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1 Introduction 

The problem of graduating a set of observed crude mortality rates has been 
approached from several standpoints (see London, 1985 for a general clas
sification and description of methods). One of those approaches leads to 
the \iVhittaker graduation method, which basically consists of using a linear 
combination of the crude rates to obtain a series of graduated values. This 
new series should be close enough to the crude rates to satisfy a goodness 
of fit criterion and so smooth to be considered a better representation of the 
true ones. The trade off between goodness of fit and smoothness is contro
lled through a smoothing parameter that reflects the relative importance of 
those two aspects. Because of its intuitive appeal and relative ease of imple
mentation, \iVhittaker graduation has been extensively employed in practice. 
However, both the standard to measure smoothness and the smoothing pa
rameter itself are usually chosen arbitrarily, according to the graduator's 
experience. In order to get a better understanding of the method and ap
preciate the implications of those arbitrary decisions, \iVhittaker's method 
should be studied and interpreted within different settings. 

Kimeldorf and Jones (1967) viewed \iVhittaker graduation from a Bayesian 
perspective and emphasized the use of prior distributions to incorporate the 
relevant knowledge that the graduator possesses before observing the data. In 
fact they advocated the use of a multivariate Normal distribution as a model 
for the vector of (correlated) true rates. Then they proceeded to suggest a 
way to postulate the covariance matrix from a priori arguments. Later on, 
Taylor (1992) elaborated on Kimeldorf and Jones' ideas and derived some 
results related to the smoothness standard and to the smoothing parameter 
involved. He considered a perspective in which the rates were assumed to be 
mutually independent. On that assumption, he interpreted the smoothing 
parameter as the reciprocal of a variance involved in his formulation. In 
Verrall (1993), the Bayesian interpretation was further exploited to pose the 
graduation problem in the form of a state space model. Such a formulation 
leads to the use of Kalman filtering to obtain the graduated values and allows 
estimation of the smoothing parameter from the observed data. However, 
the dynamic structure of the rates has to be decided by the analyst, which 
amounts to saying that the smoothness standard is chosen subjectively. 

In this paper ,ye suggest an alternative interpretation of \iVhittaker gra
duation that views the graduated series of rates as the Best Linear Unbiased 
Estimator (BLUE) of the true series. The smoothing parameter as well as 
the smoothness standard are then related to a dynamic specification derived 
from the observed data. Our focus will be placed on the statistical analysis of 
the data at hand. Therefore, some additional results are provided to enhance 
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the possibilities of analysis. In the following section we present the basic no
tation to be employed throughout this paper and briefly describe the basics 
of \iVhittaker graduation. Section 3 presents our theoretical proposal, which 
is supported by some assumptions there exposed. In Section 4 we show how 
to obtain a feasible solution and propose some further analyses that can be 
performed with the statistical tools presented in that section. In Section 5 
we provide a numerical illustration aimed at getting some insight into how 
our proposed method works in practice. Then, Section 6 concludes the paper 
with some final remarks. 

2 A brief description of Whittaker's gradua
tion and basic notation 

Let {ux } be a sequence of observed crude rates corresponding to ages x = 
1, ... , n, where the actual age is given by x + 0:, for some constant 0: > O. 
The basic idea underlying \Vhittaker graduation is to consider both fit and 
smoothness of the graduated rates through the following expression 

n n-d 

111 = L wx(vx - ux)2 + h L(L~dvx)2 (2.1) 
x=1 x=1 

where Vx denotes a graduated value. Here, Wx is a non-negative weight, 6 is 
the forward differencing operator defined as 6vx = Vx+1 - Vx for every v and 
x, d is the number of times the operator is applied (which implicitly defines 
the standard of smoothness) and h is a smoothing parameter that controls 
the relative importance of smoothness versus fit. The graduated values are 
those that minimize (2.1) for given d and h. Expression (2.1) can also be 
written in matrix notation as the quadratic form 

M = (v - u)'H/(v - u) + hv' S~SdV (2.2) 

where u = (UI'···, un), v = (VI'···' Vn), HI = diag(WI,···' wn) and Sd is an 
(n - d) x n matrix whose ij-th element is a binomial coefficient, i.e. it is of 
the form 

Sd(i,j) = (_l)d+i- j ( .d.) fori=l, ... ,n-d andj=l,···,n (2.3) 
J - Z 

with ( ~ ) = 0 for k < 0 or k > d. The first summand in (2.2) measures fit 

and the second smoothness. The vector v that minimizes (2.2) can be shown 
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to be given by (see Shiu, 1986, for details) 

(2.4) 

This formula can be employed in practice once d and h are fixed. In fact, 
most practitioners would first fix the value d in 2, 3 or 4, according to their 
experience. Then h is selected by trial and error trading off smoothness 
against fit visually. It is thus evident that the practitioner's subjectivity 
plays an important role in choosing d and h. 

Taylor (1992) relied on a Bayesian interpretation of VVhittaker's method 
to propose a way for obtaining the value of h. His result was obtained on 
the assumption that the true values, {tx }, are related to the observed {ux } 

through the expression 
(2.5) 

where Ex is a zero-mean random error. {ux } was then assumed to be a 
sequence of independent and asymptotically Normally distributed random 
,oariables with Wx = vac1(u x ), and h was shown to be given by 

(2.6) 

However, in what follows we argue against the assumption of independence 
of the {ux }. 

\;Ye now realize that the value of d has implications on the behavior of the 
graduated rates. This can be seen in (2.2), since by minimizing hV'S~SdV, 
the structure of {vx } tends to lie on an adaptive polynomial of degree d - 1. 
An implicit dynamic model is therefore employed when using \\!hittaker gra
duation. In the next section we propose using an explicit statistical for
mulation to take into account the potential auto correlation structure of the 
rates. This is in clear opposition to the assumption of independence of {ux } 

mentioned above. \Ve were motivated by some comments in Kimeldorf and 
Jones (1967) attributed to R. Henderson and M.D.\\!. Elphinstone, both of 
whom considered the rates to be connected, in the sense of having some kind 
of interrelationships. By assuming a specific dynamic structure among the 
rates we are able to select the value of d from the observed data and propose 
a new approach to graduation, based on well-known statistical (time series) 
methods. Our proposal is in line with Verrall's (1993) idea of employing a 
dynamic structure for the observed rates. However, we do not impose such 
a structure on the basis of a priori arguments, but rather use the observed 
data as a guide to select it. 

The proposed time series representation is fairly general since it only 
assumes that, after appropriate differencing, a time series process becomes 
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stationary (see Box and Jenkins, 1976). That is, 

(2.7) 

where \1 is the backward differencing operator given by \1 Zx = Zx - Zx-l = 
6,Zx-l, with \1d Zx = 6,d Zx-d for d = 0,1,· ... Furthermore, {ax} is a zero
mean Gaussian stationary process. T(·) denotes an appropriate transforma
tion, usually applied to make plausible the constant variance and Normal 
error (Gaussian) distribution assumptions. 

3 Statistical model-based graduation 

Our interest lies in estimating an unobserved series ofrates {tx } that is known 
to follow a smooth pattern. A preliminary estimate of each (fix) parameter 
tx is given by a crude rate u~, obtained as the proportion of deaths out 
of nx people exposed at age x. VVe start our derivations by considering 
the relationship (2.5) with u~ in place of ux , E( Ex) = 0 and var( Ex) = 
tx(1-tx)/nx, which come out from a binomial model with parameters tx and 
nx for each age x. Next, the fact that graduation is deemed neccessary may 
be due to some extraneous and undesirabe variability in the crude rates. The 
presence of outliers in this kind of data should then be considered reasonable. 
In \yhat fo11O\\'s we shall allow for outliers by considering an outlier-corrected 
series {ux } obtained from {u~}. 

\Ve now consider a log-odds-ratio transformation of the data, as did Ve
rrall (1993), i.e. 

T(ux ) = 10g[ux /(1 - ux )] for x = 1, ... , n (3.1) 

which extends the range from 0 < U x < 1 to -00 < T( ux ) < 00. This is 
a monotone increasing transformation that will enable us to employ some 
well-known statistical methods. Its inverse is given by 

T-1(y) = exp(y)/[l + exp(y)] for every - 00 < y < 00. (3.2) 

Then, the dynamic structure in {uD is assumed to be captured by the diffe
rence stationary representation (2.7). However, "ye consider that the poten
tial auto correlation structure in {\1 dT( u~)} is basically due to the presence 
of outliers. 

3.1 Theoretical solution 

\Ve are now ready to assume the following. 
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Assumption 1. {T(ux)} admits the model 

'\JdT(ux) = au,x for x = d + 1,"', n (3.3) 

with T(Ul),"',T(Ud) some fixed initial conditions and {au,x} a zero-mean 
Gaussian white noise process. 

As a consequence of using (3.1), the relationship (2.5) gets modified ap
proximately as indicated by a first-order Taylor expansion. Thus we now 
assume. 

Assumption 2. The transformed rates are related by means of 

T( ux) = T(tx) + ex for x = 1, .. " n 

with ex ~ [dT(ux)/duxllux=tx(ux - tx), so that 

E(ex) = 0 and var(ex) = [nxtx(1 - tx)t l . 

(3.4) 

(3.5) 

It should be clear that {T(u~)}, {T(ux)} and {T(tx)} share the same long
run equilibrium, so that {ex} is stationary. In other words, the (transformed) 
series of rates are pairwise cointegrated, with cointegrating vector (1, -1). 
Moreover, since the auto correlation structure is supposedly due to outliers 
in the observed data, {ex} must follmv a white noise process. 

It is convenient to assume at this point that {T(tx )} follows a smooth pat
tern dictated by a representation that is in agreement with the cointegrating 
relationship aforementioned. This we do through the following. 

Assumption 3. The dynamic structure of {T(tx )} gets captured by 

(3.6) 

where T(t l ), ... ,T(td) are fixed initial conditions and {at,x} is a zero-mean 
white noise process with var(at,x) = o} and uncorrelated with {ex} 

\Ve remark that, on the one hand, Assumptions 1 and 2 are very natural 
and realistic given the nature of the data. On the other, Assumption 3 is 
a symplifying device that will lead us to a \Vhittaker-like solution. In fact, 
the latter assumption has been previously employed by other authors (e.g. 
Taylor, 1992) to incorporate a smoothness condition on {T(tx)}. 

\\7e nmv define the column vectors T(u) = (T(Ul),"', T(un))', T(t) = 
(T(t l ),"', T(tn))' and e = (el,"', en)', where the prime indicates transpose, 
to express (3.4) as 

T(u) = T(t) + e with E(e) = 0 and var(e) = VV- l (3.7) 

where 111 = diag(wI,"', wn ) and w;l = var(ex) for x = 1,"" n. Similarly, 
by calling a = (at,d+l,"', at,n)', we can write (3.6) as 

SdT(t) = at with E(at) = 0, var(at) = Cl; In- d and E(ate') = O. (3.8) 
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From (3.7) and (3.8) we construct the following system of equations 

(3.9) 

where 

E (_e ) = 0 and var (_e ) = (WO-l 21
0 

) 
at at O"t n-d 

(3.10) 

Thus given u, W, Sd and 0";, we can apply Generalized Least Squares to 
obtain the BLUE of T(t) as 

T(t) = 

x 

[( ~:l )' (I~ crt2~n_d) ( ~: ) r 
( ~: )' (I;; crt2~n_d) ( T~U) ) 

(VV + O"t2S~Sdtlll'T(u) 

whose variance-covariance matrix r = var[(T(t)] is given by 

r (Hf + 0";2 S~Sdtl 
= Hf-1 _ VV-1[Hf-1 + O"t2(S~' S~)-ltllV-l. 

(3.11) 

(3.12) 

\\le can easily see that (3.11) has the same form as \\lhittaker's solution 
(2.4) to the graduation problem in a transformed scale, when h = O"t2 and the 
crude rates are corrected for outliers. \\le can also appreciate in (3.12) that r 
is an increasing function of 0";, with r ~ 0 as 0"; ~ 0 and r ~ Hf-1 as 0"; ~ 
00. Further, let us note that no distributional assumption was required to 
arrive at (3.11)-(3.12). If we now assume that {e} is Normally distributed, we 
get a Normal distribution for T(t), with mean T(t) and variance-covariance 
matrix r. Hence, confidence intervals can also be constructed for T(t). 

3.2 Some complementary results 

An aspect that can be exploited to get a better understanding of the role 
of 0"; is that r-1 is the sum of two precisions, lV and O"t2 S~Sd, associated 
to the binomial and the time series model, respectively. Then, as 0";2 S~Sd 
corresponds to the smoothness element in (2.2), it is interesting to measure its 
precision share in r-l. Guerrero (1993) proposed using to that end a scalar 
index derived by Theil (1963). A measure of the share of P in (P + Q)-I, 
with P and Q positive definite matrices of size n x n, is given by 

A(P, P + Q) = tr[P(P + Q)-lJln (3.13) 
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Theil showed that this measure has the following properties:(i) it takes on 
values between zero and one, (ii) it is invariant under linear, nonsingular 
transformations of the variable involved, (iii) it behaves linearly, and (iv) 
A(P, P + Q) + A(Q, P + Q) = 1. The share of (5t2S~Sd in r- 1 is thus 
measured as 

tr[(5t2S~Sd(W + (5t2S~Sd)-l]/n 
tr{[(5t2W(S~Sd)-1 + Int1]}/n 

and ,ye observe that it is a decreasing function of (51, with 

(3.14) 

(3.15) 

\Ve call this an index of precision share attributable to the time series 
model since it can also be expressed as 

(3.16) 

so that it is associated to the relative reduction in variance attributable 
to using T(t) rather than just T(u). Thus, given a; we can calculate the 
precision share achieved with such a choice. Moreover, we can decide the 
value of (5; by fixing a desirable precision share and then selecting a; as the 
value that satisfies such a condition. However, the empirical validation of the 
model assumptions should also be kept in mind and an extremely smooth 
estimated series may not be supported by the data at hand. 

Next, let us recall that in the transformed scale (where the errors are 
Normally distributed) T(tx ) = E[T(tx )], so that T(tx ) is also the median of 
T (t x ). Then if we apply the inverse transformation to bring the estimator to 
the original scale, we obtain 

for x = 1,···, n (3.17) 

which (by monotonicity of T(·)) has its median located at t x . The whole 
series of estimates {tx } is what we call the graduated rates with our proposal. 
Besides, confidence limits can also be constructed in the original scale by 
applying the inverse transformation to the limits obtained in the transformed 
scale. 

4 An empirically supported working solution 

In order to apply the previous results we should determine the values of 
Sd, IV and (5; from the observed data in the most objective way. As a 
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starting point we need to correct the data for outliers, since some part of 
the oberved roughness is assumed to be due to them. If the data follow a 
Normal distribution, except for a small fraction coming form a heavy tailed 
symmetric distribution, we can use Huber's function, given for z rv N(O, 1) 
by 

. { z if Izl ~ c 
1/Jc(z) = mm{c,max{z,-c}} = S () 'f I I c gn z 1 z > c. 

( 4.1) 

This function produces robust location estimates that are optimal in a mi
nimax sense. In fact they are Maximun Likekihood estimates for the least 
favorable distribution (see Hampel et al., 1986, for more information on this 
topic). The constant c depends on the expected fraction of contaminated 
data and is usually chosen as c = 1.645, thus considering a potential 10% 
contamination. 

In our case, Huber's function will be used for robust estimation of dynamic 
location. Since for each age x there is only one observation, it is impossible 
to judge its degree of contamination when considering the ages separately. 
Nevertheless, ,,,,,hen {T( u~)} is viewed as a whole, its dynamic structure sets 
the standard for comparison. This structure is completely determined by 
the value of d that renders the series stationary. Hence, to specify d we 
can use an Augmented Dickey-Fuller (ADF) test on {T(u~)} (see Hamilton, 
1994, for a detailed description of this test and related ones). Once d has 
been fixed, Sd can be constructed as indicated by (2.3). The elements of VV 
can be preliminarily estimated by replacing tx by u~ in (3.5) to obtain the 
consistent estimates 

for x = 1"", n (4.2) 

so that 1~1 = diag ( 1ih, ... , wn ). Then the value of o} can be decided from 
(3.14) by fixing a desirable (large) precision share attributable to the time 
series model and then looking for the corresponding a; that produces it. 

The last point that deserves special attention from a statistical analysis 
standpoint, refers to validating the model assumptions. In terms of the 
random errors, such assumptions are the following. (1) ex = T(ux) -T(tx) rv 

N(O, W;1/2) and (2) {at,x} is a zero-mean white noise process with variance 
a; and uncorrelated with {ex}, where at,x = \JdT(tx). Then it is natural to 
calculate the residuals ex = T(ux) -T(tx) to verify (1). Similarly, we may be 
tempted to calculate o't,x = \JdT(tx), but let us notice that this is not very 
natural, since no observations would then be employed to obtain {o't,x}' In 
fact, we should realize that (3.11) implies 

(4.3) 
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so that e = T(u) - T(t) and SdT(t) = at would lead to 

( 4.4) 

Therefore, if we have e rv N(O, W- 1
) and at rv N(O, all), as required by 

the model assumptions, (4.4) would imply that W = at2 S~Sd, which is not 
possible because lV is diagonal with all its elements different from each other. 
Even if it were possible, then we would have T(t) = ~T(u) = e and Sde = at 
so that E(ate') = SdW-1 =/= O. Our conclusion is that the sole definition of at 
is not supported by the data. That is why we should consider Assumption 3, 
and (3.6) in particular, as a convenient and simplifying device that helps to 
obtain reasonable results, although it is not testable empirically. On the other 
hand, yalidating the assumptions on {ex} through a residual analysis does 
not pose any difficulty, as it will be appreciated in the numerical illustration. 
\\le should also be aware of the usefulness of a more flexible transformation 
than (3.1) to ensure that the assumptions are valid in data. Thus we suggest 
to keep in mind a Box-Cox power transformation of the odds-ratios, when 
needed, that is 

( 4.5) 

where, for every variable Y, we have 

Y(A)={ (yA-1)j.\ if.\=/=O 
log(Y) if .\ = o. (4.6) 

Hence, when .\ = 0, (4.6) yields (3.1). See Guerrero and Johnson (1982) for 
more information about the use of (4.6) in some other contexts. 

The following steps summarize our proposal: 

Step 1 Determine the degree of differencing from an ADF test on {T( u~)} and 
create Sd. Obtain y{! = diag(vh,···, wn ) with Wx = nxu~(l - u~) for 
x = 1,·· ·,n. 

Step 2 Fix the value o} in such a way that A( at2 S~Sd, r-1) = 7] with 0 < 7] < 1 
specified beforehand, where A(·,·) is given by (3.14). 

Step 3 Calculate the preliminary values of T(t) and r with (3.11)-(3.12). 

Step 4 Obtain the following outlier-corrected results, for x = 1, .. , , n. (i) resi
duals ex = W;1/21jJ1.645{W;P[T(u~) - T(tx)]}; (ii) observations T(ux) = 

T(tx) + ex and U x = T-l[T(ux)]; and (iii) weights Wx = nxux(l - ux). 

Step 5 Calculate the final values ofT(t), t and A(at2S~Sd,t-l). 
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Step 6 Carry out a residual analysis on {W;/2Cx }. If the assumptions are sup
ported by the data, you are finished, otherwise go back to step 2 and 
try with another value of "1. As a guide, the higher the value of "1, 
the less auto correlation in the standardized residuals, but the more 
non-Normal (platikurtic) its distribution. 

5 A numerical illustration 

Here we exemplify the application of our proposal by graduating an actual 
series of crude mortality rates. The data set used for this example is the 
1971 Group Annuity Mortality Table for Female Lives appearing in London 
(1985). As a preliminary step, we present in Figure 1 the original data and 
reproduce the results obtained by London using \Vhittaker graduation. In 
this figure, the numbers in parentheses (1000 and 426138) are two values of 
the smoothing parameter h, employed originally by London. The graduation 
was first carried out in the logarithmic scale assuming d = 2 and the gradua
ted rates were then brought back to the original scale by taking anti-logs. 
Visual appreciation of the data (crude and graduate rates) is the key element 
to make decisions and judge the adequacy of these results. 

FIGURE 1 AROUND HERE 

To apply our suggested procedure we start by using the ADF test on the 
observed (transformed) rates. In this case, since there may be some doubt 
whether d = 1 or d = 2 is the appropriate degree of differencing, we postulate 
the model 

so that testing Ho : d = 2 vs. HI : d = 1 is equivalent to testing Ho : P = 1 
vs. HI : P < 1. "re chose initially p = 10 and the final value p = 7 was 
decided by discarding the highest lag in a regression when its coefficient was 
not significantly different from zero at the 10% level. The following results 
were obtained. 

P= 0.923, f31= -1.606, f32 = -1.798, S3 = -1.822, 
(0.457) (0.461) (0.463) (0.429) 

S4 = -1.017, f35 = -0.369, S6 = -0.126 
(0.365) (0.192) (0.065) 

with dE = 0.317 and Q(10) = 6.22, where standard errors are in parenthesis 
below the estimates. The value Q(d.j.) is the Ljung-Box statistic with d.j. = 
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degrees of freedom, which compared with a Chi-square distribution with 10 
degrees of freedom did not show any evidence of residual auto correlation. 
Then we compared the ratio (0.923-1)/0.457=-0.168 with its appropriate 
tabled distribution (Table B.6 for n = 50 in Hamilton, 1994). The corres
ponding 10% and 90% critical values are -1.61 and 0.91, so that Ho is not 
rejected by the data and d = 2 becomes an appropriate choice. 

Once the matrices S2 and TV were built, we decided to fix the desirable 
precision in 75% and found the corresponding value &; = 0.00171286. Then 
we followed steps 3 and 4 of our recommended procedure and observed that 
12 original values of {T( u~n were corrected to obtain {T( uxn . Those were 
the values corresponding to ages: 60, 62, 64, 66, 68, 71, 79, 84, 92, 93, 94 and 
97. Finally, steps 4 and 5 were followed and the Ljung-Box statistic Q(12) = 
22.94 became significant at the 2.8% level, so that auto correlation was still 
present in the residuals {ex}, in particular the first order auto correlation 
coefficient took the value p = -0.426. 

Another round of the procedure was called for, with a higher precision 
value in order for the residual auto correlation to dissapear. This must be 
so because more observed values will tend to be corrected for outliers. \'Te 
tried then with a 90% precision and found that &; = 0.00003879 satisfied this 
criterion. Now 14 original values \vere corrected: the previous ones, except 
that of age 64, plus those of ages 75, 90 and 95. In this case the Ljung
Box statistic Q(12) = 10.0 did not show any evidence of autocorrelation. 
Similarly the skewness and (excess) kurtosis statistics (see Kendall, Stuart 
and Ord, 1987) took the values Sk = -0.10 and J{u = -1.08 \vhich were 
reasonable for a null hypothesis that each of the true values was zero. In 
fact, an asymptotic test indicates to compare those values with a N(O, 1) 
distribution, thus the Normality assumption was also supported empirically. 
Then, the t statistic for the null hypothesis that E(ex ) = 0 was t=0.12 
and again, there was no basis for suspicion in the contrary. Next, a visual 
inspection of the standarized residuals shown in Figure 2 provided support 
to the constant variance assumption. 

FIGURE 2 AROUND HERE 

Therefore we have obtained an estimated series from a model that is 
valid in data. In Figure 3 we present the observed and estimated rates in the 
transformed scale, together with 90% confidence bands. There we can see 
that the assumption of true rates being integrated of order 2 makes sense, 
because the basic pattern is that of an adaptive straight line (i.e. an adaptive 
polynomial of degree 1). Further, it is also clear that the larger variability in 
the extremes is accounted for by wider confidence intervals. By transforming 
back to the original scale, we obtained the results shown in Figure 4, which is 
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the final product of this exercise. The smoothness achieved is evident by eye, 
however we can also measure it numerically now. In fact, we can say that 
90% of the precision (smoothness) achieved is due to the use of a dynamic 
structure (Assumption 3) on the true rates. 

FIGURES 3 AND 4 AROUND HERE 

Vve should be aware that an extremely smooth structure for the estima
ted rates may be undesirable for various reasons. Firstly, because it would 
correspond to a very rigid pattern, as can be seen by making a; = 0 in (3.6), 
so that the adaptivity of the implicit polynomial is lost. Secondly, from an 
empirical point of view, since by making the precision get closer to 100% we 
will have to discard more observations through Huber's function and the re
siduals will show a strange behavior due to truncation. And thirdly, because 
a; -t 0 will introduce numerical instabilities in the solution. In fact, we 
tried with 95% precision and verified the previous statements, in particular 
18 observed values needed correction (rather than 14 with 90% precision) 
and this originated valleys and peaks in the residual pattern. 

6 Final remarks 

\\le have shown that a classical statistical interpretation of the graduation 
problem produces an optimal theoretical result that can be translated into 
a sensible working solution. Therefore, the arbitrary decisions required to 
graduate an observed series of rates can be put and understood in more 
conventional statistical terms. The key statistical arguments employed in 
the derivations supporting our suggested procedure, are the following. (i) 
Use of an appropriate transformation that helps to validate the assumptions 
about the random errors. (ii) Application of a robust technique that reduces 
the influence of outlying observations, particularly on the autocorrelation 
structure. (iii) The ideas of unit roots and cointegration in time series data, 
so that the smoothness standard (implicit in the value of d) derived from the 
observed data, can be assumed to be the same for the true series of rates. 
(iv) Measures of variability and precision associated to the estimator that 
allow us to make inferences and establish comparisons from the very data. 
(v) The idea of validating a model empirically, through a standard residual 
analysis. 

The numerical illustration was aimed to help an interested analyst in 
using our methodology. Vve also intended to provide some insight into the 
performance of our procedure in practice and about the kind of results that it 
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can produce. Of course, that does not mean that we have obtained a comple
tely objective solution to the graduation problem, since at the very beginning 
of our procedure we had to decide a desirable precision level. Nevertheless, 
we believe that such a decision can be made more easily with the aid of a 
number (through our measure of precision share) than solely on the basis of 
a visual inspection of a graph (as it is usually made by the practitioners). 
Besides, we should be well aware that our procedure requires a reasonably 
large series of rates (as in the numerical example) to work satisfactorily. 
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Fig 1. Mortalit~ rates, observed and graduated b~ 'Whittaker method 
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Fig 2. Standardized residuals 
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Fig 3. Observed and estimated log-odds-ratios 
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Fig 4. Observed and estimated rates (original scale) 
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