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1. INTRODUCTION 

This paper proposes a testing procedure for choosing significant variables in nonparametric regres

sion. The test only needs a smooth nonparametric estimator of the regression function depending 

on the explanatory variables which are significant under the null hypothesis. In contrast to other 

alternative procedures, it is able to detect contiguous alternatives converging to the null at the para

metric rate n -1/2. The asymptotic null distribution of the test depends on certain features of the 

data generating process and, therefore, an asymptotic test is difficult to implement except in rare 

circumstances. \Ve propose resampling procedures, in order to estimate the critical values of the 

test, based on wild bootstrapping of the nonparametric residuals. The method can also be applied 

to test other restrictions on the nonparametric regression curve, like partial linearity, monotonicity 

or additivity; and also restrictions on other nonparametric curves, like conditional independence. 

There is a large literature on consistent specification testing, consistent in the direction of general 

alternatives, based on two leading methodologies. On one hand, there have been proposed tests 

based on some distance between the fitted nonparametric regression, using some smoother, and the 

parametric fit under the null hypothesis, see e.g. Eubank and Spiegelman (1990), Hardle and }\Iam

men (1993), Horowitz and Hardle (199-1), Gozalo (1993), Hong and White (1995) and Zheng (1996) 

among others. On the other hand, other authors have proposed tests based on a comparison between 

the empirical integrated regression and the estimated parametric integrated regression function un

der the specification in the null, see e.g. Brunk (1970), Hong-zhy and Bin (1991), Sue and Wei 

(1991), Stute (1997), Andrews (1997) and Delgado et al (1998) among others. These tests are based 

on a marked empirical process and, in general, their null asymptotic distribution depends on certain 

features of the data generating process and, unlike the tests based on smoothers, asymptotic critical 

values are difficult to compute. Related to this method are Bierens' tests (see e.g. Bierens (1982, 

1990) and Bierens and Ploberger (1997)). The first testing methodology resembles the goodness

of-fit tests of distribution functions based on the distance between nonparametric and parametric 

estimates of the probability density curve (see e.g. Rosenblatt (1975)). The second type of tests 

resembles the tipical goodness-of-fit tests of distribution functions based on some distance between 

the empirical distribution function and the fitted distribution function under the specification on 

the null (see e.g. Kolmogorov (1933), Cramer (1928), Smirnov (1936) and v. Mises (1931)). 

The two methodologies discussed above, which have been developed for specification testing 

of parametric regresion functions, are applicable to test different restrictions on non parametric 
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regression curves. Significance testing is a relevant example of restrictions to be tested, since 

the "curse of dimensionality" motivates to reduce the number of explanatory variables in the 

regression curve as much as possible. Given a random vector (Y, W), where Y is scalar and 

W = (X',Z')', X = (X(l),X(2), ... ,X(q»)' and Z = (Z(l),Z(2), ... ,Z(p»)' are IRq - valued and 

IRP - valued respectively, we want to test 

Ho: E(Y 11V) = m(X) a.s., 

where m (.) = E (YI X = .). The alternative hypothesis, HI, is the negation of Ho. Fan and Li 

(1996) have proposed a significance test inspired in the first methodology discussed above. That is, 

the null hypothesis can alternatively be written as, 

Ho : E {[E (Y I W) - m (X)]2 ( (TV) } = 0, 

where ( is a suitable weight function which does not change sign in the support of IV. The test statistic 

is an estimator of the aboYe expectation, which employes smoothers to estimate the nonparametric 

expectations, and the weight function ( im'olves the density function of X and ~V. in order to 

avoid the stochastic denominators in the resulting statistics. So, this testing procedure requires to 

estimate two nonparametric regression curves with q and p + q regressors respectively, and to choose 

hvo different bandwidth numbers for each regression, one converging to zero faster than the other. 

The resulting test statistic has the form of a degenerate U - statistic converging to a standard 

normal under Ho. In this paper, we propose to apply the second methodology, which only requires 

to estimate E (Y I X) using smoothers. Hereforth, for two Yectors v and w of equal dimension, 

"v S w" means that each coordinate of v is less or equal to the corresponding coordinate of wand 

1 (A) is the indicator function of the event A. ~otice that, 

Ho : E [Y - m (X) I W] = ° a.s. 

<=? Ho: £{[Y - m(X)]l (H! ~ w)} = 0, Vu: = (x',z/)/ E W, (1) 

where W is the support of W. The expectation in (1) can also be written as, 

1: E (Y I X = x, Z = z) dFu' (x, z) -1: m (x) dFw (x, z), (2) 

where FI\' is the distribution function of ~V and, hereforth, for a vector v and some function g, 

foe 9 (11) du = f~oe 1 (u ~ v) 9 (u) duo Hence, (2) is the difference between the integrated regression 

funcion of Y given Wand the integrated regression function of Y given X. Only under Ho, this 
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difference will be equal to zero for all w E W. Let f (-) be the marginal density function of X. Since 

f (x) 2: 0 Vx, the hypothesis Ho in (1) can also be written as 

Ho: E {J (X) [Y - m (X)] 1 (W ~ w)} = 0, Vw E W. (3) 

The reason of writing Ho in this form is purely technical, in order to avoid the random denominator 

in the conditional expectation. The same feature has been used by Powell et al (1989), Robinson 

(1989), Zheng (1996) and Fan and Li (1996) among others. 

We propose tests statistics based on functions of estimates of the expectation in (3). In next 

section we present the test statistics, and we show that the resulting asymptotic tests has non trivial 

power under contiguous alternath'es converging to the null at the parametric rate n-1/ 2 . However, 

asymptotic tests cannot be implemented except in exceptional circumstances, since the asymptotic 

distribution of the statistic under the null depends on unknown features of the underlying distribution 

function of (Y, ~V). In section 3, we propose consistent bootstrap tests, easy to implement. A ~Ionte 

Carlo study, in section 4, illustrates the properties of the proposed bootstrap tests in practice. 

Finally, in section 5, we propose the extension of this testing methodology to test other restrictions 

on non parametric curws. discussing in detail a test for partial linearity and a test for conditional 

independence. 

2. NONPARAMETRIC SIGNIFICANCE TESTING. 

Given independent obsen'ations {(Y;, Hii).i = 1. ... ,n} of (Y, W), where Hii = (Xi.Z;) , the ex

pectation in (3) can be consistently estimated. "'hen Ui = Yi - m (X;) and f (Xi) are known, by 

1 n 

Tn (w) = - Lf (Xi) Ui1 (Wi ~ W), 
n i=1 

(4) 

which is a marked empirical process, with marks f (Xi) (Yi - m (Xi)) . 

Applying a Central Limit Theorem argument, under Ho, y'nTn has a normal limiting finite di

mensional distribution, with covariance structure, 

f1(Wl,W2) = Cov(Tn(wd,Tn(W2)) 

= E {f (x)2 0'2 (W)l (W :::; min (W1) w2 ))}) 

where Wj E ]Rp+q, j = 1) 2 and 0'2 (.) = Var (Y I W = .) . The tighness of the process follows using 

similar arguments as Stute (1997). Then, 

.,fiiTn (w) converges weakly to T! (w) on D (]Rq+P) , 
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where T! is a Gaussian process centered at zero and with covariance structure n. 
Since m (Xi)' i = 1, ... , n are unknown, they are estimated by the kernel regression estimator, 

where 
1 n 

!(Xi) = nM LKij 
J=1 
Ni 

is the estimator of the density function of X evaluated at Xi, f (Xi) , and 

K =K (Xi -Xi) 
'J h' 

where K (u) = r1;=1 k (u j) , k is an univariate kernel and h is a bandwidth number. So a feasible 

version of Tn is given by. 

(5) 

The test statistic is based on some continuous functional of .jTiTn. For instance, we can use a 

Cnimer-v.:-Iises statistic of the form 

where Fwn is the empirical distribution function of HI. Kolmogorov-Smirnov statistics can also be 

constructed in a similar way. 

?\ext, we provide first order asymptotic expansions of Tn , ,,,hich are very useful both, for deriving 

the asymptotic distribution of the tests statistics under the null and for motivating the bootstrap 

tests in next section. We need the following definitions introduced by Robinson (1988). 

Definition 1 iCe, C ~ 2 is the class of even junctions, k ; lRq-; lR satisfying 

r . { 1 ifi = 0 
i'ilu'k(u)du= "- _ 

lR Oifz-l, ... ,e 1, 
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Definition 2 9~, a > 0, f3 > 0, is the class of functions g : R ~ R satisfying: 9 is (b - 1 )-times 

continously differentiable, for b -1 :::; f3 :::; b and all u; sUPvESup Ig (v) - 9 (u) - Q (v, u) 1 I 11 v - ull i3 :::; 

h(u), for some p > 0, where Sup = {v: IIv - ull < p}; Q = 0 when b = 1; Q is a (b -l)th-degree 

homogeneous polynomial in v - u with coefficients the partial derivatives of g at u of orders 1 through 

b - 1 when b > 1; and 9 (u), its partial derivatives of orders b -1 and less and h (u) have finite nth 

moments. 

We also need the following assumptions. 

Al.- f E 9'{', for some ,.\ > O. 

A2.- mE 92. for some J.1 > O. 

A3.- Uniformly in z, r (., z) == E [1 (Z :::; z) I X = .] E 9;;0, for some v > O. 

A4.- E [Uf] < 00. 

A5.- k E K£+m-1, where (- 1 < ,.\ :::; C and m-I < J.1 :::; m. 

A6.- (nh q )-1 + nh2ry -+ 0 as n ~ oc, where TJ = min «(.1."\ + 1). 

Assumptions AI. A2, A5 and A6 are needed for bias reduction using "higher order kernels" 

in Definition 1. as suggested by Robinson (1988). A neccesary condition, reconciling the com

ponents of A6, is (.1 > q 12, >. > q 12 - 1. Condition A3 is not very restrictive, since v is not 

related to the conditions A5 and A6. Let us define 9 (Xi, w) = 1 (Xi:::; x) r (X;, z) and ;p (Xi, w) = 

(71h q )-1 LJ=l,j#i 1 (nj :::; ~c) Kijl j (Xi) . The next Theorem provides first order expansions for Tn. 

Theorem 1 Under Ai to A6, uniformly in w, 

Tn(w) = ~tud(Xi)[1(H'i:SW)-;P(Xi,w))+op(n-1/2) 
,=1 

(6) 

= ~ t Ud (X;) [1 (TV; :s w) - cP (Xi, w)] + Op (n- 1/2) . 
i=1 

(7) 

Notice that, according to Theorem 1, uniformly in w 

Tn (w) = Tn (w) - ~ t Ud (Xi) rp (Xi, w) + Op (n- 1
/

2
) . (8) 

,=1 

Then, applying a central theorem argument, the finite dimensional distribution of .;nTn is Gaussian 

with covariance structure, 
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Thus, fo,Tn and the first term in (7), multiplied by fo" converges weakly to the same limiting 

process under Ho. The follo,,-ing Theorem provides an invariance principle for fo,Tn. 

Theorem 2 Under Ho, Al to A6, 

foTn (w) converges weakly to Te!:, (w) in D (IRq+P) , 

where Te!:, is a Gaussian process centered at cera and with covariance structure e. 

The following Corollary stablishes the asymptotic distribution of the statistic under contiguous 

alternatives of the form, 
r _ 9 (TV) 

H 1n ; E () I H') = m (X) + n 1/ 2 a.s., 

,\-here Pr (Ig (IV)I > 0) = 1. Define the process, 

T;,(w) =Te!:,(w)+S(w), 

where 

S (w) = E {g (IF) [1 (lV :::; w) - <f; (X, w)]). 

Corollary 1 Assume Al to A6. and Pr(lg(W)1 > 0) = 1, with Elg(1\"}1 < 00. Under Ho, 

• d r 1 2 en --t ex == J:;.;,q+p Too (w) dFw(w), (9) 

under H ln . 

• d r 2 2 en --t I;;.'I~I' T:x; (w) dFw(w), (10) 

and under HI, 
• p en --t x. (11) 

The process T~ depends on certain features of the distribution of (Y, TV) and an asymptotic test 

cannot be implemented except in exceptional circunstances. This is why \Ye propose a bootstrap 

test in next section, in order to estimate the critical values of the statistic. 

3. BOOTSTRAP TESTS 

\Ye propose to estimate the exact critical values of the test statistic, Cn , by the quantiles of the 

conditional distribution, given the sample Yn = {(Yi, lVi ) ,i = 1, ... , n} , of bootstrap statistics. We 

suggest t\yO alternative bootstrap tests, both based on resamples {Ut, i = 1, ... , n} from the non

parametric residuals {Ui , i = 1, ... , n}, where Ut = Ui Vi and {Vi, i = 1, ... , n} are random variables 

such that 
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A7 Vi are bounded, iid, independent of Yn and such that E (VI) = 0 and E (V?) = 1. 

This resample procedure, known as "wild bootstrap," was introduced by 'Vu (1986) in the context 

of estimation in heteroskedastic linear models. 

The first type of bootstrap statistic is inspired in the first order asymptotic expansion (6), pro

vided in Theorem 1, where the unobserved errors {Ui,i = l, ... ,n} are substituted by the resample 

{ Ut, i = 1, ... , n} . That is, the bootstrap statistic is 

n 

(;~ = L t~ (Wi)2 , 
;=1 

where 

t; (w) = ~ t U;*j (X;) [1 (~r;:::; w) - ~(X;,w)]. (12) 
,=1 

Rather than obtaining the bootstrap analogs of the original statistics from a resample of the original 

sample Yn = {(ri, ~F;), i = 1. ... , n} , we are approximating the unknown asymptotic distribution of 

the statistics by the conditional distribution of the bootstrap statistics computed from t,~, which is 

the bootstrap estimator of the asymptotic expansion provided in (6). This way of approximating 

the asymptotic null distribution of non-pi\'otal statistics has been used before, in other contexts, by 

Sue and Wei (1991), Le\\'bel (1995), De Jong (1996) and Hansen (1996) among others. 

The second method consists of using the bootstrap analogs of the statistics from a boots trap sample 

y,~ = {(Y;" , .. \'';) , i = 1. .... n} , where yt = rh (X;) + Ut. This way of obtaining "wild bootstrap" 

samples in a nonparametric regresion context has been proposed by Hardle and :-'Iarron (1991) in 

order to compute bootstrap confidence intervals in nonparametric regression. However, the bootstrap 

method proposed here can be implemented with different bad\\'idths, if desired. In specification 

testing of parametric regression fuctions, the "wild bootstrap" has been applied by Hardle and 

~Iammen (1993) in tests statistics based on smoothers and by Stute et al (1998) in test statistics 

based on estimates of the integral regression function. So the boots trap statistic is 

where 

t; (w) = ~ ~ (Y;* - rh* (Xi» j (Xi) 1 (Wi :::; w), n L...- . (13) 
i=1 
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The first bootstrap method is easier to compute than the second one and needs weaker regularity 

conditions in order to prove its consistency. However, unlike the second bootstrap method, the first 

one is not mimicing the behaviour of the sample under the null hypothesis. So, it is expected that, 

the first bootstrap test behave, in small samples, like the asymptotic tests and the second bootstrap 

tests, based on the bootstrap analogs computed by a resample of the original sample under Ho, is 

expected to enjoy better level properties. 

Let i7n be the statistic used for testing Ho (i.e. Cn) and i7~ the corresponding bootstrap statistic 

used for testing Ho (i.e. C~ or t~). At the a-level of significance, Ho is rejected when i7n 2: c~(l-a)' 

where c~(I-a) is the bootstrap critical value, such that Pr { i7~ 2: c~(I-a) I Yn} = a. If under Ho, 

i7n ->d 1700 , the bootstrap test is consistent if under Ho, HI, or Hln , f]~ ->d* Tfoo (ie. Tfoo can be Coo or 

Koo), where "->d* " means convergence in bootstrap distribution; that is, Pr {i7~ 2: (I Yn} ->p C ((). 

for each continuity point ( of C, where C is the distribution of Tfoo under Ho. So, the distribution of 

TJ~. conditional on the sample YIl, consistently estimates the asymptotic distribution of TJIl . Hence. the 

bootstrap critical values consistently estimate the asymptotic critical values, both under the null and 

under the alternati\'e. and the resulting test is consistent. In practice the critical values C~(I_a:) can be 

approximated, as accurately as desired, by !l.lonte Carlo. That is, we generate B bootstrap samples, 

{Yr~b, b = 1. .... B} according to our res ample squeme and the corresponding bootstap statistics are 

computed. Then, c~(1-a) is approximated by c~rl-a)' where B-1 2::7=11 (f]i > c~~_a:») = a. The 

larger B. the better the approximation of c~(1-a)' 

ender the same assumptions than in Theorem 1, we provide an asymptotic expansion of vnt~, 

which is very useful in order to prove the consistency of the bootstrap tests. Let us define Ut = Ui V;. 

Hereforth. for a sequence of random variables D~. we say that D~ = Dn + op* (1) if 

Pr {ID~ - Dni > El }'n} ->p O. for all e > O. 

Theorem 3 Under Ho. HI 01' HIn and if Ai to A.7, uniformly in w . 

.jilt; (w) = In t ut f (Xi) [1 (Wi ~ w) - </J(Xi , w)] + op* (1). 

Given the abm'e theorem, the consistency of the bootstrap test follows straightforwadly from Stute 

et al (1998) results, as stated in the following Corollary. 

Corollary 2 Under Ho, HI or H In and if Ai to A.7 hold, 
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In order to show the consistency of the boost rap tests based on t~, we show first that .jilt,~ and 

.jilt; have the same asymptotic distribution. Since 

vnt~ (w) = vnt~ (w) + )n tm(Xi)](Xi) [l(H'i::; w) - ~(Xi'W)]' (1-1) 
1=1 

we must prove that the second term on the right side of (14) is Dp (1) uniformly in w. Such term, 

has a random denominator. This is why we need the following assumption. 

A8.- Pr (f (X) > 19) = 1 for some 19 > O. 

Assumption AS does not allow important distributions, like the Beta or the Normal. However, 

from a practical view point, this assumption is not so damaging. Another way of dealing with 

the random denominator problem, avoiding assumption AS, consists of introducing some trimming 

as suggested in Robinson (19SS). It will imply the choice of a trimming parameter whose rate of 

convergence ,,,ill be related to h. 'Ye also need stronger conditions than A6. 

A6'.- (nh2q) -1 + nh2'1 -t 0 as n -t oc. where 7] = min (p" A + 1). 

Kotice that A6' implies A6. Ko\\" , necessary conditions to conciliate the components of A6' are 

p, > q. A > q - 1. Under this condition we can prove the asymptotic equivalence, up to the first 

order, between .jilt; and fof;, as stated in the following Theorem. 

Theorem 4 Under Ho. HI or H In and if A1 to AS. A6'. A 7 and AS hold, uniformly in w . 

..;ni,; (w) = ..;nf~ (w) + op' (1). 

From the abo\'e Theorem, and applying Theorem 2.1 in Stute et al (1998), the consistency of tests 

based on t,~ is inmediate. 

Corollary 3 Under Ho. HI or H In and if A1 to AS. A6', A 7 and AS hold, 

The performance of the bootstrap test in small samples is studied by means of a Monte Carlo 

experiment in next section. 

4.- MONTE CARLO 

'Ve have carried out a small l\Ionte Carlo experiment in order to study the small sample perfor

mance of the tests. The bootstrap tests are compared with the parametric asymptotic Wald's test 
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of significance of regressors Z in a linear regression model. \Ve consider the case q = 1 and p = 1, 2 

under different designs. We choose a Gaussian kernel and h = Cn-1/ 2 , C = 0.25,0.5,1,2. In all 

designs, a bandwidth choice h = Cn-a is consistent with A6 when 1 < Q < 1/4, and is consistent 

with A6' when 1/2 < Q < 1/4. So, our band\vidth choice is consistent with A6 and is in the limit in 

order to satisfy A6'. Tables 1 and 2 report the proportion of rejections in 2000 1Ionte Carlo samples 

using 2000 bootstrap samples for approximating the critical values. 

In Table 1 we examine the level accuracy of the bootstrap test. Samples are generated according 

to the design 

Y;=m(Xi)+Ui, i=l, ... ,n, 

where Ui ""' N (0,1) independent of Xi, ZP), ZJ2) which are independently generated as U (0.1) . 

\Ve consider a linear model m (x) = 1 +.r and a sin model m (x) = 1 + sin (-yx) with 'Y = 8,10. As 'Y 

increases. in the sin model, the regression cur\'e has more frequencies and, hence, is more difficult to 

estimate. As it could be expected, the empirical size of the \Vald's test is close to the theoretical one 

in all cases. The bootstrap tests exhibit good level accuracy in the linear model for all the bandwidth 

choices. Howe\,er, for the sin modeL higher bandwidth \'alues produce serious size distorsions. As 

in other simulation studies for specification tests of parametric functions based on smoothers (see 

e.g. Delgado et al (1998)). it seems ad\'isable to undersmooth, rather than oversmooth, in order to 

obtain good level accuracy. The size properties of the test are not very affected by the dimension of 

the vector Z. p. The bootstrap test based on C,~ performs slightly better than the test based on C~. 

Table 2 examines the power properties of the test under the design 

Y; = 1 +Xi +sin (,zfI)) +U;, i = 1, ... ,n, 

with Xi. Z}1), Zi(2). Ui generated as before. We consider 'Y = 5,8,10, the correlation between Y; and 

Z?) decreases as ~f increases (such correlation is close to 1 when 'Y = 5, to 0.3 when 'Y = 8 and to 0 

\\'hen 'Y = 10). Therefore, the power of the \Vald's test decreases as 'Y increases. \Vhen'Y = 5. all the 

tests are very powerful. \Vhen 'Y = 8, the power of the \Vald's test dramatically decreases while the 

boots trap tests are still powerful. Finally, when 'Y = 10, the power of the \Vald's test is very close 

to the theoretical size. However, the bootstrap tests are still powerful, though bigger sample sizes 

than in the previous cases are needed. The results are quite unsensitive to the choice of smoothing 

parameter and the dimension of the vector Z. 
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5.- TESTING OTHER RESTRICTIONS ON REGRESSION CURVES. 

Different restrictions on non parametric regression curves can be tested applying the methodology 

developed in preceding sections. Suppose we want to test 

Ho: E(YI HI) = mo (W) a.s., 

where mo is the regression function when certain restrictions have been imposed, e.g. mean inde

pendence is the case considered in preceding sections. Other restrictions could be partial linearity, 

monotonicity, additivity, etc. The null hypothesis can be alternatively be written as 

Ho: E [(Y - mo (HI)) ~ (W) 1 (W :::; w)] = 0, Vw E W, 

where { is a "'eight function which does not change sign in the support of IV, W. Let mo be an 

estimator of moo A test can be based on the empirical process 

Q" (w) = ~ ~ (Y; - mo (H'i)){ (W;) 1 (W; ~ w). 
n~ 

;=1 

The choice of {. the limiting distribution of the empirical process and the construction of bootstrap 

tests will depend on the particular testing problem. Here, we only discuss the implementation of 

this methodoloy to tests partial linearity and conditional independence. However, application to 

tests of other restrictions seem also possible. 

5.1. SPECIFICATION TESTING OF PARTIALLY LINEAR MODELS. 

The partially linear model is a compromise between the linear and the non parametric regression 

model. It permits to reduce the curse of dimensionality in the estimation of a nonparametric curve. 

Estimators of this model has been proposed by Heckman (1986), Robinson (1988) and Speckman 

(1988) among others. Consider the null hypothesis 

Ho: E (Y I HI) = Z'Bo + I (X) a.s. some Bo EeC !RP, 

where Bo is an unknown parameter vector belonging to the parameter space e, and I is an unknown 

function. The null hypothesis can be also written as, 

Ho: E (Y - m (X) - (Z - mz (X))' Bo I W) = 0 a.s., some Bo EeC !RP, 

where mz (.) = E (Z I X = .). Fan and Li (1996) have considered a test of Ho based on a distance 

between the semi parametric model fit and the nonparametric fit using the whole set of regresors W. 
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As in section 2, we propose a test which only requires estimates of conditional expectations given X, 

m (-) and mz (.) . Given a JTi - consistent estimator of 00, On say, as proposed by Robinson (1988). 

the test statistic is based on the empirical process, 

where Ut = Yi -rn (X,) - (Z; - n1z (X,))' On estimates the semiparametric errors Ut = Yi -m (Xi)

(Z; - mz (Xi))' Bo, and mz (Xi) = (nhq)-l 1:.';=1.#; ZjKij estimates mz (X,). Notice that 

Qn(W) = Tn(w) -i(~ "tJ(Xi)Zi [1(Tl'; ~ w) -<P(Xi'W)] ' 
,=1 

where Tn was defined in (5). From the above expression, it seems relatively straightforward to obtain, 

under regularity conditions in Robinson (1988), the limiting process of Qn. Using similar arguments, 

as in Theorem 1, we can obtain the same asymptotic expansions in (6) and (7), substituting U; 

by Ut. The limiting process of JTiQn is straightforwadly obtained from this asymptotic expansion, 

as well as the limiting distribution of a test statistic based on some functional of JTiQn' Also. 

a bootstrap test, like in section 3. can be implemented using the asymptotic expansion. Given 

a bootstrap sample of the nonparametric residuals {ur. i = 1, ... , n} , where Ur = OtV; and V; 
are random yariables holding A7, the bootstrap process is identical to t~ in (12), substituting Ot 
by Dr. 1: sing similar conditions and arguments in Theorem 3 and Corollary 2, it can be showed 

than the resulting test is consistent. The bootstrap analog of the process can be obtained from the 

resample }~~ = {(Yt. Xi) . i = 1. .... n} . where Y;- = ZiOn + l' (Xd + Ot. The consistency of the 

resulting bootstrap test can be proved using similar arguments as in Theorem 4 and Corollary 3. 

5.2. TESTING CONDITIONAL INDEPENDENCE 

Suppose we ,,-ant to test that the conditional distribution of Y given l-F does not depend on Z. 

That is, the null hypothesis is 

Ho: E[l (Y ~ y)1 W] = E[1 (Y ~ Y)IX] a.s. Vy E y, 

where Y is the support of Y. In fact, we are testing the significance of Z, for all y, in a nonparametric 

regression curye where the dependent variable is 1 (Y ~ V). The null hypothesis can be alternatively 

written as 

Ho:E[J(X)(l(Y~y)-F(yIX))l(W~w)]=O, VyEYandwEW, (15) 
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where F (- I .) is the distribution function of Y given X. The expectation in (15) can be estimated 

by 

Qn (y. w) = ~ t j (Xd [1 (Y; :::; y) - .t (yl Xi)] 1 (lFi :::; w) , 
,=1 

where 
. 1 1 n 

F (YI Xi) = j (Xi) nhq ~ 1 (Y; :::; y) Kij 

is an estimator of F (YI Xi)' A similar empirical process has been used by Andrews (1997) for 

specification testing of a parametric conditional distribution function. A test statistic is based on 

some functional of foQn. Using similar arguments and conditions in Theorem 1, we can obtain 

the same asymptotic expansions in (6) and (7), substituting Vi by Vi (y) = 1 (Y; :::; y) - F (yl Xi). 

From this expansion, the asymptotic distribution of the test statistic can be derived using similar 

arguments as Andrews (1997). As in section 3, a bootstrap test can be implemented based on a 

bootstrap sample of the nonparametric residuals Ui (y) = 1 (Y; :::; y) - .t (yl Xi) and the asymptotic 

expansion. The resulting bootstrap test statistic is 

Q;' (y.n·) = ~ tJ(Xi)Ut(y) [lPVi:::; w) -~(Xi'W)]' 
,=1 

,,·here Vt (y) = Vi (y) Vi, and Vi holds conditions in A7. Then, a bootstrap test statistic can be 

based on some functional of foQ;,. Using arguments in Theorem 3, it can be showed that, uniformly 

in (y. w). 

Q;' (y. w) = ~ t f (Xi) ut (y) [1 (Wi :::; w) - cjJ (Xi, w)] + Op' (n- 1
/

2
) , 

i=1 

where Ut (y) = [I; (y) ~';. From this expansion. it seems relatively straightfof\vadly to prove that a 

test based on some functional of VnQ~ is consistent. Alternatively, a bootstrap analog of Qn can 

be constructed from a bootstrap sample {(y;*. Xi) . i = 1, ... , n} , where Y;* are generated from the 

estimated conditional distribution .t (. I Xi), see e.g. Cao-Abad and Gonzalez-~Ianteiga (1993). 

Gonzalo and Linton (1996) have proposed a test of conditional independence restrictions which 

does not need to use smoothing techniques. They also propose a bootstrap test, but consistency is 

not proved. 
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MATHEMATICAL APPENDIX 

Through the appendix we use the following notation mi = m (Xi)' J; = 1 (Xi)' 9i (w) = 

9(Xi.w). ri(Z) = r(Xi,Z), gi = g(Wi ) , a; = E(Ull Wi), ii = i(xi) , mi = n1(Xi), rh = 
n-1h-q "£'}=1 gjKij / ii, mi = n-1 h-q "£'}=1 mjKij /];, Ui = n-1h-q '£'}=1 UjKij/ j;, IT j (w) = 1 (U"i :s; u) 

and Eijkl (-) = E (- I Xi, Xj, X k, Xt) , E* (-) = E Cl Yn) . The proofs apply some lemmas prm'ed in 

the Lemmata. 

PROOF OF THEORE1I 1 

Thorough the proofs, we use the fact that for each i = 1, ... n, ITi (w) :s; 1, 9i (w) :s; 1 and ~i (w) :s; 1, 

uniformly in w. Since the kernel is symmetric, foTn (w) is equal to 

In tU}i (ITi(w) -~i(W)) 
i=l 

(16) 

1 n , 

+ fo LIT; (lL') li (mi - m;). 
i=l 

(17) 

Thus, (6). in Theorem 1. follows by ?lIarkov's inequality, after shm\'ing that, uniformly in w. 

E ((17)2) = 0(1). which is proved from 

[ 2 '2 2] E ITi (w) 11 (m! - m1) = 0 (1) 

nE {i2i!IT1 (w) IT2 (w) (m1 - md (m2 - m2)} = 0(1) . 

Define rj = (1711 - 171i) Kli and r = El (r2)' On one hand, uniformly in w, (18) is bounded by 

< n'~2,E [(t,(m, -m;JKH)'] 

(18) 

(19) 

(20) 

< n~qE[(r2-rd2]+h;qE(r2) (21) 

= 0 (_1 +h2'7) nhq , 

since E [(r2 - r)2] :s; E (r~) = 0 (hq) by Lemma 3, and E (r2) = 0 (h2('7+q») by Lemma 5. On the 

other hand. (19) is bounded, uniformly in w, by an expression proportional to 

n~2q lE [(m! - m2)2 K;2] 1+ h;q lE {(m! - m2) KI2EI2 [(m2 - m3) K23]} 1+ h~q {E [El [(ml - m2) Kd]}2 , 

\vhere, the first term in the last expression is 0 ((nhq)-l) by Lemma 3, the second one o (h'7) by 

Lemma 3,5 dominance convergence and Lemma 3, and the last term is 0 (nh2'7) by Lemma 5. 
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Xow. we proye (7) in Theorem 1. Xotice that (16) is equal to 

(22) 

(23) 

(24) 

Thus, (7) follows by ?>.Iarkov's inequality, after showing that, uniformly in w, E [(23)2] = 0(1) and 

E [(24)2] = 0 (1) . On one hand, 

E (23)2) :S E [cri (11 - h) 2] = 0 (n~q + h2>.) , (25) 

applying lemmas 2 and 3 and using the same argument applied in the proof of the convergence of 

the second term in (20). On the other hand, 

(26) 

applying Lemma 6 and using the same argument applied in the proof of the convergence of the 

second term in (20) .• 

PROOF OF THEORE:'-.I 2 

Giwn Theorem 1. it sufices to prove that n- 1/ 2 I:~=1 Udi [lli (w) - 9i (w)] converges \\'eakly to 

T~ (ll') . \\"hich follO\\'s using standard im'ariance principle arguments, as in the proof of Stute (1997) 

Theorem 1.1. • 

PROOF OF COROLLARY 1 

Remark that in Theorem 1 \\'e show that JIlT" (w) = (16) + (17), where (17) = op (1). uniformly 

in w. under Ho. H ln and HI' Then, (9) follows applying Theorem 2 and the continuous mapping 

theorem. In order to prow (10). notice that under HI", 

(16) = In t (Yi - E(Ui\ TV;)) ii (lli (w) - ~i (w)) +; tgji (lli (w) - ~i (w») 
t=l t=l 

1 " 1 " = ,;n t; (Y; - E (U;\ Wi» fi (lli (w) -9i (w» + ~ 8gdi (lli (w) -9; (w) + op (1), 

using same arguments as in the proof of (7) in Theorem 1. Then, applying Theorem 2 and the Law 

of large numbers, we obtain that ,;nT" converges weakly to Too + S, and (10) follows applying the 
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continuous mapping theorem. Finally, (11) follo\\'s noticing that, by Theorem 1, uniformly in tu, 

= ~ t [Yi - E(YiI TV;)] f; [IT; (tu) - 9; (tu)] + ~ t [E(YiI TV;) - m;] f; [IT; (tu) - 9; (u·)] + Op (11-
1

/
2

) 

;=1 ;=1 

where, under HI, by the law of large numbers, the first term of the last expression is op (1) and the 

second one one diverges to infinity in probability, uniformly in w .• 

PROOF OF THEOREj\I 3 

Since JTiT~ (tu) _11- 1/ 2 2:Z:1 Ut J; [IT; (w) - 9; (w)] is equal to 

In t (Ot - ut) i; [ITi (w) - ~i (w)] 

+ In t Ut i; [Qd w ) - ~i (w)] 

+ In t ut (Ji - fi) [ITi (w) - 9i (w)], 

(27) 

(28) 

(29) 

it sufices to sho\\' that. uniformly in U·. E* ((27?) = op (1), E* ((28)2) = op (1) and E* ((29)2) = 
op (1). First. uniformly in w. 

(30) 

uniformly in w, by :'Iarkov's inequality, after applying (20) and 

by Lemma 3, 

E* [(2sf] = ~ t ull? [9i (w) - ~i (w)f 
i=1 
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uniformly in w, by :'Iarkoy·s inequality, after applying (26), and 

E*[(29)2J = ~tul(Ji-j;f[TIi(W)-9;(w)]2 
,=1 

< ~ t ul (Ji - fi) 2 

,=1 
= 0 (nhq )-1 + h2A ) , 

uniformly in w, by ~Iarkov's inequality, after applying (25). Notice that the result holds under the 

null and under the alternative. • 

PROOF OF COROLLARY 3 

By Theorem 3, .;nt~ (w) and n- 1/ 2 L~1 Ut fi [TIi (w) - 9i (w)] converges to the same limiting 

process. Then, the Corollary is proved using standard im'ariance principle arguments. conditional 

on Yn. as in Stute et al (1998) theorem .• 

PROOF OF THEORE)'I 4 

Xotice that 

y'nT,; (lL') + In t 7h;]i [IIi (w) - ~i (w)] (31) 

vnt~ (w) + (17) + In t (mi - mi) Ji [TIi (w) - ~i (w)] , (32) 

where, in Theorem 1. we proved that (17)= op (1) . The third term in (32) is equal to 

_1 t (m; - m;) Ji Vi - Ji) [IIi (w) - ~i (w)] 

.;n i=1 j; 
(33) 

1 ~ (mi - mj) Jl [TIi (w) - 9i (w)] 
+-L-.;n i=1 fi 

(34) 

1 ~ (n1i - m;) Jl [<Pi (w) - ~i (w)] 
+-L-y'ii i=1 /; . 

(35) 

Thus, it sufices to prove that the three terms in the last expression are op (1) uniformly in w. The 

proof is quite lengthy, thus, we simplify notation by calling 1>i (w) = 1>i and ~i (w) = ~i' By 

Cauchy-Swartz's inequality and AS, uniformly in w, 
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by (30) and (25). Uniformly in w, 

(36) 

(37) 

(38) 

where (37) is bounded, uniformly in w, by an expression proportional to 

applying lemmas 2, 3 and dominance conyergence; and (38) is, uniformly in w, bounded by an expression proportional to 

1l3~14q lE [(m 2 - md
2 

Kt2] 1+ 1l2~4q lE {E12 [KIJ] (m2 - m1)2 Kr2} I 
+ n2~4q lE {E12 [(m 2 - md 2 

K?2] K?3} 1+ n2~4q lE {E12 [(m3 - md K?3] (m2 - md Kfdl 
+ n~4q lE {E12 [E123 (1(14) KIJ] (m2 - 1711)2 K?2} 1+ 1l2~4q lE {E12 [(m3 - ml) Kd (m2 - md Kr2} I +~ lE {E12 [E123 (1\14) (m3 - md K13] (m2 - md K?2} I nh q 

1 +--, lE {E14 (E145 [E13-t5 «m2 - 171 1) Kd (m3 - ml) Kd K 15 ) K 14 }1 h-.q 

0(1) . 

since the first seven terms, in the last expression, are 0 (h2 (nh q)-l) by Lemmas 2,6 and dominance convergence, and the last term is an 0 (hTJ) by Lemmas 3, 5 and dominance convergence. Second, uniformly in w. E (35)2) is bounded by 

C E [(rh 1 - m1)2 it] + Cn lE [(m1 - 171 1) II (1)1 - ~1) (m2 - m2) n (1)2 - ~2)] I ' (39) 
where the first term in (39) is the right side if (36) which is 0 (nhq)-l + hTJ) and the second term is bounded, uniformly in w, by an expression proportional to 

( 40) 
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(oH) 

(-12) 

Thus the proof of the Theorem is concluded by showing that, uniformly in tv, (40) , (41) and (42) 

are 0 (1) . First, (40) is bounded, uniformly in w, by an expression proportional to 

n~49 lE [(m3 - m1) Kr3 (m3 - m2) K23 (G\ - ~3) (92 - 9-1) K24] I 
+ n~491E [(m 1 - m2)2 K;2 (91 - 93) K13 (<P2 - <P4) K24] I 
+ n~4q lE [(1113 - md Kr3 (1114 - 1112) Ki4 (<PI - ~3) (</12 - 94)] I 
+ hI, IE[dKr3K23(91-93)(1i'>2-94)K2-1]1 n .. q 

+ h:q lE [ems - ml) K 1S (ms - m2) K2s (91 - 93) K13 (92 - 94) K2411 

1 
+ h49 lE [0'~K15K25 (Ii'>l - 93) K 13 (92 - 94) K24 ] I 

+ h~q lE [(m3 - mr) Kr3 (111S - m2) K25 (1i'>1 -1i'>3) (cP2 - 94) K24] I 
+ ;~q lE [ems - mr) K 1S (m6 - m2) K26 (91 - 93) K 13 (92 - 94) K2411 

< _JI, E {E23 [E123 (IK24 1) 1m3 - m11 Kr3] 1m3 - m211K231} 
71 1',q 

+ n~4q lE {E12 [E123 (IK24 \) IK13 11 (m1 - m2)2 Kr2} I 
+-J

I
, {E [1m3 - mll Kl3]}2 

71 l"q 

+ hI, E{E23[E123(IK24I)Kr3]0'~IK231} 
11 "q 

+ h~q E {(E5 [l m5 - m111Kl5 11E51 «91 -1i'>3) K13 )1])2} 

+ h:q E { O'~ (E5 [lK15 11Es1 «<PI - 93) K13 )1])2} 

+ h~q E [1 m3 - m11 Kr3] E {IE24 [(m5 - m2) K2511K2411} 
n 2 

+ h4q (E {IE13 [(m5 - m1) K 15 ] IK1311}) 

= 0 (1), 

since the first and second terms, in the last expression, are 0 (h2 (nhq) -1) and the third term 

o (h2 (nh29) -1) by lemmas 2, 6 and dominance convergence; the fourth term is 0 (nhq)-l) by 

lemmas 2,3 and dominance convergence; the fifth and sixth terms are 0(1) by lemmas 2,7 and 

dominance convergence, the seventh term is 0 (hfJ-q+l) = 0 (JTihq ) by Lemmas 2,5,6 and dominance 
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com"ergence; and the eighth term is 0 (nh2'1) by Lemmas 2,5 and dominance convergence. Second, (41) is, uniformly w, bounded by 

n2~4q lE [(m3 - ml) KI3 (m3 - m2) K13 (01 - 4;2) KI2 (02 - c?3)J I 
+ n2~4q lE [(m2 - ml)2 Kr2 (01 - 92) (4;2 - 03) K23] I 
+ n2~4q lE [(m2 - md K;2 (m3 - m2) K13 (01 - 02) (02 - 03) K23] I 
+ n2~4q lE [a~K13K13 (01 - 02) KI2 (02 - 03)) I 

1 
+-h4 lE [(m4 - md KI4 (m4 - m2) K24 (<;\ - 92) KI2 (02 - 03) K23JI 

n q 

+ h14 lE [(m3 - ml) I<13 (m4 - m2) I<24 (91 - (h) I<12 (92 - 03) I<23JI n q 

+ n~4q lE [(m4 - ml) I<14 (m3 - m2) I<13 (01 - 02) KI2 (02 - 03)J I 
1 

+ I1h4q lE [a~KI4I<24 (01 - 92) KI2 (02 - 93) K23J I 
+ h:q lE [(m4 - ml) KI4 (m5 - m2) K25 (01 - 02) I<12 (62 - 03) K23 JI 

< 112~4q E {£23 [1m3 - mlIIKJJ/ IKI2 1J 1m3 - m21 I<13} 

+ 1l2~14q E {E12 (I K231) (m2 - md21K1213} 

1 {[ 2 "2]}2 + 112 h4q E2 (m2 - md K 12 

+ n2 ~4q E {E23 [If{ JJ/ IKI211 a~J{13} 
1 

+-h' E {E14 [E124 (IKJJ/) Im4 - m211K24 11 K J2/11m4 - m111K14 1} 
1l .. q 

1 
+ llh4qE {E23 [E21 (1 m3 - mll /1<JJ/) IKI2/J E23 [l m4 - m211I<241J IK23 1} 
+ n~4q E {E12 [l m4 - mlllI<14lJ EI2 (1 m3 - mll K;3) IK 12I} 

+ n~4q E {E14 [E124 (IKJJ/) IK2411KI2 1J a~ 1I<141} 
1 

+ h4q E {E123 [lm4 - mlllI<14lJ IE123 [(m5 - m2) K2511IK2311I<12I} 
= 0(1). 

since, the first three terms, in the last expression, are 0 (h2 (n2h2qrl) by lemmas 2,6 and dominance com"ergence, the fourth term is 0 ( (n2 h2q ) -I) by lemmas 3,6 and dominance convergence, the fifth, sixth and seventh terms are 0 ( h2 (nhq) -I) by lemmas 2,6 and dominance convergence, 
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the eighth term is 0 ( (nhq) -1) by Lemmas 2,3 and dominance convergence, and the nineth term is 

o (h7)+I) by lemmas 2,5,6 and dominance convergence. Finally (42) is bounded, uniformly in tt'. by 

an expression proportional to 

n3~4q E [(m1 - m2)2 Kt2 (91 - 92)2] 
+ n2~4q lE [(m 3 - ml) K 13 (m3 - m2) K23 (91 - 92)2 K;2] I 
+ n2~4q lE [(m2 - md2 

Kf2 (m3 - m2) K23 (91 - 92)2] I 
+ n2~4q lE [(j~KI3K23 (91 - 92)2 Kf2] I 
+ n~4q lE [(m3 - md K 13 (m4 - m2) K24 (91 - 92) Kr2] I 

since the first term, in the last expression, is 0 ( h2 (n3 h3q ) -1) by Lemma 6, the second term is 

o ( h 2 (112 h 2q ) -1) by Lemma 6 and dominance convergence, the third term is 0 ( h 7)+ 1 (n 2 h 2q ) - 1 ) 

by lemmas 5.6 and dominance convergence, the fourth term is 0 ((n2h2q) -1) by lemmas 2,3 and 

dominance com'ergence, and the fifth term is 0 (h T1+1 (nhq )-I) . 

PROOF OF COROLLARY 3 

It follows applying Theorem -! and Corollary 2. 

LEMMATA 

The next fi,-e lemmas are the Lemmata in Robinson (1988). Lemmas 6 and 7 are straightfor\yardly 

prO\'ed from the previous lemmas. 

Lemma 1 Let supu Ik (u)1 + J~oo IUAk (u)1 du < 00, for some ,\ 2: O. Then uniformly in x 1: Ily - zllA IK (y ~ z) I dy ~ Chq+A
• 

Proof.- Robinson (1988) Lemma 1. 

Lemma 2 Let sUPx f (x) < 00, sUPu Ik Cu)! + J~oo!k (u)! du < 00. Then uniformly in x 

Proof.- Robinson (1988) Lemma 2. 

Lemma 3 Let supx f (x) < 00, E [Is (X)!] < 00, suPu!k (u)! + J~oo!k (u)! du < 00. Then uniformly 

in x 

E Is (X) K ( X ~ x) I ~ Chq
• 
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Proof.- Robinson (1988) Lemma 3. 

Lemma 4 For A satisfying I - 1 < A :s I, where I ~ 1 is an integer, let f E 9A, k E K/. Then 

uniformly in x 

Proof.- Robinson (1988) Lemma 4. 

Lemma 5 For A,/-L satisfying 1-1 < A:S I, m-I < /-L:S m, where I ~ 1, m ~ 1 are integers, let 

f E 9f' and S E 9~ some n > 0, k E K/+m-I. Then uniformly in x 

E {[s (X) - s (x)] K ( X ~ x) } :s CS (x) hq+rnin(,x+I,/-l), 

where E [IS (Xw"J < 00. 

Proof.- Robinson (1988) Lemma 5. 

Lemma 6 For A. p satisfying 1- 1 < A :s I, m-I < fl :s m, where I ~ 1. m ~ 1 are integers, let 

f E 9>: and s E 9f some n > O. k E K/. Then uniformly in x, for 'Y :s n, 

E { Is (X) - s (z) I' I K ( X ; x) I} :s CS (x) hq+1
, ( 43) 

u'here S (.1') = S] (.1')' + Is (.1')1' + E [Is (X)I'] and sUPYES~p Is (y) - s (x)1 / Ily - xII :s S] (x). 

Proof.- The left side of (43) is bounded by 

CS 1 (x)' isrp 11 y - x 1/' I K ( Y ~ .1' ) I dy + C Is rp /I y - xl/H1 f (y) Is (y) - s (x) IlK (y ~ x) I dy 

< Ch q+1 SI (x) + Chq+, [Is (xW + E (Is (X)I')] s~P {l ul
q+1 Ik (uW} . 

Lemma 7 If k E K2 and r (-, w) E 9~ some v > O. uniformly in w, then uniformly in wand s. 

( 44) 

Proof.- The left side of (44) is equal to 

E {1 (X :s x)(1' (s, z) - l' (X, z)) K (X; s) } ( 45) 

+1' (s, z) E {[1 (s :s x) - 1 (X :s x)] K (X; s) } , (46) 
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where, uniformly in wand s, 

(45)::; E{llr(s,z) -r(X,z)IK (X ;s)I}::; Chq+1 ( 4i) 

by Lemma 6, using the fact that, since r(x,·) E g;:, suPxS(x) < 00, and (46) is equal to r(s.:r) 

times 

1 (s ::; :r) i: K C ~ u) [f (s) - f (u)] du 

+ i~ K ( s ~ u) [J (u) - f (s)] du 

-f(s) {J:oo K(S~U)dU-hq1(S::;X)} 
o (hq

) , 

since (48) ::; Ch q
+).. by Lemma 4, 

(49) ::; I: IK (s~. ll) Ilf (s) - f (u)1 du ::; Ch
q+1

, 

as in the proof of Lemma 6, and (50)= op (1) using the fact that, 

1 jX (s -u) j(X-S)/h { 
lim - K -h- dll = lim K (ll) dll = 
)J~OC hq -cc n~oo -00 
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TABLE 1 

Proportion of rejections in 2000 fllonte Carlo samples, under Ho : E (YI W) = E (YI X) a.s., 

p = 1, for the bootstrap test and an asymptotic t-ratio based on a linear regression model. 

Bootstrap tests are based on 2000 bootstrap samples, h = Cn-1/ 2 for C = 0.25,0.5,1, 2. ~Iodel: 

Yi = 1 + m(Xi ) + Ui , i = 1, ... , n, Xi '" U (0,1) , zi1
) '" U (0,1), zi2

) '" U (0,1) , Ui '" N (0, 1) 

independent 

m(x}=l+x 

p=l 

n = 50 III n = 100 

0.1 0.098 0.103 

Asymptotic Wald 0.05 0.054 0.052 

0.01 0.016 0.013 

C = 0.25 C =0.5 C= 1 C=2 C = 0.25 C =0.5 C = 1 

0.1 0.151 0.126 0.105 0.101 0.138 0.119 0.112 

Bootstrap Analog 0.05 0.080 0.062 0.050 0.050 0.075 0.067 0.056 

0.01 0.011 0.010 0.007 0.006 0.018 0.011 0.011 

0.1 0.160 0.131 0.111 0.142 0.144 0.122 0.114 

Approx. Bootstrap 0.05 0.088 0.065 0.059 0.075 0.079 0.068 0.060 

0.01 0.014 0.012 0.011 O.OH 0.019 0.013 0.012 

p=2 

n = 50 III n = 100 

0.1 0.126 0.105 

Asymptotic "'aid 0.05 0.070 0.053 

0.01 0.021 0.016 

C = 0.25 C = 0.5 C = 1 C=2 C = 0.25 C =0.5 C = 1 

0.1 0.164 0.126 0.100 0.102 0.157 0.120 0.100 

Bootstrap Analog 0.05 0.072 0.049 0.038 0.038 0.072 0.055 0.047 

0.01 0.009 0.003 0.004 0.003 0.014 0.011 0.095 

0.1 0.175 0.132 0.109 0.120 0.162 0.125 0.102 

Approx. Bootstrap 0.05 0.080 0.055 0.043 0.056 0.080 0.057 0.050 

0.01 0.015 0.006 0.004 0.009 0.015 0.012 0.010 
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C =2 

0.113 

0.055 

0.011 

0.146 

0.076 

0.018 

C= 2 

0.093 

0.045 

0.008 

0.103 

0.058 

0.010 



TABLE 1 (Cont.) 

m (x) = 1 + sin (8x ) 

p=l 

n = 50 III n = 100 

0.1 0.096 0.102 

Asymptotic Wald 0.05 0.053 0.051 

0.01 0.010 0.012 

C = 0.25 C=0.5 C= 1 C=2 C = 0.25 C=0.5 C= 1 C=2 

0.1 0.153 0.123 0.135 0.354 0.138 0.119 0.125 0.429 

Bootstrap Analog 0.05 0.081 0.062 0.069 0.173 0.075 0.067 0.062 0.242 

0.01 0.010 0.010 0.008 0.023 0.018 0.011 0.011 0.037 

0.1 0.165 0.145 0.190 0.437 0.144 0.122 0.162 0.598 

Approx. Bootstrap 0.05 0.089 0.074 0.101 0.242 0.079 0.068 0.083 0.363 

0.01 0.015 0.010 0.017 0.048 0.019 0.013 0.018 0.086 

p=2 

a 11 = 50 
11 

n = 100 

0.1 0.121 0.105 

Asymptotic "'ald 0.05 0.068 0.058 

om 0.014 0.015 

C = 0.25 C=0.5 C= 1 C=2 C = 0.25 C=0.5 C= 1 C=2 

0.1 0.171 0.127 0.109 0.173 0.154 0.116 0.109 0.206 

Bootstrap Analog 0.05 0.072 0.053 0.047 0.077 0.074 0.056 0.054 0.104 

0.01 0.008 0.004 0.004 0.013 0.014 0.012 0.009 0.016 

0.1 0.182 0.145 0.145 0.222 0.160 0.124 0.129 0.279 

Approx. Bootstrap 0.05 0.085 0.066 0.070 0.108 0.081 0.060 0.065 0.151 

0.01 0.014 0.005 0.011 0.020 0.014 0.012 0.014 0.034 
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TABLE 1 (Cont.) 

m (x) = 1 + sin (lOx) 

p=l 

n = 50 III n = 100 

0.1 0.099 0.106 

Asymptotic Wald 0.05 0.052 0.054 

0.01 0.012 0.011 

C = 0.25 C=0.5 C= 1 C=2 C = 0.25 C=0.5 C= 1 C= 2 

0.1 0.153 0.129 0.152 0.269 0.142 0.117 0.126 0.406 

Bootstrap Analog 0.05 0.079 0.063 0.063 0.131 0.076 0.062 0.062 0.197 

0.01 0.011 0.010 0.010 0.016 0.017 0.013 0.013 0.037 

0.1 0.163 0.148 0.195 0.308 0.145 0.125 0.171 0.504 

Approx. Bootstrap 0.05 0.089 0.075 0.093 0.167 0.081 0.068 0.080 0.285 

0.01 0.015 0.014 0.013 0.031 0.018 0.014 0.021 0.063 

p=2 

Q n = 50 n = 100 

0.1 0.132 0.111 

Asymptotic Wald 0.05 0.076 0.055 

0.01 0.019 0.015 

C = 0.25 C =0.5 C= 1 C=2 C = 0.25 C =0.5 C = 1 C=2 

0.1 0.168 0.120 0.113 0.160 0.153 0.115 0.107 0.097 

Bootstrap Analog 0.05 0.070 0.054 0.044 0.074 0.075 0.058 0.052 0.088 

0.01 0.009 0.004 0.005 0.007 0.013 0.011 0.009 0.011 

0.1 0.181 0.141 0.145 0.181 0.161 0.128 0.132 0.246 

Approx. Bootstrap 0.05 0.086 0.064 0.069 0.097 0.081 0.064 0.064 0.119 

0.01 0.013 0.005 0.009 0.012 0.014 0.012 0.013 0.024 
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TABLE 2 

Proportion of rejections in 2000 ~lonte Carlo samples, under HI : E (Y/ HI) f- E (Y/ X) a.s., 

p = 1, for the bootstrap test and an asymptotic t-ratio based on a linear regression model. 

Bootstrap tests are based on 2000 bootstrap samples, h = Cn- I / 2 for C = 0.25,0.5,1. 2. l\lodel 

Yi = 1 + Xi + sin (-yZi) + Ui, i = 1, ... , n, Xi '" U (0,1), zF) '" U (0, 1), ZJ2) '" U (0, 1), 

U j '" N (0,1) independent. 

,=5 
p=1 

n = 50 III n = 100 

0.1 0.980 1.000 

Asymptotic t-ratio 0.05 0.963 1.000 

om 0.878 0.997 

C = 0.25 C=0.5 C=1 C=2 C = 0.25 C=0.5 C= 1 

0.1 0.955 0.965 0.961 0.923 1.000 1.000 1.000 

Bootstrap Analog 0.05 0.912 0.926 0.921 0.854 0.998 1.000 1.000 

0.01 0.675 0.736 0.735 0.634 0.988 0.992 0.990 

0.1 0.962 0.967 0.962 0.933 1.000 1.000 1.000 

Approx. Bootstrap 0.05 0.922 0.929 0.921 0.870 0.998 1.000 1.000 

0.01 0.749 0.760 0.729 0.621 0.990 0.991 0.990 

p=2 

et n = 50 
11 

n = 100 

0.1 0.971 1.000 

Asymptotic Wald 0.05 0.944 1.000 

0.01 0.824 0.992 

C = 0.25 C=0.5 C= 1 C=2 C = 0.25 C=0.5 C= 1 

0.1 0.797 0.802 0.780 0.714 0.975 0.980 0.979 

Bootstrap Analog 0.05 0.656 0.671 0.657 0.583 0.945 0.950 0.953 

0.01 0.315 0.349 0.348 0.303 0.815 0.836 0.831 

0.1 0.814 0.810 0.789 0.736 0.977 0.980 0.979 

Approx. Bootstrap 0.05 0.686 0.684 0.659 0.594 0.948 0.953 0.954 

0.01 0.378 0.375 0.355 0.284 0.838 0.843 0.834 
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C=2 

0.999 

0.998 

0.982 

1.000 

0.998 

0.984 

C=2 

0.969 

0.933 

0.788 

0.973 

0.937 

0.793 



Q 

0.1 0.199 

Asymptotic Waid 0.05 0.126 

0.01 0.048 

C = 0.25 

0.1 0.675 

Bootstrap Analog 0.05 0.478 

0.01 0.156 

0.1 0.697 

Approx. Bootstrap 0.05 0.509 

0.01 0.184 

Q 

0.1 0.200 

Asymptotic \Yald 0.05 0.122 

0.01 0.048 

C = 0.25 

0.1 0.436 

Bootstrap Analog 0.05 0.257 

0.01 0.044 

0.1 0...l65 

Approx. Bootstrap 0.05 0.283 

0.01 0.068 

TABLE 2 (Cont.) 

,=8 

n = 50 

C=0.5 C= 1 

0.665 0.656 

0.471 0.452 

0.153 0.148 

0.678 0.679 

0...l90 0.478 

0.168 0.169 

n = 50 

C=0.5 C = 1 

0.399 0.364 

0.222 '0.203 

0.039 0.038 

0...l16 0.383 

0.236 0.203 

0.048 0.038 
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p=l 

11 = 100 

0.276 

0.178 

0.067 

C=2 C = 0.25 C=0.5 C= 1 C=2 

0.642 0.959 0.968 0.973 0.971 

0.436 0.893 0.893 0.899 0.905 

0.134 0.567 0.577 0.585 0.554 

0.688 0.962 0.970 0.975 0.977 

0.504 0.898 0.899 0.910 0.921 

0.174 0.589 0.592 0.596 0.618 

p=2 

n = 100 

0.239 

0.154 

0.047 

C=2 C = 0.25 C=0.5 C = 1 C=2 

0.351 0.747 0.740 0.735 0.722 

0.194 0.556 0.535 0.522 0.502 

0.038 0.197 0.176 0.167 0.155 

0.382 0.757 0.753 0.743 0.742 

0.211 0.576 0.550 0.531 0.535 

0.042 0.216 0.186 0.171 0.171 



TABLE 2 (Cont.) 

''/ = 10 

p=l 

n = 50 III n = 100 

0.1 0.096 0.096 

Asymptotic Wald 0.05 0.054 0.052 

0.01 0.013 0.012 

C = 0.25 C=0.5 C= 1 C=2 C = 0.25 C=0.5 C= 1 C=2 

0.1 0.473 0.447 0.410 0.410 0.813 0.821 0.814 0.796 

Bootstrap Analog 0.05 0.268 0.250 0.237 0.237 0.627 0.623 0.615 0.599 

0.01 0.059 0.058 0.050 0.050 0.252 0.250 0.237 0.232 

0.1 0.498 0.468 0.433 0.433 0.823 0.827 0.824 0.833 

Approx. Bootstrap 0.05 0.294 0.267 0.259 0.259 0.664 0.631 0.626 0.640 

0.01 0.075 0.062 0.057 0.057 0.269 0.263 0.251 0.271 

p=2 

n = 50 III n = 100 

0.1 0.130 0.105 

Asymptotic \Vald 0.05 0.073 0.057 

0.01 0.016 0.019 

C = 0.25 C = 0.5 C= 1 C=2 C = 0.25 C= 0.5 C = 1 C=2 

0.1 0.290 0.244 0.213 0.205 0.496 0.455 0.433 0.411 

Bootstrap Analog 0.05 0.152 0.126 0.104 0.095 0.305 0.272 0.252 0.235 

0.01 0.020 0.017 0.015 0.013 0.073 0.061 0.059 0.054 

0.1 0.311 0.256 0.225 0.235 0.509 0.462 0.443 0.436 

Approx. Bootstrap 0.05 0.172 0.139 0.113 0.123 0.324 0.282 0.259 0.268 

0.01 0.033 0.021 0.019 0.023 0.080 0.067 0.063 0.068 
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