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Abstract

The presence of outliers causes biases in the estimation of ARIMA models. In this work
we present a procedure for detecting outliers and obtaining a robust estimator of the parame-
ters in univariate ARIMA time series models. There are three main problems in the existing
procedures for detecting outliers in ARIMA time series models. The first one is the confusion
between level shifts and innovative outliers when a level shift is present in a time series. The
procedure includes a possible solution to avoid this problem based on not comparing the statis-
tics for level shifts and innovative ontliers together, because the critical values under the null
hypothesis of no outliers can be quite different. The second problem is the biased estimation
of the initial parameter values. In the existing procedures, this initial estimation is done under
the hypotheses of no outliers in the data, which may lead to begin the search for outliers using
a very biased set of parameters and, therefore, these procedures may fail. In order to solve this
problem, we use two measures of influence in the first stage of the proposed procedure: one
measure for individually influential observations, and an additional measure for level shifts and
sequences of outliers. The third problem is masking. This problem appears when there is a
sequence of additive outliers, because the usual one by one outlier identification method may
fail in the identification of some of the members of the group. The proposed procedure seems
to solve the aforementioned problems and obtains good parameter estimates when the time
series has isolated outliers and/or multiple adjacent outliers. The performance of the proposed
procedure is analyzed and an example is shown.

Keywords: Equivalent Configurations, Influential observations, Misspecification, Multiple
Outliers, Robust Estimation.

1 Introduction

Time series data often have outliers or discordant observations. Identifying and managing these
observations is necessary because they can produce pernicious effects in model specification. Even
when the model is well specified, discordant observations can lead to wrong parameter estimation
and, therefore, resulting forecasts can be expected to be poor.

The study of outliers in time series can be carried out using different statisticals models that are
proposed in the literature. In this paper, we deal with ARIMA models (Box and Jenkins, 1976),
and more precisely in diagnostic methods.



Fox (1972) defines additive and innovative outliers and proposes the use of maximum likelihood
ratio tests for detecting them. Chang and Tiao (1983) and Chang, Tiao and Chen (1988) extend
the results of Fox (1972) to ARIMA models and present an iterative procedure for detecting these
outliers and estimating the model parameters. Tsay (1988) generalizes this procedure for detecting
Level Shifts and Temporary Changes. Balke (1993) proposes a modification to the Tsay Procedure
for solving the confusion between Level Shift and Innovative outliers using an additional search
of outliers with a white-noise model. This modification causes two problems: (1) the ARMA(0,0)
model does not distinguish between innovative outliers and additive outliers, and (2) the white-
noise search can identify spurious level shifts. Chen and Liu (1993) present an outlier detection and
parameter estimation procedure that seems to be the most robust of all. However, this procedure
may missidentify level shifts as innovative outliers and, besides, some outliers may not be identified
due to masking effects. All of this can produce bias in parameter estimates.

An outlier is not necessarily an influential observation. Pefia (1987, 1990) presents a statistic
to measure influential outliers. Bruce and Martin (1989) define two diagnostics, DC and DV, for
solving masking in time series when there are outlier patches. The DC diagnostic measures the
change in the estimate of the ARIMA coefficients whereas DV measures the change in the estimated
variance. If the size of the influential observations set is greater than 5 (i.e. level shift or variance
change), the diagnostics can be wrong.

There are three main problems in the existing procedures for detecting outliers in ARIMA time
series models. The first one is the confusion between level shift and innovative outliers (in favour
of the latter) when a level shift is present in a time series. This situation appears in Tsay(1988),
Balke (1993) and Chen and Liu(1993). The second is the biased estimation of the initial parameter
values. This problem is due to the fact that the initial estimation of the parameters is made under
the hypotheses of no outliers in the data, which may lead to begin the search for outliers by using
a very biased sct of parameters and, as a consequence of this, the procedure may fail. The third
problem is masking. It appears when there is a sequence of additive outliers, because the usnal
procedures based on the identification of outliers one by one may fail in the identification of some
of the members of the group. In this article, we present a procedure which seems to solve the
aforementioned problems.

Figure 1 Plot of the simulated AR(1) series (-) and the contaminated (- -) series with a LS and

an AO.
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For instance, we have a simulated n = 100 observations of an AR(1) time serics model with



é = 0.435, and 04 = 1. Then we have introduced two consecutive outlier effects: a LS of magnitude
wr, = 304 = 3 from ¢t = 40 to ¢t = 100, and an AO of magnitude wy = 40, =4 at t = 41. Figure 1
shows the plot of both the simulated and observed series.

With the procedure proposed by Chen and Liu (1993), and using a critical value C = 3 only an
AO at t=41 is detected, its estimated effect is & = 5.04, and the ¢—value is 5.93, and the estimation
of the autorregresive parameter at the end of the procedure is ¢ = 0.908 with a t—value of 14.16,
and a residual standard error §g = 1.147. With our proposed procedure and using a critical value
Crs = 3 for LS and a critical value Crp/40 = 3.25 for 10 and AQ, both the LS at t=40 and the
AO at t=41 are detected; their estimated effects are respectively @ = 3.261 and & = 5.037, and
their ¢ statistics are respectively 16.29 and 6.04. The estimation of the autoregressive parameter

at the end of the procedure is ¢ = 0.429 with a t—value of 4.97, and the residual standard error
g = 0.906.

Another formulation initiated by Harvey (1981) is based on structural models using the state
space representation (Aoki, 1987) with unobserved components. The parameters of these models
can be estimated through the Kalman Filter. Harvey and Koopman (1992) discuss the detection of
outliers in these models, while West (1981),Kitagawa (1987), and Pefia and Guttman (1989) and
Taplin (1993) work in the robust estimation of Kalman filter.

Within the classical robust methods, Denby and Martin (1979) present a generalization of the
M estimators (called by them GM estimators) for first order autoregressive processes. Martin
(1980) and Bustos (1982) carry out a generalization for autoregressive processes of order p. Martin
(1981) and Lee and Martin (1982) present the extension for ARMA models, and Martin , Samarov
and Vandaele (1983) for ARIMA models using a robust procedure of iterative estimation with an
algorithm of robust filtering. Bustos and Yohai (1986) present two types of robust estimators for
ARMA models. '

Within the bayesian analysis of outliers in time series, McCulloch and Tsay (1993,1994) analyze
ouliers, level shifts and variance change models in autoregressive processes.Le, Martin and Raftery
(1996) use a mixture transition distribution model which can capture outliers, non-Gaussian fea-
tures and nonlinear features, and Le, Raftery and Martin (1996) propose a method based on robust
Bayes factors. for the order selection problem in autoregressive process with additive outliers.

This paper is organized as follows. In section 2 we present the model and the notation. In
section 3 we analyze the confusion Letween innovational outliers and level shifts under Hy. The
relationship between the statistics for testing the existence of an innovational outlier and a level
shift and the sampling behavior of the maximum of the test statistics are analyzed. In section 4
we present a procedure to obtain an initial robust estimation of the model parameters. In section
5, we describe the proposed method to identify multiple outliers. In section 6, the performance of
the proposed procedure is studied and an example of the procedure is shown.

2 Model and Notation

Let y; be a stochastic process following an ARIMA model

¢(B) v* 4 = 6(B)ay, (1)
where B is the backshift operator such that By, = y;—1, ¢(B) = 1 — 1B — ... — ¢ BP and
(B) =1—-61B — ... —6,B? are polynomials in B of degrees p and g, respectively, with roots



outside the unit circle, 7 = 1 — B is the difference operator, 7%y, is the stationary series, and a;
is a white-noise sequence of iid N(0,02) variables. In this paper, we will work with three types of
outliers : innovational outliers (I0), additive outliers (AO), and level shifts (LS). For this purpose,
the following model is considered

2= wVi(B) ™ + g )

that is, instead of observing the ARIMA process y; we observed the process z;, that is contaminated
by one outlier. In (2) 1 follows (1), w; is the outlier effect, V;(B) = 1/7(B) where n(B) =
(1 -mB —mB?—...) = 7YB) v ¢(B) for 10, Vi(B) = 1 for AO, and V;(B) = 1/(1 -~ B)
for LS; It(Ti) is an impulse variable that takes the value 1 if £ = T; and 0 otherwise. Then calling
e: = 7(B)z: equation (2) can be written as

Ct = Wy —+ a; (3)

where for 1nnovat10nal outliers w; = wy and z; = I; 1) , for additive outliers w; = w4 and z; =

W(B)It , and for level shifts w; = wy and z; = 7r(B)(1 - B)—llt(T). Assuming that the model

parameters are known, the least squares estimators of w;, @;, in (3) are 3" e;z¢/ 3 22, which leads to

@a = p4r(F)er, @r = er and @p, = pil(F)er; where p% = (1473 +...+n_r)~t, F is the forward-

shift operator such that Fe; = egy1, p2 = (1 + 1 + ... +12_;)7}, and {(B) = 7(B)/(1 — B). The

variance of @; is 02(3. z2)! and therefore Var(@y) = p402, Var(@;) = o2 and Var(&r) = po?.
For a single outlier case the following hypotheses are usually considered

Hy: w;=wgq=wp=0 (nooutlier)

Hi: wr#0 (only I0)
Hp: wa#0 (only AO)
Hp: wp #0 (only LS)

The likelihood ratio test statistics for testing Hg versus Hy, H4 and H, are respectively A\jr =
©O1/6ay AAT = ®A/pade and AL = &p/prbs. Under the null hypothesis of no outliers, the Ajr
(j =1, A, L) statistics are asymptotically distributed as N(0, 1).

In practice, the model parameters are unknown. Then the parameters are 1n1t1ally estimated by
assuming that there are no outliers and the detection is based on the statistics A T A A and hY LT
in which the parameters are substituted by their estimates. These statistics are asymptotlcally

equivalent to A7, Aa 1 and Af 7 respectively. For detecting outliers at an unknown position, Tsay
(1988) suggests calculating

nt = max{| 5\” L 1 Aael | XL,t I}

If max n; =| 5\1,T |> C ,where C is a predetermined constant, there exists the possibility of
an IO in t = T, if max 7y =| Aar |> C there exists the possibility of an AO in ¢t = T, and if
max 7, =| A1 |> C there exists the possibility of an LSin t =T

When the time series contains several outliers the generalization of (2) is

k
T;
2y = szv;(B)It( ) + Yt (4)
where k is the number of outliers. Assuming as before that the parameters are known, and also
calling e; = 7(B)z;, we have

e = .’L‘;ﬂ + a; (5)
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where §' = (wy,...,wg) and Ty = (T1ty - - -, Tt)-

The outlier identification procedures which estimate the effects of the outliers one by one used
model (2) instead of model (5). These procedures will work when the matrix (37— z;7;) 7! is
roughly diagonal but may lead to several biases when the series have patches of additive outliers
and level shifts. Note that for an innovational outlier z;; = It(T"), and therefore the estimation of
its effect is typically uncorrelated with other effects. However, for additive outliers z;; = w(B)It(Ti)
and the correlation between the effects of consecutive additive outliers can be very high. This is
expected to happen when we have patches of outliers, an empirical fact found by Bruce and Martin

(1989).

For instance, suppose that we have k = 2 and two consecutive outliers of magnitudes w; and
ws at times T and T + 1. Then the expected value for the estimator of @} using model (2), and
assuming that it is the only outlier, is given by

n-T-1
ey Yo TiTitl
E@]) =wi + =" 5
i=0 i
where mp = —1. As an example, if w; = wy = w and the process is a random walk, the estimation
0 ple, 1 )

assuming a single outlier at + = T will be one half of the true outlier value. This will produce
a masking effect and can lead to wrong outlier identification. This problem can be overcome by
a step of joint estimation of all the outlier candidates detected by means of the individual model
(2). Tt also suggests that the step of initial outlier identification through the individual likelihood
ratio test should be carried out with a moderate significance level (between 0.25 and 0.1) bearing
in mind that the points will be checked jointly afterwards in the step of joint estimation.

3 The confusion between Innovative Qutliers and Level Shifts un-
der H,

Suppose that y; follows an ARIMA model. Then, the statistics for testing the existence of IO and
LSint =T are: .
(10) Ar=%,
) o'a

-T
ér — ) Liersi
=1

(LS) M7= =1_ ,
Ga(1+ D )2
i=1

where Zl = -1+, [2 =147y +72,..., [n—T = —1+Z?=_1T7Ari.

Then the relationship between h\ 1,7 and A LT is:

n=T i
> (re(l =) %5))
/A\],T + 2=1 _ j=1

~

ALT =

(6)

(o)
(L+ X3 (-1 + iy )V



Note that for an AR(1) model when ¢ — 1 both statistics are equal because then both models
are identical. For AR(p) models the closer to unity each of the elements of the sequence ¢1, ¢; + ¢,
.oy 201 ¢ are, the nearer the LS critical values will be to the IO critical values. For an invertible
ARMA model, under Hy (no outliers), when ¢ = T' is not close to the end of the series, for large
n the second term will go to zero and the likelihood ratio for level shifts, A L,T, is expected to be
smaller than the likelihood ratio for innovational outliers ,5\ I.T-

This result suggests that for invertible ARMA models the statistics for level shift and innovative
outliers should not be compared together, because the critical values under the null hypothesis can
be quite different. In order to check this result in finite samples we have carried out a simulation
study of the distribution of these two statistics. The objective of this study is to obtain the critical
values for the statistics defined in section 2 that will allow us to decide whether or not there exist
outliers under different circumstances. The response variables of this study are the 99, 95 and 90
% percentiles of maz{| S\i,t |}, with : = IO, AO, LS and ¢t = 1,...,n. These percentiles will be
called critical values C; (i=I0, AO, LS.). The factors considered in this simulation study are the
variables which define the tests statistics. These factors are:

1. Sample size. There are four sample sizes n = 30, 50, 100 and 150.
2. Type of outlier. We consider three types: 10, AO and LS.

3. The antoregressive process. We use 21 different models: seven AR(1) models, seven AR(2)
models and seven AR(3) models. The parameter values for the AR(1), AR(2) and AR(3)
processes are presented in table 1

The tests statistics for IO, AO and LS depend also on the estimated residual standard deviation,
which is obtained using the omit-one method. Thus, if we are testing a possible outlier in t = T', the
residual standard deviation is calculated omitting the residual in ¢ = 7. The simulations have been
done using MATLAB (developed by The MathWorks, Inc.). The a; (random errors) are generated
with the Monte Carlo method, with o, = 1. For this case, the number of replications is 500, and for
each replication maz | S\i’t | is selected with ¢+ =IO, AO, LS and ¢t = 1,...,n. The simulations have
been developed without outliers. In the appendix A, we present the 95 percentiles of maz | j‘i,t |
for IO and LS (the 99 and 90 percentiles of max | Xi | for IO and LS, and the percentiles for AO
can be obtained from the authors), four sample sizes (30, 50, 100 y 150) and the 21 models that
appear on table 1. The results show that the percentiles or critical values for IO are larger than
the critical values for LS when using the same sample size and ¢ values. This is a general behavior
except for model numbers 4, 8, 11 and 15 of table 1, in which both critical values are similar. Note
that this result is expected because all these four models have the largest AR root close to one.

From the results of the study we conclude that the detection method based on 7; = max{]
S\i,t |}, as given previously seems to be inadequate, because the sampling behavior of the maximum
value of the statistic for the LS is different to the corresponding ones for IO and AO. In order to
avoid the confusion between LS and IO when detecting outliers, we propose not to compare all the
statistics | S\i,t | together, but instead of this compare IO vs AO on the one hand, and on the other
hand deal with LS alone. Thus, the maximum | ); | for I0-AO is compared with a critical value
C1, and the maximum | h\ Lt | is compared with a critical value Cy. If from these two comparisons
we detect both an JO-AO and a LS in the same instant ¢t = T, we will build an intervention model
with two dummy variables, a step for the LS in ¢ = T, and an impulse for IO-AO in ¢t = T, and
estimate both effects to study if both are significant. This method will be detailed in section 5.




Table 1. Autoregressive parameter values.

Model Order Parameters

1 1 $:=02

2 1 ¢1=04

3 1 $=06

4 1 ¢1=0.8

5 1 $1=03

6 1 ¢1=05

7 1 $=-08

8 2 =1, o= -0.24

9 2 ¢1=0.5; $2=0.2

10 2 $1=0.5; $2=-0.2

11 2 ¢1=1.2; $o=-0.4

12 2 ¢1=0.6; $2=-0.3

13 2 $=02,  $=-0.06

14 2 $1=0.2; $2=0.48

15 3 ¢1=1.15,  $3=-0.36; ¢3=0.105
16 3 $1=-02;  $9=0.56; $3=0.192
17 3 $1=02; $2=0.56;  p3=-0.192
18 3 =115,  $9=-0.36; $3=-0.105
19 3 $1=0.4; $2=0.36;  p3=-0.144
20 3 =11  $=017; $3=0.315
21 3 ¢1=-04;  $y=-0.36; $3=0.144

4 Measures of Influential Observations in ARIMA
models

In time series, the estimation of model parameters can turn out wrong when there are outliers, and
searching for outliers using these biased parameter estimates can lead to incorrect results. In order
to start the searching procedure with better parameter estimates we propose to compute them
from a sample in which all data points that have large influence on the parameter computation are
assumed to be missing values. Thus we compute an initial robust estimate by cleaning the sample
from all the influential points, which are substituted by their interpolated values using the rest of
the sample, so that the resulting estimated parameters are free of their effects.

Influential observations in time series can be classified in two types: 1-. isolated observations,
that we shall call individually influential observations (i.e. an additive outlier) and 2-. sets of
observations, that we shall call jointly influential observations (i.e., LS or outlier sequence). Pefia
(1991) suggests to measure the influence of a single observation using the statistic D 4(T)

) S(INT)\" /15 S(IN
(Z - 28Ny (2 - 28N
hé&2

Dy(T) = ; (7)

where h is the order of the ARIMA model or number of parameters, 62 is the estimation of the

(INT)
T

white-noise variance, Z is the vector of forecasts assuming no outliers, and Z is the vector of



forecasts computed by assuming that the T' — th observation is an additive outlier. This vector of
forecasts is provided by the intervention model

m(B)(z — waly") = ay, ®

where 7(B), wy and It(T) have been defined previously.

A different way to measure the influence of a single observation is by analyzing the change it
produces on the parameter estimates. Let 7 be the maximum likelihood estimate (MLE) of 7
supposing than there are not outliers, and let #(7) be the MLE considering that the observation
in ¢+ = T is missing. The measure of influence, Pr(T), Pena (1990) is the Mahalanobis distance
between the vectors r y 7 (7).

(7 — 7)) S7HE — (1)
ho?

Pr(T) = , (9)

where 3, 02 is the variance-covariance matrix of the # estimated vector, and h is the number of
parameters. If Z = X, 7@ is the estimated vector of forecasts and Zry = X, (7 is the estimated
vector of forecasts assuming that the observation in £ = T is missing, where X is the matrix

Zh Zh—1 - 21
Zh+1  Rh e 22

Xz - 5
Zi—1 2t—2 .. Zt—h

the influence measure (9) can be written as

_ (Z - Zr))(Z - Zry)

52
hé?

Py(T) : (10)

~ ~ s

since (Z — Zipy) (Z — L)) = (7 — () B (F — 7o) = (7 - 7)) (KXo (& = ().

Note that in linear regression model a measure of influence based on the change in the parameter
estimates is always equivalent to the one based on the change in forecast, whereas in time series
this equivalence is lost, because (7) and (10) are different. In fact, it is proved in the appendix B
that the relationship between these two statistics is:

S

22
D(T) = Py(T) + =3, (11)

so that D4(T') can be interpreted as the effect of the change of the parameters plus the effect of the
additive outlier. We have found in a simulation study that statistic (7), which includes the outlier
size is more effective to detect outliers which have a strong influence on the model than (10), and
we will use this measure from now on in this paper.

When the time series has a LS or a sequence of consecutive additive outliers of a similar size,
which produces a behavior similar to a LS, we have observed that the influence measure (7) detects



as influential observations a low percentage of the observations affected by the LS or included in
that sequence. This is the masking effect. Then, if we delete observations according only to D4 (T')
several outliers will be undetected, and will biased the initial parameter estimates. To avoid this
situation we now develop a influence measure for a LS which will be used in the procedure jointly
with (7) to carry out the initial cleanning of the sample data.

Let y; follow an ARIM A(p,d, q) process and let us assume that there is a LS in ¢t = T being 2
the observed series. Let 7 and 7ty be the conditional maximum likelihood estimates of 7r; where
# is obtained by assuming no outliers, whereas 7, is computed assuming a LS in £ = T' and using
the model

7(B)(z — w ST) = ay, (12)

where wy, is the effect of a LS at ¢ = T and SET) is a step variable that takes the value 1 if t > T

and 0 otherwise. We propose measuring the influence of a LS by considering the change in the

forecast vector as o o

(Z -z (Z - 289,
ha? ’

DL(T) = (13)
where Z is the vector of forecasts assuming no LS, and ng L5) is the vector of forecasts from the
intervention model (12). As in the case of additive outliers, we could have measure the influence
of LS by analyzing the change in the parameter estimates. Calling, 7 and 7y, to the MLE of r;
7t supposing that there are no outliers, and 7, considering that there exists a LS in £ = T and
using the model (12), we could use the formulation (9) to build a measure of the change in the
parameters.

We obtained, in the appendix C, the measure of the change in the parameters for a LS, PL(T),
and it is proved that the relationship between the statistics DL(T) and PL(T) is:
32

A
DL(T) ~ PL(T) + “&L

A (14)

and, as in the additive outlier case, DL(T) can be interpreted as the effect of the change of the
parameters plus the effect of a level shift.

In summary, for detecting individually and jointly influential observations we propose to use
two measures of influence: D (T) for individually influential observations, and DL(T') for LS and
sequences of outliers.

5 The Proposed Procedure

The procedure we propose for multiple outlier detection has three stages. In the first stage, Initial
parameter estimation, a robust initial estimate is computed from a sample in which all influential
points either individually (as measured by (7)) or jointly (as measured by (13)) are eliminated.
In the second stage, Outlier detection, outliers are identified using a similar algorithm to the
one developed by Chang, Tiao and Chen (1988), Tsay (1988) and Chen and Liu (1993), but the
algorithm is modified to avoid the confusion between LS and IO. In the last stage, Joint estimation,
the procedure uses maximum likelihood to jointly estimate the model parameters and the effects
of the outliers. This stage finishes with a new outlier detection step using the maximum likelihood
parameter estimates.



5.1 Stage 1: Initial estimation of the model parameters.

The goal of this stage is to obtain a robust estimation of the model parameters. Thus, the procedure
uses the measures of influence (7) and (13), to identify the observations that can produce bias
estimates. )

The steps of stage 1 are:

1. Calculate the estimates of the model parameters using the observed series and supposing that
there are no outliers on the time series.

2. Calculate the influence measure DL(t) for every t. Select the time at which the maximum
value of this DL(t) occurs and call it T3, i.e. T; = arg maxDL(t). Then estimate the
intervention model

7(B)(z — w8 = ay

where 2, is the observed series, 7(B) is the autoregressive approximation of the model, St( R

is a step variable at ¢t = T; with ¢ = 1, and wy, is the effect of the LS at time 7.

(a) If &y is significant, remove the effect of the LS from the observations by defining the

c_{zi f<ﬂ
Zy =

adjusted series
Zt — ‘;)L t Z Ij’i)

and calculate again the influence measure DL(f) and repeat step 2. The process is
repeated until @y, is not significant.

(b) If @, is not significant, go to step 3.
3. With the last adjusted series, z¢, the individual measure of influence D,(t) is calculated.
Select the a% more influential values, remove their effects from the observations as if they

were additive outliers. Next, the model paramecters are again estimated. These estimated
parameters are used in stage 2.

The output of this stage is a set of robust parameter estimates, once the effects of significant
LS and an a% of individually influential observations have been removed from the sample.

5.2 Stage 2: Outlier detection.

The goal of this stage is to iteratively identify the presence of outliers in the time series. The steps
are:

1. Compute 6, and the residuals of the model using the parameters of stage 1.

2. Compute 5\”, S\A,t and S\L,t, fort=1,...,n.

10



3. For each time ¢, the statistics | 5\1-,1 | for IO and AO are compared. Let j\ua’t be the largest
of them and S\ua,TA the maximum value of j\wyt, which occurs at time T = T4. If S\W,TA =]
A1 T4 |> C1, there is a possibility of IO at t = T4. The C value is a predeterminate critical
value for IO and AO, and it depends on the sample size, model structure and conﬁdence level.
If Ao Ta =| W T4 |2 Ch1, there is a possibility of AO at t = Tj4.

4. Fort =1,...,n, select S\L,TB = mazy | S\L,t | If S\L,TB > (s there is a possibility of LS at
t = Tp. The C; value is a predeterminate critical value for LS, and it depends on the sample
size, model structure and confidence level.

5. There are four possible situations:

(a) If neither outliers nor LS are found, then stop. The procedure finishes and the conclusion
is that the observed series is free from outlier effects.

(b) Innovative or additive outliers are detected, but no LS. By removing the effect of the IO
or the AQ, the adjusted series is obtained.

(c) A LS is detected, but no innovative or additive outliers. By removing the effect of the
LS, the adjusted series is obtained.

(d) Innovative or additive outliers and level shifts are detected. If these occur in different
points, then remove both of them. If these outliers occur in the same point, then study
if their effects are both significant (it is possible that when there is a LS in t = T, the
procedure detects at this time the LS but simultaneously an IO or AQO). For this purpose,
the procedure uses an intervention model with two dummy variables: an impulseint =T
for IO/AQ, and a step in £ = T for the LS. The I0-AO and LS in t = T are significant
when the statistics | @;/ d@) | are larger than the different critical values used in steps
3 and 4 (C for IO/AO, and C; for LS). df@) is the estimated standard deviation of
the estimate effect for the outlier in £ =T :

Step 5 finishes when all the significant outliers are removed.

6. Using the adjusted series (free from the detected IO or AO and/or LS effects), and using the

parameter estimation in stage 1, go to (2) and iterate through (2), (3), (4) y (5) until no
additional outliers are detected.

The inputs of stage 2 are the estimation of the parameters at stage 1 and the observed series.
The outputs are the time points, type and estimated effects for all the detected outliers.

5.3 Stage 3: Joint estimation.

Calculate the residuals of the model (é;) by filtering the observed series using the estimated para-
meters after correcting the k& outliers detected. The outlier effects are jointly estimated using

Zwm B 4 a (15)

where Vi(B) = 1/¢(B) for an IO, Vi(B) = 1 for an AO, and V;(B) = 1/(1 — B) for a LS, k is
the number of detected outliers (or the number of interventions of the model) which occur at time
points T1,...,T}.
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Test if the effects of the outliers are significant. If the effects of some outliers are not significant,
remove the smallest non significant outlier from the set of detected outliers, and estimate again the
effect of the k& — 1 outliers. This process should be repeated until all the outliers in the final set
are significant. Then obtain the adjusted series by removing their effects from the observed series.
With the last series, the model parameters are estimated, and then iterate through stages 2 and
3. In these two stages, the procedure uses the adjusted series and the last parameter estimates.
When no more outliers are found in stage 2, remove all the effects of the detected outliers from the
observed series obtaining the adjusted series. Finally, identify the model for the adjusted series,
and jointly estimate the outlier effects and the model parameters.

Comments to the procedure: The search of the different outliers in stage 2 must be carried out
with less strict critical values (i.e. @ = 0.1) than those used in the third stage. Thus, all the possible
outliers are identified one by one. It is possible that this stage provides some wrong outliers, but
this is not a problem since all the outliers are afterwards jointly estimated in (15).

6 Performance of the Proposed Procedure

In order to study the performance of the procedure, we carried out a simulation study. The
evaluation criterion of the procedure is similar to the one of Chen and Liu (1993), CL from now
on. Two measures of the procedure performance are considered:

1. The relative frequency of correct detection (type and location) of the ontliers.

2. The accuracy and precision in the estimation of the model parameters. For this purpose, we
use the sample mean and the sample root mean square error (RMSE) of the model parameter
estimates.

In the simulation study, the factor levels have been selected in the same way as Chen and Liu
(1993) in order to facilate the comparison between the procedures. The factors are those that
can influence the outlier detection and the estimation of model parameters. These factors are: 1)
Type of outlier: 10, AO and LS; 2) Time series structure: AR(1) and MA(1); 3) Size of outlier:
w=230, =3, w=40, =4 and w = 50, = 5; 4) Number of outliers: a single outlier or several
adjacent outliers; 5) Position of the outliers: at the beginning, in the middle or at the end of the
series. The combination of these factors leads to the 29 cases presented in Table 2. Cases 1 to 24
are replications of ARMA models that appear in Chen and Liu (1993).

The simulations have been done using MATLAB (developed by The MathWorks, Inc.). The
random errors are generated with the Monte Carlo method, with o, = 1. The sample size of the
time series is 100. The true values of the parameters ¢; and 6; are both 0.6 and ¢2 = 1. For every
case of table 2. the number of replications is 500. The estimation of the variance (62) used to
calculate the different statistics for testing outliers has been obtained with the omit-one method.
Thus, if we test a possible outlier at ¢ = T, the residual standard deviation is obtained by omitting
the residual in £ = T. Once all the detected outliers are corrected, 6, is the residual standard
deviation. The order of the model is supposed to be known. The estimation of the autoregressive
parameter has been obtained by least squares, and this for the moving average parameter by the
Galbraith and Zinde-Walsh (1994) method, with a third order autoregressive approximation. For
instance, if (/)1, qu and gbg are the estimated parameters, the estimation of the moving-average
parameter is s = —051.

12



Table 2. Different cases for studying the performance of the proposed procedure.

CASE Model Outliers

1 AR(1) AOt=40w =3
2 AR(1) AOt=40w=4
3 AR(1) AOt=40w =35
4 AR(1) 10 t=40w =3
5 AR(l) I0t=40w =4
6 AR(1) I0t=40w =35
7 AR(1) LSt=40w =3
8 AR(1) LSt=40w=4
9 AR(l) LSt=40w=5
10 AR(1) AOt=40w=3A0t=4lw=4
11 AR(1) IO t=40 w =3 AO t=41 w =4
12 AR(1) LSt=40w =3 AO t=41 w =4
13 AR(1) AOt=10w=4A0t=11w= -3
14 AR(1) IO t=10w =4 A0 t=11 w = —3
15 AR(1) LSt=10w=4A0 t=11w= -3
16 MA(1) AOt=40w =3
17 MA(1) AO t=40w =4
18 MA(1) AOt=40w =5
19 MA(1) I0t=40w =3
20 MA(1) IO t=40w =4
21 MA(1) I0t=40w =5
92 MA(1) LS t=40w =3
23 MA(1) LSt=40w =4
24 MNA(1) LSt=40w =05
25 AR(1) 4 AO t=50,51,52,53 w = 5; —5;5; =5
26 AR(1) 4 AO t=75,76,77,78 w = 5; —4;5; —4
27 AR(1) 4 AO t=50,51,52,53 w = 5;—-3;5; -3
28 AR(1) 4 AO t=10,11,12,13 w = 5; —5;5; —5
20 AR(1) 4 AO t=10,11,12,13 w = 5; —3; 5; —3

In the detection of a single IO or AO the results for the proposed procedure are almost identical
to those given by Chen and Liu (1993). This is expected, because then masking does not occur.
For this reason, table 3 only shows the frequency of correct detection (type and location) for the
cases of a single LS. The selection of the critical values is as follows (see appendix A):

1. In the AR(1) models, C; = C4; = 3.25 is the critical value for the detection of IO and AO
with a = 0.05, and Cy = Cpg = 2.85 is the critical value for the detection of the LS with
a = 0.05. These values are used in all the AR(1) cases, except in cases 7,8 and 9, where
the time series has a single LS. We use Cg = 3 for comparing the results of our procedure
against the results of the procedure of Chen and Liu (CL).

2. In the MA(1) models, we use C; = Cyy = 3.3 for detecting IO and AO, and Cy = Crg = 2.75
for detecting LS, these values have been obtained with a = 0.05.

In order to make the comparison of the proposed procedure versus the CL procedure we have
chosen the critical value corresponding to the existing outlier. Thus, in the proposed procedure
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two critical values are used, one for AO and IO and another for LS. When we want to compare the
results of both procedures for a single outlier, the results of the CL procedure correspond to the
existing outlier. For example, if a single IO is presented, then C = 3.25 in the CL procedure; but
if the presented outlier is a LS and the model is MA(1), the selected critical value is C' = 2.75.

Table 3. Comparison of the procedure proposed in this paper (PP) and the procedure of Chen
and Liu (CL) for LS model.

w=30,=3 w=140,=4 w=2580,=25
AR(1) MA(1) AR(1) MA(1l) AR(1) MA(1)

PP 0.31 0.70 0.69 0.90 0.89 0.93

CL 0.22 0.51 0.62 0.65 0.89 0.75

Tables 4 and 5 present the results of the parameter estimation. Those obtained by Chen and Liu
(1993) appear between brackets. PAR is the sample mean of the estimated parameter, supposing
that there are no outliers; PARF is the sample mean of the last estimation of the parameter at the
end of the procedure, &, is the sample mean of the estimation of the residual standard deviation,
and RMSE(@) represents the sample root mean square errors of the estimation of the corresponding
parameter, which is calculated using the following equation:

RMSE(§) = \/ (bias(0))? + vQé) (16)

——

where bias(6) = § — 8, and Var(f) is the estimated sample variance of é.

Again we only present in table 4 the results of parameter estimation for a single LS. For the
cases of a single outlier, the results are similar, as expected, with both procedures. For LS, the
sample mean of the estimated autoregressive or moving average parameter (PARF) is closer to the
true value (¢ = 0.6 or § = 0.6) with the proposed procedure than with the CL procedure in four
out of the six cases. In all these cases the RMSE is smaller with the proposed procedure. In five
out of the six cases, the sample mean of &, obtained with the proposed procedure is closer to the
true value (0, = 1) than the sample mean obtained with the CL procedure . In all these cases, the
RMSE is smaller.

In table 4, the sample mean of the estimated parameter § (PAR) in the cases 22, 23 and 24
is closer to the real value because in these cases the Galbraith and Zinde-Walsh (1994) method is
used. This approximation is specially good when there are outliers, as in these cases.

Table 5 presents the results of the parameter estimation for two adjacent outliers (cases 10
through 15). The critical value for IO and AO is Cyy = 3.25 with a = 0.05, and the critical value
for LS is Crg = 2.85 with o = 0.05. In the results of the CL procedure for cases 12 and 15 three
different possibilities are presented: these are C = 3.25, 3.0 and 2.75 respectively. The reason for
these three comparisons is that one LS and one AQO are studied, and in the proposed procedure we
compare the IO and AO with a critical value (Cay = 3.25) and the LS with another (Crs = 2.85),
while the CL procedure uses a single critical value for all outliers (I0,AO and LS).
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Table 4 Performance of the procedure for a single LS. AR(1) and MA(1) models with ¢ = 0.6
and § = 0.6. Cyy is the critical value for identifying I0 and AO, and Cpg is the critical value
for the detection of LS. The results of the procedure of Chen and Liu (1993) are shown between
brackets.

Case Ca;  Crs _ PAR RMSE(PAR) PARF RMSE(PARF) 5. RMSE(5,)
7 325 300  0.809 0214 0.720 0.144  1.071 0.115
(3.00) (3.00) (0.808) (0.213) (0.763) (0.189) (1.124)  (0.234)

8 325 300  0.860 0.262  0.770 0.206  1.081 0.129
(3.00) (3.00) (0.862) (0.264) (0.723) (0.184) (1.094)  (0.248)

9 325 300 0.894 0.542  0.703 0.163  1.094 0.136
(3.00) (3.00) (0.895) (0.296)  (0.692) (0.166) (1.036)  (0.196)

22 33 275  -0.029 0.635  0.387 0316  1.312 0.459
(2.75)  (2.75) (-0.248) (0.850)  (0.315) (0.443) (1.610)  (0.993)

23 33 275 -0.084 0.689  0.410 0328  1.424 0.745
(2.75)  (2.75)  (-0.360) (0.962) (0.268) (0.467) (1.829)  (1.287)

24 33 275  -0.134 0.739  0.429 0.357  1.598 1.121
(2.75)  (2.75) (-0.438) (1.040) (0.257) (0.463) (1.940)  (1.497)

For the cases of two adjacent outliers, the comparison between the proposed procedure and the
CL procedure when estimating the parameters after removing the detected outliers, shows that in
66.7% of the cases, the sample mean of the estimated autoregressive parameter is closer to the true
value (¢ = 0.6) with the procedure proposed, and in all these cases, the RMSE is also smaller. In
67% of the cases, the sample mean of §, obtained with the proposed procedure is closer to the true
value (0, = 1), and in all these cases, the RMSE is smaller with the proposed procedure than with
the CL procedure.

Table 5 Performance of the procedure for the cases of two adjacent outliers. AR(1) and MA(1)
models with ¢ = 0.6 and 8 = 0.6. Cj4y is the critical value for identifying IO and AO, and Cjg is
the critical value for the detection of LS. The results of the procedure of Chen and Liu (1993) are
shown between brackets.

Case  Ca; CLs  PAR RMSE(PAR) PARF RMSE(PARF) 6. RMSE(6,)
10 325 285  0.558 0.090  0.572 0.093  1.004 0.088
(3.25) (3.25) (0.562) (0.087)  (0.563) (0.101)  (1.014) (0.177)
11 325 285  0.560 0.090  0.575 0.094  0.985 0.058
(3.25) (3.25) (0.562) (0.087)  (0.563) (0.101) (1.014) (0.177)
12 325 285  0.777 0.184  0.799 0222  1.141 0.179
(3.25) (3.25) (0.775) (0.183) (0.810) (0.217) (1.112) (0.226)
(3.00) (3.00) (0.775) (0.183)  (0.796) (0.212)  (1.046) (0.216)
(2.75) (2.75) (0.775) (0.183)  (0.770) (0.197)  (0.945) (0.241)
13 325 285 0415 0213  0.565 0.103  0.986 0.078
(3.25) (3.25) (0.416) (0.212) (0.548) (0.117)  (0.960) (0.181)
14 325 285  0.450 0.147  0.568 0.100  0.986 0.077
(3.25) (3.25) (0.416) (0.212) (0.548) (0.117)  (0.960) (0.181)
15 325 285  0.690 0.113  0.740 0.154  1.049 0.095
(3.25) (3.25) (0.692) (0.111)  (0.738) (0.152)  (1.103) (0.213)
(3.00) (3.00) (0.692) (0.111)  (0.746) (0.159)  (1.046) (0.201)
(2.75) (2.75) (0.692) (0.111)  (0.757) (0.171)  (0.939) (0.222)
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Tables 6 and 7 show the estimation results and the percentage of correctly detected outliers for
cases 25 through 29 of table 2. These cases are not included in Chen and Liu (1993). The number
of replications is 500. The critical value for identifying IO and AO is C4; = 3.25, and the critical
value for the LS is Crs = 2.85. The range of the variable number of outliers correctly detected
(table 7) goes from 0 to 4 outliers for all cases

Table 6 Performance of the procedure. Multiple outliers.

CASE PAR RMSE(PAR) PARF RMSE(PARF) 6, RMSE(6,)
25 0.043 0567 0.571 0.096 1.045 0.160
26 0.111 0.504 0.567 0.099 1.064 0.184
27 0.186 0.431 0.578 0.093 1.040 0.138
28 0.037 0.575 0.563 0.102 1.045 0.178
29 0.179 0.436  0.572 0.095 1.029 0.115

Cases 25 through 29 are four adjacent additive outliers, two or more of which were correctly
detected in a range of 66% to 84% of the cases. Only in 2 of the 2500 series the four outliers
are correctly detected. In spite of this behavior, the sample mean of the estimated autoregressive
parameter after removing the detected outliers is quite close to the true value (0.6); the most
unfavourable case is 0.563. This estimation is better than the one obtained supposing no outliers
(which in the most favorable case is 0.186).

Table 7. Number of correctly detected outliers with the proposed procedure for the cases from
25 through 29 (percentage).

CASE 0 1 2 3 4
25 1.8 322 428 232 00
26 1.4 266 524 194 0.2
27 04 188 724 84 0.0
28 1.2 29.2 434 26.0 0.2
29 04 152 744 100 00

In consequence, although the procedure does not correctly identify the type of the outliers, the
sample mean of the estimation of ¢ at the end of the procedure is very close to the true value. These
apparently contradictory results of incorrect detection but correct estimation of the parameters, can
be explained bearing in mind the concept of equivalent configurations. That is, every sequence of
outliers, being two or more adjacents, can lead to different equivalent configurations of outliers. Two
configurations of outliers are equivalent when their effects on a time series are indistinguishable.
For example, a configuration of an additive outlier of magnitude —w at instant ¢ = T is equivalent
to a configuration of two adjacent level shifts in t = T and t = T + 1 of magnitudes w and —w

respectively. In the same manner, two additive outliers in t = T and t = T + 1 with magnitudes
" —w; and wy respectively are equivalent to an innovational outlier and an additive outlier in the
same instant when 1 < < 0. Finally, three adjacent additive outliers in £ = T,T 4+ 1,T + 2 are

equivalent to an AOint=T,anI0int =T+ 1 and an AO in t = T + 2, with different outlier
magnitudes in each case.

For instance, in cases 25 to 29 we have an AR(1) with four additive outliers of similar size and
alternating signs. Then we can write :
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WIT = oITHD L orTHD _ opTH) o (1= ¢B) U — o I 4w 1T — [T

and if ¢ is not large so that ¢* ~ 0 the expression on the left hand is an equivalent configurations
to the original one with the sequence of outliers I0,AO0,AO,AO and sizes w; = w(¢ + 1) and
wy = w(l — ¢?). As here ¢ is 0.6 we expect that the left hand configuration can be found quite
often. Thus, if the procedure finds three additive outliers we expect that the fourth can easily be
10 and with a size given by w(l — #?).

In the same way if two AQ are correctly detected and the modulus of the different AO are the
same, then we have equivalent configurations as :

WIT — wITH L 1T _ 1T+~ (1= ¢B) ") — wn (1 - ¢B)~ 1T

that is [0,J0,A0,AO with w; = w(¢p+1), wy = w(1+¢) and w3 = w(1 — ¢*(1 + #)). Other possible
configurations are 10,A0,J0,A0 with w; = w(¢ + 1), wo = w(l — ¢?) and w3 = w(1 + #(1 — ¢?));
AO,JO,JO,AQ with w; = wy = w(l + ¢); [0,AO0,-,AO with w; = w(l + ¢) and AO,JO,AQ, with
wy = w(l + ¢) respectively.

Cases 25 and 28 have four AOQ with the same modulus, but opposite sign. We show in table 8
for cach case the percentage of runs for which a configurations equivalent to the original model is
detected. Thus, we observe that a high proportion of the times the procedure has detected one of
the equivalent configurations that behave approximately as four consecutive AO. The rest of the
cases can be explained in a similar way.

Table 8. Percentage of equivalent configurations for three and two AO correctly detected (case
25 and case 28).

Eq. Configurations Case 25 Case 28

10,A0,A0,A0 14.66  14.62
A0,J0,A0,AO 48.28  53.08
Total 62.94 67.7
10,J0,A0,A0 10.05 8.73
10,A0,]0,A0 8.13 9.61
A0,I0,J0,AO 2.39 0.44
10,A0,-,AO 29.18 34
AO,J0,AO,- 1148  10.48
Total 61.23  63.26

In summary, when dealing with a series that has adjacent outliers, we should take into account
the correct detection as well as the multiple equivalent configurations that can be expected.

6.1 An Example

To illustrate how the proposed procedure works, we use the simulated series from the AR(1) model
with parameter ¢ = 0.7, and with a; ~» N(0,1). It has been generated 150 observations with the
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SCA Statistical System for computation, with the seed 250993. The first 50 observations have been
eliminated. Thus, the sample size is n = 100. The estimated model is (1 — 0.78B)z; = a; with
8r = 0.82. This series is free of outliers and we have contaminated it with an AO at t = 13 of
magnitude 5, an AO at ¢ = 15 of magnitude -5, a LS at ¢ = 91 of magnitude 4 and an AO at t = 92
of magnitude 3. Figure 2 shows the plot of the observed series.

Figure 2 Plot of the observed series.
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The proposed procedure is described as follows:

In the stage 1, Initial estimation of the model parameters, we obtain that the maximum value
of the measure of influence for a LS, DL(t), occurs in t=91. An intervention model with a step
variable in t=91 is Duilt, resulting that its effect (4.1714) is significant. This effect is removed,
and the measure for LS is built again, but now the estimated effect is no significant. Thus, the
individual influence measure D is calculated in every time point. The 10% of the obscrvations,
those with the highest values of influence measure, are corrected as additive outliers. Table 9 shows
the time points and the values of D for these observations.

Table 9. The individual mcasure of influence.

t 12 13 15 16 18
D, 113 276 203 1.7 2.1
i 28 37 42 84 92
17 17 1.7 22 4.0

-
)

At the end of the stage 1 the estimation of the autoregressive parameter is ¢ = 0.75.

Stage 2, Qutliers detection, starts with the observed series and the estimation of the parameters
obtained in stage 1. The residuals and the A Lt A A and ;\L,t (t=1,...,n) are now calculated. For
every instant, | )\ .t | A At | are compared, and the maximum value of them is compared against
C1 = 3. On the other hand, the maximum value of | 5\L,t | is compared against Cp = 3. From these
comparisons, the procedure detects iteratively an AO int =13, a LS in ¢ = 91, an AO in ¢ = 92
and an AO at £ = 15. The additive outliers and level shift are corrected iteratively, and the outlier
detection starts again with the adjusted series and the estimated parameters obtained in stage 1.
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As there are no more outliers, stage 2 ends.

In the stage 3, Joint estimation, we carry out the joint estimation (maximum likelihood) of the
autoregressive parameters of the model and the effects of three AO in £ = 13,15,92 and a LS at
t = 91. The final model is:

5 13 15 91 92
(1= 1 B) (2 —wisly® —wisly” —wa1 Sy —weali”) = ay
The estimate parameters, their t values and the residual standard error are

Table 10. The estimate of parameters of the model.

Type of parameter Value t values  8g
Autoregressive 0.81 16.45
Effect of the AO in t=13 5.51 8.79
Effect of the AO in t=15 -4.66 -7.43
Effect of the LS in t=91  5.15 7.16
Effect of the AO in t=92  2.02 3.23

0.81

In order to look for more outliers, stage 2 starts again with the adjusted series from three AO in
t=13, t=15 and t=92 (with estimated effects equal to 5.51, -4.66 and 2.02 respectively) and a LS in
t=91 (with estimated effect equal to 5.15) and using the aforementioned autoregressive parameter.
Since the procedure does not find more outliers, it finishes.

The estimated autoregressive parameters, the estimated effects of three additive outlier in t=13,
15 and 92 and a LS in t=91 are presented in table 10.

The procedure of Chen and Liu (1993) for the same series and with the choice C=3, correctly
detects the three AO at t=13, 15 and 92, but at t=91 it detects an IO instead of the LS.
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Appendix

A 95% Percentiles of maz | A;; | for IO and LS

Table I. Critical values to 95 % for AR(1), AR(2) and AR(3) models, where n is the sample size
and nm is the number of model in table 1.

n nm IO LS nm IO LS nmm 10 LS

30 1 289 234 8 289 283 15 292 3.08
30 2 283 246 9 291 270 16 293 244
30 3 3.00 270 10 294 231 17 296 2.64
30 4 301 250 11 297 286 18 292 270
30 5 290 215 12 295 233 19 289 2.62
30 6 288 216 13 292 226 20 288 225
30 7 286 212 14 3.02 268 21 285 2.06
50 1 310 251 8 314 299 15 312 3.13
50 2 3.07 252 9 313 292 16 3.09 2.65
50 3 3.21 277 10 3.11 249 17 3.06 2.58
50 4 315 295 11 312 290 18 3.10 283
50 5 3.07 230 12 322 251 19 310 265
50 6 312 230 13 3.11 229 20 3.14 240
50 7 3.09 224 14 3.09 272 21 311 229
100 1 329 257 8 342 299 15 334 3.18
100 2 342 298 9 334 290 16 3.30 2.72
100 3 336 266 10 3.38 264 17 338 2.78
100 4 339 3.06 11 337 3.13 18 3.39 290
100 5 338 262 12 345 263 19 335 281
100 6 3.36 247 13 3.38 265 20 3.36 2.62
100 7 330 2.60 14 343 285 21 345 233
150 1 348 277 8 350 299 15 342 3.25
150 2 352 270 9 342 297 16 3.57 2.88
150 3 354 282 10 352 255 17 3.51 2.85
150 4 355 3.04 11 3.62 3.04 18 354 292
150 5 3.57 252 12 3,55 264 19 357 2.74
150 6 3.58 261 13 344 249 20 3.57 2.56
150 7 342 253 14 357 285 21 346 2.35

The critical values C; used in the detection of outliers have been obtained with multiple regres-
sion models from the critical values that are presented in this appendix. The response variables are,
on the one hand, the critical values for IO and AO and, on the other hand, the critical values for
LS. For the first model, the explicative variables are: the sample size, the type of outlier (additive
or innovative) and the structure of the model. For the second model, the explicative variables are
the sample size, the order of the model and the structure model.
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B Relationship between D;(T) and P4 (T)

The vector of forecasts Z& VT is obtained with the same parameters 7ty that are used in Z
T (T (T)
(Pefia 1987; and Ljung 1993 prove that the maximum likelihood function for the parameters 7 in an

intervention model is approximately the same that the one obtained supposing an unobserved obser-

vation and interpolating with the inverse autocorrelation function.). Using 7(B)(z; —w AIt(T)) = ay,

)

the vector of forecasts Z¥ NT) can be written as:

ZONT) = (X, — 940)f (1) + Gl

where O is a matrix with the same dimension as X, and has the form

where I, is the identity matrix of order & (the order of the model). I;, begins in the instant 7"+ 1.
Thus, since Z — Z(TINT) =(Z - Z(T)) +wA(OF () — I§T)), the numerator of (7) can be written as:

= S(INT)\i/5  &(INT - 5 5
2 -25N0Y (@2 - 20 = (2= 2a)) (2 - Zy)
. . T . T
+ GR(O0F — 1) (04 ~ 1)
+ 2X (:)A(Z - Z(T))I(Ofl’(fp) - IET)) (B-l)
Writing equation (B-1) in terms of the influence statistics, we have:
hD4(T)62 = hPy(T)67 + 4B B(r) + 2 X @4(Z — Zery) B(ry, (B-2)

where

B(ry = (O (1) — 1) = -1 1,

and therefore,

-T
4By Bry = O4(1+ 73y + A3y +..) =04 Y &y,
i=0
with ﬁg(T) = 1. For the third term in (B-2), Z — Z(T) is equivalent to

Z-e——(Z—e(T))=e(T)—e,

21



where e(r) are the residuals obtained filtering 2 for (1) (B). Thus e(r) = m(1)(B)z:, and the third
term can be written as follows

&A(Z — Zer)) Biry = @aleq) — €)' -1 1,
Ty(T)
To(T)

)

and,

L:JA(Z - Z(T))IB(T) = ‘:JAﬁ'(T) (F)(CT - eT(T))-

Therefore, equation (B-2) can be written as:

n—T
hD5(T)62 = hP4(T)62 + &% Y Ripy + 204ty (F)(er — er(r)-
i=0

This equation can be related to the statistic for testing additive outliers (S\A,T = WA /Z;";OT ﬁf(T)/&a),

obtaining

~

2 -
AT | 204 N
T AT
h ho?

D(T) = P4(T) - (Fer.

If &g = 7repy(Fer/ s T ﬁ?(T) is the estimator of w obtained with the wrong residuals (those
obtained supposing that there are not outliers), then

and assuming that (w4 — &) is small with respect to d)i this equation can be approximated by

)‘AT
DZ(T) ~ Pz(T) + T

C Relationship between DL(T) and PL(T)

In this appendix we obtained the measure of the change in the parameters for a LS, PL(T), and
the relationship between the statistics DL(T') and PL(T). It can be shown that the ML estimates
can be obtained from the expressions # = (X,X,)"'X.Z, and #, = (X}X,)"'X/ Y, where the
matrix X, has been described in section 4, Xy is the matrix of estimated values for the real process
that is unobserved in t > T, with @y = 2z, for t < T and s = 2z — @y, for t > T. The matrix X, and
the vector Z can be written in terms of Xy and Y respectively as:

X, = X, + oMy, (C-1)
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Z=Y+&,Vp, (C-2)

where M, is a matrix of zeros and ones that can be partitioned as M}, = [M) (1)M/,(2)], where
M(1) = O(7—h)xh and M, (2) is a matrix of dimension (n — T') x h, that has a lower triangular
submatrix of ones (TI) and a submatrix of ones (MU). Thus, M} (2) = [TTyxp; MUpytn—h—1))-
The vector V can be written as V; = [V(1) V' (2)], where V(1) is a column vector of di-
mension (T — h) x 1 with zeros in every element except a one in the element T' — h, and V1 (2)
is a column vector of ones of dimension (n — T') x 1. The matrices X, and Xy are partitioned in

the same way as My, and the vectors Z and Y are partitioned like V. The relationship between
X! X, and XX, can be obtained by using (C-1) as follows

X! X, = XX, - op (ML (2)X.(2) + XL(2)ML(2) - 9. M} (2)ML(2)) = X, X, — LLy,

therefore

X, X, = XX, - &L (C-3)
Lp = M7(2)X.(2) + X1 (2)ML(2) — &ML (2)ML(2). (C-4)
The relationship between X,’y\? and X/, Z is obtained using (C-1) and (C-2),
XY = (X, — o Mp)(Z - & V) = X[Z - o XV, — 0 MY Z + 0F MV,

which can be written as

XYV =X.Z - &S, (C-5)

with

Sy =XV, + M[(2)Z(2) - o, M7,(2)VL(2), (C-6)
Substituting (C-3) and (C-5), in the expression of 7w = (X;Xy)‘IX;Y, we get
(X!X, —oLp)xp = X,Z — &Sy,

and operating, it results
#p, =7 — o (XUX,)"HSL — Lr#r), (C-7)

calling E; =S; — L7, the relation between # and #7, becomes:
7 =7 +oL(X,X,) 'EL

The influence measure for a LS, PL(T), is defined as the Mahalanobis distance between the
vectors 7 and 7. Thus we obtain
(7 = #1) (X X)(F —71) _ M BL(XX.) By

PUT) = hé2 Y h (C-8)

where ;\L,T = & /pLG, is the test statistic for a LS in t = T with pp = (1 +B+Z+.+ EL_T)l/Z,

and [; is i-th coefficient. of {(B) = #(B)/(1 — B).
Next, we develop the relationship between the influence measures DL(T) and PL(T). Using

5{ LS) can be written as:

7(B)(z — wLSfT)) = ay, the vector of forecasts Z
2088 = (X, — oy V)ar + o8,
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where Gr = V#tr 1, is the following vector

°)
0

X 1L

Gr = Vi = L+ oL

7Ar1,L +’fl‘2)L + ... +7Arj,L
Thus
7 — 2859 = (2 - ) + 6n(Gr — ST,

and

(Z-2Z71)(Z~-71L)
+ &2(Gr -8y (Gr - s
+ 2xaL(Z - Zry) (Gr —S).

—~
N
I
N
ST
~
2
N
|
N
i
t~
=
fl

Writing this equation in terms of the influence statistics for LS we obtain:

hDL(T)62 = hPL(T)6?2 + &} UyLy + 2 x & (Z — Zr,1.)'Lr, ' (C-9)
where
0 0
0 0
Lr = (Gr - 8{") = -1 | =] -1},
—-1+71L hr
—14 7y, + 7oL lor

and therefore,
) & 72
~27! 2 2 -2
LULLTLT = wL(l + llvT + Z2,T +.. .) = wy, Z l’i,T’
i=0

with lA%,T = 1. In the third term of (C-9), 7 — ZT,L is equal to ey, — e, thus
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L:JL(Z - ZT L)lLT = (DL(eL - e)’ -1 y

and operating, the third term of (C-9) results

201(Z — Zr,1)' Ly = 20Llr(F)(er — er.L),

and the equation (C-9) can be written as:

n—-T
hDL(T)62 = hPL(T)62 + &} > B2y + 20LIp(F)(er — er,L).
i=0

Using Apr = LDL,/Z?:”OT l;«zT /6a (where &y, is the estimated cffect of a LS) we have that:

~

A2 2%r
DL(T) = PL(T) - —’]’]—T + Eng(F)cT,

and calling &g 1, = Ip(F)er/ Y0 12 we have

DL(T) = PL(T) -

< o .
ALJ‘+_2WLWQL1§:i2
h ho?

and assuming that (& — @&o 1) is small compared to &?, this equation can be approximated by:

2

)
DL(T) ~ PL(T) + %

and, as before, DL(T) can be interpreted as the effect of the change of the parameters plus the
effect of the particular intervention.
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