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1 Introduction 

Factor models are of great importance when dealing with reduction of dimensionality prob­

lems. When data is dynamic, this is specially important since for vector ARMA models, as 

well as for econometric models, the number of parameters to estimate grows rapidly with 

the number of observed variables. Dynamic factor models have been studied by Anderson 

(1963), Priestly et al (1974), Box and Tiao (1977), Brillinger (1981), Engle and Watson 

(1981), Shumway and Stoffer (1982), Watson and Engle (1983), Peña and Box (1987) and 

Velu et al (1986) among others. 

In the nonstationary case, estimating the nonstationary factors is equivalent to testing for 

cointegration, since as it was formally shown by Escribano and Peña (1994), both concepts 

are closely related. Engle and Granger (1987) presented a two step estimator based on OL8 

regressions. Phillips and Ouliaris (1988) proposed a method based in principal component 

analysis applied to the innovation sequence resulting after taking first differences of the 

series. Stock and \;Vatson (1988) developed a method to identify the number of common 

trends for VAR models. Residual based tests for cointegration are discused in Phillips and 

Ouliaris (1990). Related work on the topic is that of Tiao and Tsay (1989) and Gonzalo 

and Granger (1995). Johansen (1988, 1991) developed a maximum likelihood approach to 

estimate the linear space spanned by the cointegration vectors. Reinsel and Ahn (1992) have 

proposed a reduced rank model to deal with this problem and Ahn (1997) related it to the 

scalar component models of Tiao and Tsay (1989). Nonparametric cointegration analysis is 

considered in Bierens (1997). 

In order to model the dynamics of variables that exhibit cointegration, the cointegration 

relations that make the series stationary should be estimated and interpreted. Apart from 

problems that can arise due to arbitrary normalizations, when the number of series is mod­

erate to large, the task becomes difficult. Then, the number of cointegration relations can 

be large, and since the basis from the cointegrating subspace that can be chosen is arbitrary, 

its interpretation can be very complicated. In this case, it could be better to estimate and 

interpret a small number of nonstationary factors that characterize the growing behaviour of 

the series. This can be achieved using dynamic factor models. In this article, we pro pose a 

method to identify the factor space by looking at the eigenvalues of the generalized (properly 

normalized) variance-covariance matrices of the observed series. It is shown that the nonzero 

eigenvalues converge to random quantities (functionals of Wiener processes) while the eigen­

vectors for those nonzero eigenvalues converge to a random basis of the vector space spanned 

by the factor loading matrix. The subspace of stationarity or cointegration is given by the 

eigenvectors of the zero eigenvalues. As it will be shown it is orthogonal to the subspace 

of nonstationarity. An important advantage of this approach is that no model is required. 
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Besides, it constitutes a simple extension to the one applied in the stationary case. 

This article is organized as follows. Section 2 presents the generalized dynamic factor 

model and study its properties. Section 3 presents the main result, which is the basis to 

separate the nonstationary factors from the stationary ones, and shows how this can be 

carried out by a generalization of a method proposed by Peña and Box (1987) for stationary 

factors and, finally, section 4 presents sorne conclusions. 

2 The Factor Model 

Let Yt be an m-dimensional vector of observable time series, generated by a set of not 

observable factors. We assume that each component of the vector of observed series, Yt, can 

be written as a linear combination of common factors and specific components; that is 

Yt 

m xl 

P Jt + nt + Et 

mxr rx1 mx1 mx1 
(1) 

where Jt is the r-dimensional vector of common factors, P is the factor loading matrix, 

and nt is the vector of specific components and Et is white noise (O, ¿f).Therefore, the 

common dynamic structure comes through the common factors, Jt, whereas the vector nt 

explains the dynamics specific to each time series.\iVe suppose that the vector of common 

factors follows a VARMA(p, q) model 

(2) 

where <I>(B) = 1 - <I>(l)B-,··· ,-<I>(p)BP, and 8(B) = 1 - 8(1)B-,··· ,-8(q)Bq, are r x r 

polinomial matrices and B is the backshift operator. The sequence of vectors at are normally 

distributed, have zero mean, a full rank covariance matrix ¿a and are serially uncorrelated, 

that is 

(3) 

The vector of common factors, Jt, can include stationary and nonstationary terms. We 

assume that the specific components, nt, if they exist, have stationary dynamic structure 

and follow an ARMA model, 

where <I>n and 8 n are mxm diagonal matrices given by cI>n(B) = 1 -cI>n(1)B-, ... ,-<I>n(p)BP, 

and 8 n(B) = 1 - 8 n(1)B-,··· ,-8n(q)BQ, and therefore each component follows an uni­

variate ARMA(pi, qi), i = 1,2,··· ,m, being p=max(Pi) and q=max(qi) , i = 1,2,··· ,m. 
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The sequence of vectors et are normally distributed, with zero mean and diagonal covariance 

matrix ~e. We assume that the noises from the common factors and the specific components, 

are also uncorrelated for all lags, 

(4) 

and both noises are uncorrelated with the noise in model (1), Et, for alllags 

(5) 

and 

(6) 

The model as stated is not identified, because for any r x r non singular matrix H the 

observed series Yt can be expressed in terms of a new set of factors, 

Yt = P* ft* + nt (7) 

1>*(B)ft = 8(B)*a; (8) 

with p*' P* = (H-1)' P' P H-l, ft* = H ft, a; = H at, 1>*(B) = H1>H-l, 8*(B) = H8H-1, 

and ~~ = H~aH'. To solve the identification problem, we follow the work by Hannan (1969, 

1971, 1976) and Kohn (1979) which has been more recently extended to nonstationary state 

space models by \Vall (1987), and look for parametrizations that are unique in their effect 

on first and second moments of the observed time series. 

Several identifying restrictions appear in the literature. Usually the factors noise covari­

ance matrix ~a is considered to be diagonal. Also P can be chosen such that P' P = 1. Sorne 

parameters of the processes followed by the factors may also be restricted: for example, if 

there is a common trend orthogonal to sorne stationary factors, the matrix 1> has already 

sorne fixed paramenters. Note that if \Ve assume ~a diagonal, it is also implied by the model 

that 

E (Adj,r) = O Vt, T; for i # j. (9) 

This condition is not restrictive, since the factor model can be rotated for a better 

interpretation when needed (see for example Harvey (1989) for a brief discussion about it), 

and helps to make easier the derivation of the asymptotics. 
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3 Eigenstructure of nonstationary factor models 

When nt is white noise and the factors are stationary model (1) and (2) reduces to the factor 

model studied by Peña and Box (1987). These authors developed a method of identifying 

the number of common factors based in the common eigenstructure of the lagged covariances 

matrices of the vector of time series. N evertheless, in many cases real time series vectors are 

nonstationary. Suppose that the vector of time series is 1 (d). In a general case, sorne common 

factors will be stationary, while others will be nonstationary. In particular, a nonstationary 

factor can be a common trend, in the sense of Stock and Watson (1988), driving aH the 

series. 

Assume that Yt is I(d), for d ::::: 1, we define the generalized sample covariance 

matrices Cy(k) properly normalized as 

(10) 

and we will see that these matrices play the role of proper sample covariance matrices for 

the stationary case. 

Suppose that there are rl common I(d) factors, h,t = (JI,t,,·· ,¡;})', r2 common zero 

mean stationary factors, 12,t = Ui,t,···, ¡;})' , and that the specific components, nt = 

(ni, ... ,nr)', if they exist, are zero mean stationary ones. Divide the vectors of com­

mon factors and noise as ¡f = (J{ t, ¡~ t) and a~ = (a~ t, a~ t), respectively, and the diagonal 

"ariance matrix for at as ¿a = [El ' O l. " 
O ¿2 

Assumption 1. Suppose that the equation for the common nonstationary factors is 

(d::::: 1) 

Ut (11) 

Ut w(B)al,t 

with E (al,t) = O and var (al,t) = El = diag(ar," . ,a;l) > O, h,-(d-l) = h,-(d-2) = 

'" = h,o = O, Ilwill = [tr(w~w)p/2 and ¿:>llwill < oo. Define matrix w(1) = L~o Wi with 

rank (w (1)) = rl' Then, the foHowing result will help us to identify the nonstationary factors 

and to separate them from the stationary ones. 

Theorem 1. For the nonstationary factor model presented in sections 2 and 3 and as­

sumption 1, define Cy(k) as in (10) , for k = 0,1,'" ,K, such that KIT -t O. Then: 

(i) The number of common nonstationary I(d) factors, r¡, is the number of nonzero eigen­

values of lim Cy(k), k = 0,1,'" ,K, where limits are taken as T goes to infinity. 

(ii) Define the variability in {Yt}[=l as trace(Cy(O)). In the limit, when T -t 00, the amount 
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of variability is random (as in the finite sample case), but the subspace spanned by the 

eigenvectors corresponding to eigenvalues associated with nonstationary factors is constant. 

Proof (i) Substituting Yt, expressed as in (1), in equation (10), we have 

1 
- T2d ¿ (Yt-k - Y)(Yt - y)' 

P(T~d L,(ft-k - f)(ft - f)')P' + P(T~d L,(ft-k - f)n~) 

+ P(T
1
2d ¿(ft-k - f)E~) + (~d ¿ nt-k(ft - f)')p' 

1 ""' ' 1 ""' ' (1 ""' ( -)')' + T2d 6 nt-knt + T2d 6 nt-kEt + T2d 6 Et-k Jt - J P 

1 ""' ' 1 ""' ' + T2d 6 Et-kntT2d 6 Et-kEt 

P(T
1
2d ¿:(ft-k - f)(ft - f)')P' + op(l). 

where vector l' = (/{, 0~2) and f1 = liT L Jl,i' It is shown in Appendix 1 that all the terms 

but the ones associated with the I(d) factors are op(l). 

From (12), and following the notation in Tanaka (1996), the I(d) factors, JI,t can be 

. _ (d) _ (d-1) (d) _ ",t (d-1) { (d_1)}T . ) 
expressed as h,t - J1,t - Jl,t + J1,t-1 - Ltj=l Jl,j ,where J1,t t=l lS an I(d - 1 

process that can be defined recursively in a similar way with Ji~l = U1,t. For example, for 

( ) 
(2) ",t (1) {(l)}T. ( ) (1) (1).. 

1 2 factors J1,t = Ltj=l J1,j and J1,t t=l lS the 1 1 process J1,t = Ut + J1,t-1' Wüh thlS 

. J - J ",k-1 J(d-1) 
notatlOn, 1,t-k - 1,t - Lti=O 1,t-i' so 

T 

T~d ¿: (h,t-k - f1)(h,t - fd 
t=k+1 

1 T 

T2d ¿: (h,t - fd (h,t - fd' -
t=k+1 

T k-1 
1 ""' ("" (d-1»)( -)' 

T2d 6 6 J1,t-i J1,t - JI . 
t=k+l i=O 

From Chan and Wei (1988) and Tanaka (1996) L Ji~~~) f{,t is Op(T2d- 1
) for finite i and i 

small relative to Ti also 

Td!,/2 tfl,t '* W(l)E:/
2 1,' Fd-1(r)dr 

t=l 

T~d t J"d:,t '* W(l)E:/
2 
/,' Fd-1 (r)Fd-1 (r)'dr(E:/

2
)'W(l/ 

where Fd(T) is the d-fold integrated Brownian motion and can be defined recursively by 

Fd(T) = J; Fd_1(S)ds, for d = 1,2, ... and FO(T) = W(T) where W(T) is the r1-dimensional 
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T~d ~ (h,t-k - 11)(fI,t - Id 
t=k+1 

1 T 

T2d ~ (fI,t - Id (fI,t - Id' -
t=k+1 

T k-1 
1 ""' ("" (d-1»)( -)' 

T2d 6 6 fl,t-i f1,t -!I . 
t=k+1 i=O 

From Chan and Wei (1988) and Tanaka (1996) L fi~~~) f{,t is Op(T2d-1) for finite i and i 

small relative to T; also 

Td!,/2 tfl,t '* W(1)E:/
21' Fd- 1(r)dr 

t=l 

T~d t J"d;,t '* W(1)E:/
2 l' Fd-1 (r)Fd- 1 (r)'dr(E:/

2
)'W(1/ 

where Fd(T) is the d-fold integrated Brownian motion and can be defined recursively by 

Fd(T) = J; Fd_1(S)ds, for d = 1,2, ... and FO(T) = W(T) where W(T) is the rI-dimensional 
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Brownian motion. Then, by the continuous mapping theorem (Billingsley, 1968) 

T 1 

T~d ~(fl,t - fl)(fr,t - fr)' =} W(1)~~/21 Vd_l(T)Vd_l(T)'dT(~~/2)'W(1)' (12) 

where Vd(T) = Fd(T) - Jol Fd(T)dT. Partitioning P as [PlP2], where PI (P2) is the m x rl, 

(m x r2) submatrix of the factor loading matrix associated to the nonstationay (stationary) 

factors and using again the continuous mapping theorem (Billingsley, 1968) 

1 
lim T2 L(Yt-k - Y)(Yt - y)' 

lim P(T
1
2d ~(ft-k - f)(it - f)'p' 

=} [P
l
P

2
] [ W(1)~~/2 Jol Vd_l(T)Vd_l(T)'dT(~~/2)'W(1)' 

OT2XT¡ 

PI W(1)~~/2(¡1 Vd- l (T) Vd- l (T)' dT) (~~/2)'W(1)' P~ (13) 

Note that all generalized covariance matrices (for lag O, as well as, for lag k, finite) have 

the same limiting distribution. 

Let S = ~i/2 Jol Vd_l(T)Vd_l(T)'dT(~i/2), , then its spectral decomposition for each real­

ization, leads to S = BAB' so r y = AAA' where A = PI W(l)B and A has its TI eigenvalues 

different form zero. Therefore, the number of zero eigenvalues of r y is m - TI. Empirically, 

the number of common nonstationary factors can be found as the number of nonzero eigen­

val ues of Cy (k), since Cy (k) =} r y and the ordered eigenvalues are continuous functions of 

the coefficient matrix (Lemma 2 of Anderson et al, 1983), applying the continuous mapping 

theorem, the ordered eigenvalues of Cy(k) converge weakly to those of ry. 
(ii) Define the variability in {Yt}f=l as tTace(Cy(O)). In the limit, when T -+ 00, the 

amount of variability is random (as in the finite sample case), but the subspace spanned 

by the eigenvectors corresponding to eigenvalues associated with nonstationary factors is 

constant. For matrices Cy(k), we just found their limiting distribution given by (13) and by 

the last paragraph of (i) 

T¡ 

trace( Cy(O)) =} ~ Ai 
i=1 

where Ai, i = 1,'" ,TI are the diagonal elements of A, random quantities. The subspace 

spanned by the columns of PI is the rank of Fr, of dimension rl, and it can be called the 

subspace of nonstationarity since it is associated to the I(d) factors. The null space of PI 
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is orthogonal to the one spanned by Pto It can be caHed the subspace of stationarity or 

cointegrationo 

The next result establish that the limit random matrix has TI eigenvalues strictly greater 

than zero almost sureo 

Theorem 2. For the model of sections 2 and 3 and assumption 1, r y has TI eigenvalues 

greater than zero almost sure and m - TI equals zeroo 

Proof For the factor model of sections 2 and 3, under assumption 1, it was proved in 

theorem 1, equation (12) that 

ST = T~d I)h,t - !I)(h,t - !d =} W(1)~i/21I Vd_I(T)Vd_I(T)'dT(~i/2)'W(1)'o 

The eigenvalues of the limiting sequence ST are aH greater than zero, since this is always 

a positive definite symmetric matrixo This is easily seen if we apply the next equality given 

in Bellman (1960, po 49) , for s = 1,2, o o o ,TI, which proves that aH the principal minors have 

determinant greater than zero and therefore ST is postive definiteo Let xi, i = 1,2, o o o s be a 

set of T-dimensional vectors, T 2: s, given by Xi = ft - Rl, where f{ = ULl' fL2' o o o ,fLT)' 
is the T x 1 vector of sample values of the i-th nonstationary factor, R = liT ¿:f=l fL 
and l' = (1, o o o ,1) is a T x 1 vector of oneso Then 

Xl Xl xl 2 

21 22 25 

2 x2 x2 
. . 1¿ oTi1 22 t s 

I(xt, XJ )kj=1,2, .. ,s = s! 
{is} x~ X S x!? 

tI 22 t5 

where (Xi, xj) = "L,I=l x~x{ is element i, j of the matrix in the left hand side whose deter­

minant we are calculating and the sum in the equality is over aH sets of integers {is}, with 

1 ::; i l ::; i 2 ::; o o o ::; is ::; To 

Not only the limiting sequence is positive definite, but also in the limit it cannot be zeroo 

First, it will be shown that M = Jol Vd- l (T)Vd- l (T)'dT is nonsingular almost sureo Denote by 

V¡(w, T) the j-th component of the process V9(T), for 9 = 0,1, 000' d -1. If M were singular, 

then :3 e = (Cl, oooCr1)' =1= O such that e'Me = 00 Therefore "L,j~I CjVLl(T) = 0, for O::; T ::; lo 

Since e =1= O, j Ci =1= 0, such that VLl(T) = t ¿j~l,#iCjVLl(T)o But for each realization of 

the proccess Vd-l(T) = Fd-l(T) - Jol Fd_l(T)dT this means that 
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or 

where K = 1/Ci -¿J!=l,#i Cj J; FLl (r)dr - Jol FJ-l (r)dr. But with probability 1 FJ-l (r) 

cannot lie in the span of FLl'· .. ' Fti, Fj~i, ... , F;~l' since var (Fd-I(r)) = r 2d- I/((2d-
1)((d - 1)!)2) X Ir¡ is diagonal. It can also be checked that var (Vd-l(r)) is a full rank 

diagonal matrix, then with probability 1 VLI (r) cannot be a linear combination of the 

remaining components VLI (r), j =1= i, j = 1, ... , TI. Therefore M is nonsingular almost 

sure and if ~l > O, l~i/2 .l\1(~i/2),1 =1= O almost sure. Since 'l!(1) and PI have rank TI, 

ry = PI'l!(1)~i/2 Jol Vd_l(r)Vd_l(r)'dr(~i/2)1'l!(1)'P{ is nonsingular almost sure. Then, for 

any m x 1 vector A =1= O and by the Portmanteau theorem (see theorem 2.1 in Billingsley, 

1968), 

which constitutes the desired result: with probabillity 1, matrix r y is positive definite. 

Similar results are found if we use generalized sample second moments matrices, Ay(k) = 

T;d -¿ YtY~-k' instead of generalized covariance matrices. In this case 

(14) 

",here PI is an m x TI matrix. A similar result is found for the eigenvalues of ,y. 
Lemma 1. For the model of sections 2 and 3 and assumption 1, fY has TI eigenvalues 

greater than zero almost sure and m - TI equals zero. 

Proof is given in Appendix 2. 

3.1 Nonstationary 1(1) factors 

From a practical point of view and due to its broad applicability, special attention is paid 

to the 1(1) case. Suppose now that the vector of observed time series is 1(1). Then, the 

nonstationary factors are al so 1(1). In particular, they can be common trends in the sense 

of Stock and Watson (1988). 

Assumption 2. The equation for the common nonstationary factors is 

fr,t fr,t-I + Ut (15) 

Ut 'l!(B)al,t 
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with E (al,t) = O and var (al,t) = ~l = diag(a?,··. ,a;1) > O, and ¿:illwill < 00, 

Ilwill = [tT(W~W)p/2. 
Lernrna 2. The model given in sections 2 and 3 with nonstationary factors as in assump­

tion 2 (model M2) is equivalent (in the sense that it gives equal first and second moments 

of the observed series and of the auxilliary process that defines the short mn dynamics) to a 

model (MI) with the same number of common trends, TI, and TI more stationary common 

factors. 

Proof is given in Appendix 3. 

Theorm 1 applied to the 1(1) case tells us that the generalized covariance matrices are 

now divided by T 2 and converge to 

where \1(r) = W(r) - JollV(r)dr is the demeaned BTownían motíon, and 111(r) is the TI­

dimensional standard Brownian motion. 

Note that matrix S = ~i/2(JOl V(r)V(r)'dr)(~i/2), is a nondiagonal matrix and that all 

generalized covariance matrices (for lag O, as well as, for lag k, finite) have the same limiting 

distribution: they all tend to a symmetric random matrix of rank TI' 

Remarks: 

(1) Similar results are found if we use generalized sample second moments matrices, 

Ay (k) rk ¿: YtY~-k' instead of generalized covariance matrices. In this case, also with 

d=1 

(16) 

(2) These convergence results can also be found in Phillips and Durlauf (1986) and 

Chan and \iVei (1988) and apply to processes that satisfy more general assumptions of the 

innovations, that what is needed here. In particular, these results can be generalized to the 

case where the innovations present heterogeneity. AIso normallity is no needed. 

(3) The expected value of ~i/2 J W(r)W(r)'dr(~i/2)' is 

E (~1/2 f W(r)W(r)ldr(~1/2)') = ~1/2 f E (W(r)W(r)l)dr(~1/2)' = ~diag( -;', ... ,+) 
2 al ar1 

since E (f wiwjdr) = 1/2 if i = j and O otherwise. 

Lemma 1 and theorem 2 also apply to the case of 1(1) factors. Therefore ry and "(y have 

almost sure TI eigenvalues strictly grater than zero and m - TI equals zero. 
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4 Conclusions 

Several authors (Engle and Granger, 1987, Phillips and Durlauf, 1986, Stock, 1987) have 

proposed estimating a cointegration vector by using the fact that if Zt = b' Yt is stationary 

and ergodic then the sample variance 

whereas if Zt is nonstationary 1(1) then 

where the constant e depends on covariances of the differenced stationary process. Therefore, 

if Zt is nonstationary its sample variance will go to oo. This leads to finding cointegrating 

vectors by minimizing the sample variance of Zt. The usual procedure is to assume a nor­

malization of b such that the coefficient of the first component of Yt is unity, which implies 

finding b by regressing the first component on all the others. 

If instead of looking at the cointegration relationships we look at the orthogonal factor 

space it is clear that a reasonable procedure for finding a vector a such that Zt = a'Yt 

is nonstationay is by maximizing the variance of Zt which leads to a principal component 

analysis of the covariance matrix of the series. This approach was initially followed by Stock 

and \Vatson (1988) who proposed to base their cointegration test on the linear combinations 

generated by the principal components of the covariance matrix of the series, although 

afterwards these authors abandoned this approach in favor of a regression procedure (Stock 

and \Vatson, 1993). Their approach differs from ours in the following aspects. 

First, principal components are introduced in an intuitive way, whereas in our model the 

formal justification is the stability of the factor space in the eigenvalues of alllag covariance 

matrices. 

Second, our approach is general and can be applied to factors with different orders of 

integration. For example, suppose that there are TI factors, h,t, that are I(d¡) and T2, h,t, 
that are 1(d2 ), with dI > d2 , plus stationary factors. We can apply the method defining 

generalized covariance matrices as in (10), divided by T 2d
l. After we find the TI I(d I ) 

nonstationary factors, we define the auxilliary process Zt = Yt - P¡fI,t. We can now apply 

the same procedure to Zt defining generalized covariance matrices for Zt and normalizing 

them by T 2d
2 to obtain the T2 common 1(d2 ) factors. 

Third, the method can be generalized to nonstationary fractional factors. If instead of 

defining the d-fold integrated Brownian motion recursively, we use the definition valid for 
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real d such as d> -1/2, 

convergence results could also be found. 
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Appendix 1 

In this appendix, it is shown that for nt, Jt and ! defined as in sections 2 and 3, 

(a) T~d L: nt-kn~ -4 Omxm, rk L: Et-kE~ -4 Omxm and rk L: Et-kn~ -4omxm , 
1 -,p 1 -,p 

(b) TU L:(ft-k - f)nt -=-+ Orxm and TU L:(ft-k - f)Et -=-+ Orxm and 
1 - , P 

(c) T2d L:(fI,t-k - JdJ2,t -=-+ Orlxr2. 

In each case and in what foHows O is a matrix of appropriate dimensions or an scalar. 

(a) Let nt be an m x 1 vector of specific components. By the stationary assumption, 

~ L: nt-kn~ -4 E(nt-kn~). Since E(nt-kn~) exists and is finite, rk L: nt-kn~ -4 O. AIso 

T~d L: Et-kE~ -4 E (EtEt-k) = Omxm and T~d L: Et-kn~ -4 E (Et-knt) = Omxm' 

(b) Let Jt be an T x 1 vector of common factors with TI common nonstationary factors 

and T2 common, zero mean, stationary factors, such that T = r1 + r2, then 

_1 "'(f - J-) , = _1 '" [ (fI,t-k - f1)n~ 1 
T2d L t-k nt T2d L f ' 

2,t-kn t 

(b1) First, it will be shown that for the stationary factors T~d L: h,t-kn~ -4 O which is 

easily seen since both processes nt and ht are stationary, then ~ L h,t-kn~ ~ E(h,t-knD, 

finite, therefore T~d l: h,t-kn~ ~ O, for d ~ 1. 

(b2) No"" for the term associated with the nonstationary common factors, rh L(fI,t-k­

fl)n~ ~ O. Denote by JL, (nD the i-th component of vector J1,t, (nt). Element (i,j) of the 

previous matrix is defined as ai,j = T~d l:U{,t-k - fDnl, for i = 1, ... rl, j = 1, ... , m. It will 

be shown that ai,j ~ O, for aH i = 1, ... T1 and j = 1, ... , m. 

T
1
2d L(f{,t-k - f{)n{ ~ T~d L(f{,t-k - fD l~t~~ In{1 

T 
1 . 1 L . 

=-:-~ max InJ I r Td-1/2 l<t<T t Td+1/2 1,t-k 
- - t=k+1 

From Tanaka (1996) we know that Tdl1/2 L:i=k+l J{,t-k is Op(l), and since n{ is a station­

ary process and d ~ 1, Td~1/2 l~t~~ In{ I -4 O. Therefore ai,j -4 O. So, ],2 L:(fI,t-k - f¡)n~ -4 o. 
1 - , p 

And from (b1) and (b2), T2d L(ft-k - f)n t -=-+ O. 

The proof for rh L:Ut-k - f)E~ -4 Orxm goes exactly like the one before sin ce Et is also 

a stationary process. 

(c) No"" for the term involving stationary and nonstationary common factors, 

1", -,p 
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Appendix 2 

PROOF OF LEMMA 1. The proof goes like in Theorem 2, but now 

So aH we have to prove is that J Fd- I (r)Fd- 1 (r)'dr is nonsingular. Denote by Fl(r) the 

j-th component of the process Fg(r), for 9 = 0,1, ... We will prove by induction that 

that P(I J Fd- I (r)Fd_1 (r)'drl = O) = 0, since otherwise 3FLIIFLI lies in the span of 

FLI' ... , Fti, Fj~i, ... , F;~I and this is not possible. For d = 1, Fd-I(S) = W(s), where 

HI (s) is the TI-dimensional standard Brownian motion, with aH its components independent 

among them. Therefore, P(I J1V(r)W(r),drl = O) = 0, since otherwise 3Wi lWi lies in 

the span of W\ ... , W i-\ Wi+\ ... , WTl and this is not possible sin ce aH the componets of 

1V(8) are independent among each other. Now suppose that it is true for d - 1, this means 

that P(I J Fd-l(r)Fd-l(r)'drl = O) = 0, or equivalently with probability zero FLI lies in 

the span of FLI' ... , FtLFj~i,···,F;~I. \Ve will see that P(I J Fd(r)Fd(r),drl = O) = O, 

because if not 3FjIFj lies in the span of FJ, ... , Ft\F~+\ ... ,F2, that is Fj can be expressed 

as a linear combination of FJ, ... ,Fd-I,F~+I, ... ,F2 or it exists 0ó1, ... ,OóT1-I not all of them 

simultaneousHy zero such that 

Tl-I 
Fj = L Oój F1. 

j=1 

Differentiating the aboye equation, 

Tl-I 
FLI = ¿OójFLI 

j=1 

which occurs with probability zero. Therefore ,,/y is nonsingular almost sure. 

Appendix 3 

PROOF OF LEMMA 2. Since the specific components and the common stationary factors not 

derived by the dynamic structure of the nonstationary ones are not involved in this proof, let 

us suppose, just for ease of exposition, that they do not existo To distinguish both models, 

the factors and system matrices will be denoted by in M2 and without it in model 

MI. So, let us suppose model M2 with Tl common 1(1) factors with dynamic structure 

expressed as in assumption 1 and a model with TI common trends plus TI common stationary 

factors. We will see when they give the same first and second moments of the observed series. 
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First, let us show that they give the same limiting distribution of the generalized covariance 

matrices. For model M2 and by theorem 1 

(A3.1) 

For model MI and by theorm 1 

(A3.2) 

These distributions are the same if and only if PI~(1)i:~/2 = PI~~/2. If ~I = ~I, then 

Pr = PI ~(1), but notice that many other possibilities are still open. 

Now for the short run, let us show that the dynamics generated by the structure of the 

/(1) factors can be expressed as rl common stationary factors, h,t in the equivalent model 

MI. Define the auxilliary process in model M2, Xt = Yt-PI~(I)jl,t = PI~(L)al,t+Et, where 

~(L) = (1 - L)-I(~(L) - ~(1)), ~j = - E:j+1 ~i. The mean of the auxilliary process is O 

and second moments are given by 

00 00 00 

j=O i=j+1 i=j+1 
00 00 00 

j=O i=j+l+k i=j+1 

Define an auxilliary process, Zt, related to model MI as Zt = Yt - Pdl,t = P2!2,t + Et, 

with h,t = cI>(B)a2,t, a set of generic r2 stationary common factors. Let us see who are the 

h,t factors. E(zt)=O and second moments are given by 

00 

2.:= P2cI>i~2cI>~P~ + ~f 
i=O 
00 

E (ZtZ~_k) = 2.:= P2cI>i~2cI>~_kP~. 
i=k 

Both auxilliary process are the same, if we take r¡ common stationary factors in MI and 

00 00 00 00 

L P2cI>i~2cI>~_kP~ = L Pl( L ~i)tl( L ~dP{ 
i=k j=O i=j+l+k i=j+l 

\\'hich is satisfied, for example, for P2 = PI and cI>i = ~i = - :E:j+l ~i. 
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