1

LN,j

(1− xN,j/zN,ν)
, ν = 1, ..., N,(1.2)

where LN,j are the unknowns.
Assuming that the N distinct points xN,ν have been chosen according to some

specific criterium, the problem (1.2) has the one and only solution LN,ν = λN,ν ,
ν = 1, ..., N , formed by the so-called quadrature coefficients. An experimental fact
is that the condition number of the matrix associated to the system (1.2) gets larger
as xN,j/zN,ν get closer to one. Furthermore, numerical instability could be detected
when the integral in the left side of (1.2) is calculated.

The maximum degree of exactness of formula (1.1) is 2N − 1, and it occurs when
we select as nodes the N zeros of the N -th orthogonal polynomial with respect to the
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varying measure dσN (x) = dσ(x)/αN (x). For such a procedure, which we are going
to call rational Gauss quadrature formula (RGQF), nodes and coefficients must not
be calculated from the system (1.2) but from the corresponding Jacobi matrix (cf.
[9, 10, 15, 22]). The numerical method to be applied is based on recursion formulas
which in turn require a discretization procedure to evaluate with sufficient accuracy
some integrals of the form

∫ b

a

Pj(x)
αN (x)

dσ(x),(1.3)

where Pj is a polynomial and possibly some zeros of αN are also poles of a given
integrand.

Nevertheless, when we are dealing with an N -point Gauss-like simultaneous for-
mula we can not find N distinct nodes in the integration interval except for some
especial sets of integration measures. Moreover, these simultaneous nodes are the
eigenvalues of a non-symmetric matrix and the coefficients are directly computed
from a linear system of equations similar to that in (1.2).

In this paper we investigate the convergence of Gauss-like simultaneous quadra-
ture formulas, exact for rational functions. We also present a method to evaluate
three integrals of a common function by means of a rational simultaneous quadrature
formula. To compute (1.3) we adopt in Section 5 a convenient change of variable as
an alternative to Gautschi’s algorithm when some zeros of αN simulate difficult poles.

The paper is organized as follows.
The definition of simultaneous rational quadrature formula, the concept of AT-

system and some aspects of the simultaneous multipoint Hermite-Padé approximation,
can be seen in Section 2. Likewise, in this section we apply to these formulas well
known results on rational approximation to obtain convergence. These results are
stated by assuming strong or weak stability of the k-th quadrature formula, strong
normality of multi-indexes and some specific behavior of the sequence αN . The pro-
blem of obtaining this properties is discussed in the rest of the article.

In Section 3 we study the case n = (0, ..., 0, N, 0, ..., 0) which is reduced to the
problem of evaluating two integrals simultaneously, one of them by means of a rational
Gaussian rule, and the other by using an interpolation quadrature formula. In order
to obtain strong stability for the latter we stablish an additional condition on the
zeros of αN .

Section 4 is devoted to extend some results from the simultaneous polynomial
integration to the rational version when the AT-systems have been constructed ac-
cording to Nikishin’s theory.

In Section 5 we present a numerical method to evaluate simultaneously three
different integrals of a single function with real poles close to the integration interval.
The efficiency of the method is based on the use of smoothing transformations to treat
difficult poles. This section also describes correction techniques for making equal the
participation of all integrators and for reducing instability due to the own recursion
statement. Numerical results from two examples are compared with those obtained
in earlier papers where Gaussian rules of rational type are applied.

2. Simultaneous rational quadrature formulas (SRQF). In what follows
we investigate the asymptotic behavior of simultaneous quadrature formulas which are
based on interpolation of rational functions. We indicate which results on convergence
can be obtained for these rules when the corresponding multi-orthogonal polynomial
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of degree N has exactly N simple zeros in the integration interval and some (weak)
stability condition holds.

We have pointed out in the previous section that rational quadrature formulas
of Gauss type arose from the theory of multipoint Padé approximation of Markov’s
functions. A similar connection can be established between the rational approach for
simultaneous approximation of integrals and multipoint Hermite-Padé approximants
for Markov functions.

In the sequel a weight function w(x) is a continuous function with constant sign
on a given interval [a, b]. Let m ∈ N be fixed and S = (s1, ..., sm) be a system of m
measures with constant sign on [a, b].

From S we construct Ŝ = (ŝ1, . . . , ŝm), the corresponding system of Markov
functions; namely,

ŝk(z) =
∫ b

a

dsk(x)
z − x

, k = 1, . . . , m ,

In particular, we are interested in the case dsk(x) = wk(x)dµ(x), where wk, k =
1, ...m, are weight functions and µ is a positive measure on [a, b]. We notice that all
the functions ŝk are holomorphic in D = C\[a, b].

Let Zm
+ = {n = (n1, ..., nm); nk ∈ {0, 1, 2, ...}, k = 1, ..., m}. For n ∈ Zm

+ we put
|n| = n1 + · · ·+ nm.

For k = 1, ...,m, let Tk be the table

Tk = {zk,j ; j ∈ N},
where Tk ⊂ C\[a, b], 0 6∈ Tk. We will consider m quadrature formulas of rational
type, so we need m polynomial sequences as those given below

αn,k(x) =
K∏

j=1

(
1− x

zk,j

)
,(2.1)

where K = Kn,k ∈ N is chosen depending on the context. For theoretical purposes
we restrict to 1 ≤ K ≤ |n|+ nk, k = 1, ...m. As for the numerical setting our method
also works for K > 2|n|.

Equation (2.1) suggests that we are considering m non-Newtonian triangular ta-
bles A[1], ..., A[m] of polynomials at once, and that we are using at most the first
|n|+ nk terms of the |n|-th row of the k-th table to construct the polynomial αn,k.

We may assume in the next sections that we are considering only one table T;
that is, Tk = T, and αn is the associated polynomial.

In order to obtain that all polynomials (2.1) have real coefficients, we assume that
zk,j ∈ R ∪ {∞}\[a, b], n ∈ Λ, k = 1, ...,m, j = 1, ..., K, or T is stable by complex
conjugation.

The strategic of constructing tables T depends on whether the integrand has
singularities in the integration interval [a, b] or in C\[a, b].

Once given a polynomial αn,k, k = 1, ..., m, one can establish the concept of si-
multaneous multipoint Hermite-Padé approximant Rn to Ŝ with respect to the multi-
index n ∈ Zm

+ (cf. [3]). Namely, Rn = (Rn,1, ..., Rn,m) is a vector whose components
are rational functions Rn,k = Pn,k/Qn, k = 1, ...,m, for which the common denomi-
nator Qn satisfies the following properties.

deg Qn ≤ |n| = n1 + . . . + nm, Qn 6≡ 0(2.2)
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Qn(z)ŝk(z)− Pn,k(z)
αn,k(z)

= O

(
1

znk+1

)
, z →∞, k = 1, 2, ..., m.(2.3)

If Qn is the unique monic polynomial which fulfils (2.2-2.3), then it is called the
Hermite-Padé polynomial associated to (S,n), and the vector rational function Rn is
the corresponding Hermite-Padé approximant (see Definition 2.1) .

The orthogonality conditions (2.4) given below, are formulated in terms of the
polynomials αn,k, and they can be derived from (2.3).

∫ b

a

tνQn(x)dsn,k(x) = 0, ν = 0, ..., nk − 1, k = 1, ..., m,(2.4)

where dsn,k(x) = wk(x)dµ(x)/αn,k(x), k = 1, ..., m. The Hermite-Padé polynomial
Qn can also be defined as that which fulfils (2.2) and (2.4). We can also say that Qn is
the n-th multi-orthogonal polynomial associated to the pair (S, (αn,k)m

k=1), n ∈ Zm
+ .

The basic terminology for this subject is summarized in the following definition.
Definition 2.1. A multi-index n is weakly normal for (S, (αn,k)) if Qn is deter-

mined uniquely. A multi-index n is said to be normal for (S, (αn,k)) if any non trivial
solution Qn of (2.4) satisfies deg Qn = |n|. If Qn has exactly |n| simple zeros and all
of them lie in the interior of [a, b] the index is called strongly normal for (S, (αn,k)).

If all the indices are weakly normal, normal, or strongly normal for (S, (αn,k)),
then the system (S, (αn,k)) is said to be weakly perfect, perfect or strongly perfect,
respectively.

Obviously strong normality implies normality. Normality in turn, implies weak
normality (see [6]).

An elementary example of strongly normal multi-index n is that of the form
nk = N , and ni = 0 for i 6= k (see Section 3). In the sequel, we will be interested
only in subsequences Λ ⊂ Zm

+ of strongly normal multi-indexes with respect to Wk =
wk/αn,k, k = 1, ..., m.

Definition 2.2. We say that the system of functions (W1, ...,Wm) is an AT-
system for the multi-index n = (n1, ..., nm) on the interval [a, b] if for every non-trivial
collection of polynomials P1,...,Pm with deg Pj ≤ nj − 1, the function

H(x) = H(P1, ..., Pm, x) = P1(x)W1(x) + · · ·+ Pm(x)Wm(x),

has at most |n| − 1 zeros in [a, b].
The concept of AT-system, established by Nikishin in [19], is related with strong

normality.
Proposition 2.3. If (W1, ..., Wm) is an AT-system for the multi-index n =

(n1, ..., nm) on the interval [a, b] then n is strongly normal for (S, (αn,k)).
Propositions 2.4 and 2.5 show part of the role played by αn,k in constructing

multipoint Hermite-Padé approximants.
Proposition 2.4. The following formula holds

Pn,k(z) =
∫ b

a

Qn(z)αn,k(x)−Qn(x)αn,k(z)
z − x

dsn,k(x).(2.5)

Proof. Define Pn,k as that in (2.5) and let k ∈ {1, ..., m}. For every polynomial q
of degree at most nk, the following expression for the reminder can be obtained from
(2.4) and (2.5).

1
αn,k(z)

(Qn(z)ŝk(z)− Pn,k(z)) =
∫ b

a

Qn(x)q(x)
q(z)(z − x)

dsn,k(x).(2.6)
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The conclusion follows from the fact that the right side of equation (2.6) satisfies
(2.3).

Proposition 2.5. Assume that

deg αn,k ≤ |n|+ nk for k = 1, 2, ..., m.(2.7)

Then Pn,k ∈ Π|n|−1 for all n ∈ Zm
+ and k = 1, ..., m.

Proof. We can rewrite conveniently the expression (2.5) for Pn,k as follows

Pn,k(z) =
∫ b

a

(Qn(z)αn,k(x)±Qn(x)α̃n,k(x)˜̃αn,k(z)−Qn(x)αn,k(z))
(z − x)

dsn,k(x),(2.8)

In the factorization αn,k(x) = α̃n,k(x)˜̃αn,k(x), we only have assumed that deg α̃n,k ≤
nk and deg ˜̃αn,k ≤ |n|.
From (2.8) and the orthogonality condition (2.4) for Qn we obtain that

Pn,k(z) =
∫ b

a

α̃n,k(x)

(
Qn(z)˜̃αn,k(x)−Qn(x)˜̃αn,k(z)

z − x

)
dsn,k(x).

This is all what we need to prove Proposition 2.5.
Conditions which ensure uniform convergence of Hermite-Padé approximants have

been obtained in [3] when αN,k ≡ 1. The study of multipoint Padé approximation of
one Markov function (m = 1) was initiated in [13].

Let µ be a finite, positive, Borel measure on the interval [a, b], {w1, ..., wm} a
set of weight functions, and n = (n1, ..., nm) ∈ Λ, where Λ is a sequence of strongly
normal multi-indexes for (S, αn,k).

The general formulation of the problem of integrating simultaneously a single
function under the condition that the efficiency index Φ be greater than one, leads
to m quadrature rules with a common set of nodes xn,j , j = 1, ..., |n|. These nodes
are the |n| simple zeros of the |n|-th multi-orthogonal polynomial Qn with respect to
(S, αn).

The weights λn,k,j of the k-th quadrature formula are given by

λn,k,j = αn,k(xn,j)
∫ b

a

Qn(x)
Q′

n(xn,j)(x− xn,j)
dsn,k(x),(2.9)

where j = 1, ..., |n|, k = 1, ...,m. The coefficients defined by (2.9) will be called
Nikishin– Christoffel coefficients.

The number of integrand evaluations of these simultaneous quadratures rules is
the same as in the polynomial case; that is, the parameter Nu (see Section 1) is not
affected by the presence of the polynomials αn at all.

It must be pointed out that the varying measures dsn,k(x), k = 1, ...m, play a role
in the construction of the nodes (xn,j)

|n|
j=1 and the coefficients (λn,k,j)

|n|
j=1, k = 1, ..., m.

The following lemma can be derived from (2.9). The technical details of the proof
are the same as those in Lemma 1 of [8].

Lemma 2.6. Let k ∈ {1, ..., m}, and let n = (n1, ..., nm) be a strongly normal
multi-index for the system Sn. Then the following equality holds

∫ b

a

xνdsn,k(x) =
|n|∑

j=1

λn,k,j

αn,k(xn,j)
xν
n,j , ν = 0, ..., |n|+ nk − 1.(2.10)
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Unlike the polynomial case, observe that both sides of (2.10) depend explicitely
on n. The rational nature of (2.10) becomes more obvious if we write in the left side
of the equation (xν/αn,k(x))wk(x)dµ(x) instead of xν dsn,k(x).

When deg αn,k < |n| + nk − 1, (2.10) yields a mixed interpolation procedure of
polynomial-rational type.

Assume that Λ ⊂ Zm
+ is a sequence of strongly normal multi-indexes n for (S, αn)

and that supn∈Λ |n| = ∞. The set of coefficients {λn,k,j} plays a major role in
obtaining convergence properties for the corresponding integration procedures. Let k
be a fixed parameter (1 ≤ k ≤ m). In what follows we discuss the role played by the
weights {λn,k,j} in the convergence properties (cf. [8]) by assuming one or two of the
following conditions.

A) For each n ∈ Λ all λn,k,j , j = 1, ..., |n|, have the same sign as dsn,k.

B) supn∈Λ

∑|n|
j=1 |λn,k,j | ≤ C < ∞.

C)
∑|n|

j=1 |λn,k,j | ≤ κ(n), where lim supn∈Λ κ(n)1/|n| = 1.

Obviously B) ⇒ C). However, in general it is not true that A) ⇒ B), but we can
modify A) slightly to obtain a condition stronger than B). Instead of A) we may state
the following

A’) For each n ∈ Λ all λn,k,j , j = 1, ..., |n|, have the same sign as dsn,k, and
deg αn,k ≤ |n|+ nk − 1.

Thus we have A’) ⇒ B).
The problem of obtaining convergence for each one of the m integration procedures

must be reduced to the weaker problem of studying only the k-th rule. The question
is: which conditions imply that

lim
n∈Λ, |n|→∞

|n|∑

j=1

λn,k,jf(xn,j) =
∫ b

a

f(x)wk(x)dσ(x)(2.11)

for every f in a certain non-trivial class of functions? Such a problem can be solved
depending on the assumptions we adopt on f , n, T and on the behavior of

∑
j |λn,k,j |

(conditions A–C). Moreover, the search of those values of k for which convergence
must be expected is a problem in itself. Assumptions A–C are very difficult to verify
so a part of this paper is devoted to find sufficient conditions for them.

Definition 2.7. Let T = {zj ; j ∈ N}. We say that T has the density property
with respect to the interval [a, b], if the linear space spanned by the system {(1 −
x/zj)−1; j ∈ N} is dense in C([a, b]) (complex and continuous functions on [a, b]
equipped with the uniform norm).

Remarks 1.

1. It is not difficult to prove that T = {zj ; j ∈ N} (T ⊂ C\[a, b]) has the density
property with respect to the interval [a, b] if it has an accumulation point in
C\[a, b].

2. Let T ⊂ R\[−1, 1] be formed by distinct points and let {cj}∞j=1 be defined as
zj := (cj + c−1

j )/2, with |cj | < 1. If
∑∞

j=1(1 − |cj |) = ∞ then T has the
density property with respect to [−1, 1] (cf. [1]).
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3. Let T ⊂ C\[0, +∞) be a table such that

zj 6= zi, if zj , zi ∈ C\[0, +∞), j 6= i,(2.12)

∑

=√zj>0

=√zj

1 + |zj | = ∞.(2.13)

From the theory in [1] it is derived in [15] that conditions (2.12) and (2.13)
yield tables for which the linear space spanned by the system {1, (1−x/zj)−1; j ∈
N} is dense in C([0, +∞]). In particular, this kind of tables have the density
property (Definition 2.7) with respect to all intervals [a, b], 0 ≤ a < b ≤ ∞.
An example of table T which satisfies (2.12) and (2.13) for a = 0, b > 0, is
zj = i/j, j ∈ N, where i is the imaginary unit.

The following proposition is based on well known results of the theory of rational
approximation with fixed poles (cf. [23]).

Proposition 2.8. Let S = (s1, ..., sm) be a system of measures on [a, b] = [−1, 1].
For k ∈ {1, ..., m} fixed, let T be a table of real numbers with |zj | > 1, j = 1, 2, ...
and αn the corresponding polynomials. Let Λ ⊂ Zm

+ be a sequence of distinct strongly
normal multi-indexes for (S, αn). Then we have the following propositions.

1. If T has the density property with respect to the interval [−1, 1], and B) holds,
then (2.11) takes place for all continuous functions f on [−1, 1].

2. Let dsk(x) = wk(x)dx where wk is a weight function on [−1, 1]. If T has
the density property with respect to the interval [−1, 1], and A’) holds, then
(2.11) takes place for all bounded Riemann integrable functions f on [−1, 1].

3. Let η = infj |zj | > 1. Also assume that C) and A’) holds. Then (2.11) takes
place for every function f which is analytic for |z| < T , (T > 1), and real
valued for z ∈ (−T, T ). Further, the following upper estimate takes place

lim sup
n

∣∣∣∣∣∣

∫ 1

−1

f(x)dsk(x)−
|n|∑

j=1

λn,k,jf(xn,j)

∣∣∣∣∣∣

1/|n|

≤ η + T

1 + ηT
.(2.14)

4. Let f be a continuous function for |z| ≤ 1 and analytic for |z| < 1. Assume
that A’) holds and

∞∑

j=1

|zj | − 1
|zj | = ∞,(2.15)

then (2.11) takes place.
Proof. Interpolation condition (2.10) shows that (2.11) takes place for 1/(1−x/zi),

i ∈ N. It is well known that B) and the density property of T with respect to [−1, 1]
implies (2.11) for all f ∈ C([−1, 1]). Hence, part (1) of Proposition 2.8 is true.

Let f be a bounded and wk-Riemann integrable function on [−1, 1]. Without loss
of generality assume that λn,k,j ≥ 0, n ∈ Λ, j = 1, ..., |n|. From (1) it follows conver-
gence for an arbitrary polynomial f(x). In such a case the theorem of Steklov-Fejér
(see Theorem 15.2.2 of [20]) asserts that (2.11) holds, so part (2) of the proposition
is proved.

Let En,k(f) be the quadrature error for the integrable function f , namely

En,k(f) =

∣∣∣∣∣∣

∫ 1

−1

f(x)dsk(x)−
|n|∑

j=1

λn,k,jf(xn,j)

∣∣∣∣∣∣
.



Convergence and computation of simultaneous rational quadrature formulas 9

From the interpolation condition (2.10) we obtain

|En,k(f)| ≤



∫ 1

−1

d |sk| (x) +
|n|∑

j=1

|λn,k,j |

 ‖f − p

αn,k
‖,(2.16)

where ‖ · ‖ is the uniform norm on [−1, 1] and p ∈ Π|n|+nk−1.
Let R|n|+nk−1(f) be the best approximation of f by means of rational functions

of the form p/αn, p ∈ Π|n|+nk−1, in the uniform norm on |z| = 1, and p0/αn, p0 ∈
Π|n|+nk−1, be the best uniform approximant to f , on |z| = 1. The polynomial p0 can
have complex coefficients. However, the uniqueness of the best rational approximant
with fixed poles to f on |z| = 1 and the fact that f and αn are real valued functions on
(−T, T ) implies that p0 is a polynomial with real coefficients (see [23], Chapter XII,
Theorem 9). Using the maximum principle for analytic functions and taking p = p0

in (2.16) we obtain

|En,k(f)| ≤



∫ 1

−1

d |sk| (x) +
|n|∑

j=1

|λn,k,j |

R|n|+nk−1(f).(2.17)

From [23] (Chapter IX, Theorem 6) we know that

lim sup
N

RN (f)1/N ≤ η′ + T

1 + η′T
, (1 < η′ < η)

Finally, using condition C), (2.17) and the obvious inequality R|n|+nk−1(f) ≤ R|n|−1(f),
we obtain (2.14) with arbitrary η′, (1 < η′ < η). By taking η′ → η we prove assertion
(3) of Lemma 2.8.

Part (4) is a consequence of (2.16) and ([23], Corollary 1, Ch. IX).
Remarks 2.
1. In order to obtain convergence in part 3 of Lemma 2.8 for every function f

which is analytic for |z| < T , (T > 1), and real valued for z ∈ (−T, T ), it is
sufficient that η = infj |zj | > 1, αn(x) be given by (2.1) with K = |n|+nk−1,
and

lim
|n|→∞



|n|∑

j=1

|λn,k,j |

R|n|+nk−1(f) = 0.

This result follows directly from (2.17).
2. The contribution of αn in parts 1), 2) and 4) of Proposition 2.8 is rele-

vant. Part 3) concerns with one of the most important applications of ratio-
nal quadrature formulas, for which the polynomials αn play a numerical role
(see [9, 10] and Section 5).

3. The connection between simultaneous rational quadrature formulas and Her-
mite-Padé approximants can be used to improve part 3 of Proposition 2.8.
Let f be analytic in a neighborhood Ω of [−1, 1], and γ be a Jordan curve in
Ω which surrounds [−1, 1]. The following estimate for the quadrature error
En,k(f) is a consequence of Fubini’s theorem and the Cauchy integral formula

|En,k(f)| ≤ ‖f‖γ

2π
‖ŝk −Rn,k‖γ ,(2.18)

where Rn,k is the k-th multipoint Hermite-Padé approximant and ‖ · ‖γ is the
supreme norm on γ. For the convergence of the right side of (2.18) see [7].
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3. A subordination condition for a pair of weight functions. The con-
vergence of the k-th rational quadrature formula of a simultaneous system depends
on the asymptotic behavior of Ln,k =

∑|n|
j=1 |λn,k,j | (See estimate (2.16) and (2.17)).

Here, we show how can be extended to rational quadrature formulas some conver-
gence results based on a subordination condition imposed on a pair of weight func-
tions. This approach was earlier considered for polynomial formulas by Sloan-Smith
[21] and more recently the authors [8]. By means of this technique, we can estimate
the rate of growth for (Ln,k), corresponding to a non-Gaussian quadrature formula.
Let k ∈ {1, ..., m} be fixed. The sequence of strongly normal multi-indexes n to be
considered is that for which the k-th component nk = N is a positive integer, and
nj = 0 for j 6= k. Thus, the problem can be reduced to investigate simultaneous
convergence for multi-indexes of the form n = (N, 0), N ∈ N. So in this section we
always have that |n| = N and m = 2.

In what follows, we additionally assume that the ordered system S = (w1, w2) of
non-negative weights fulfils the following subordination condition.

C0 :=

(∫ b

a

w2(x)2

w1(x)
dσ(x)

)1/2

< ∞.(3.1)

The common denominator Qn is the N -th orthogonal polynomial associated to wn,1 =
w1/αn,1. Likewise, the polynomials Pn,k, k = 1, 2, (and consequently Rn,k) are
uniquely determined and the following expansion takes place.

Rn,k =
Pn,k(z)
Qn(z)

=
N∑

j=1

λn,k,j

z − xn,j
, k = 1, 2 ,(3.2)

where Qn(z) =
∏N

j=1(z − xn,j) and λn,k,j is given by equation (2.9). In particular,
we derive from Lemma 2.6 the following formulas

∫ b

a

p(x)
αn,1(x)

w1(x)dσ(x) =
N∑

j=1

λn,1,j
p(xn,j)

αn,1(xn,j)
, p ∈ Π2N−1 ,(3.3)

and

∫ b

a

p(x)
αn,2(x)

w2(x)dσ(x) =
N∑

j=1

λn,2,j
p(xn,j)

αn,2(xn,j)
, p ∈ ΠN−1,(3.4)

where each αn,k(t), k = 1, 2, is defined according to (2.1) with Kn,1 = 2N and
Kn,2 = N respectively.

Assume that Tk is the table which corresponds to αn,k(t), k = 1, 2, and that the
following condition holds: there exist two positive constants C1, C2, such that

C1 αn,2(t)2 ≤ αn,1(t) ≤ C2 αn,2(t)2, t ∈ [a, b], N ∈ N.(3.5)

Remarks 3. The relation αn,2(t)2 = λαn,1(t), λ > 0, trivially implies (3.5)
but it is very restrictive. Other examples of polynomials satisfying (3.5), both having
simple zeros, can also be constructed. Let z1,j = 1/Aj, z2,j = 1/Bj, j ∈ N be such
that Aj , Bj ∈ (0, ε), where 0 < ε < 1, and Bj ≥ max{A2j , A2j−1}, j ∈ N. In
addition assume that Bj = A2j + sj, Bj = A2j−1 + s′j, j ∈ N, where

∑∞
j=1 |sj | < ∞,
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∑∞
j=1 |s′j | < ∞. If (z1,j) and (z2,j) are associated to αn,1 and αn,2 respectively, then

(3.5) holds for t ∈ [−1, 1] and the constants C1 and C2 are given by

C1 =
∞∏

j=1

1 + Aj

(1 + Bj)2
, C2 =

∞∏

j=1

1−Aj

(1−Bj)2
.

We also remark that, given T2, the above procedure shows how T1 can be constructed
so that (3.5) holds.

Theorem 3.1. Let Λ be the sequence of multi-indexes n = (N, 0), N ∈ N. Let
αn,k, k = 1, 2, be polynomials which satisfy (3.5). Then

N∑

j=1

|λn,2,j | = O







N∑

j=1

λn,1,j




1/2



Proof. All multi-indexes in Λ are strongly normal, because Qn is the N -th ortho-
gonal polynomial with respect to the measure dµn,1 = (w1/αn,1)dσ on [a, b].

Condition (3.1) can be interpreted as U(x) = w2(x)/w1(x) ∈ L2(w1 dσ) (cf. [21]).
Let (Qn,1,ν)∞ν=1 be the sequence of orthogonal polynomials associated to the measure
dµn,1(x), normalized as ‖Qn,1,ν‖ = 1. In particular Qn,1,N = Qn.

Let Sn,i(x) be the i-th partial sum of the Fourier series of U(x)αn,1(x)/αn,2(x).
Taking into account that deg Qn(x)/(x− xn,j) = N − 1 and (3.3) we can deduce

λn,2,j =
αn,2(xn,j)
αn,1(xn,j)

∫ b

a

Qn(x)U(x)αn,1(xn,j)w1(x)
Q′

n(xn,j)(x− xn,j)αn,2(x)
dσ(x) =

αn,2(xn,j)
αn,1(xn,j)

∫ b

a

Qn(x)Sn,N−1(x)αn,1(xn,j)w1(x)
Q′

n(xn,j)(x− xn,j)αn,1(x)
dσ(x) =

αn,2(xn,j)
αn,1(xn,j)

Sn,N−1(xn,j)λn,1,j .

From (2.9), (3.1) and (3.5) we have that

|λn,2,j | ≤ 1√
C1

|Sn,N−1(xn,j)|
(

λn,1,j

αn,1(xn,j)

)1/2

λ
1/2
n,1,j(3.6)

Summing term by term both sides of (3.6) and applying the interpolation condition
of the quadrature formula and the Cauchy-Schwartz inequality we obtain that

N∑

j=1

|λn,2,j | ≤ 1√
C1




N∑

j=1

S2
n,N−1(xn,j)λn,1,j

αn,1(xn,j)




1/2

M1

=
1√
C1

(∫ b

a

S2
n,N−1(x)
αn,1(x)

w1(x)dσ(x)

)1/2

M1

≤ 1√
C1

(∫ b

a

αn,1(x)w2
2(x)

α2
n,2(x)w1(x)

dσ(x)

)1/2

M1 ≤
√

C2C0

C1
M1,

where M1 =
(∑N

j=1 λn,1,j

)1/2
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4. Quadratures formulas for Nikishin systems. A sequence of simultaneous
quadrature formulas of rational type must be constructed by using multi-indexes
n = (n1, ..., nm) which are strongly normal with respect to the given weights. The
following theorem establishes a method for finding this multi-indexes and weights.

Theorem 4.1. Let S = {w1, ..., wm} be an AT -system for n = (n1, ...nm) on the
interval I = [a, b]. Then n is strongly normal for S

Theorem 4.1 is a consequence of the theory of T-systems. For the proof we refer
the reader to [19].

A well known example of AT -system is S = {exp(β1x), ..., exp(βmx)}, where
β1 < · · · < βm. Other examples are given in the form of the so-called Nikishin
systems (cf. [19]). Let σ1 and σ2 be two finite measures of constant sign on the
intervals I1 and I2, respectively. If I1∩ I2 = ∅ then we may define a non-commutative
product

〈σ1, σ2〉(x) =
∫

I1

dσ2(t)
x− t

dσ1(x) = σ̂2(x)dσ1(x),(4.1)

which defines a new measure of constant sign on I1. Let {σ1, ..., σm} be a system of
measures on the intervals Ik, k = 1, ..., m, respectively, and such that Ii ∩ Ii−1 = ∅,
i = 1, ..., m− 1. By induction we define

s1 = σ1, sk = 〈σ1, 〈σ2, ..., σk〉〉.(4.2)

Thus, (si)i=1,m is a new system of measures all of them on the same interval I1,
usually called Nikishin system. The notation is (s1, ..., sm) = N (σ1, ..., σm). A result
of [19] is that all multi-indices of the form (s, ..., s, s+1, ..., s+1) are strongly normal
for N (σ1, ..., σm). More generally, if i < j ≤ m implies nj ≤ ni +1, the corresponding
index n is strongly normal for N (σ1, ..., σm) (cf. [5]). Other examples of strongly
normal multi-indices for a Nikishin system is given by the class Zm

+ (∗) formed by
those n = (n1, ..., nm) for which there are not i, j, k, with 1 ≤ i < j < k ≤ m, such
that ni < nj < nk (cf. [2]).

In this section we denote by αn a polynomial with real coefficients and

deg αn < |n|+ min{n1, ..., nm} − 1,(4.3)

and such that {z ∈ C; αn(z) = 0} ⊂ F ⊂ C\I1, where F is a compact set.
A rational modification of a Nikishin system can be easily obtained as follows.
Given the standard statement

(σ1, w2σ1, ..., wmσ1) = N (σ1, σ2, ..., σm) ,

then we only have to modified the first measure σ1 to obtain
(

σ1

αn
,
w2σ1

αn
, ...,

wmσ1

αn

)
= N

(
σ1

αn
, σ2, ..., σm

)
,(4.4)

where the weights wk, k = 2, ...,m, are formed by nested Cauchy transforms according
to equation (4.1) and (4.2).

Theorem 4.2. Let Λ ⊂ Zm
+ be a sequence of strongly normal multi-indices for

(S, (αn)n∈Λ) and that supn∈Λ |n| = ∞. Let S = (s1, ..., sm) = N (σ1, ..., σm) be a
Nikishin system and let n = (n1, ..., nm) ∈ Λ be fixed. Given M = max{n1 − 1, n2 −
2, ..., nm − 2} we select k = k(n) ∈ {1, ..., m} according to the following criterion:
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k = 1 if n1 − 1 = M , or k ∈ {2, ..., m} corresponds to the first component of n such
that nk − 2 = M . There exists a monic polynomial Wn,k with degree |n| − nk and
simple zeros in the interior of I2 such that

∫

Ik

xνQn(x)
dsk(x)

αn(x)Wn,k(x)
= 0, ν = 0, 1, ..., |n| − 1.(4.5)

∫

Ik

p(x)
(αnWn,k)(x)

dsk(x) =
|n|∑

j=1

λn,k,j
p(xn,j)

(αnWn,k)(xn,j)
, p ∈ Π2|n|−1.(4.6)

For each j = 1, ..., |n|, the following equation takes place

λn,k,j = (αnWn,k)(xn,j)
∫

Ik

(
Qn(x)

Q′
n(xn,j)(x− xn,j)

)2
dsk(x)

(αnWn,k)(x)
.(4.7)

Proof. We apply ([8], Theorem 3) to the new Nikishin system given by (4.4).
Corollary 4.3. Let S = (s1, ..., sm) = N (σ1, ..., σm) be a Nikishin system and

let k ∈ {1, ...,m} be fixed. Let Λ ⊂ Zm
+ (∗) be an infinite sequence of distinct multi-

indexes n = (n1, ..., nm) such that for all n ∈ Λ the k-th component nk satisfies the
hypothesis of Theorem 4.2. Let T = {zj ; j ∈ N} be a table of real numbers such that
|zj | > 1, j ∈ N. If T has the density property with respect to I1 and {αn; n ∈ Λ}
is the associated sequence of polynomials whose degree fulfills (4.3), then the k-th
rational quadrature formula of the corresponding simultaneous system converges for
all bounded Riemann integrable functions on I1.

Proof. From Theorem 4.2 we have that coefficients λn,k,j , n ∈ Λ, fulfills conditions
A) and B) (Section 2). More precisely, all the weights λn,k,j have the same sign as
the measure sk and

|n|∑

j=1

|λn,k,j | = |sk|.(4.8)

The corollary follows from Proposition 2.8.
Remarks 4.

1. The sequence Λ ⊂ Zm
+ (∗) defined by nj = N , j = 1, ..., k−1, and nj = N +1,

j = k, ...,m, N ∈ N satisfies the hypothesis of Theorem 4.2 in the first and
the k-th component.

2. The criterion which we have followed to choose a suitable k in Theorem 4.2
does not admit more than two values for k. For the moment we can only prove
for every rule of the simultaneous system, that the majority of the Nikishin-
Christoffel coefficients have the same sign as the corresponding measure.

Definition 4.4. Let n = (n1, ..., nm) ∈ Zm
+ . For every i = 1, ..., m, we construct

an associated multi-index ni = (ni
1, ..., n

i
m) ∈ Zm−1

+ , in the following form (cf. [8])

ni
j =





min{n1, ..., nj−1, ni − 1} j = 2, ..., i

min{ni, ..., nj} j = i + 1, ..., m.
(4.9)
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Theorem 4.5. Let S = (s1, ..., sm) = N (σ1, ..., σm) be a Nikishin system. For
n ∈ Zm

+ let ni be given as that in Definition 4.4. Then, for every i ∈ {1, ..., m} there
exists a monic polynomial Wn,i of degree |ni| whose zeros are simple and lie in the
interior of I2, such that

∫

Ii

p(x)
(αnWn,i)(x)

dsi(x) =
|n|∑

j=1

λn,i,j
p(xn,j)

(αnWn,i)(xn,j)
,(4.10)

p ∈ Π|n|+|ni|+ni−1.
Moreover, at least (|n|+ |ni|+ ni)/2 coefficients λn,i,j have the same sign as the

measure si.
Proof. The existence of the polynomial Wn,i follows from ([7], Theorem 2 and 3).

Moreover, Wn,i satisfies the following orthogonality relations.

0 =
∫

xνQn(x)
dsi(x)

(αnWn,i)(x)
, ν = 0, ..., |ni|+ ni − 1,(4.11)

which proves (4.10).
Let τn be the number of indices j such that sign(λn,i,j)= sign(si). Select p1(x) =∏′(x−xn,j)2, where

∏′ denotes the product over all the indices j such that sign(λn,i,j)=
sign(si). Let us assume that deg p = 2τn ≤ |n|+ |ni|+ ni − 1, then (4.10) yields

sign
(∫

Ii

p1(x)
(αnWn,i)(x)

dsi(x)
)
6= sign



|n|∑

j=1

λn,i,j
p1(xn,j)

(αnWn,i)(xn,j)


 ,

which is a contradiction. Theorem (4.5) is proved.
Remarks 5. A convergence result analogous to Corollary 4.3 can be obtained

for sequences of multi-indexes of the form n = (N, ..., N,N + 1, ..., N + 1), where
nk′−1 = N and nk′ = N + 1, and k′, the component where the jump occurs, is fixed.
In this case, for k = 1, k′, k′ + 1, the k-th rational simultaneous quadrature formula
converges for all bounded and Riemann integrable function on I1. The polynomial
version of Corollary 4.3 is given in ([8], Corollary 3).

5. The numerical method. In what follows we adopt a notation for matrices
inspired in Matlab language. We only consider the case m = 3 and the sequence of
multi-indices

n(r) =





(s, s, s) r = 3s
(s, s, s + 1) r = 3s + 1
(s, s + 1, s + 1) r = 3s + 2

s = 0, 1, 2, ...(5.1)

Notice that n(r) ∈ Z3
+(∗), r = 0, 1, 2, ....

Let wk(x), k = 1, 2, 3, be three weight functions on the interval [a, b] which forms
an AT -system. Let µ be a measure with constant sign on [a, b]. Given n(r) let Qr

be the r-th multi-orthogonal polynomial associated to (S, α), where S = {w1, w2, w3}
and α is a suitable polynomial.

It is well known that {Qr} satisfies a recurrence formula of m + 2 = 5 terms of
the following type.

Qr = (x− ar)Qr−1 − brQr−2 − crQr−3 − drQr−4, r = 1, 2, ...(5.2)
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Let z(j) ∈ R\[a, b], j = 1, ..., K, and ζ(j) ∈ R, j = 1, ..., s, be the zeros of the
polynomials α and Ps, respectively, that is

α(x) =
x− z(1)
hα − z(1)

· · · x− z(K)
hα − z(K)

, Ps(x) =
x− ζ(1)

hP − ζ(1)
· · · x− ζ(s)

hP − ζ(s)
,

where the array z(·) simulates the most difficult poles of a given integrand and the
parameters hα, hP are conveniently chosen.

Let {qk(s, r)} be a table defined as

qk(s, r) =
∫ b

a

Qr(x)Ps(x)
wk(x)
α(x)

dµ(x), r, s = 0, 1, 2, ..., k = 1, 2, 3.(5.3)

Let Ek(s, r, ar, br, cr, dr) be the following expression

Ek(s, r, ar, br, cr, dr) = (hP − ζ(s))qk(s + 1, r) + ζ(s)qk(s, r)− arqk(s, r)−(5.4)

brqk(s, r − 1)− crqk(s, r − 2)− drqk(s, r − 3), k = 1, 2, 3.

From (5.2) we obtain the following relation

Ek(s, r, ar, br, cr, dr) = qk(s, r + 1).(5.5)

Let Xr = [ar, br, cr, dr]T . In what follows we will write Ek(s, r,Xr) or simply
Ek(s, r) when explicit mention of Xr is not relevant.

The vector of coefficients Xr is the solution of a basic linear system of equations
ArXr = Br whose construction depends on the value of r. If r = 3s the system is
formed by equations Ek(s − 1, r − 1) = 0, k = 1, 2, 3, and E1(s − 2, r − 1) = 0. If
r = 3s+1 then the equations are E3(s, r−1) = 0 and Ek(s−1, r−1) = 0, k = 1, 2, 3.
Finally, for r = 3s + 2 we get Ek(s, r − 1) = 0, k = 2, 3, and Ek(s − 1, r − 1) = 0,
k = 1, 2.

Our computational strategy is based on two principles: I) extensive use of data,
and II) a well balanced participation of the three integration weights in calculations.
Mathematically speaking, for every r we only need the four equations mentioned
above to determine the solution Xr. However, errors occur due to the arithmetic of
finite precision what could be made worse because of the complexity of some weights
functions. We claim that accuracy may be improved by adding more equations from
above and/or below the basic systems. For example, for r = 3s the first equation
from above is E3(s, 3s− 1) = q3(s, 3s). In general, all equations from above the basic
systems have the form (5.5) because the term qk(s, r + 1) is different from zero, thus
one needs a prediction q

(0)
k (s, r + 1).

On the other hand, all equations from below the basic systems have zero coeffi-
cients. We denote by A′rXr = B′r any system formed by equations from above any
basic system of equations ArXr = Br.

Once we have found the vector Xr we can construct matrices Mj , j ≥ r up to the
r-th row. The eigenvalues of Mr, whose structure is determined by equation (5.2),
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are the zeros of Qr. Below we outline the form of Mr.

Mr =




a1 1 0 0 0 0 0 0 · · · 0 0 0 0 0
b2 a2 1 0 0 0 0 0 · · · 0 0 0 0 0
c3 b3 a3 1 0 0 0 0 · · · 0 0 0 0 0
d4 c4 b4 a4 1 0 0 0 · · · 0 0 0 0 0
0 d5 c5 b5 a5 1 0 0 · · · 0 0 0 0 0
...

. . .
...

0 0 0 0 0 0 0 0 · · · 0 dr cr br ar




According to the so-called bootstrapping method, the next step consists in calcula-
ting Ar+1 and Br+1 to obtain Qr+1 and its zeros as the eigenvalues of Mr+1. Indeed,
the explicit expression of polynomials Qr is not needed.

A lot of computational effort must be carried out to avoid loss of accuracy when
the zeros of α(x) are too close to the integration interval [a, b]. Special techniques
to treat these difficult poles have been developed by Gautschi [9, 10] (see also [17]).
Nevertheless, our method is not based on Gautschi’s but on the use of some transfor-
mations of the integration interval. The latter approach is also known as the “change
of variable method” because it is exactly what we do before applying the integration
rule. If ϕ transforms [a, b] onto itself and ϕ′ > 0, then

∫ b

a

f(x)dx =
∫ b

a

f(ϕ(x))ϕ′(x)dx.(5.6)

Given any integration rule with nodes xk ∈ [a, b], and weights λk, k = 1, ..., r, it can
be applied to the right integral in (5.6) instead of the left one. This process yields
a new rule with nodes yk = ϕ(xk), and weights Λk = λkϕ′(xk) to evaluate the left
integral in (5.6). Our choice is (a < b)

ϕp,q,a,b(x) =
(b− a)(x− a)p

(x− a)p + (b− x)q
+ a; p, q ∈ N q, p ≥ 1, p + q > 2,(5.7)

which transforms [a, b] onto [a, b].
Transformations (5.7) have played a major role in solving certain kind of singular

integral equations. The non-symmetric case in (5.7), which occurs when p 6= q,
was promoted by Monegato & Scuderi when the integrand has only one end-point
singularity (see [18] and the bibliography therein).

From both numerical and theoretical points of view, interpolatory rational quadra-
tures formulas are nothing else than product integration rules. Possibly their main
disadvantage is that every collection of difficult poles requires a specific set of nodes
and weights. Gautschi [9, 10] suggested that the zeros of α only have to approximate
poles but he did not establish how much. Thus, one of the most important tasks in
this context is the design of low cost algorithms to calculate these formulas according
to which poles must be simulated.

The main stages of the procedure are summarized in the following items.
1. Calculation of the modified moments qk(s, 0), s = 0, ..., s0, where the size of

s0 depends on what is the maximum quadrature order r to be reached, v.g.
24 ≤ s0 ≤ 30 for r ≤ 12.

2. Calculate X1 = a1 = A1/B1 and qk(s, 1), s = 0, .., s0 − 1, where

A1 = q3(1, 0), B1 = (hP − ζ(1)) ∗ q3(1, 0) + ζ(1) ∗ q3(0, 0).
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3. Calculate X2 = [a2, b2]T = A2\B2 and qk(s, 2), s = 0, .., s0 − 2, where

A2(k, :) = [qk(0, 1), qk(0, 0)], B2(k, 1) = (hP −ζ(1))∗qk(1, 1)+ζ(1)∗qk(0, 1),

k = 1, 2.
4. Calculate X3 = [a3, b3, c3]T = A3\B3 and qk(s, 2), s = 0, .., s0 − 3, where

A3(k, :) = [qk(0, 2), qk(0, 1), qk(0, 0)],

B3(k, 1) = (hP − ζ(1)) ∗ qk(1, 2) + ζ(1) ∗ qk(0, 2), k = 1, 2, 3

5. Given the vector Xr = [ar, br, cr, dr]T , r ≥ 4, and qk(0 : s0 − r + 1, 0 : r),
k = 1, 2, 3, calculate the vector Xr+1 = [ar+1, br+1, cr+1, dr+1]T from the
system Ar+1Xr+1 = Br+1, and qk(0 : s0 − r, r + 1), k = 1, 2, 3 from (5.4).

The quadrature nodes (xn,j)r
j=1 are computed in the r-th step as the eigenvalues of

the matrix Mr.
The vector of coefficients Λk,r = [λn,k,1, ..., λn,k,r]T fulfills

Λk,r = dot(ηk,r, [wk(xn,1), ..., wk(xn,r)]),

where ηk,r is the solution of the over-determined system Vrηk,r = Dk,r, with

Vr = [v(0 : r + nk − 1, 1 : r)],

v(i, j) = Pi(xn,j), and Dk,r = [qk(0 : r + nk − 1, 0)].
Rounding errors, which occur in evaluating qk(s, 0), cause an increasingly large

perturbation in qk(s, r) as r increases. Other important source of error is that pro-
duced by the presence of poles in the integrand. Those poles considered as difficult
ones yield slow convergence and loss of accuracy. We overcome this drawback by using
transformation (5.7) and Gauss-Legendre quadrature rule.

The next subsections deal with two different AT-systems, the second one arises
from Nikishin’s method. For the purposes of comparison we have selected two exam-
ples from [9] for which the first integrating measure is w1(x)dµ(x) = dx.

5.1. Test 1. The integrals to be evaluated are

Ik =
∫ 1

−1

πx

ω sin(πx/ω)
wk(x)dµ(x), ω > 0, k = 1, 2, 3,(5.8)

where dµ(x) = dx, w1(x) = 1, w2(x) = exp(x) and w3(x) = exp(x
√

3). It is well
known that this system of weight functions forms an AT-system (cf. [19]).

The integrand in (5.8) is analytic in a neighborhood of the interval [−1, 1], and
has real poles in Nω, N ∈ Z, N 6= 0. When ω is small the most difficult poles must
be considered by pairs ξN = ±Nω, N = 1, ..., d, where d is selected according to the
size of ω. In order to simulate the K poles closest to [−1, 1] we will assume that
polynomials α(x) have zeros at: ±jω, j = 1, ...d, hence K = 2d. The zero ω(d + 1) is
included in case of K = 2d + 1. We conclude that α has one of the two forms given
below.

α2d(x) =
d∏

k=1

(
x2 − 1

1− (kω)2
+ 1

)
, α2d−1(x) =

(
x− 1
1− dω

+ 1
)

α2d−2(x).
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Table 5.1
Relative errors obtained in Test 1 when the integrals Ii(1.001), i = 1, 2, 3, are evaluated by a

simultaneous rational rule (SRQF(1))

wk r deg α SRQF(1) r deg α SRQF(1)

1 1 2 8.3e-02 7 2 1.6e-07
2 1.1e-01 3.9e-08
3 1.3e-01 6.1e-08
1 2 2 8.5e-02 8 2 1.2e-08
2 1.8e-02 2.9e-09
3 1.6e-02 4.6e-09
1 3 2 3.7e-03 9 2 7.3e-10
2 1.1e-03 2.2e-10
3 2.1e-03 3.9e-10
1 4 2 4.0e-04 10 2 6.1e-11
2 8.9e-05 1.5e-11
3 1.3e-04 2.5e-11
1 5 2 3.3e-05 11 2 6.9e-12
2 7.2e-06 7.9e-13
3 1.0e-05 4.2e-13
1 6 2 1.8e-06 12 2 1.2e-12
2 5.7e-07 1.5e-13
3 1.0e-06 6.5e-13

Some results are shown in Table 5.1, 5.2 and 5.3 when ω = 1.001.
Fast convergence of our procedure is appraised in Table 5.1, where the relative

errors for the first order values r = 1, ..., 12 are listed, and deg α = 2.
The values of qk(s, 0), s = 0, ..., 34 are computed with a relative error about 1.0e−

15 by using composite Gauss-Legendre formula and the smoothing transformations
(5.7) with p = q = 4.

Relative errors when we applied simultaneous quadrature formulas of polynomial
(SPQF, K = 0) and rational type (SRQF(1)) are compared in Table 5.2.

A comparison with the numerical results in [9] is shown in Table 5.3 where selected
output is organized. Here the errors are produced by a Gauss rational quadrature for-
mula (RGQF) and a simultaneous rational quadrature formula (SRQF(1)) when the
measure is w1(x)dµ(x) = dx. If deg α = K then max{r − K, 0} indicates polyno-
mial participation in a mixed procedure. Numerical results in column RGQF were
extracted from [9].

5.2. Test 2. Let (ds1, ds2, ds3) = N (dσ1, dσ2, dσ3), where dσ1(x) = dx/
√

x,
x ∈ [0, 1], dσ2(x) = x2dx, x ∈ [2, 3], and dσ3(x) = dx, x ∈ [4, 5]. Then ds1 = dσ1,

ds2(x) =
(
−2.5− x− x2 log

(
3− x

2− x

))
dx√

x
, ds3(x) =

(∫ 3

2

log
(

4− s

5− s

)
s2ds

x− s

)
dx√

x
.

Next we describe the experiment of calculating simultaneously the following integrals.

Ji(ω) =
∫ 1

0

Γ(1 + x)
x + ω

dsi(x), i = 1, 2, 3.(5.9)

The integral J1(ω) is evaluated in Gautschi [9] (example 4.2) using a RGQF,
and a discretization procedure for the modified inner product based on the recursion
coefficients of the Jacobi polynomials with parameters α = 0, β = −1/2.

The common integrand in (5.9) has poles at ω and at x = −1− j, j ∈ N. The non
polar singularity at x = 0 produced by

√
x in the denominator is here considered as
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Table 5.2
Relative errors obtained in Test 1 when the integrals Ii(1.001), i = 1, 2, 3, are evaluated by

simultaneous integration rules of rational and polynomial type

Rational Polynomial

wk r deg α SRQF(1) r SPQF
1 2 4 6.8e-02 2 7.2e-01
2 1.3e-02 7.1e-01
3 1.1e-02 7.5e-01
1 4 4 2.6e-04 4 5.3e-01
2 5.4e-05 5.4e-01
3 7.9e-05 5.8e-01
1 5 6 1.8e-05 5 4.7e-01
2 3.7e-06 4.9e-01
3 5.5e-06 5.2e-01
1 6 6 9.6e-07 6 4.2e-01
2 2.9e-07 4.4e-01
3 5.2e-07 4.7e-01
1 7 8 7.8e-08 7 3.8e-01
2 1.8e-08 4.0e-01
3 2.9e-08 4.2e-01
1 8 8 5.8e-09 8 3.5e-01
2 1.4e-09 3.6e-01
3 2.2e-09 3.8e-01
1 9 8 3.5e-10 9 3.1e-01
2 1.0e-10 3.3e-01
3 1.9e-10 3.5e-01
1 10 8 3.0e-11 10 2.9e-01
2 7.0e-12 3.0e-01
3 1.1e-11 3.2e-01
1 11 8 4.4e-12 11 2.6e-01
2 1.4e-13 2.7e-01
3 6.2e-13 2.9e-01

Table 5.3
Relative errors obtained in Test 1 when I1(1.001) is evaluated by a simultaneous rational rule

(SRQF(1)), and by a rational Gaussian quadrature formula (RGQF)

r deg α RGQF SRQF(1) r deg α RGQF SRQF(1)

3 2 4.1e-01 3.7e-03 5 4 2.7e-01 2.1e-05
6 4 8.4e-03 1.1e-06 6 4 8.4e-03 1.1e-06
9 6 1.1e-04 3.7e-10 7 4 3.4e-04 9.8e-08
12 8 9.0e-06 5.1e-13 9 4 6.6e-06 4.3e-10

10 4 6.1e-06 3.6e-11
2 1 4.1e-01 3.8e-01
4 2 2.9e-02 4.0e-04 5 2 2.2e-03 3.3e-05
6 3 2.1e-03 8.1e-07 6 2 1.8e-04 1.8e-06
8 4 1.9e-05 7.3e-09 7 2 2.0e-05 1.6e-07
10 5 7.3e-06 2.3e-11 8 2 9.3e-06 1.2e-08
12 6 5.0e-06 5.6e-13 9 2 7.8e-06 7.3e-10

part of the weight functions and, unlike ([9], example 4.2), it does not participate in
the definition of the Gaussian quadrature formula to be applied in evaluating (5.3).

Once more we fit transformation (5.7) into the modified moments qk(s, 0) -not
into the target integrals (5.9). After that we apply Gauss-Legendre rule to evaluate
them. Table 5.4 shows the relative error yielded by a SQRF(2) when (5.7) is taken
with ω = 0.001, a = 0, b = 1, p = 6, q = 1, and the integrating measures are now
modified by 1/α(x), where α(x) = (x + ω)

∏K
j=1(x + j).
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Table 5.4
Relative errors obtained in Test 2 when the integrals Ji(0.001), i = 1, 2, 3, with respect to

the Nikishin AT-system N (dx/
√

x, x2dx, dx), are evaluated by a simultaneous rational quadrature
formula

wk r deg α SRQF(2) r deg α SRQF(2)

1 2 1 1.666e-02 6 3 2.153e-12
2 1.070e-02 3.246e-12
3 1.084e-02 3.388e-12
1 4 1 2.862e-05 8 3 2.325e-14
2 1.730e-05 5.974e-13
3 1.745e-05 6.181e-13
1 6 1 4.093e-08 4 4 2.428e-07
2 2.468e-08 2.484e-07
3 2.490e-08 2.710e-07
1 6 2 1.237e-10 6 4 4.067e-12
2 6.058e-11 2.588e-11
3 6.133e-11 2.704e-11
1 8 2 1.326e-11 8 4 2.991e-13
2 6.316e-12 3.747e-13
3 6.390e-12 3.887e-13
1 4 3 7.460e-08 9 4 1.375e-15
2 1.843e-07 1.179e-15
3 1.978e-07 1.270e-15

The present AT-system requires routines strictly numeric to simulate the Cauchy-
type integrals which arise in the Nikishin’s procedure. This restriction is due to the
slow performance of symbolic tools. For that reason we have implemented several
routines from which we found that those based on a quadrature formula seem to
be the most stable. However, instability still shows up for r ≥ 7, so the estimate of
qk(s, r+1) obtained in step 5 should be improved. If X (0)

r is the solution of ArXr = Br

then we get a prediction

q
(0)
k (s, r + 1) = Ek(s, r,X (0)

r ), k = 1, 2, 3, s = 0, ..., s0 − r + 1.(5.10)

The first stage of the correction process is carried out by adding rows aboveAr and Br,
that is, we now obtain X (1)

r from the over-determined system [A′r;Ar]Xr = [B′r;Br].
Finally we obtain a corrected value q

(1)
k (s, r + 1) from (5.10) when X (1)

r takes the
place of X (0)

r . Our calculations have involved matrices A′r having up to 25 rows. An
estimate X (1)

r can also be obtained by solving A′rXr = B′r.
Table 5.5 suggests that the routines to simulate the rational simultaneous rule

used in Test 2 (SRQF(2)) are less stable than those used in Test 1 (SRQF(1)). It
can also be appraised that for deg α ≥ 2 our approach seems to be superior to that
presented in [9] (see column RGQF of Table 5.5).

6. Conclusions. Extensive testing confirms the theoretical geometrical rate of
convergence of the SRQF, which can be reached with our numerical approach when
the integrand is analytic in a neighborhood of the integration interval, even when
some poles are close to the integration interval.

In principle, the technique of changing the variable is much more flexible than
those ones based on rational quadrature formulas, and can always be applied directly
to the integral of an analytic function with difficult real poles. Nevertheless, the more
specific nature of rational rules makes them eventually more efficient. An argument
in favor of combining both techniques smoothing transformation and rational rules,
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Table 5.5
Relative errors obtained in Test 2 when the integral J1(0.001) is evaluated by a simultaneous

rational rule (SRQF(2)), and by a rational Gaussian method (RGQF)

r deg α RGQF SRQF(2) r deg α RGQF SRQF(2)

4 2 2.799e-05 5.498e-07 2 1 4.335e-03 1.666e-02
6 3 5.383e-07 2.153e-12 3 1 1.210e-04 5.396e-04
8 4 1.392e-08 2.991e-13 4 1 3.379e-06 2.862e-05
10 5 9.281e-08 1.508e-10 5 1 9.281e-08 1.496e-06
3 2 2.059e-03 2.376e-05 9 6 2.037e-06 2.400e-09
6 4 7.991e-05 4.067e-12 12 8 1.392e-08 3.369e-12

consists in that the former seems to be more effective in calculating the modified
moments (5.3) than the integral under interest.

The enlargement of the basic system ArXr = Br by adding rows from below is
optional and must follow principle I, though its contribution in improving the accuracy
in Test 1 has not been relevant. It seems that the technique of adding rows, possibly
non consecutives, from below and/or above decreases the adverse effect produced by
very small singular values of Ar. In all cases the number of rows to be added must
satisfy principle II.

All the computations have been performed using Matlabr tools.
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