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Abstract 

The presence of ontliers canses biases in the estimation of ARIMA models. In this work 
we present a procedure for detecting ontliers and obtaining a robnst estimator of the parame­
ters in nnivariate ARIMA time series models. There are three main problems in the existing 
procednres for detecting olltliers in ARIMA time series models. The first one is the confnsion 
between level shifts and innovative ontliers when a level shift is present in a time series. The 
procednre inclndes a possible solntion to avoid this problem ba..,ed on not comparing the statis­
hcs for level shifts and innovative olltliers together, becanse the critical valnes llnder the nnll 
hypothesis of no ontliers can be qnite different. The second problem is the biased estimation 
of the initial parameter vallles. In the existing procednres, this initial estimation is done nnder 
the hypotheses of no ontliers in the data, which may lead to begin the search for ontliers nsing 
a very biased set of parallleters and, therefore, these procednres may fail. In order to solve this 
problelll, we use two measnres of influence in the first stage of the proposed procednre: one 
llleasnre for individually inflnential observations, and an additionalllleasnre for level shifts and 
sequences of ontliers. The third problem is masking. This problem appears when there is a 
sequence of additive ontliers, becanse the usnal one by one ontlier identification method may 
fail in the identification of S0111e oE the melllbers of the gronp. The proposed procednre seems 
to solve the aforementioned problems and obtains good parameter estimates when the time 
series has isolated ontliers and/or mnltiple adjacent ontliers. The performance of the proposed 
procednre is analyzed and an example is shown. 

Keywords: Equivalent Confignrations, Influential observations, Misspecification, Mnltiple 
Ontliers, Robust Estimation. 

1 Introd uction 

Time series data often have outliers 01' discordant ooservations. Identifying and managing these 

ooservations is necessary oecause they can produce pernicious effects in model specification. Even 

when the model is \VeH specified, discordant ooservations can lead to wrong parameter estimation 
and, therefore, resulting forecasts can oe expected to oe poor. 

The stlldy of outliers in time series can oe carried out using different statisticals models that are 

proposed in the literature. In this paper, we deal with ARIMA models (Box and Jenkins, 1976), 
and more precisely in diagnostic methods. 
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Fox (1972) defines additive and innovative outliers and proposes the use of maximnm likelihood 
ratio tests for detecting them. Chang and Tiao (1983) and Chang, Tiao and Chen (1988) extend 
the resnlts of Fox (1972) to ARH .. IA models and present an iterative procedure for detecting these 
olltliers and estimating the model parameters. Tsay (1988) generalizes this procedure for detecting 
Level 8hifts and Temporary Changes. Balke (1993) proposes a modification to the Tsay Procedure 
for solving the confllsion oetween Level 8hift and Innovative olltliers llsing an additional search 
of ontliers with a white-noise model. This modification causes two proolems: (1) the ARtvIA(O,O) 
model does not distinguish oetween innovative olltliers and additive ontliers, and (2) the white­
noise search can identify spurious level shifts. Chen and Lill (1993) present an outlier detection and 
parameter estimation procedure that seems to oe the most roollst of aH. However, this procedure 
may missidentify level shifts as innovative outIiers and, oesides, sorne olltliers may not oe identified 
dne to masking effects. AH of this can produce oias in parameter estimates. 

An ontlier is not necessarily an inflllential observation. Peña (1987, 1990) presents a statistic 
to measure inflllential outliers. Bruce and ::\Iartin (1989) define two diagnostics, DC and DV, for 
soh-ing masking in time series when there are ontlier patches. The DC diagnostic measures the 
change in the estimate of the ARIl\IA coefficients whereas DV measures the change in the estimated 
variance. If t he size of the influential observations set is greater than 5 (i.e. level shift or variance 
change), t he diagnostics can be \Vrong. 

There are three main proolems in the existing procedures for detecting outliers in ARnIA time 
series models. The first one is the confnsion bet",een le\"el shift and innovative ontliers (in f¿-wour 
of the latter) when a level shift is present in a time series. This sitllation appears in Tsay(1988), 
Balke (1993) and Chen and Lin(1993). The second is the oiased estimation of the initial parameter 
valnes. This problem is dne to the fact that the initial estimation of the parameters is made nnder 
the hypotheses of no olltliers in the data, which may lead to begin the search for outliers by nsing 
a WTy biased set of parameters and, as a conseqllence of t his, the procedure may fail. The t hird 
problem is masking. It appears when there is a seqnence of additive outliers, because the usual 
proc:cclures basecl on the identification of olltliers one by one may fail in the identification of so me 
of the members of the grollp. In this article, ",e present a procedllre which seems to solve the 
aforementioned problems. 

Figure 1 Plot of the simulated AR(l) series (-) and the contaminated (- -) series with él L8 and 
an AO. 

-50~~-1~0----~20-----3~0----4~0----5~0----~6~0--~7~0----~80~--~9~0--~100 

t 

For instance, \Ve have a simulated TI, = 100 observations of an AR(l) time series model with 
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J = 0.435, and era = 1. Then we have introduced two consecutive outlier effects: a LS of magnitude 
WL = 3era = 3 from t = 40 to t = 100, and an AO of magnitude WA = 4era = 4 at t = 41. Figure 1 
shows the plot of both the simulated and observed series. 

With the procedure proposed by Chen and Liu (1993), and using a critical value C =3 only an 
AO at t=41 is detected, its estimated effect is w = 5.04, and the t-value is 5.93, and the estimation 
of the autorregresive parameter at the end of the procedure is J = 0.908 with a t-vallle of 14.16, 
and a residual standard error SR = 1.147. With our proposed procedure and using a critical value 
CLS = 3 for LS and a critical value CJO / AO = 3.25 for 10 and AO, both the LS at t=40 and the 
AO at t=41 are detected; their estimated effects are respectively w = 3.261 and w = 5.037, and 
their t statistics are respectively 16.29 and 6.04. The estimation of the autoregressive parameter 
at the end of the procedure is J = 0.429 with a t-value of 4.97, and the residual standard error 
SR = 0.906. 

Another formulation initiated by Harvey (1981) is Lased on structural models using the state 
space representation (Aoki, 1987) with unoLserved components. The parameters of these models 
can Le estimated throllgh the Kalman Filter. Harvey and Koopman (1992) discuss the detection of 
olltliers in these models, while West (1981),Kitagawa (1987), and Peña and Guttman (1989) and 
Taplin (1993) work in the roLust estimation of Kalman filter. 

'Vithin the cla."Isical roLust methods, Denby and Martin (1979) present a generalization of the 
M estimators (called by them GlvI estimators) for first order autoregressive processes. !vIartin 
(1980) and Bustos (1982) carry out a generalization for autoregressive processes of order p. Martín 
(1981) and Lee and Martin (1982) present the extension for ARMA models, and lvIartin , Samarov 
and Vandaele (1983) for ARIMA models using a robust procedure of iterative estimation with an 
algorithm of roLust filtering. Bustos and Yohai (1986) present two types of robust estimators for 
ARMA models. 

'Vithin the Layesian analysis of outliers in time series, :t-.IcCulloch and Tsay (1993,1994) analyze 
ouliers, level shifts and variance change models in autoregressive processes.Le, Martin and Raftery 
(1996) use a mixture transition distribution model which can capture outliers, non-Gaussian fea­
tnres and nonlinear features, and Le, Raftery and Martin (1996) propose a method based on robust 
Bayes factoTs. for the order selection problem in autoregressive process with additive outliers. 

This papel' is organized as follows. In section 2 we present the model and the notation. In 
section 3 we analyze the confusion Letween innovational outliers and level shifts under Ha. The 
relationship Letween the statistics for testing the existence of an innovational outlier and a level 
shift and the sampling Lehavior of the maximum of the test statistics are analyzed. In section 4 
we present a procedure to oLtain an initial roLust estimation of the model parameters. In section 
5, we descriLe the proposed method to identify multiple outliers. In section 6, the performance of 
the proposed procedure is stlldied and an example of the procedure is shown. 

2 Model and N otation 

Let Yt Le a stochastic process following an ARIMA model 

(1) 

",here B is the Lackshift operator such that BYt = Yt-l, cp(B) = 1 - CP1B - ... - CPpBP and 
e(B) = 1 - elB - ... - eqBq are polynomials in B of degrees p and q, respectively, with roots 
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outside the unit circle, V = 1 - B is the difference operator, VdVt is the stationary series, and at 
is a white-noise sequence of iid N(O, (}~) variables. In this paper, we will work with three types of 
outliers : innovational outliers (10), additive outliers (AO), and level shifts (L8). For this purpose, 
the following model is considered 

(Ti) 
Zt = Wi Vi (B)It + Vt (2) 

that is, instead of observing the ARIMA process Vt we observed the process zt, that is contaminated 
by one outlier. In (2) Vt follows (1), Wi is the outlier effect, Vi(B) = l/7r(B) where 7r(B) = 
(1 - 7rIB - 7r2B2 - ... ) = e-I(B) Vd cjJ(B) for 10, Vi(B) = 1 for AO, and Vi(B) = 1/(1 - B) 
for L8; Ifi) is an impulse variable that takes the value 1 if t = Ti and O otherwise. Then calling 
et = 7r(B)zt equation (2) can be written as 

(3) 

where for innovational outliers Wi = W¡ and XI, = If), for additive outliers Wi = WA and Xt = 

7r(B)IIT) , and for level shifts Wi = WL and Xt = 7r(B)(l - B)-l If). Assuming that the model 
parameters are known, the least squares estimators of Wi, Wi, in (3) are 2:= etxt/ 2:= xt, which leads to 
WA = p~7r(F)CT, W¡ = eT and WL = pV(F)eT; where p~ = (l+7ri+· .. +7r;_T)-I, F is the forward­
shift operator such that Fet = et+1, PI = (1 + li + ... + 1~_T)-\ and I(B) = 7r(B)/(l - B). The 
variance of Wi is (}~(2:= xt)-1 and therefore 11 ar(wA) = P~(}~, 11 ar(w¡) = ()~ and 11 ar(wL) = p¡p~. 

For a single olltlier case the fo11owing hypotheses are llsually considered 

Ha: 
H¡ : 
HA: 
HL: 

W¡ = WA = WL = O 
W¡ i- O 
WA i- O 
WL i= O 

(no outlier) 
(only 10) 
(only AO) 
(only L8) 

The likelihood ratio test statistics for testing Ha versus H¡, HA and HL are respectively A¡,T = 

w¡fo-a, AA,T = WA/ PAo-a and AL,T = WL/ PLo-a' Under the nu11 hypothesis of no outliers, the Aj,T 
(j = I, A, L) statistics are asymptotically distrilmted as N(O, 1). 

In practice, the model parameters are unknown. Then the parameters are initia11y estimated by 
assnming that there are no ontliers and the detection is based on the statistics )..¡,T, )..A,T and )..L,T, 
in which the parameters are substituted by their estimates. These statistics are asymptotically 
equi\'alent to A¡,T, AA,T and AL,T respectively. For detecting outliers at an nnknown position, Tsay 
(1988) snggests calculating 

T)t = max{I)..¡,t 1, I)..A,t 1, 1 )..L,t I}· 

If max T)t =1 )..¡,T 12: e ,where e is a predetermined constant, there exists the possibility of 

an 10 in t = T, if max T)t =1 )..A,T 12: e there exists the possibility of an AO in t = T, and if 

max T)t =1 )..L,T 12: e there exists the possibility of an L8 in t = T. 

\Vhen the time series contains several outliers the generalization of (2) is 

k 

Zt = ¿,wiVi(B)Ifi) + Vt 
i=1 

(4) 

",here k is the number of outliers. Assuming as before that the parameters are known, and also 
calling Ct = 7r(B)zt, we haVf~ 

(5) 
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where {J' = (Wl,'" ,Wk) and x~ = (X1t, ... ,Xkt}. 

The outlier identification procedures which estimate the effects of the outliers one Ly one used 
model (2) instead of model (5). These procedures will work when the matrix (L:~=l XtX~)-l is 
roughly diagonal Lut may lead to several Liases when the series have patches of additiv~ outliers 
and level shifts. Note that for an innovational outlier Xit = IVi), and therefore the esti~ation of 

its effect is typica11y uncorrelated with other effects. However, for additive outliers Xit = 7r(B)IVi) 
and the correlation Letween the effects of consecutive additive outliers can Le very high. This is 
expected to happen when we have patches of outliers, an empirical fact found Ly Bruce and Martin 
(1989). 

For instance, suppose that we have k = 2 and two consecutive outliers of magnitudes Wl and 
W2 at times T and T + 1. Then the expected value for the estimator of wi using model (2), and 
assllming that it is the only olltlier, is given Ly 

",n-T-l 

E( ' *) + L-i=O 7ri7ri+l 
wl = Wl W2 n-T 2 

"'. o 7r. L.,;'l= 1, 

where 7r0 = -1. As an example, if Wl = W2 = W and the process is a random walk, the estimation 
assuming a single olltlier at t = T will be one half of the trne outlier value. This will produce 
a masking effect and can lead to wrong outlier identification. This proLlem can Le overcome Ly 
a step of joint estimation of all the outlier candidates detected by means of the individual model 
(2). It also suggests that the step of initial outlier identification through the individuallikelihood 
ratio test should be carried out with a moderate significance level (between 0.25 and 0.1) bearing 
in mind that the points will be checked jointly afterwards in the step of joint estimabon. 

3 The confusion between Innovative Outliers and Level Shifts un­
der Ha 

Suppose that Vt fo11ows an ARll\IA model. Then, the statistics for testing tho existence of 10 and 
LS in t = Tare: 

(JO) 
, e 
A¡ T = ,T 

1 {}"a' 

(LS) 

where [1 = -1 + 7fl, [2 = -1 + 7fl + 7f2 , ... , [n-T = -1 + L:?::{ 7fi. 

Then the relationship between )..¡,T and )..L,T is: 

(6) 
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Note that for an AR(l) model when <P -t 1 both statistics are equal because then both models 
are identical. For AR(p) models the closer to unity each of the elements of the sequence <PI, <PI + <P2, 
... , ¿:f=1 <Pi are, the nearer the LS critical values will be to the 10 critical values. For an invertible 
ARMA model, under Ho (no outliers), when t = T is not close to the end of the series, for large 
n the second term will go to zero and the likelihood ratio for level shifts, >-L,T, is expeded to be 

smaller than the likelihood ratio for innovational outliers ,>-[ T. , 

This result suggests that for invertible ARMA models the statistics for level shift and innovative 
outliers should not be compared together, because the critical values under the null hypothesis can 
be quite different. In order to check this result in finite samples we have carried out a simulation 
study of the distribution of these two statistics. The objective of this study is to obtain the critical 
values for the statistics defined in section 2 that will allow us to decide whether or not there exist 
outliers under different circumstances. The response variables of this study are the 99, 95 and 90 
% percentiles üf maXt{1 >-i,t I}, with i = 10, AO, LS and t = 1, ... , n. These percentiles will be 
called critical values Gi (i=IO, AO, LS.). The factors considered in this simulation study are the 
variables which define the tests statistics. These factors are: 

1. Sample size. There are fonr sample sizes 17 = 30, 50, 100 and 150. 

2. Type of outlier. \;Ve consider three types: 10, AO and LS. 

3. The autoregressive process. \Ve use 21 different models: seven AR(l) models, seven AR(2) 
models and seven AR(3) models. The parameter values for the AR(l), AR(2) and AR(3) 
processes are presented in table 1 

The tests statistics for 10, AO and LS depend also on the estimated residual standard deviation, 
which is obtained using the omit-one method. ThllS, if \Ve are testing a possible olltlier in t = T, the 
residual standard deviation is calclllated omitting the residual in t = T. The simlllations have been 
done llsing ~IATLAB (developed by The Math\Vorks, lnc.). The al (random errors) are generated 
with the ~Ionte Carlo method, with O"a = 1. For this case, the number of replications is 500, and for 
each replication max I >-i,t I is selected with i =10, AO, LS and t = 1, ... ,n. The simulations have 

been developed without outliers. In the appendix A, we present the 95 percentiles of max I >-i,t I 
for 10 and LS (the 99 and 90 percentiles of max I \t I for 10 and LS, and the percentiles for AO 
can be obtained from the allthors), fonr sample sizes (30, 50, 100 Y 150) and the 21 models that 
appear on table 1. The results show that the percentiles or critical values for 10 are larger than 
the critical values for LS when using the same sample size and <P values. This is a general behavior 
except for model numbers 4, 8, 11 and 15 of table 1, in which both critical values are similar. Note 
that this result is expected because all these four models have the largest AR root close to one. 

From the results of the study we conclude that the detection method based on 1]t = maxt{1 
>-i,t I}, as given previously seems to be inadequate, because the sampling behavior of thc maximum 
value of the statistic for the LS is different to the corresponding ones for 10 and AO. In order to 
avoid the confusion oetween LS and 10 when detecting outliers, we propose not to compare all the 
statistics I >-i,t I together, but instead of this compare 10 vs AO on the one hand, and on the other 
hand deal with LS alone. Thus, the maximum I >-i I for 10-AO is compared with a critical value 
G I , and the maximum I >-L,t I is compared with a critical value G2. If from these two comparisons 
we detect both an 10-AO and a LS in the same instant t = T, we will build an intervention model 
with two dummy variables, a step for the LS in t = T, and an impulse for 10-AO in t = T, and 
estimate both effects to study if both are significant. This method will be detailed in section 5. 
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Table 1. Alltoregressive parameter values. 

Model Order Parameters 
1 1 <PI =0.2 
2 1 <PI =004 
3 1 <PI =0.6 
4 1 <PI =0.8 
5 1 <PI =-0.3 
6 1 <PI =-0.5 
7 1 <PI =-0.8 
8 2 <PI =1; <P2= -0.24 
9 2 <PI =0.5; <P2=0.2 
10 2 <PI =0.5; <P2=-0.2 
11 2 <PI =1.2; <P2=-Oo4 
12 2 <PI =0.6; <P2=-0.3 
13 2 <PI =-0.2; <P2=-0.06 
14 2 <PI =0.2; <P2=Oo48 
15 3 <PI =1.15; <P2=-0.36; 1>3=0.105 
16 3 <PI =-0.2; 1>2=0.56; 1>3=0.192 
17 3 epI =0.2; 1>2=0.56; 1>3=-0.192 
18 3 <PI =1.15; 1>2=-0.36; 1>3=-0.105 
19 3 <PI =004; <P2=0.36; <P3=-0.144 
20 3 <PI =-1.1; 1>2=0.17; <P3=0.315 
21 3 1>1 =-0.4; 1>2=-0.36; 1>3=0.144 

4 Measures of Influential Observations in ARIMA 
lTIodels 

In time series, the estimation of model parameters can turn out wrong when there are outliers, and 
searching for olltliers using these Liased parameter estimates can lead to incorrect results. In order 
to start the searching procedure with Letter parameter estimates we propose to compute them 
from a sample in which all data points that have large influence on the parameter computation are 
assumed to Le missing values. Thus we compute an initial roLust estimate Ly cleaning the sample 
from all the influential points, which are suLstituted Ly their interpolated values using the rest of 
the sample, so that the resulting estimated parameters are free of their effects. 

Influential oLservations in time series can Le classified in two types: 1-. isolated oLservations, 
that we shall call individually influential observations (i.e. an additive outlier) and 2-. sets of 
oLservations, that \Ve shall call jointly ínfluentia.l observations (i.e., LS or outlier sequence). Peña 
(1991) suggests to measure the influence of a single oLservation using the statistic D z (T) 

(Z - Z(INT))' (Z _ Z(INT) 
Dz(T) = T 1 ~2 T , 

laa 
(7) 

where h is the order of the ARUvIA model or numLer of parameters, o-~ is the estimation of the 

white-noise variance, Z is the vector of forecasts assuming no outliers, and ZVNT) is the vector of 

7 



foreca'lts computed by a'lsuming that the T - th observation is an additive outlier. This vector of 
forecasts is provided by the intervention model 

(8) 

where 7r(B), WA and ¡f) have Leen defined previously. 

A different way to measure the infiuence of a single ouservation is uy analyzing the change it 
produces on the parameter estimates. Let ir Le the maximum likelihood estimate (MLE) of 7r 

supposing than there are not outliers, and let ir(T) be the MLE considering that the observation 
in t = T is missing. The measure of infiuence, P7r(T), Peña (1990) is the Mahalanobis distance 
between the vectors ir y ir(T). 

(9) 

where t7r(J"~ is the variance-covariance matrix of the 7T estimated vector, and Ir is the 11llmber of 
parameters. If Z = Xzir is the estimated vector of forecasts and Z(T) = X z7T(T) is the estimated 
vector of forecasts assuming that the obseryation in t = T is missing, where Xz is the matrix 

Zh Zh-l 

Zh+l Zh 

X z = 

ZI-l Zt-2 Zt-h 

tile infillence measnre (9) can be written as 

(10) 

Note that in linear regression model a measnre of infiuence uased on the change in the parameter 
estimates is always equivalent to the one based on the change in forecast, whereas in time series 
this equivalence is lost, because (7) and (10) are different. In fact, it is proved in the appendix B 
that the relationship between these two statistics is: 

A

2 
AAT 

Dz(T) ~ Pz(T) + -,-' , 
), 

(11) 

so that D z (T) can be interpreted as the effect of the change of the parameters plus the effect of the 
additiye olItlier. \Ve have found in a simulation study that statistic (7), which inchldes the outlier 
size is more effective to detect outliers which have a strong infiuence on the model than (10), and 
\Ve ",illuse this measure from now on in this paper. 

\Vhen the time series has a L8 or a sequen ce of consecutive additive outliers of a similar size, 
which produces a behavior similar to a L8, we have observed that the infiuence measnre (7) detects 
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a..<; influential observations a low percentage of the observations affected by the LS or included in 
that sequence. This is the masking effect. Then, ifwe delete observations according only to Dz(T) 
several outliers will be undetected, and will biaBed the initial parameter estimates. To avoid this 
situation we now develop a influence measure for a LS which will be used in the procedure jointly 
with (7) to carry out the initial cleanning of the sample data. 

Let Yt fo11ow an ARI AI A(p, d, q) process and let us assume that there is a LS in t = T being Zt 

the observed series. Let ir and ir L be the conditional maximum likelihood estimates of 7r; where 
ir is obtained by assuming no outliers, whereas ir L is computed assuming a LS in t = T and using 
the model 

(12) 

where WL is the effect of a LS at t = T and sf) is a step variable that takes the value 1 if t ~ T 
and O otherwise. W"e propose measuring the influence of a LS by considering the change in the 
forecast vector "as 

(Z - Z(JLS))' (Z _ Z(JLS)) 
D L(T) = T, A 2 T , 

uJa 
(13) 

where Z is the vector of forecasts assllming no LS, and Z~LS) is the vector of forecasts from the 
intervention model (12). As in the case of additive outliers, we could have measure the influence 
of LS by analyzing the change in the parameter estimates. Calling, ir and ir L to the 11LE of 7r; 
ir supposing that there are no outliers, and ir L considering that there exists a LS in t = T and 
nsing the model (12), we could nse the formulation (9) to build a measure of the change in the 
parameters. 

\Ve obtained, in the appendix C, the measure of the change in the parameters for a LS, P L(T), 
and it is proved that the relationship between the statistics D L(T) aud P L(T) is: 

~2 
DL(T) ~ PL(T) + ~¡,T, (14) 

and, as in the additive outlier case, DL(T) can be interpreted as the effect of the change of the 
parameters plus the effect of a level shift. 

In snmmary, for detecting individually and jointly inflnential observations we propose to use 
t\\'o measmes of influence: Dz(T) for individually influential observations, and DL(T) for LS and 
sequences of outliers. 

5 The Proposed Procedure 

The procedure we propose for multiple outlier detection has three stages. In the first stage, Initial 
pa:mmeter estimation, a robust initial estimate is computed from a sample in which a11 influential 
points either individua11y (as measured by (7)) or jointly (as measured by (13)) are eliminated. 
In the second stage, Outlier detection, outliers are identified using a similar algorithm to the 
one developed by Chang, Tiao and Chen (1988), Tsay (1988) and Chen and Liu (1993), but the 
algorithm is modified to avoid the confusion between LS and 10. In the last stage, Joint estimation, 
the procedure uses maximum likelihood to jointly estimate the model parameters and the effects 
of the olltliers. This stage finishes with a new outlier detection step using the maximum likelihood 
parameter estimates. 
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5.1 Stage 1: Initial estimation of the model parameters. 

The goal of this stage is to oLtain a roLust estimation of the model parameters. ThllS, the procedure 
uses the measures of infiuence (7) and (13), to identify the oLservations that can produce Lias 
estimates. 

The steps of stage 1 are: 

1. Calculate the estimates of the model parameters llsing the observed series and sllpposing that 
there are no outliers on the time series. 

2. Calculate the infiuence measme DL(t) for every t. Select the time at which the maximum 
vallle of this DL(t) occms and call it TI, i.e. TI = arg maxDL(t). Then estimate the 
intervention model 

where Zt is the observed series, 7r(B) is the alltoregressive approximation of the model, SVi) 
is a step variable at t = Ti with 'Í = 1, and WL is the effect of the LS at time Ti. 

(a) If WL is significant, remove the effect of the LS from the observations by defining the 
adjnsted series 

e {Zt Zt = A 

, Zt - WL 

and calcnIate again the infiuence measme DL(t) and repeat step 2. The process is 
repeated until cS.JL is not significant. 

(b) If W L is not significant, go to step 3. 

3. '\lit h t he last adjusted series, zf, t he individual measme of infiuence D Z (t) is calcnlated. 
Select the 0:% more infiuential vaIues, remove their effects from the observations as if they 
were additive outliers. Next, the model parameters are again estimated. These estimated 
parameters are used in stage 2. 

The output of this stage is a set of roLust parameter estimates, once the effects of significant 
L8 and an 0:% of individually infiuential observations have Leen removed from the sampIe. 

5.2 Stage 2: Outlier detection. 

The goal of this stage is to iteratively identify the presence of outliers in the time series. The steps 
are: 

1. Compute (ya and the residuals of the modelusing the parameters of stage 1. 

2. Compute ~I,t, ~A,t and ~L,t, for t = 1, ... , n. 
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3. For each time t, the statistics 1 ),i,t 1 for ro and AO are compared. Let ),va,t be the largest 
of them and ),va,TA the maximum value of ),va,t, which occurs at time T = TA. If ),va,TA =1 
),¡,TA I~ el, there is a possibility of ro at t = TA· The el value is a predeterminate critical 
value for ro and AO, and it depends on the sample size, model structure and confidence leve!. 
If ),va,TA =1 ),A,TA I~ el, there is a possibility of AO at t = TA. 

4. For t = 1, ... , n, select ),L,TB = maXt 1 ),L,t l· If ),L,TB ~ e2 there is a possibility of L8 at 
t = TE. The e2 value is a predeterminate critical value for L8, and it depends on the sample 
size, model structure and confidence leve!. 

5. There are four possible situations: 

(a) Ifneither outliers nor L8 are found, then stop. The procedure finishes and the conclusion 
is that the observed series is free from outlier effects. 

(b) lnnovative or additive outliers are detected, ¡mt no L8. By removing the effect of the 10 
or the AO, the adjusted series is obtained. 

(c) A L8 is detected, but no innovative or additive outliers. By removing the effect of the 
L8, the adjusted series is obtained. 

(d) lnnovative or additive outliers and level shifts are detected. If these occur in different 
points, then remove both of them. If these outliers occur in the same point, then stlldy 
if their effects are both significant (it is possible that when there is a L8 in t = T, the 
proccdure detects at this time the L8 ¡)Ut simultaneously an lOor AO). For this purpose, 
the procedure uses an intervention model \vith t",o dummy variables: an impulse in t = T 
for 10/ AO, and a step in t = T for the L8. The 10-AO and L8 in t = Tare significant 

when the statistics 1 Wj / dt~) 1 are larger t~ the different critical values used in steps 

3 and 4 (el for 10/ AO, and e2 for L8). dt(wj) is the estimated standard deviation of 
the estimate effect for the olltlier in t = T. 
8tep 5 finishes when all the significant outliers are removed. 

6. Using the adjusted series (free from the detected lOor AO and/or L8 effects), and llsing the 
parameter estimation in stage 1, go to (2) and iterate through (2), (3), (4) y (5) llntil no 
additional outliers are detected. 

The inpllts of stage 2 are the estimation of the parameters at stage 1 and the observed series. 
The OlltplltS are the time points, type and estimated effects for aH the detected outliers. 

5.3 Stage 3: Joint estimation. 

Calculate the residuals of the model (et) by filtering the observed series llsing the estimated para­
meters after correcting the k outliers detected. The outlier effects are jointly estimated using 

k 

et = LWi~(B)Vi(B)IVi) + at (15) 
i=1 

where l~(B) = 1/~(B) for an 10, Vi(B) = 1 for an AO, and Vi(B) = 1/(1 - B) for a L8, k is 
the number of detected outliers (or the number of interventions of the model) which occur at time 
points TI, . .. , Tk. 
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Test if the effects of the outliers are significant. If the effects of sorne outliers are not significant, 
remove the smallest non significant outlier from the set of detected outliers, and estimate again the 
effect of the k - 1 outliers. This process should Le repeated until aH the outliers in the final set 
are significant. Then oLtain the adjusted series Ly removing their effects from the oLserved series. 
With the last series, the model parameters are estimated, and then iterate through stages 2 and 
3. In these two stages, the procedure uses the adjusted series and the last parameter estimates. 
When no more outliers are found in stage 2, remove aH the effects of the detected outliers from the 
oLserved series oLtaining the adjusted series. Finally, identify the model for the adjusted series, 
and jointly estimate the outlier effects and the model parameters. 

Comments to the procedure: The search of the different outliers in stage 2 must Le carried out 
with less strict critical values (Le. a = 0.1) than those used in the third stage. Thus, all the possiLle 
outliers are identified one Ly one. It is possiLle that this stage provides sorne wrong outliers, Lut 
this is not a proLlem since aH the outliers are afterwards jointly estimated in (15). 

6 Performance of the Proposed Procedure 

In order to study the performance of the procedure, we carried out a sinmlation study. The 
evaluation criterion of the procedure is similar to the one of Chen and Liu (1993), CL from now 
on. Two measures of the procedure performance are considered: 

1. The relative frequency of correct detection (type and location) of the olltliers. 

2. The accuracy and precision in the estimation of the model parameters. For this pmpose, we 
use the sample mean and the sample root mean sqllare error (RM8E) of the model parameter 
estimates. 

In the simulation stlldy, the factor levels have been selected in the same way as Chen and Liu 
(1993) in order to facilate the comparison Letween the procedures. The factors are those that 
can influence the outlier detection and the estimation of model parameters. These factors are: 1) 
Type of ol1tlier: 10, AO and L8; 2) Time series strnctme: AR(l) and MA(l); 3) 8ize of ol1tlier: 
w = 3O-a = 3, W = 4o-a = 4 and w = 5O-a = 5; 4) NumLer of outliers: a single outlier or several 
adjacent olltliers; 5) Position of the outliers: at the Leginning, in the middle or at the end of the 
series. The comLination of these factors leads to the 29 cases presented in TaLle 2. Cases 1 to 24 
are replications of ARMA models that appear in Chen and Liu (1993). 

The simulations have Leen done using MATLAB (developed Ly The lvIathWorks, lnc.). The 
random errors are generated with the Monte Carlo method, with O-a = 1. The sample size of the 
time series is 100. The true values of the parameters epI and (h are Loth 0.6 and o-~ = 1. For every 
case of table 2. the numLer of replications is 500. The estimation of the variance (Ó"~) used to 
calculate the different statistics for testing outliers has Leen oLtained with the omit-one method. 
Thus, if \Ve test a possiLle outlier at t = T, the residual standard deviation is oLtained Ly omitting 
the residual in t = T. Once aH the detected outliers are corrected, Ó"a is the residual standard 
deviation. The order of the model is supposed to Le known. The estimation of the autoregressive 
parameter has Leen oLtained Ly least squares, and this for the moving average parameter Ly the 
Galbraith and Zinde-\Valsh (1994) method, with a third order autoregressive approximation. For 
instance, if JI, J2 and J3 are the estimated parameters, the estimation of the moving-average 
parameter is {j = -JI. 

12 



Table 2. Different cases for studying the performance of the proposed procedure. 

CA8E Model Outliers 
1 AR(l) AO t=40 w = 3 
2 AR(l) AO t=40 w = 4 
3 AR(l) AO t=40 w = 5 
4 AR(l) 10 t=40 w = 3 
5 AR(l) 10 t=40 w = 4 
6 AR(l) 10 t=40 w = 5 
7 AR(l) L8 t=40 w = 3 
8 AR(l) L8 t=40 w = 4 
9 AR(l) L8 t=40 w = 5 

10 AR(l) AO t=40 w = 3 AO t=41 w = 4 
11 AR(l) 10 t=40 w = 3 AO t=41 w = 4 
12 AR(l) L8 t=40 w = 3 AO t=41 w = 4 
13 AR(l) AO t=10 w = 4 AO t=ll w = -3 
14 AR(l) 10 t=lO w = 4 AO t=ll w = -3 
15 AR(l) L8 t=10 w = 4 AO t=ll w = -3 
16 l\1A(l) AO t=40 w = 3 
17 ~IA(l) AO t=40 w = 4 
18 MA(l) AO t=40 w = 5 
19 MA(l) 10 t=40 w = 3 
20 MA(l) 10 t=40 w = 4 
21 r-IA(l) 10 t=40 w = 5 
22 l\1A(l) L8 t=40 w = 3 
23 MA(l) L8 t=40 w = 4 
24 ~IA(l) L8 t=40 w = 5 
25 AR(l) 4 AO t=50,51,52,53 w = 5; -5; 5;-5 
26 AR(l) 4 AO t=75,76,77,78 w = 5; -4; 5;-4 
27 AR(l) 4 AO t=50,51,52,53 w = 5; -3; 5;-3 
28 AR(l) 4 AO t=10,1l,12,13 w = 5; -5; 5;-5 
29 AR(l) 4 AO t=10,1l,12,13 w = 5; -3; 5; -3 

In the detection of a single lOor AO the results for the proposed procedme are almost identical 
to those given Ly Chen and Liu (1993). This is expected, Lecause then masking do es not occur. 
For this reason, taLle 3 only shows the frequency of correct detection (type and location) for the 
cases of a single L8. The selection of the critical values is as fo11ows (see appendix A): 

1. In the AR(l) models, Cl = CAl = 3.25 is the critical value for the detection of 10 and AO 
with a = 0.05, and C2 = CLS = 2.85 is the critical value for the detection of the L8 with 
a = 0.05. These values are used in aH the AR(l) ca.<;es, except in cases 7,8 and 9, where 
the time series has a single L8. \Ve use CLs = 3 for comparing the results of our procedure 
against the results of the procedure of Chen and Liu (CL). 

2. In the l\IA(l) models, we use Cl = CAl = 3.3 for detecting ro and AO, and C2 = CLS = 2.75 
for detecting L8, these values have Leen oLtained with a = 0.05. 

In order to make the comparison of the proposed procedure versus the CL procedure we have 
chosen the critical value corresponding to the existing outlier. Thus, in the proposed procedure 
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two critical values are used, one for AO and 10 and another for LS. When we want to compare the 
results of both procedures for a single outlier, the results of the eL procedure correspond to the 
existing outlier. For example, íf a single 10 is presented, then C = 3.25 in the eL procedure; but 
if the presented outlier is a LS and the model is MA(I), the selected critical value is C = 2.75. 

Table 3. Comparison of the procedure proposed in this paper (PP) and the procedure of Chen 
and Liu (CL) for LS model. 

PP 
CL 

w = 3ua = 3 
AR(I) MA(I) 

0.31 0.70 
0.22 0.51 

W = 4ua = 4 W = 5ua = 5 
AR(I) MA(I) AR(I) MA(I) 

0.69 0.90 0.89 0.93 
0.62 0.65 0.89 0.75 

Tables 4 and 5 present the results of the parameter estimation. Those obtained by Chen and Liu 
(1993) appear between brackets. PAR is the sample mean of the estimated parameter, sllpposing 
that there are no outliers; PARF is the sample mean of the last estimation of the parameter at the 
end of the procedure, o-a is the sample mean of the estimation of the residual standard deviation, 
and Rl\ISE(e) represents the sample root mean sqllare errors of the estimation of the corresponding 
parameter, which is calculated using the following equation: 

-
Rl\ISE( e) = (bias( e))2 + Var( e) (lG) 

where bias( B) = B - e, and Var( B) is the estimated sample variance of B. 
Again \Ve only present in table 4 the results of parameter estimation for a single LS. For the 

cases of a single outlier, the results are similar, as expected, with both procedures. For LS, the 
sample mean of the estimated autoregressi,·e or moving average parameter (PARF) is closer to the 
true value (rfJ = 0.6 or e = 0.6) with the proposed procedure than with the CL procedure in four 
out of the six cases. In all these cases the Rl\ISE is smaller with the proposed procedure. In five 
out of the six cases, the sample mean of o-a obtained with the proposed procedure is doser to the 
tme value (ua = 1) than the sample mean obtained with the CL procedure . In aH these cases, the 
Rl\ISE is smaller. 

In table 4, the sample mean of the estimated parameter e (PAR) in the cases 22, 23 and 24 
is doser to the real value because in these cases the Galbraith and Zinde-\iValsh (1994) method is 
llsed. This approximation is specially good when there are outliers, as in these cases. 

Table 5 presents the results of the parameter estimation for two adjacent outliers (cases 10 
throllgh 15). The critical value for ro and AO is CAl = 3.25 with a = 0.05, and the critical value 
for LS is CLS = 2.85 with a = 0.05. In the results of the eL procedure for cases 12 and 15 three 
different possibilities are presented: these are C = 3.25, 3.0 and 2.75 respectively. The reason for 
these three comparisons is that one LS and one AO are studied, and in the proposed procedure we 
compare the ro and AO with a critical value (CAl = 3.25) and the LS with another (CLS = 2.85), 
while the eL procedure uses a single critical value for all outliers (IO,AO and LS). 
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Table 4 Performance of the procedure for a single L8. AR(l) and MA(l) models with cp = 0.6 
and O = 0.6. CAl is the critical value for identifying 10 and AO, and CLs is the critical value 
for the detection of L8. The results of the procedure of Chen and Liu (1993) are shown Letween 
Lrackets. 

Case CAl CLS PAR RMSE(PAR) PARF RMSE(PARF) o-a RMSE(o-a) 
7 3.25 3.00 0.809 0.214 0.720 0.144 1.071 0.115 

(3.00) (3.00) (0.808) (0.213) (0.763) (0.189) (1.124) (0.234) 
8 3.25 3.00 0.860 0.262 0.770 0.206 1.081 0.129 

(3.00) (3.00) (0.862) (0.264) (0.723) (0.184) (1.094) (0.248) 
9 3.25 3.00 0.894 0.542 0.703 0.163 1.094 0.136 

(3.00) (3.00) (0.895) (0.296) (0.692) (0.166) (1.036) (0.196) 
22 3.3 2.75 -0.029 0.635 0.387 0.316 1.312 0.459 

(2.75) (2.75) (-0.248) (0.850) (0.315) (0.443) (1.610) (0.993) 
23 3.3 2.75 -0.084 0.689 0.410 0.328 1.424 0.745 

(2.75) (2.75) (-0.360) (0.962) (0.268) (0.467) (1.829) (1.287) 
24 3.3 2.75 -0.134 0.739 0.429 0.357 1.598 1.121 

(2.75) (2.75) (-0.438) (1.040) (0.257) (0.463) (1.940) (1.497) 

For the cases of two adjacent olltliers, the comparison between the proposed procedllre and the 
CL procedure when estimating the parameters after removing the detected ontliers, shows that in 
66.7% of the cases, the sample mean of the estimated antoregressive parameter is doser to the true 
vallle (cp = 0.6) with the proc:edure proposed, and in all these cases, the R:r-.r8E is al so smaller. In 
67% of the cases, the sample mean of o-a obtained with the proposed procedure is doser to the true 
valne ((ja = 1), and in all these cases, the RM8E is smaller with the proposed procedure than with 
the CL procedure. 

Table 5 Pt"rformance of the procedure for the cases of t\\"o adjacent ontliers. AR(l) and MA(l) 
models with cp = 0.6 and 0=0.6. CAl is the criticaI value for identifying 10 and AO, and CLS is 
the critical \'alne for the detection of L8. The results of the procedure of Chen and Liu (1993) are 
shown between brackets. 

Case CAl CLS PAR RMSE(PAR) PARF RMSE(PARF) (ja R:r-.I8E(o-a) 
10 :3.25 2.85 0.558 0.090 0.572 0.093 1.004 0.088 

(:3.25) (3.25) (0.562) (0.087) (0.563) (0.101) (1.014) (0.177) 
11 3.25 2.85 0.560 0.090 0.575 0.094 0.985 0.058 

(3.25) (3.25) (0.562) (0.087) (0.563) (0.101) (1.014) (0.177) 
12 3.25 2.85 0.777 0.184 0.799 0.222 1.141 0.179 

(3.25) (3.25) (0.775) (0.183) (0.810) (0.217) (1.112) (0.226) 
(3.00) (3.00) (0.775) (0.183) (0.796) (0.212) (1.046) (0.216) 
(2.75) (2.75) (0.775) (0.183) (0.770) (0.197) (0.945) (0.241) 

13 3.25 2.85 0.415 0.213 0.565 0.103 0.986 0.078 
(3.25) (3.25) (0.416) (0.212) (0.548) (0.117) (0.960) (0.181) 

14 3.25 2.85 0.450 0.147 0.568 0.100 0.986 0.077 
(3.25) (3.25) (0.416) (0.212) (0.548) (0.117) (0.960) (0.181) 

15 3.25 2.85 0.690 0.113 0.740 0.154 1.049 0.095 
(3.25) (3.25) (0.692) (0.111) (0.738) (0.152) (1.103) (0.213) 
(3.00) (3.00) (0.692) (0.111) (0.746) (0.159) (1.046) (0.201) 
(2.75) (2.75) (0.692) (0.111) (0.757) (0.171) (0.939) (0.222) 
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Taoles 6 and 7 show the estimation results and the percentage of correctly detected outliers for 
cases 25 through 29 of taole 2. These cases are not included in Chen and Liu (1993). The numoer 
of replications is 500. The critical vallle for identifying 10 and AO is CAl = 3.25, and the critical 
value for the LS is CLS = 2.85. The range of the variable number of outliers correctly detected 
(taole 7) goes from O to 4 olltliers for all cases 

Table 6 Performance of the procedure. Multiple outliers. 

CASE PAR RMSE(PAR) PARF RMSE(PARF) (Ja RMSE(fJa ) 

25 0.043 0.567 0.571 0.096 1.045 0.160 
26 0.111 0.504 0.567 0.099 1.064 0.184 
27 0.186 0.431 0.578 0.093 1.040 0.138 
28 0.037 0.575 0.563 0.102 1.045 0.178 
29 0.179 0.436 0.572 0.095 1.029 0.115 

Ca..o;;es 25 throllgh 29 are four adjacent additive outliers, two or more of which were correctly 
detected in a range of 66% to 84% of the cases. Only in 2 of the 2500 series the fOllr olltliers 
are correctly detected. In spite of this behavior, the sample mean of the estimated alltoregressive 
parameter after removing the detected outliers is quite close to the trne value (0.6); the most 
unfavonraole case is 0.563. This estimation is oetter than the one obtained supposing no ontliers 
(which in tIle most favorable case is 0.186). 

Table 7. Number of correctly detected outliers with the proposed proc(~dllre for the cases from 
25 throllgh 29 (percentage). 

CASE O 1 2 3 4 
25 1.8 32.2 42.8 23.2 0.0 
26 1.4 26.6 52.4 19.4 0.2 
27 0.4 18.8 72.4 8.4 0.0 
28 1.2 29.2 43.4 26.0 0.2 
29 0.4 15.2 74.4 10.0 0.0 

In conseqllence, although the procedure does not correctly identify the type of the olltliers, the 
sample mean of the estimation of <p at the end of the procedure is very close to the trne value. These 
apparently contradictory results of incorrect detection out correct estimation of the parameters, can 
oe explained oearing in mind the concept of equivalent configumtions. That is, every sequence of 
outliers, oeing two or more adjacents, can lead to different equivalent configumtions of outliers. Two 
configurations of outliers are equivalent when their effects on a time series are indistinguishaole. 
For example, a configuration of an additive outlier of magnitude -w at instant t = T is equivalent 
to a configuration of two adjacent level shifts in t = T and t = T + 1 of magnitudes w and -w 
respectively. In the same manner, two additive outliers in t = T and t = T + 1 with magnitudes 
-Wl and W2 respectively are equivalent to an innovational outlier and an additive outlier in the 
same instant ",hen 1 < e < O. Finally, three adjacent additive outliers in t = T, T + 1, T + 2 are 
equivalent to an AO in t = T, an 10 in t = T + 1 and an AO in t = T + 2, with different outlier 
magnitudes in each case. 

For instance, in cases 25 to 29 \Ve have an AR(l) with four additive outliers of similar size and 
alternating signs. Then we can write : 
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¡ (T) _ ¡(T+l) + ¡(T+2) _ ¡(T+3) '" (1 _ ,l..B)-l¡(T) _ ¡(T+1) + ¡(T+2) ¡(T+3) W t W t W t W t - W '1' t Wl t W2 t - W t 

and if 1> is not large so that 1>3 ~ O the express ion on the left hand is an eqllivalent configurations 
to the original one with the sequen ce of outliers IO,AO,AO,AO and sizes Wl = w(1) + 1) and 
W2 = w(l - 1>2). As here 1> is 0.6 we expect that the left hand configuration can Le found quite 
often. Thus, if the procedure finds three additive outliers we expect that the fourth can easily Le 
10 and with a size given Ly w(l -1>2). 

In the same way if two AO are correctly detected and the modulus of the different AO are the 
same, then we have equivalent configurations as : 

that is IO,IO,AO,AO with Wl = w(1)+ 1), W2 = w(l + 1» and W3 = w(1-1>2(1 + 1»). Other possiLle 
configurations are IO,AO,IO,AO with Wl = w(1) + 1), W2 = w(l -1>2) and w3 = w(l + 1>(1 -1>2)); 
AO,IO,IO,AO with Wl = w2 = w(l + 1»; IO,AO,-,AO with wl = w(l + 1» and AO,IO,AO, with 
wl = w(l + 1» respectively. 

Cases 25 and 28 llave four AO with the same modulus, lmt opposite signo \\Te show in taLle 8 
for each case the percentage of mns for \Vhich a configurations equivalent to the original model is 
detected. Thus, \\'e observe that a high proportion of the times the procedure has detected one of 
the eqllivalent configurations that behave approximately as four conseclltive AO. The rest of the 
cases can be explained in a similar \Vay. 

Table 8. Percentage of eqlliwllent configurations for three and two AO correctly detected (case 
25 and case 28). 

Eq. Configurations Case 25 Case 28 
IO,AO,AO,AO 14.66 14.62 
AO,IO,AO,AO 48.28 53.08 
Total 62.94 67.7 

IO,IO,AO,AO 10.05 8.73 
IO,AO,IO,AO 8.13 9.61 
AO,IO,IO,AO 2.39 0.44 
IO,AO,-,AO 29.18 34 
AO,IO,AO,- 11.48 10.48 
Total 61.23 63.26 

In summary, when dealing with a series that has adjacent outliers, we should take into account 
the correct detection as well as the multiple equivalent configurations that can be expected. 

6.1 An Example 

To illustrate how the proposed procedure works, \Ve use the simulated series from the AR(l) model 
with parameter 1> = 0.7, and with at ~ N(O, 1). It has been generated 150 observations with the 
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seA Statistical System for computation, with the seed 250993. The first 50 oLservations have Leen 
eliminated. Thus, the sample size is 71, = 100. The estimated model is (1 - 0.78B)zt = at with 
SR = 0.82. This series is free of outliers and we have contaminated it with an AO at t = 13 of 
magnitude 5, an AO at t = 15 of magnitude -5, a LS at t = 91 of magnitude 4 and an AO at t = 92 
of magnitude 3. Figure 2 shows the plot of the oLserved series. 

Figure 2 Plot of the oLserved series. 

10~--~----~----~----~----~--~----~----~----~----¡ 

-10oL----l~O----~20-----3~O----4~O----5~O~--~6~O--~7~O----8~O~--~9~O--~100 

t 

The proposed procedure is described as [ol1o\\'s: 

In the stage 1, Initial estimaban ai fhe madel pammefers, \Ve oLtain that the maximum value 
of the measure of influence for a LS, DL(t), occurs in t=91. An intervention model with a step 
variable in t=91 is lmilt, resulting that its efI'ect (4.1714) is significant. This effect is removed, 
and the measure for LS is Luilt again, lmt no\\' the estimated effect is no significant. Tlms, the 
individual inflllence measure Dz is c:alclllated in e\'ery time point. The 10% of the obsen'ations, 
those with the highest values of illfluence measure, are corrected as additive outliers. Table!) sho\\'s 
the time points and the values of D z for these obsen·ations. 

Table 9. The individual measure of influence. 

t 12 13 15 16 18 
D~ z 11.3 27.6 20.3 1.7 2.1 

t 28 37 42 84 92 

Dz 1.7 1.7 1.7 2.2 4.0 

At t he end of the stage 1 the estimation of the autoregressive parameter is ~ = 0.75. 

Stage 2, Outliers detecfian, starts with the oLserved series and the estimabon of the parameters 
oLtained in stage 1. The residuals and the >-I,t, >-A,t and >-L,t (t = 1, ... ,71,) are now calculated. For 

every instant, 1 >-I,t 1, 1 >-A,t 1 are compared, and the maximum value of them is compared against 
el = 3. On the other hand, the maximum value of 1 >-L,t 1 is compared against C2 = 3. From these 
comparisons, the procedure deteds iteratively an AO in t = 13, a LS in t = 91, an AO in t = 92 
alld an AO at t = 15. The additive outliers and level shift are corrected iteratively, and the outlier 
detection starts again with the adjusted series and the estimated parameters oLtained in stage 1. 
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As there are no more outliers, stage 2 ends. 

In the stage 3, Joint estimation, we carry out the joint estimation (maximum likelihood) of the 
autoregressive parameters of the model and the effects of three AO in t = 13,15,92 anct a L8 at 
t = 91. The final model is: 

The estimate parameters, their t values and the residual standard error are 

Table 10. The estimate of parameters of the model. 

Type of parameter Value t values SR 

Autoregressive 0.81 16.45 
Effect of the AO in t=13 5.51 8.79 
Effect of the AO in t=15 -4.66 -7.43 
Effect of the L8 in t=91 5.15 7.16 
Effect of the AO in t=92 2.02 3.23 

0.81 

In order to look for more outliers, stage 2 starts again with the adjllsted series from three AO in 
t=13, t=15 and t=92 (with estimated effects eqllal to 5.51, -4.66 and 2.02 respectively) and a L8 in 
t=91 (with estimated effect eqllal to 5.15) and llsing the aforementioned alltoregressive parameter. 
8ince the procednre do es not find more olltliers, it finishes. 

The estimated alltoregressive parameters, the estimated effects of three additive olltlier in t=13, 
15 and 92 and a L8 in t=91 are presented in table 10. 

The procednre of Chen and Liu (1993) for the same series and with the choice C=3, correctly 
detects the three AO at t=13, 15 and 92, lmt at t=91 it detects an 10 instead of the L8. 
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Appendix 

A 95% Percentiles of max I ~i,t I for 10 and LS 

TaLle I. Critical values to 95 % for AR(l), AR(2) and AR(3) models, where n is the sample size 
and nm is the numLer of model in taLle 1. 

n nm ro LS nm ro LS nm ro LS 

30 1 2.89 2.34 8 2.89 2.89 15 2.92 3.08 
30 2 2.89 2.46 9 2.91 2.70 16 2.93 2.44 
30 3 3.00 2.70 10 2.94 2.31 17 2.96 2.64 
30 4 3.01 2.50 11 2.97 2.86 18 2.92 2.70 
30 5 2.90 2.15 12 2.95 2.33 19 2.89 2.62 
30 6 2.88 2.16 13 2.92 2.26 20 2.88 2.25 
30 7 2.86 2.12 14 3.02 2.68 21 2.85 2.06 
50 1 3.10 2.51 8 3.14 2.99 15 3.12 3.13 
50 2 3.07 2.52 9 3.13 2.92 16 3.09 2.65 
50 3 3.21 2.77 10 3.11 2.49 17 3.06 2.58 
50 4 3.15 2.95 11 3.12 2.90 18 3.10 2.83 
50 5 3.07 2.30 12 3.22 2.51 19 3.10 2.65 
50 G 3.12 2.30 13 3.11 2.29 20 3.14 2.40 
50 7 3.09 2.24 14 3.09 2.72 21 3.11 2.29 

100 1 3.29 2.57 8 3.42 2.99 15 3.34 3.18 
100 2 3.42 2.98 9 3.34 2.90 16 3.30 2.72 
100 :3 3.36 2.66 10 :3.:38 2.64 17 :3.38 2.78 
100 4 :3.39 3.06 11 3.37 3.13 18 3.39 2.90 
100 5 3.38 2.62 12 3.45 2.63 19 3.35 2.81 
100 G 3.:36 2.47 13 3.38 2.G5 20 3.3G 2.G2 
100 7 3.30 2.60 14 3.43 2.85 21 3.45 2.33 
150 1 3.48 2.77 8 3.50 2.99 15 3.42 3.25 
150 2 3.52 2.70 9 3.42 2.97 16 3.57 2.88 
150 3 3.54 2.82 10 3.52 2.55 17 3.51 2.85 
150 4 3.55 3.04 11 3.62 3.04 18 3.54 2.92 
150 5 3.57 2.52 12 3.55 2.64 19 3.57 2.74 
150 6 3.58 2.61 13 3.44 2.49 20 3.57 2.56 
150 7 3.42 2.53 14 3.57 2.85 21 3.46 2.35 

The critical vallles Ci used in the detection of olltliers have Leen oLtained with IDllltiple regres-
sion models from the critical values that are presented in this appendix. The response variaLles are, 
on the one hand, the critical values for ro and AO and, on the other hand, the critical values for 
LS. For the first model, the explicative variaLles are: the sample size, the type of outlier (additive 
or innovative) and the strllctllre of the model. For the second model, the explicative variaLles are 
the sample size, the order of the model and the structure model. 
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B Relationship between Dz(T) and Pz(T) 

The vector of forecasts ZVNT) is oLtained with the same parameters 1r(T) that are llsed in Z(T) 

(Peña 1987; and Ljung 1993 prove that the maximum likelihood function for the parameters 7T" in an 
intervention model is approximately the same that the one oLtained supposing an unoLserved oLser­

vation and interpolating with the inverse autocorrelation function.). Using 7r(B)(Zt -wAlf)) = at, 
A (INT) 

the vector of forecasts ZT can Le written as: 

where O is a matrix with the same dimension as Xz and has the form 

o 

o 

where I" is the identity matrix of order h (the order of tIle model). I" Legins in the instant T + l. 
A A (I NT) A A (T) 

ThllS, since Z - ZT = (Z - Z(T)) + WA(07r(T) - It ), the numerator of (7) can be written as: 

\Vriting eqllation (B-1) in terms of the inftuence statistics, \Ve have: 

",here 

and therefore, 

o 

o 
B(T) = (07r(T) - I~T)) = -1 

7Tl(T) 

7T2(T) 

n-T 
A2B' B A2(1 A2 A2 ) A2 '" A2 

WA (T) (T)=wA +7r1(T)+7r2(T)+··· =wAL-;7ri(T)' 
i=O 

with 7T6(T) = 1. For the third term in (B-2), Z - Z(T) is equivalent to 

Z - e - (Z - e(T)) = e(T) - e, 
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where e(T) are the residuals oLtained filtering Zt for 7r(T) (B). ThllS e(T) = 7r(T) (B)Zt, and the third 
term can Le written as fo11ows 

and, 

o 

o 
WA(Z - Z(T))' B(T) = wA(e(T) - e)' -1 

7rl(T) 
7r2(T) 

Therefore, eqllation (B-2) can Le written as: 

n-T 

hDz(T)o-~ = hPz(T)o-~ + w~ L ¿r;(T) + 2WA¿r(T)(F)(CT - eT(T))· 
;=0 

This (~qllation can be related to the statistic for testing additive olltliers ().A,T = W A J-¿7::l ¿rJ,(T/ O-a), 
obtaining 

'2 
AA T 2WA, 

DZ(T) = PZ(T) - -,-' +, '2 7rT(F)eT. 
), ),()" a 

If Wo = ¿r(7') (F)CT/ -¿~::l ¿r;(T) is the estimator of W obtained with tIle wrong rcsidu.o.ls (those 
obtained sllpposing that there are not olltliers), then 

and assllming that (WA - Wo) is sma11 with respect to W~ this eqllation can be approximated by 

e Relationship between DL(T) and P L(T) 

In this appendix \Ve oLtained the measure of the change in the parameters for a LS, P L(T), and 
the relationship Letween the statistics DL(T) and P L(T). It can be shown that the ML estimates 
can be obtained from the expressions ir = (X~Xz)-lX~Z, and irL = c:X.~Xy)-lX~Y, where the 

matrix Xz has been descriLed in section 4, Xy is the matrix of estimated values for the real process 
that is llnobserved in t 2 T, with Yt = Zt for t < T and Yt = Zt - WL for t 2 T. The matrix Xz and 
the vector Z can be written in terms of Xy and Y respectively as: 

(C-1) 
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(C-2) 

where M L is a matrix of zeros and ones that can ue partitioned as M~ = [M~(1)M~(2)], where 
ML(l) = O(T-h)xh and ML(2) is a matrix of dimension (n - T) x 11" that ha." a lower triangular 
submatrix of ones (TI) and a suumatrix of ones (MU). Thus, M~(2) = [T1hxh; MUhx'{n-h-T)]. 
The vector V L can be written as V~ = [V~(1) V~(2)], where V L(l) is a column vector of di­
mension (T - 11,) x 1 with zeros in every element except a one in the element T - 11" and V L(2) 
is a column vector of ones of dimension (n - T) X 1. The matrices Xz and Xy are partitioned in 
thc same way as M L , and the vectors Z and Y are partitioned like V L. The relationship uetween 
X~Xy and X~Xz can ue outained uy using (C-1) as follows 

X~Xy = X:Xz - wL(M~(2)Xz(2) + X:(2)ML(2) - wLMU2)ML(2)) = X:Xz - wLLL, 

therefore 
X~Xy = X:Xz - wLLL 

LL = M~(2)Xz(2) + X:(2)ML(2) - wLM~(2)Md2). 

The rclationship uetween X~ y and X~Z is outained llsing (C-1) and (C-2), 

x~ y = (X: - wLM~)(Z - WL V d = X:Z - wLX: VI- - wLM~Z + wIM~ V L , 

whic:h can be written as 

with 

811ustitllting (C-3) and (C-5), in the cxpression of ir L = (X~Xy)-l X~ Y, \Ve get 

(X~Xz - wLLdirL = X~Z - WLSL, 

and operating, it reslllts 
ir L = ir - WL(X~Xz)-l(SL - LLirL), 

calling ÉL = SL - LLirL, the reIation uetween ir and irL uecomes: 

, , '(X' X )-lE' 7r = 7rL + wL z z L 

(C-3) 

(C-4) 

(C-5) 

(C-6) 

(C-7) 

The inftuence measure for a L8, PL(T), is defined as the Mahalanobis distance between the 
vectors ir and ir L. Thus we obtain 

PL(T) = (ir - ird' (X~,~z)(ir - ird = ~I,T '2 É~(X~Xz)-lÉL 
hCTa 1 + ¿ li h 

(C-8) 

where ~L,T = wLj puja is the test statistic for a LS in t = T with h = (1 + i'f + [~ + ... + t;.-T) 1/2 , 

and ii is i-th coefficient. of i(B) = fr(B)j(l- B). 

?\cxt, "OC devclop the rclationship betwcen thc inftuence measurcs DL(T) and PL(T). Using 

7r(B)(Zt - wLsiT)) = at, the vector of forecasts Z~LS) can ue written as: 

Z' (I LS) _ (X 'V) , +' S(T) T - z - WL 7rT,L WL t , 
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where G T = V 7rT,L is the following vector 

Thus 

and 

G T =V7rTL = , 

o 

o 
ir1,L 

ir1,L + ir2,L 

(Z - ZVLSl)'(Z - ZVLS)) (Z - ZT,L)'(Z - ZT,L) 

+ wL(GT - S~T))'(GT - s}T)) 
, " (T) + 2 x wL(Z - ZT,L) (GT - St ). 

\Vriting this eqnation in terms of the inf1nence statistics for LS \Ve obtain: 

where 

O O 

o O 
LT = (GT - S~T)) = -1-1 

-1 + ir1,L hT 
-1 + ir1,L + ir2,L [2T 

and therefore, 

n-T 
'2L' L '2(1 [12 [12 ) ,2 '" [12 wL T T = WL + 1,T + 2,T + ... = WL ~ i,T' 

i=O 

with [6,T = 1. In the third term of (C-9), Z - ZT,L is equal to eL - e, thus 
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and operating, the third term of (C-9) results 

o 

o 
-1 

~l,T 
l2,T 

2WLCZ - ZT,L)'LT = 2WL[T(F)(CT - eT,L), 

and the eqllatión (C-9) can Le written as: 

n-T 

hDL(T)a-~ = hPL(T)a-~ + wI ¿ qT + 2WL[1'(F)(eT - eT,L). 
i=O 

Using )..L,T = wLl'I:,7::l" [¡,r/a-a (where WL is the estimated effect of a LS) we have that: 

A

2 ALT 2WL A 

DL(T) = PL(T) - -,-' + -, A2lT(F)CT, 
1, la a 

and calling WO,L = [T(F)eT/ "L7::[ [1,1' we have 

and assmning that (WL - WO,L) is small compared to w'i, this eqllation can Le approximated Ly: 

)"2 
DL(T) ~ P L(T) + L,T, 

11, 

and, as before, DL(T) can Le interpreted as the effect of the change of the parameters plus the 
effect of the particular intervention. 
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