
Working Paper 97-50 

Statistics and Econometrics Series 21 

September 1997 

Departamento de Estadfstica y Econometria 

Universidad Carlos III de Madrid 

Calle Madrid, 126 

28903 Getafe (Spain) 

Fax (34)91-624-9849 

THRESHOLD UNIT ROOT MODELS. 

Martfn Gonz,Uez and Jesus Gonzalo· 

Abstract ------------------------------

One of the main criticisms of unit root models is based on the theoretical fact that economic 

variables measured in rates cannot have unit roots. Nevertheless, standard unit root tests do not 

reject the existence of unit roots in many of those variables. In this paper we present a class of 

threshold models capable of replicating the behavior of economic variables such as 

unemployment, inflation and interest rates. Depending on the values of a threshold variable 

these models can have either a unit root or a stable root. However, despite the presence of the 

unit root, we prove they are stationary and geometrically ergodic. Least squares estimates of the 

parameters of these models are shown to be consistent and asymptotically normal. We propose 

the supremum of a e test in order to test the null of no threshold against the alternative of 

threshold when the threshold value is unknown. The limiting distribution is derived under the 

null of I (0) as well as under the null of 1(1). Critical values for both asymptotic distributions are 

computed and a finite sample study of the performance (size and power) of the tests developed 

in this paper is made. The paper concludes with an application to interest rates. 

Keywords: 

Brownian motion; Brownian sheet; geometric ergodicity; hypothesis testing; threshold models; 

unit root processes. 

*Gonzalez, Boston University and CEDES, Argentina, e-mail: martingr@arnet.com.ar; fax: 

541-8620805; Gonzalo, Departamento de Estadfstica y Econometrfa, Universidad Carlos III de 

Madrid. Cl Madrid. 126, 28903 Madrid. Spain. Ph: 34-91-624.98.53; Fax: 34-91-624.98.49, 

e-mail: jgonzalo@est-econ.uc3m.es; We thank Bruce Hansen and Pierre Perron for estimulating 

comments on an earlier draft. This version has also benefited from comments of an associate 

editor and two anonymous referees. Jesus Gonzalo gratefully acknowledges financial aid from 

the Spanish Secretary of Education (PB 950298 DGICYT). 



1 Introduction 

For more than a decade, threshold time series models have been used to capture several nonlinear 

phenomena commonly observed in practice such as time-irreversibility, asymmetries, etc. The 

idea of these models is to approximate the behavior of certain time series using a threshold 

autoregression with a small number of regimes. In particular, consider the multiple thresholds 

first-order autoregressive model (TAR), 

Q'lXt - l + et if Zt-d ~ TI, 

X t = Q'2 X t-l + et if Tl < Zt-d ~ T2, 
(1) 

Q'nXt-l + et if Zt-d > Tn. 

\Vhere et is a white noise process, Tl < T2 < ... < Tn are the threshold values, and Q'i is the 

autoregressive coefficient in regime i. Zt-d is the threshold variable and d is a fixed positive 

integer usually referred to as the delay parameter of Zt. 

A particular case of model (1), extensively analyzed in the literature, is the so-called Self 

Exciting Threshold Autoregressive (SETAR) model due to Tong (1983). In this model the 

regime switching is determined by the value of the variable's own past, i.e. Zt-d = X t- d. 

In economics, the fact that the regime switching is determined by the same variable that 

generates the process may not be very appealing. In some situations a more realistic case is one 

in which another variable determines the regime switching in X t . Some examples of economic 

variables whose behavior is affected by threshold variables (TV) are interest rates, GNP and 

unemployment. In the first case a candidate for a TV could be the inflation rate. For the last 

two variables a candidate for a TV could be a leading indicator. 

Since the work of Beveridge and l\elson (1982) and Nelson and Plosser (1982), a widely 

believed fact is that most macroeconomic time series are best represented by models with unit 

roots. However, in theory, some of the economic time series mentioned above and, in general 

variables measured in rates, cannot have all the characteristics of a unit root process. This is 

so even though standard unit root tests applied to actual data do not reject the null hypothesis 

of unit root. In this paper we present a new type of model, a threshold unit root model (TUR) 

that is a combination of TAR (1) and unit root models. TUR models, while maintaining the 

structure and properties of the stationary TAR models, allow for unit roots in some of the 
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regimes. This makes TUR models very good candidates to replicate the behavior of economic 

variables measured in rates. 

The rest of the paper is organized as follows. In Section 2, we derive the conditions under 

which model (1) with unit roots is covariance stationary and geometrically ergodic. In Section 

3 we show some results needed in order to obtain the asymptotic distributions of the tests 

developed in the following sections. Section 4 shows how to test a TAR model when the 

threshold value is assumed to be known. Asymptotic distributions of the proposed tests are 

derived under two types of different null hypotheses: the null of 1(0) and the null of 1(1). 

This section also shows the consistency and asymptotic normality of the OLS estimators of the 

coefficients of the TAR model (1) and therefore provides a test for the TUR model. Section 5 

analyzes the same aspects of Section 4 but under the situation of an unknown threshold value. 

In this section we present and derive the asymptotic distribution of a supremum t 2 type of test 

for testing a TAR model. The finite sample performance (size and power) of the tests developed 

in this paper is analyzed in Section 6. In Section 7 we estimate a TUR model for interest rates 

finding evidence to support this type of model. The conclusions are found in Section 8. Proofs 

are provided in the Appendix. 

A word on notation. \Ve use the symbol "~" to denote weak convergence. All limits are 

taken as T -+ 00. I· I means absolute yalue. Finally, .6. means the usual difference operator. 

2 TUR Models 

A more compact way of representing model (1) is, 

Xt [D:1I(Zt-d ::; rd + D:2I(rl < Zt-d ::; r2) + ... + D:nI(Zt-d > rn)]Xt- 1 + et 

6tXt- 1 + et, (2) 

where 1(·) is an indicator function, 6t = [D:1I(Zt-d ::; rl)+D:2I(rl < Zt-d ::; r2)+ ... +D:nI(Zt-d > 
r n)], and et and Zt-d satisfy the following assumptions, 

Assumptions: 

(A.I) (et, Zt-d) is strictly stationary and ergodic and adapted to the sigma-field ~t. 
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(A.2) E(etl~t-l) = O. 

(A.3) E(e~l~t-d = a 2
. 

(A.4) for some T > 1, E(e~TI~t_d :::; B < 00. 

(A.5) E(max(O, loglell)) < 00. 

(A.6) essential supremumled < 00. 

(A.7) el admits positive and continuous probability density function. 

Assumptions (A.l) and (A.5) are needed for strict stationarity. (A.6) is necessary for co­

yariance stationarity of the TAR. (A.7) is required for geometric ergodicity. (A.2) and (A.3) 

are the standard assumptions specifying that the error is a conditionally homoskedastic mar­

tingale difference sequence. These two assumptions together with (A.4), that bound the extent 

of heterogeneity in the conditional distribution of et, are used to obtain the asymptotic results 

in Section 3. The conditions under which the TAR model (2) is coyariance stationary are given 

in the following theorem. 

Theorem 1. Let X t be generated by the TAR model (2), where the error term et satisfies as­

sumptions (A.1), (A.5) and (A. 6) and, Zt-d is a threshold variable satisfying assumption (A.1). 

If EI6l1 < 1, then, the process is strictly stationary. Moreover, if L~l(EI I1~=l6;I)l/2 < 00, 

the process is also weakly stationary. 

Theorem 1 establishes sufficient conditions for strict stationarity of X t given that (et, Zt-d) 

is an strictly stationary and ergodic sequence and assumption (A.5) holds. However, this does 

not ensures the existence of moments. Assuming {ed satisfies (A.6), Theorem 1 gives the 

condition for the process X t to be covariance stationary. Notice that Theorem 1 does not either 

require the threshold variable Zt-d to be an independent sequence or to be independent of et. 

For example, Zt-d could be et-d and still conditions of Theorem 1 would be satisfied. On the 

other hand, the standard SETAR model can only be included in the theorem if al < 1, an < 1 

and alan < 1, otherwise the threshold variable will not be ergodic and assumption (A.l) will 

be violated (see Chan et al. (1985)). 

4 



The following three corollaries give particular examples of interesting processes satisfying 

the conditions of Theorem 1. These examples are presented for the simplest of the TAR models. 

A generalization to a model with more than two regimes is straightforward. 

Corollary 1. Consider the first-order threshold autoregressive model, 

(3) 

where {Zt-d} is independent and identically distributed (iid) and mutually independent of {et} 

with P = Pr(Zt-d ~ r). Then, if Elo;1 < 1 the process is covariance stationary. 

Corollary 2. Consider the first-order threshold autoregressive model, 

(4) 

where Zt-d is an N-order Markov process. Then, if Eloil < 1 and Pl/2 ... 2 2: Pl/l...l the process 

is covariance stationary. Here, Pl/j ... j is the probability of being in state 1 given that during the 

previous N periods the process has been in state j (j=1,2). 

\Yhen N = 1 in Corollary 2, sufficient conditions for the process to be covariance stationary 

are Elbil < 1 and Pl/2 2: Pl/l (see Appendix). Comparing both corollaries we see that, since in 

Corollary 2 we allow for some dependence in the structure of the threshold variable we need an 

additional condition to hold in order to get covariance stationarity of the TAR. This additional 

condition comes in the form of a restriction on the probabilities of the ~'/Iarkov process of the 

threshold variable. 

These two corollaries set conditions that may allow for explosive roots in some of the regimes 

while maintaining the stationarity property. As an example, consider model (3) with etl = 1.3, 

et2 = 0.5, and P = (l-p) = 0.5. In this case conditions of Corollary 1 are satisfied since let21 < 1 

and 1.32 = 1.69 < 1-OO~;O.5 = 1.75, implying E(ol) = 0.97, and the process is covariance sta­

tionary. This particular case of an iid threshold variable independent of the error process is 

generally used in random coefficient models (see Nicholls and Quinn (1982)). 
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Corollary 3. Consider the first-order threshold autoregressive model, 

(5) 

where Zt-d is an N-order Markov process, and O'i = 1 and IO'il < 1, i i= j, (i,j) = (1,2). Then, 

the process is co variance stationary. 

Corollary 3 introduces the TUR models and states sufficient conditions for these models 

to be stationary. Opposite to Corollary 2, no restrictions on the probabilities of the Markov 

process are needed, because the TUR coefficients are not allowed to be greater than one. 

The processes introduced in corollaries 1 to 3 are more capable of replicating some of the 

characteristics of standard unit root models than simple autoregressive models. In particular, 

they show larger variance than auto regressive models. To see this, consider the analytical 

expression for the variance of the TAR model (3), 

1 
(6) 

1 - (O'IP + O'~(1 - p))' 

and compare it "'ith the variance of a first order autoregressive process with coefficient equal 

to the expected value of the TAR parameter, 

1 1 

1 - p2 1 - (nIP + O'Hl - p)) + p(1 - P)(O'l - 0'2)2' 
(7) 

,,"here p = E(<5d. Since the denominator of (7) is greater than the denominator of (6) the 

variance of the TAR process is greater than the variance of a first-order autoregressive process 

with an auto regressive coefficient equal to the expected value of the TAR parameter. 

r.lodels (3) to (5) will also be difficult to differentiate from a pure unit root process in finite 

samples with standard unit root tests. To show this, we present some Monte-Carlo simulations. 

Table 1 shows the empirical power of the Dickey-Fuller (DF) unit root test when the alter­

native hypothesis is the TUR model (5) with 0'1 = 1 and 0'2 = 0.99 (rows (4)-(6)),0'2 = 0.95 

(rows (7)-(9)), 0'2 = 0.90 (rows (10)-(12)), 0'2 = 0.80 (rows (13)-(15)), 0'2 = 0.70 (rows (16)­

(18)), 0'2 = 0.60 (rows (19)-(21)), and 0'2 = 0.50 (rows (22)-(24)). To keep things simple, the 

threshold variable is an iid U[O, 1] and the threshold value is r = 0.5. For comparison, the first 

three rows shows a case where 0'1 = 1.1 and 0'2 = 0.90, that is E(<5t ) = 1 and the model is 
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non-stationary. It is clear from Table 1 that the power of the unit root test between a TU~ 

model and a first order autoregressive model with a coefficient equal to the expected value of 

6t is very similar. 

TABLE 1 ABOUT HERE 

Table 2 shows the empirical power of the DF test when the alternative hypothesis is the 

TAR model (3) with (}:1 = 1.3 and (}:2 = 0.50 (rows (4)-(6)), (}:2 = 0.40 (rows (7)-(9)), (}:2 = 0.30 

(rows (10)-(12)), and (}:2 = 0.20 (rows (13)-(15)). The first three rows of the table are equal 

to Table 1 and they are only shown for reasons of comparison. Unlike Table 1, the power of 

the DF unit root test is larger here for the TAR model than for the autoregressive case with 

coefficient equal to the expected value of 6t . 

TABLE 2 ABOUT HERE 

Notice that when the alternative hypothesis is a TAR model with E(6t ) = 1 (a non­

stationary process), the power of the DF test is similar to its nominal size (rows (1)-(3) in 

both tables). 

Stationarity and ergodicity suffice to obtain consistency and asymptotic normality of ai, 
but in order to get consistency (rate T) for f we need geometric ergodicity (see Chan (1993)). 

Although this paper does not focus on the estimation of r (for this issue see Hansen (1996)), a 

related result will be needed in sections 4 and 5. For that reason the next theorem shows that 

TCR models are geometrically ergodic. 

Theorem 2: Let X t be generated by the TUR model (5) and satisfy the assumptions of 

Theorem 1 plus (A. 7). Then, X t is geometrically ergodic. 

Even though Theorem 2 is only presented for TUR models, it is easy to see that models (3) 

and (4) are also geometrically ergodic. 

3 Basic Results 

In this section we show basic results necessary to obtain the limiting distribution of some of 

the tests developed in the next sections. In order to simplify, throughout the rest of the paper 
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it is assumed that the relevant TUR model is given by 

(8) 

with Pr(Zt-d :::; r) = per). As it was mentioned in last section, the key assumptions used to 

obtain the following asymptotic results are (A.l) to (A.4). 

Basic Result ! (BR!): 

Under the null of unit root (Xt = X t - 1 + et) and under the assumptions that make 

XT(S) = Jr L~~~) et ==:;. aWes), 

T 1 

T- 3
/
2:L I(Zt-d :::; r)Xt ==:;. p(r)a 10 ~V(s) ds, 

t=l 0 

where HT (.) is a standard Brownian motion. 

BRl implies that, 

T 1 

T-2:L1(Zt_d:::; r)X; ==:;. p(r)a21o lV2(s)ds. 
t=l 0 

~ext two results are taken from Can er and Hansen (1997). 

Basic Result 2 (BR2): 

1 [Ts) 

XT(s,p(r)) = FP:L I(Zt-d :s r)et ===> alV(s,p(r)), 
vT t=l 

where lY(s,p(r)) is a standard Brownian sheet on [0, 1]2. 

(9) 

Definition: A standard Brownian sheet S indexed by R+ x [0, 1] is a zero-mean Gaussian 

process with continuous sample paths and covariance function, 

C ov [ S ( s, u), S ( t, v)] = (s !\ t) (u !\ v). 
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Basic Result 3 (BR3): 

10
1 

XT(S) dXT(s,p(r)) ==} a2 10
1 

W(S) dW(s,p(r)). 

BR2 and BR3 imply that, 

1 T Ll 
T 

L I(Zt-d ~ r)Xt-1et ==} a2 lV(s) dvV(s,p(r)). 
t=l 0 

Decomposing et(p(r)) = I(Zt-d ~ r)et into two orthogonal components (et, Vt(r)), 

et(p(r)) = a(r)et + Vt(p(r)), 

where a(r) = E[et(p(r))etl/E[ezl = p(r), we obtain two additional results. 

Basic Result 4 (BR4): 

1 [TsJ 
Vr(s,p(r)) = fry:; L Vt(p(r)) ==} a\1(s,p(r)), 

vT t=l 

where F(s,p(r)) is a standard Kiefer-Miiller process on [0, IF. 

Definition: A standard Kiefer-Miiller process Z on [0, IF is given by, 

where S(tl' t2) is a standard Brownian sheet. Then Z has covariance function, 

Basic Result 5 (BR5): 

1 [TsJ 1 

T LXt-1Vt(p(r)) ==} a2 L W(s)dV(s,p(r)). 
t=l 0 
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Since W(s) is independent of V(s,p(r)) it can be proved that for a fixed r, 

{fol vV(s? ds} -1/2 10
1 
vV(s) dV(s,p(r)) = N(O, 0";), 

where O"~ = Var(Vt(p(r))/O") = p(r)(l - p(r)). 

(12) 

4 Testing and Estimation when the Thre~hold Value is 

Known 

4.1 Testing for Threshold 

The case of a threshold value r known becomes relevant for pedagogical reasons as well as for 

cases where the regimes are determined by the sign of the threshold variable. 

Equation (8) can be rearranged as follows, 

Equation (13) can be re-written as 

(14) 

where p = 0;2 - 1, I = 0:'1 - 0;2· 

Testing the null hypothesis of no threshold is equivalent to test 

Ho: 1=0. (15) 

The test statistic used for testing (15) will be the t-statistic for i. Next proposition shows 

the limiting distribution of this test statistic under the null hypothesis of X t being 1(0), as well 

as under the null of being 1 (1). 
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Proposition 1: Assume the threshold value is known. Under the null of no threshold plus 

X t being I(O) or I(1), the t,=o statistic in equation (14) has the following asymptotic distribution 

t,=o ===> N(O, 1). 

Proposition 1 states an important result. If the threshold value is known it does not matter 

if the null hypothesis is a random walk or a stationary process, the limiting distribution for the 

t-statistic of l' will follow a standard normal distribution. However, in practice (finite samples), 

this test statistic is sensitive to Xo. In order to correct this problem we recommend introducing 

a threshold constant term in the regression model used to compute the t-test, 

It can be easily shown that in this case t,=o asymptotically also follows a N(O,l) under 

both null hypotheses. 

A special case for testing the null of no threshold against a TUR model is given by imposing 

the constraint p = 0 in (14) and testing the null hypothesis of'Y = o. This is the model used 

in Section 3 of Caner and Hansen (1997). In this case, it can be shown that the asymptotic 

distribution of the t,==o statistic is a linear combination of the asymptotic distribution of the 

Dickey-Fuller unit root t-test and a standard normal distribution. 

4.2 Estimation and Testing of the TUR Parameters 

\Vhen the threshold value is known and X t satisfies the conditions of Theorem 2, it can be proved 

(see the central limit theorems for stationary and ergodic time series in Hannan (1973)), that 

least squares estimation of model (8) produces consistent and asymptotically normal estimators. 

Basically, 

where Di = (J2(Pil\1)-I, i = 1,2, PI = p(r) and P2 = 1 - p(r), and M = E(XLI). Therefore, is 

straightforward to test that one of the a's coefficients is equal to one (the TUR model). 
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5 Testing and Estimation when the Threshold Value is 

Unknown 

5.1 Testing for Threshold 

In general, the threshold value r can be considered to be unknown. 'When this is the case, it 

is usually assumed that r lies in a bounded interval, R. The null hypotheses continue to be 

the same but now the test statistic proposed is the supremum of the square of the t-statistic 

for 'Y = 0 over the whole range R. Again, the testing procedure is developed for two cases, one 

considering a stationary null and another considering a unit root null. The next proposition 

shows the limiting distribution for the test statistic when the null hypothesis is a stationary 

process. 

Proposition 2: Assume that the threshold value is unknown. Under the null hypothesis of 

no threshold and 1(0), the asymptotic distribution of 

in equation (14) is, 

where {Bp(r) : 0 ~ p(r) ~ I} is a standard Brownian Bridge. 

The following proposition shows the asymptotic distribution of the supremum of the t2-
statistic of'Y = 0 under the null hypothesis of unit root and no threshold. 

Proposition 3: Assume that the threshold value is unknown. Under the null hypothesis of 

no threshold and 1(1), the asymptotic distribution of 

in equation (14) is, 
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{J~ vV(s) dV(s,p(r))p 
SUPrER 1) , p(r)(1 - p(r)) 10 vV(s 2 ds 

where V(s,p(r)) is a standard Kiefer-Miiller process on [0, 1]2. 

Notice that using (12) in Proposition 3, for a fixed r, 

( ) Io11V(s) dV(s,p(r)) = W(I) 
t-y=o r ===} {p(r)(l- p(r)) I~ vV(s)2 dsP/2 - , 

as it was showed in Proposition l. 

In practice, distributions of the test statistics introduced in propositions 2 and 3 depend on 

the initial value Xo. To avoid this dependence the same tests should be derived from equation 

(16). Their asymptotic distributions are the same ones that appear in propositions 2 and 3 

but with variables demeaned by the mean in each regime (111 and 112)' Asymptotic critical 

values corresponding to the supremum type of tests derived from equation (16) (S; and S2) are 

tabulated in Table 3. Critical values were computed using an iid U[O, 1] threshold variable. 

TABLE 3 ABOUT HERE 

5.2 Estimation and Testing of the TUR Parameters 

If the threshold value, r, is unknown, it can be shown that it can be estimated consistently 

(rate T) by the value of r that 

(17) 

in model (14). Its asymptotic distribution is independent on ai (see Chan (1993)). Therefore, 

Theorem 1 and propositions 2 and 3 still hold using f as the true threshold parameter. In order 

to test the TUR model, the results in section 4.2 can still be used. 

6 Finite Sample Performance of Tests 

Ignoring the existence of a threshold when the true model is given by equation (14) leads to 

an inconsistent estimator of p, by the standard argument of the omission of a relevant variable. 
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To avoid this inconsistency, we need to test for the presence of a threshold before estimating 

any parameter. In this section we analyze the finite sample performance of the tests developed 

in the previous section. 

In order to calculate the empirical size of SI and S2 for T = 100, we generated critical values 

from 10,000 replications for T = 500 using equation (14) under Ho. The threshold variable used 

in this study follows an iid UfO, 1]. Table 4 presents these results for SI and S2. 

TABLE 4 ABOUT HERE 

It is clear that empirical sizes of these tests coincide with their nominal sizes. 

To illustrate the power of SI and S2 we specify four different alternative data generating 

processes for each test. The power is tabulated in Tables 5 and 6 using four nominal sizes, 2, 

5, 10 and 20%, and two different sample sizes, T = 100 and T = 500. 

TABLE 5 ABOUT HERE 

As expected, the power increases with T, as well as with iTl (= 10:1 - 0:21). For SI our ex­

periment follows Hansen's (1996) experiment for an endogenous threshold variable with similar 

yalues for "I b = -0.6 and "( = -1). Comparing the power in both experiments, it can be seen 

that the power for T = 100, I = -0.6 and a 5% size, more than duplicates the power for the 

endogenous threshold case. \\Then "I = -1, the power increases from 0.7 to almost 1. 

TABLE 6 ABOUT HERE 

Similarly, for S2 the power increases with the sample size as well as with iTl. In this case 

our results are similar to the ones in the literature (see Gonzalo and Lee (1996)) on the power 

of the DF test when the alternatiye is a stationary AR(l) process. The S2 test does remarkably 

well eyen for an alternatiye of "l = -0.2 and T = 100. 

7 An Application to Interest Rates 

It is well known that there exists a relationship between interest rates and inflation since nominal 

interest rates changes when inflation rate changes. In this section we analyze this relationship 

using the proposed TUR model with X t = interest rates and Zt-d = lagged inflation changes. 
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In this way, the auto regressive model for interest rates can have either a stationary root or a 

unit root depending on which regime is Zt~d. 

The data are 3-month bill V.S. government securities (FYGM3) from Citibase for the period 

March 1947 to May 1996. We performed DF tests on both variables, Xt and Zt-d. In the interest 

rates series we are unable to reject the null hypothesis of a unit root at usual significance levels 

(TADF = -2.33). For the increments of the lagged inflation rate the null is clearly rejected. 

The value of the supremum t2-test, over R, for 'Y = 0 in equation (16) is 54.014 indicating 

a regime change at a lagged inflation increment (b.7rt-l) value of f = -0.0036. The interval 

R was set to exclude the top and bottom 15% of the threshold variable. The corresponding 

probabilities of being in regime 1 (b.7rt-l ::; f) and 2 (b.7rt-l > f) are 0.14 and 0.86 respectively. 

The estimated model is, 

X t 0.081 + 0.926 I(b.7rt_l ::; f)Xt- 1 + 0.992 I(b.7rt-l > f)Xt- 1 

(0.033) (0.011) (0.006) 

+ 0.370 b.Xt - 1 - 0.191 b.Xt - 2 , 

(0.039) (0.039) 
(18) 

where standard errors are shown in parentheses. The estimated value of E(6;) is 0.966, and a 

95% bootstrap confidence interval from 1000 bootstrapping samples is (0.927, 0.979). There­

fore, we cannot reject that E(6l) is less than one. From Corollary 3, in order to test that 

interest rates follow a TVR model, is enough to test that one of the threshold coefficients is 

equal to one. In doing so, the null hypothesis of Q'2 = 1 is not rejected by a 'Vald test at any 

conventional significance level. 

8 Conclusion 

The models introduced in this paper allow for unit roots without losing the stationarity property. 

This can be very useful for the analysis of those economic variables measured in rates. For 

these variables, in finite samples, standard unit root tests do not reject the null hypothesis of a 

unit root component, although theoretically they cannot have a random walk component (for 

instance, the variance cannot grow with t). Extensions to a multivariate framework are under 

current investigation. 
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Appendix 

Proof of Theorem 1: Following Brandt (1986), Theorem 1, page 212, in order to prove strict 

stationarity we need E(loglc51 i) < O. Notice that EIc5~1 < 1 implies EIc511 < 1, then, applying 

logarithms and using Jensen's inequality we get, 

E(loglc5d) ~ logEIc5d < O. 

Once the strict stationarity is obtained, the covariance stationary solution follows from Corol­

lary 1, page 132 of Karlsen (1990). 

Proof of Corollary 1. In order to prove stationarity we have to compute the unconditional 

mean and covariance structure of Xt. The variance of c5t is: 

2 2 

Far(c5t ) = 2:Q~Pi - [2: QiPi]2, (19) 
i=1 i=l 

where PI = P and P2 = 1 - p. Then, assuming Xo = 0 the process is characterized by the 

following moments: 

Var(c5tX t-d + F ar(et) + 2Cov(c5tX t- l , et) 

E(c5; XLI) + (j2 

E(c5;)Var(Xt_l ) + (j2 
2 2 

(j2[1 - (2: Q~Pi)t]/[l - (2: Q~Pi)], 
i=l i=1 

where the third equality follows from the independence between {Zt-d} and {ed. 

E[(c5tXt- 1 + et)Xt- s] 

2 

(I: QiPi)SVar(Xt_s ) 

i=l 

2 2 2 

(20) 

(21) 

(j2(L: QiPi)S[l - (L: Q;Pi)t-S]/[l - (L: Q;Pi)]' (22) 
i=l i=l i=l 
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Since EI8il < 1, it is clear from (21) and (22) that, when t goes to infinity, the covariance 

structure of Xt is given by the following expressions: 

2 

Var(Xt) = (12/[1 - (2: a;Pi)], (23) 
i=1 

and, 

2 2 

Cov(Xt, X t- s ) = (12(2: aiPi)S 1[1 - (2: a;Pi)]' (24) 
i=1 i=1 

Therefore the autocorrelation of order s is 

2 

Ps = Cov(Xt, Xt-s)IVar(Xt) = (2: aiPi)S, (25) 
i=1 

and the process is covariance stationary. 

Proof of Corollary 2. In order to simplify the proof we will assume that Zt-d follows a 

first-order Markov chain. The proof for N > 1 is similar. From Theorem 1, the condition for 

covariance stationarity is given by, 

00 j 00 

2:(£1 IT o~I)1/2 = [( 1, 1) 2: Fd AoF/2 < 00, (26) 
j=l n=1 j=1 

2 2 

( 2 2() [alPl/l a lPl/2 ] . where A6 = alP, a2 1 - p) and F2 = 2 2 . For equatIOn (26) to hold we need 
a2P2/1 a2P2/2 

the spectral radius of F2 being less than one. The characteristic equation associated with F2 

is, ).2 - (aipl/l + a~p2/2). + aia~Pl/1P2/2' Necessary and sufficient conditions for the largest 

eigenvalue in absolute value to be less than one are, 

(27) 

(28) 

and, 

17 



(29) 

Vve need to show that E(ol) < 1 implies (27), (28) and (29). Sufficient conditions for 

E(ol) < 1 are, 

(30) 

or, 

(31) 

It is straightforward to show that conditions (27), (28) and (29) are satisfied when 1c};~1 < 1 

and 0:2 < 0:2 < 1. 'When 10:2 1 < 1 but 1 < 0:2 < 0:2 + l-Ct~ condition (27) holds when 2- 1- 2 1 2 P 

Pl/2 = 1 - P2/2 ;::: PI/I, while (28) and (29) are satisfied for any value of the probabilities and 

any value of o:~. Therefore, (30) satisfies conditions (27), (28) and (29). The rest of the proof, 

using (31), follows similar steps and it is omitted here. 

\\Then the threshold variable follows an N-order l\'larkov process it can be shown after some 

tedious algebra that the spectral radius of F2 is less than one if Eloll < 1 and PI/2 ... 2 = 

(1 - P2/2 ... 2) ;::: PI/1...I > O. The intuition behind these conditions comes from the fact that the 

characteristic equation of F2 has N - 2 roots equal to zero, and the other two roots given by, 

). 2 (0:2p + 0:2p ). + 0:20:2p P - 1 1/1...1 2 2/2 ... 2 1 2 1/1...1 2/2 ... 2, (32) 

which has a structure similar to the characteristic equation for the first-order l\'Iarkov chain. 

Proof of Corollary 3. The proof of Corollary 3 follows the same steps as the proof of Corol­

lary 2 but in this case conditions (27), (28) and (29) hold if 0:1 = 1 and 10:21 < 1. 

Proof of Theorem 2. Theorem 1 in Chan (1989) establishes that if (Xt ) is an aperiodic and 

irreducible Markov chain and there exists a small set C, a non-negative measurable function g, 

and constants K > 1, t < 0, and B > 0 such that 

(33) 

18 



(34) 

g(x) is bounded away from 0 and +00 on C. (35) 

Then (Xt ) is geometrically ergodic. 

To see that a process satisfying assumptions in Theorem 2 is both irreducible and aperiodic 

see Tong (1990) Appendix 1, Proposition A1.7. 

Now, let g(x) = Ixl + 1, then equation (33) reduces to, 

E[I1:(Ic5t+lx + et+ll + 1) - (Ixl + 1)/ Xt = xl 
E[11:16t+l X + et+ll + 11: - (Ixl + 1)/ Xt = xl 

< I1:lxIE(16t+ri/Xt = x) + 11: - (Ixl + 1), (36) 

where the last inequality follows from the fact that la + bl S; lal + Ibl and E(let+ll/ X t = x) = O. 

Therefore, the supremum of equation (36) will be negative if 11: < 1+IXIE(~6~l~II/Xt=x)' which is 

satisfied if E(Ic5t+ll/Xt = x) is in bet\yeen zero and one. Ko\\', 

(37) 

Since ai = 1 and la~1 < 1, then, 0 < E(Ic5t+11/Xt = x) < 1. 

Equation (34) is given by 

E[16t+1X t + et+ll + l/Xt = xl E[Ic5t+1x + et+ri + l/Xt = xl 
< IxIE(16t+ll/Xt = x) + 1. (38) 

Expression (38) is finite following the same type of argument as above, and x E C = [-c, cl 
which is small. 

Therefore, equations (33) and (34) are satisfied by the TUR model and Theorem 2 holds. 

Proof of BR!: 
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The limiting distribution of basic result 1 follows from, 

T T 

'L,atBt + 'L,btAt- 1 = ATBT - AoBo, (39) 
t=l t=l 

where at = (At - At-d and bt = (Bt - Bt-d· 

Assume Xo = 0, and let at = I(Zt-d ~ 1') and Bt = X t = L~=l ei· Then, by (39) we have, 

T T T T 
'L, I(Zt-d ~ r)Xt = 'L, I(Zt-d ~ 1') 'L, et - 'L, {et 'L, I(Zs ~ r)}. (40) 
t=l t=l 

Dividing (40) by T3/2, 

T 

T- 3
/
2 'L, I(Zt-d ~ r)Xt 

t=l 

t=l t=l s<t 

TIT 

T-
1 ~I(Zt-d ~ r)(..jT ~et) 

T 

- T-1/2'L,{etT-1'L,I(Zs ~ r)}. 
t=l s<t 

( 41) 

BR1 is obtained by applying the following results to the right hand side (RHS) of (41), 

and, 

T 

T- 1 :L I(Zt-d ~ 1') - p(r) ~ 0, 
t=l 

1 T 
;7F L et ====? O"lV(l), 

vT t=l 

T- 1 L I(Zs ~ 1') - p(r)t/T 2..t 0, 
s<t 

T 1 

T-3
/
2p(r) ~tet ====? p(r)O"[H'(l) - fa vV(s) ds], 

where ~ denote convergence in probability. 

Proof of BR2: 

BR2 follows from Theorem 2 in Caner and Hansen (1997). 

Proof of BR3: 
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BR3 follows from Theorem 3 in Caner and Hansen (1997). 

Proof of BR4: 

Decomposing et(p(r)) = I(Zt-d ~ r)et into two orthogonal components (et and Vt(p(r))) we 

have, 

(46) 

where 

a(r) = E(et(p(r))edIE(ez) = p(r). ( 47) 

Adding over t and dividing by VT, we can write (46) as, 

[Ts] [Ts] [Ts] 

T- 1/2 L et(p(r)) = a(r)T-1/2 L et + T- 1/2 L Vt(p(r)). (48) 
t=l t=l t=l 

Rearranging (48), 

[Ts] [Ts] [Ts] 

T- 1/2 L Vt(p(r)) = T- 1/2 L et(p(r)) - a(r)T-1/2 Let. (49) 
t=l t=l t=l 

Using BR2. the first term of the RHS in (49) converges to, 

[Ts] 

T- 1/2 L et(p(r)) ==:::} alV(s,p(r)). (50) 
t=l 

The second term of the RHS goes to, 

[Ts] 

a(r)T-1/2 Let ==:::} p(r)alV(s). (51) 
t=l 

From (50) and (51) we get, 

[Ts] 

T- 1/2 L Vt(p(r)) ==:::} a[lV(s,p(r)) - p(r)vV(s, 1)], (52) 
t=l 

where lV(s,p(r)) - p(r)W(s, 1) = V(s,p(r)) is a standard Kiefer-Miiller process on [0, 1]2. 
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Proof of BR5: 

It follows from BR2 and BR3 replacing et(p(r)) by Vt(p(r)). 

Proof of Proposition 1. 

Case 1: Threshold Known, Stationary Root Case. 

This is a standard result. For a formal proof see Gonzalez and Gonzalo (1997). 

Case 2: Threshold Known, Unit Root Case. 

Rewriting equation (14), 

where lVt- 1 = [Xt- 1 I(Zt-d ~ r)Xt- 1] and (3 = [p 'Y]. Then, 

T T 

b = (2:: lV:_1 H't_l)-1 2:: lV:_l~Xt' 
t=1 t=1 

or, 

T T 

b - (3 = (2:: IF:_ 1 H't_d-1 2:: TV:_ 1 et· 
t=1 t=1 

::\ow, 

~ I [2:.;=1 XLI 2:.;=1 I(Zt-d ~ r)XLl 1 
L n"t-l n"t-l = 
t=1 2:.;=1 I(Zt-d ~ r)XL1 2:.;=1 I(Zt-d ~ r)XL1 . 

Defining TT = [: ~ 1 and multiplying both sides of (55) we get, 

IT(b - (3) = 

Then, using BRl and (9), 
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Decomposing I(Zt-d ~ r)et into two orthogonal components (et and Vt) we get 

I(Zt-d ~ r)et = a(r)et + Vt. Then, we can write, 

T T T 

T- 1 'LJ(Zt-d ~ r)Xt- 1et = a(r)T-1 I:Xt-1et + T- 1 I:Xt- 1vt, 
t=1 t=1 t=1 

(58) 

where using standard arguments, the first term of the RHS goes to ~p(j2[l/V(1)2 - 1], and the 

second term converges to (p(l - p)(j-! Jo1 nr (j)2 dj)1/2H!(1). Therefore, 

Then, 

(60) 

implying, 

t.y ===} lV(l). (61) 

Proof of Proposition 2: 

The asymptotic distribution of the sup re mum of the t~=o(r) statistic is the same as the 

one developed by Chan and Tong (1990) for their LR test, special case (a), using p(r) 

E[I(~.:~f;::;-tl instead of their s(r). 

Proof of Proposition 3: 

Using (9) we have, 
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]

-1 

T-2 Li=I XLI T-2 Li=I I(Zt-d ~ r)XLI ===> 
[ T-2 E;=1 I(Z'-d <:: r)Xl_1 T-2 E;=1 I(Z'_d <:: r)Xl_1 

(p(r)(l - p(r))cr2 (I VV(S)2 dS)-I [p(r) -p(r)]. 
lo -p(r) 1 

(62) 

Decomposing et(p(r)) = I(Zt-d ~ r)et into two orthogonal components (et and Vt(p(r))) we 

get, 

et(p(r)) = a(r)et + Vt(p(r)), 

where a(r) = E[et(p(r))etll E[ezl = p(r). Then, 

T T T 

T- I L I(Zt-d ~ r)Xt- 1et = a(r)T-1 L X t- 1et + T- 1 L X t- 1Vt(p(r)), 
t=1 t=1 t=1 

(63) 

where using standard arguments, the first term of the RHS goes to ~p(r)cr2[l'V(1)2 - 1]. Using 

BR5, the second term of the RHS conyerges to cr2 I0111'(s) dF(s,p(r)). Therefore, 

Then, 

T(i _ A() ===> I01 HT(S) dV(s,p(r)) 
p(r)(l - p(r)) I01lV(s)2 ds' 

(65) 

implying, 

I~ H!(s) dV(s,p(r)) 
ti ===> 1 . 

{p(r)(l- p(r))Io lV(S)2ds}1/2 
(66) 

Therefore, 

2 {I01 1V(s) dV(s, p(r)) F 
t - ===> ----'-~---.__--'---

'Y p(r)(l - p(r)) I01 W(s)2 ds' 
(67) 

and the limiting distribution of the supremum of (67) follows from the continuous mapping 

theorem. 

24 



References 

Beveridge, S. and C. Nelson (1981)' "A new approach to decomposition of economic time series 

into permanent and transitory components with particular attention to measurement of 

the business cycle". Journal of Monetary Economics, 7, pp. 151-174. 

Brandt, A. (1986), "The stochastic equation Yn+1 = AnYn + Bn with stationary coefficients". 

Advances in Applied Probability, 18, pp. 211-220. 

Caner, M. and B. Hansen (1997), "Threshold autoregressions with a unit root". Mimeo. 

Chan, K.S. (1993), "Consistency and limiting distribution of the least squares estimator of a 

threshold autoregressive model". The Annals of Statistics, Vol 21, No. 1, pp. 520-533. 

Chan, K.S. (1989), "A note on the geometric ergodicity of a Markov chain". Advances in 

Applied Probability, 21, pp. 702-704. 

Chan, K.S. and H. Tong (1990), "On likelihood ratio tests for threshold autoregression". 

Journal of the Royal Statistical Society, Vol. 52, No. 3, pp. 469-476. 

Chan, K.S., J.D. Petruccelli, H. Tong and S. \V. \Voolford (1985), "A multiple threshold AR(l) 

model". Journal of Applied Probability, 22, pp. 267-279. 

GonzaJez, 1\1. and J. Gonzalo (1997) "Threshold unit root models". \VP 97-50 (21), Statistics 

and Econometrics, U. Carlos III de ?-.Iadrid. 

Gonzalo, J. and T. Lee (1996), "Relative power of t type tests for stationary and unit root 

processes". Journal of Time Series Analysis, Vol 17, No. 1., pp. 37-47. 

Hannan, E.J. (1973), "Central limit theorems for time series regression". Z. Wahrsch. Verw. 

Gebiete 26 pp. 157-170. 

Hansen, B. (1996), "Inference when a nuisance parameter is not identified under the null 

hypothesis". Econometrica, Vol 64, No. 2, pp. 413-430. 

Hansen, B. (1996), "Estimation of TAR models". Mimeo. 

25 



Karlsen, H.A. (1990), "Existence of moments in a stationary stochastic difference equation". 

Advances in Applied Probability, 22, pp. 129-146. 

Nelson, C. and C. Plosser (1982), "Trends and random walks in macroeconomics time series: 

some evidence and implications". Journal of Monetary Economics, 10, pp. 130-162. 

Nicholls, D.F. and B.G. Quinn (1982) "Random coefficient autoregressive models: an intro­

duction". Springer- Verlag, Lecture Notes in Statistics, Vol. 11. 

Tong, H. (1990), "Non-Linear time series: A dynamical system approach". Oxford Statistical 

Science Series, 6. 

Tong, H. (1983), "Threshold models in non-linear time series analysis". Springer and Verlag, 

Lectures Notes in Statistics, yol 21. 

26 



Table 1: Empirical Power of Unit Root Tests 

Model (5) 

Critical Values 1% 5% 10% 

(1) No Constant, No Trend 0.018 0.081 0.146 

(2) Constant, No Trend 0.009 0.049 0.102 

(3) Constant, Trend 0.011 0.047 0.100 

(4) No Constant, No Trend 0.015 0.071 0.140 

(5) Constant, No Trend 0.010 0.056 0.110 

(6) Constant, Trend 0.009 0.051 0.103 

(7) No Constant, No Trend 0.040 0.181 0.328 

(8) Constant, No Trend 0.015 0.075 0.145 

(9) Constant, Trend 0.012 0.059 0.115 

(10) No Constant. 1\0 Trend 0.105 0.376 0.597 

(11) Constant,1\"o Trend 0.029 0.128 0.236 

(12) Constant, Trend 0.019 0.082 0.158 

(13) No Constant, No Trend 0.371 0.801 0.932 

(14) Constant,1\"o Trend 0.103 0.339 0.527 

(15) Constant, Trend 0.051 0.197 0.336 

(16) ;:\0 Constant, 1\0 Trend 0.727 0.971 0.993 

(17) Constant, No Trend 0.273 0.650 0.821 

(18) Constant, Trend 0.143 0.406 0.598 

(19) Ko Constant,1\"o Trend 0.924 0.995 0.999 

(20) Constant, No Trend 0.543 0.875 0.953 

(21) Constant, Trend 0.319 0.665 0.824 

(22) No Constant, No Trend 0.984 0.999 0.999 

(23) Constant, No Trend 0.782 0.963 0.990 

(24) Constant, Trend 0.549 0.851 0.940 

Note: Simulations were computed using model (5), 
sample size equal to 100, and 10000 replications. 
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Table 2: Empirical Power of Unit Root Tests 

Model (3) 

Critical Values 1% 5% 10% 

(1) No Constant, No Trend 0.018 0.081 0.146 

(2) Constant, No Trend 0.009 0.049 0.102 

(3) Constant, Trend 0.011 0.047 0.100 

(4) No Constant, No Trend 0.692 0.970 0.982 

(5) Constant, No Trend 0.266 0.631 0.812 

(6) Constant, Trend 0.147 0.401 0.588 

(7) No Constant, No Trend 0.915 0.988 0.991 

(8) Constant, No Trend 0.533 0.861 0.955 

(9) Constant, Trend 0.322 0.650 0.809 

(10) No Constant, No Trend 0.983 0.992 0.994 

(11) Constant, No Trend 0.769 0.964 0.986 

(12) Constant, Trend 0.559 0.838 0.932 

(13) Ko Constant, No Trend 0.990 0.994 0.995 

(14) Constant, No Trend 0.905 0.988 0.991 

(15) Constant, Trend 0.753 0.941 0.983 

Note: Simulations were computed using model (3), 
sample size equal to 100, and 10000 replications. 
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Table 3: Critical Values 

Si S; 
1% 0.536 0.489 

2.5% 0.678 0.654 

5% 0.850 0.832 

10% 1.092 1.089 

25% 1.705 1.688 

50% 2.729 2.722 

75% 4.221 4.227 

90% 6.165 6.106 

95% 7.576 7.520 

97.5% 8.897 8.959 

99% 10.674 10.818 

Note: Critical values were computed 
using a sample size equal to 500, 
and 10000 replications. 

Table 4: Finite Sample Size of Tests 

51 52 

2% 0.026 0.022 

5% 0.055 0.055 

10% 0.108 0.103 

20% 0.202 0.202 

Note: Critical values were computed 
using a sample size equal to 500, 
and 10000 replications. 
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Table 5: Power of 8 1 Test 

T = 100, a2 = 0.3 T = 500, a2 = 0.3 

al = -0.7 al = -0.3 al = 0 al = 0.1 al = -0.7 al = -0.3 al = 0 al = 0.1 

2% 0.985 0.584 0.125 0.060 1.000 1.000 0.728 0.339 

5% 0.994 0.693 0.202 0.110 1.000 1.000 0.821 0.474 

10% 0.997 0.792 0.310 0.194 1.000 1.000 0.894 0.597 

20% 0.999 0.881 0.463 0.328 1.000 1.000 0.940 0.719 

Note: Percentages of rejection were computed using 10000 replications. 

Table 6: Power of 82 Test 

T = 100, a2 = 1 T = 500, a2 = 1 

al = 0.7 al = 0.8 al = 0.9 al = 0.95 al = 0.7 al = 0.8 al = 0.9 al = 0.95 

2% 0.488 0.297 0.129 0.061 0.999 0.974 0.748 0.364 

5% 0.600 0.410 0.205 0.111 1.000 0.988 0.832 0.507 

10% 0.713 0.529 0.306 0.191 1.000 0.996 0.898 0.623 

20% 0.822 0.672 0.447 0.314 1.000 0.999 0.940 0.741 

Note: Percentages of rejection were computed using 10000 replications. 
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