
ORTHOGONAL POLYNOMIALS AND CUBIC 

POLYNOMIAL MAPPINGS I 

F.MARCELLAN AND J.PETRONILHO 

March 21, 2000 

Abstract 

. We present characterization theorems for orthogonal polynomials obtained from a given 
system of orthogonal polynomials by a cubic polynomial transformation in the variable. 
Since such -polynomials are the denominators of the approximants for the expansion in 
continued fractions of the .. -transform of the moment sequences associated with the linear 
functionals with respect to which BUch polynomials are orthogonal, we state the explicit 
relation for the corresponding formal Stieltjes series. As an application, we study the 
eigenvalues of a tridiagonal 3-Toeplitz matrix. Finally, we deduce the second order linear 
differential equation satisfied by the new family of orthogonal polynomials, when the initial 
family satisfies such a kind of differential equation. 
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1 Introduction and preliminaries 

In this paper we analyze some problems related to cubic transformations in the variable of a 
sequence of monic polynomials orthogonal with respect to some moment linear functional. The 
first problem is the following: 

Plo Let {Pn}n2:o be a fiud .equence of monic of'thogonol pol1l1l0mials, '11'3 a fized cubic monic 
poll/flOmial ond {Q .. }n2:o a &imple let (i.e., deg Qn = n f~r all n = 0,1,2, ••• ) of monic 
polunomials &"ch that 

(1) 

for all n = 0,1,2,.... To find necessal'lJ and sufficient conditiom in order to {Qn}n>O be 
a sequence of orthogonal pol~ials. In such conditiom, what is the relation between the 
moment linear functionals associated with the sequencel {P .. }n2:0 and {Qn}n2:of 

This problem has been partially solved in [2] and [15] . In fact, in {21, P .BARRUCAND and 
D.DICKINSON have considered PI under the assumption that {Pn}n2:o Is asymmetric orthogo­
naI polynomial system and lI'3 a general odd polynomial of degree 3, and requiring that {Q,,},,<:,o 
be also a symmetric orthogonal polynomial system; on the other hand, in (151. F.MARCELLAN 
and G.SANSIGRE studied the case lI'3(Z) == z3 without any restriction on {Pn}n>O or {Qn},,>O. 
Nevertheless, in th,ese contributions, only sufficient conditions were found and the relations 
between the corresponding functionals were not studied. 
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From another point of view, this problem was studied by J.GERoNIMO and W.VAN Ass­
CHE [9] (fo~ a general polynomial of degree k, instead of k = 3) and also by J.CHARRIS, 
M.E.H.IsMAIL and S.MONSALVE [4] (in the framework of families of orthogonal polynomials 
defined by general blocks of recurrence relations). 

In connection with problem PI two other similar problems arise in a natural way, eventually 
with more useful applications. Thus, a second problem to be considered is the following: 

P2. The same asS1lmptions and questions as in PI, but with (1) replaced by 

Q3"+1(X) = (x - a)P,,(1T3(X» 

for all n = 0, 1, 2, ..• , where a is a fixed complex number. 

The third problem can be stated as follows: 

P3. The same as$1lmptions and questions as in PI, but with (1) replaced by 

for all n = 0,1,2, ... , where a and b are fixed complex numbers. 

In the remainder of the paper we will make use of some well known concepts and results in 
the theory of orthogonal polynomials. We mention the most important for our purposes. First, 
we recall the definition of an orthogonal polynomial system (OPS). H u is a linear functional 
on P (the linear space of all polynomials with complex coefficients) and {Pn}n;::O a sequence 
of polynomials, {P,,},,;::o is sald to be orthogonal with respect to u If {Pn}n~O is a simple set 
and 

(u,PnPm) = k"onm 

for all n = 0, 1, 2, ... , where {kn}"~o is a sequence of non zero complex numbers «.,.) means the 
duality bracket). The functional u is said to be regular or quasi-definite when such a sequence 
of orthogonal polynomials exists (cf. (5]). In this paper we will consider monic orthogonal 
polynomial systems (MOPS). All MOPS are characterized by a three-term recurrence relation 

:&P,,(z) = Pn+! (z) + 13nP,,(x) + 'Y"P,,-l (x), n ~ 1, 
Po(x) =1, P1(x)=x-/'lo 

where {13"}n~o and hn}n~l are sequences of complex Iiumbers, with 'Y" i: ° for all n ~ 1. H 
c is a complex number such that P,,(c) i: 0 for all n ~ 0, then the sequence of monic kernel 
~ynomia1s of K-parameter cassociated with {Pn}n~O, which will be denoted by {P';(C; .)}n~O, 
18 

P;(c;z):= x ~ c [Pn+!(x) - Pp:(~» Pn(x)] , n ~ 0. (3) 

(cf. (5, p.35j). If {Pn}n;::o is an MOPS associated with the moment linear functional u, then 
{P:(c; .)}n;z:o is an MOPS associated with 

u'(c) := (x - c)u. 

Furthermore, the coefficients p:. El .B~{c) and 'Y~ El 'Y~(c) for the three-term recurrence relation 
corresponding to {P':(c; .)}n;z:o are given explicitly by 

13: = .Bn+! + Pn+2(c) _ Pn+l(c) • _ Pn+ll(c)Pn(c) 
Pn+l(C) Pn(e) , 7n+! - 'Yn+! P~+l(C) , n ~ O. (4) 
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Given all, MOPS {Pn}n<:o which satisfies (2), the polynomials {PA
1
)}n<:o defined by the shifted 

recurrence relation 

xpA1)(x) := P!~1 (x) + .8n+1p~I)(x) + 'Yn+lP!~1 (x) , n ~ 1 
pJl)(X) := 1 , pfl)(x) = X -.81 (5) 

are called the associated polynomials of the first kind of {P,,}n<:O' These polynomials are also 
given by 

p(I)(X) = ..!..{u , Pn+1(x) - Pn+l(V» n > 0 
n Un V x-v ,-

where Un := (u,l). For a fixed complex number A , the sequence {P;},,<:o defined by the same 
recurrence relation (2) as {Pn}n<:O, but with a different initial condition, namely 

3:P;(x) := P~1 (x) + .8"P;(3:) + 'YnP;-1 (3:), n ~ 1 
P~(x)=l, Pf{x)=X-fio-A, (6) 

is the co-recursive sequence of {Pn}n<:O for the modification A. These polynomials were intro­
duced and studied by T.S.CHIHARA in (6]. Notice that 

(7) 

The following notation will be used: 

DA,!'(x t/) '-1 P;{x) P;+l(x) I 
n , .- P/:(t/) P::+l (V) (8) 

for 3:,Y E C and n ~ O. Notice that if P,,(e) of 0 then D~,O(e,x) = (x - e)Pn (c)P'; (c; x). 
Moreover, using the well known relation 

PA1)(x)Pn(x) - Pn+1(X)P!~1 (x) = IT '1; , n ~ 0, 
1=1 

(with the convention that the product over an empty set equals unity) we can show that 
D~'~(x,x) is also independent of the choice of x: 

" D~'!'(3:,x) = -p. IT '1;, n ~ O. (9) 
i=l 

The co-recursive polynomials are inlportant in order to establish the regularity conditions for 
a linear functional associated with an inverse polynomial modification of a regular functional. 
In fact, if u is regular, for fixed A,e E C and with u.l.,e defined by the distributional equation 
(z - c)uA,e = -AU (recall that given a linear functional v and a polynomial ,p, then ,pv is the 
linear functional defined by (rpv,J) := (v,4>!) for every polynomial f), i.e., 

(10) 

where 5e means the Dirac functional at the point e, (5.,!) := fee) (j E P), and (x - c)-Iu is 
the linear functional defined by 

«x - c)-lu.f) := (u, f(x) - f(c» , f E JP 
x-c ' 
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then uX'c is regular if and only if ,\ ". 0 and P;(c) ".0 for all n := 0, 1,2, ... (MARONI [16]). In 
such co'nditions the corresponding MOPS, {P;,C} .. ;::o , is given by 

P;(c) 
P;,C(x):= P,,(x) - pA (jP"-l(X) , n ~ O. (11) 

n.-I C 

The coeffi~ients {,6~,c, 1'~:;:I}";::O for the three-term recurrence relation corresponding to {P;,C},,;::o 
are given explicitly by 

"c i.(. ~ aA c a P;+l (c) P;(c) 
Po' == Po + PI CJ, 1',,':= 1''' + P"() - pA ()' 

n C ft.-I C 
(12) 

(13) 

for all n := 1,2,.... Notice also that the moments of u"'c can be obtained from the moments 
tin ::= (u, x") of u according to the formula 

,,-1 
(u",C,x") =Uoc" -,\ l::c"-lU,,_I_1 , n ~ 0 

1=0 

(with the convention that summation over an empty set of indices is zero). 
Finally, we recall the Stieltjes formal series, Suez), corresponding to a given moment linear 

functional u: 
Suez) := - ~ U+"l;: (u:, _l_), Un := {u,x"} 

L,Z'n X"-Z 
n~O 

where the subscript x in u: means that u acts on functions of the variable:c. In fact, (formally) 
we have 

The structure of the paper is the following. In Section 2 we give the characterizations for 
the solutions of problems PI, P2 and P3 and in Section 3 we prove the statements on Section 
2. In such a way we obtain the relation between the coefficients of the expansion in continued 
fractions of two Stieltjes functions related by 

S-( ) = A(%)S(1ra(%» + B{%) 
% 0(%) 

where A, B and G are polynomials of degrees less than or equal to 2. As an application of 
our results, in Section 4 we solve the eigenvalue problem for a tridiagonal 3-Toeplltz matrix. 
In Section 5 we analyze the semiclassica1 case and we give the structure relation for the new 
sequence {Q .. } .. >o in problem P3, from which the second order linear differential equation can 
be deduced. Fin8uy, we make the connection of this kind of problems with the sieved orthogonal 
polynomials and we recover the structure relation and the second order differential equation for 
a specilll case of the sieved ultraspherica1 polynomials of the second kind. 

We notice that this paper deals with algebraic (or formal) orthogonal polynomials, so that 
the important tool is the three-term recurrence relation that each sequence of orthogonal poly­
nomials satisfies. In It. future paper [141 we will analyze the positive-defulite case and we will 
give the corresponding measures of orthogonality. 
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2 'l;'he Main Results 

The solution of problem PI can be characterized as follows. 

Theorem 2.1 Let {P,,},,~o be a sI/stem of monic orthogonal polynomial6 and {Qn}n~o a simple 
set of monic poll/nomial6 6Uch that 

Q1(0) = -p, Q2(P) = -,"(, Q3n(X) = Pn('II"S(x)), n = 0,1,2, ... , (14) 

where "11"3 i6 a (monic) polynomial of degree 3 and p, '"( E C. Consider the polynomial 

( ) 
1I"3(X) - "ll"3(P) 

px :='"(+ x-P . 

Let 01 and 02 be the zeros of p and put 

Cl := 1I"a(a1) , C2:= "11"3(02)' 

Then, for a fixed pair (P,,"(), {Q"}n~o i6 an MOPS if and onll/ if 

'Y7~0, P,,(C1) iO, Pn (C2) iO, P':(C1iC2) iO, 

1 [ P':(C1iC2) ( 1 Pn+1(C2») ] 
Q3"+1(X) = p(x) Pn+1("II"3(X» + '"( Pn(C2) x - 02 - :y P:(C1iC2) P,,(1fa(x» , 

(15) 

(16) 

(17) 

1 [( 1 P"+1(C2») 1 P,,+1(c1)Pn+1(C2) ] 
Q3n+2(X) = p(x) X - 01 +:y P:(C1i C2) Pn+1(1I"3(X)} - '"( P,,(C1)P:(C1i C2) P,,(1I"s(x» 

(18) 
hold for all n = 0,1,2, .. , • 

In such conditions, if {Pn}n~o sati6fies the three-term recurrence relation (2), then the 
coefficients Pn and 7n for the corresponding three-term recurrence relation sati6fied bl/ {Qnln>O 
~~~ -

- 1 Pn+1{C2) - 1 Pn+1(C2) 
!Jan = p, P3n+1 = 01 - ;;;P'(c 'c}' P3n+2 = 02 + --pot . )' (19) 

1nl, 2 'Y n Cl,C:l 

_ Pn - 1(C1)P:_1(CliC2) 
~=4~ ~~~~ , ~ 

_ P':(C1iC2) _ 1 Pn+1{C1)Pn +1(C2) 
'"(an+1 = '"( Pn (C2) , 'Y3 .. +2 = '"(2 P:(C1i C2)P:(C2i Cl) • (21) 

Finalll/, denote bl/ u the moment linear functional such that {Pn}n~o is the corresponding 
MOPS. Let {An}n~o be the basi6 of JP defined b" 

Aan(x) := 1I"3'(x), ASn+l(x):= (x - P)"II"3' (x) , A3n+2(x):= (x2 - px - '"()1I"3'(x) (22) 

for n = 0,1,2, .... Then, under the above conditions, {Qn} .. ~o i6 an MOPS associated with the 
moment linear functional v defined on the basi6 {A,,},,~o by 

(v,Asn(x)} := (u,x") , (V,A3n+1(X»:= 0, (v, ASn+2(X» := 0 (23) 

for 01/ n = 0,1,2, .••. 

5

Rectángulo



Corolla.ry 2.1 Under the hypotheses of Theorem 2.1, 

Q~~+2(:t)= p(:t)p,,(ll(1I"3(:t» (24) 

holds for all n = 0,1,2, .•. , FUrthermore, the formal Stielties ,erie, corresponding to the mo­
ment linear junctionals u and v as in Theorem 2.1 are related by 

SV(Z) = p(Z)SU(1I"3(Z», (25) 

The solution for problem P2 is 

Theorem 2.2 Let {P,,},,;::o be an MOPS and {Q .. },,;::o a simple set of manic polynomials such 
that 

(26) 

for all n = 0,1,2, ... , where a, (J and 7 are fi$ed complex numbers and 71"3 a monic polynomial 
of degree 3. Put 

b:= -[a+,8 +1I'~(0)/21, c:= 11'3(6), d:= 1I'8(a). (27) 

T/,en: 
(i) if b:/: a, or b = a and ~(a) = 0, for fi$ed (,8,7), {Q .. },,;::o is an MOPS. if and only if 

,),:/:0, Pn(c):foO, P,{'(d):/:O, ~"(c,d):foO, (28) 

1 [ tP,."'(c,d) ( Pn+1(c)P,{'(d)) ] 
Q3n+2(:';) = :,;-6 P,,+1 (11"3 (:,;»+ P,,(c)P:(d) :,;-b- Ii'?;"(c,d) P,,(7I"a(:,;», 

1 [( p"+1(e)PK(d)) P"+1 (c)P!'+1 (d) »] 
Q3nH(:';)=:,;_b x-a+ Ii'?;"(e,d) P"+1(7I"3(X»- ~"(c,d) P,,(7I"3(X 

for all n = 0,1,2, ... , where 

._ (b _) li!.'''( d)'- { D~"(c,d)/(b - a) if 6:/: a 
J.I.-,), a, "c, .- D~7(e,c) if b=aandG(a)=O. 

In IUch conditions, if we assume that {p .. } .. >o satisfies the three-term recurrence relation 
(2), then the coefficients lift and 7" for the corresp-;'nding three-term recurrence relation satisfied 
bV {Q .. } .. >o are ginen bl( '" .-

- Po=a, iian+1={J, n~O 
R. =a_ P,,+1(c)PK(d) n. _b+ P,,+1(e)PK(d) 
"",,+2 ~oI'(c,d)' "'nH - ~'''(c.d)' n ~ 0 

71=7. 
- _ ~"(c.d) _ tP,.-"(c,d) 
')'InH - -7n+1 P"+1 (c).r:+1 (d)' ')'In+2 = P,,(c)P,{'{d) ' n ~ 0 

- _ P,,(c)PK(d)P"+1(C).r:+l(d) 
')'InH-.- (~"(e,d)r • n?!O. 

(ii) lfb = a and ~(a):fo 0, for fi$ed (,8,7), {Q .. } .. ;::o is a MOPS if and onlv if 

7:fo 0, 5 :j: 0, P,,(e) :j: O. R!:{e):j: 0 , 
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Q3n+2(X) = x ~ a ~n+l(.r3(X» - 5;:~:~ (x - a + ~ p~(~~) Pn(lr3(x») J ' 
1 [( 1 Pn+l(C») 1 P~+l(C) ] 

Q3n+3(X) = ;::a X - a -"6 R~(c) P,,+l(lrs(x)) + 6 P,,(c)R:;(c) P,,(1r3 (x» 

for all n = 0,1,2, ... , where 

R,,(x):=P;{c;x), 5:=7+.r~(a), V;=7Pt(c)/5. 

Under such conditions, 

Furthermore, let u be the moment linear functional such that {Pn}"~O is the corresponding 
MOPS, and consider the basis {B,,},,~o of JP such that 

Bo(x) := 1, BS"+l(x):= (x - a)1r3 (x) , 
BSn+2(x) := (:c - a)211";{:C) , Ba,,+3{X):= (:c - a)2(:c - P).rN'(:c) 

forn = 0,1,2, .... Then, in anll of the situations (i) or (li), {Q,,},,~o is an MOPS associated 
to the moment linear functional v defined bll 

forn = 0, 1,2, .... 

(v,Bo(:c» := tlQ, (v, BSn+l(x» := 0, 
(V,B3n+2(X)} := 7(U, x"} , (v,BSn+3(:C»:= ° (29) 

Remark 2.1 In the case a = b and 1r~(a) = 0, we hatJePt:(d) = P,,(c) and since, according to 
(9), D~"'(c, c) = -1 n~=l 1; , the conditions (28) reduce to 

Corollary 2.2 Under the hlJ11Othe$e8 of Theorem 2.2, 

Q~~(x) = Pn(1rS{x» + 7{X - b)P~~1(1r3{:C)) 

holds for all n = 0, 1,2, .... Moreover, 

Sv(z) = uo -1(z - b)Su(rr3(z» 
z-a 

Finally, we give the solution for problem P3: 

OA 

(30) 

(31) 
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Theorem 2.3 Let {P,,},,?;obe an MOPS and {Q,,},,?;Oa simple set of monic polynomials such 
that . 

QS"+2(x) = (x - a)(x - b)P" (lI'S (x» , n = 0,1,2, ... (32) 

where a and b are fo;ed complex numbers and 1<3 is a polynomial of degree 3. Without loss of 
generality, write 

and denote 
C:= 1I'3(a). d := 1I'3(b) , A :=-1'(a - a) , J.I ;= -,),(b - a) . 

Then, 
(i) If b I a, or b = a and 'If Ha) = 0, for fixed (a,1'), {Q".},,?;O is an MOPS if and only if 

AJ.lIO, p=-[a+b+-n:(0)/2]. P;(c) 10, P!:(d.) 10, d~·I'(c,d.) 10, (33) 

( () d~·I'(c,d.) ( P;+l(C)P!:(d») ( (» 
Qsn+3(X) = P"+1 'Ifs x) + P~(c)P!:(d.) x - a - ~.I'(c,d.) P" 11'3 X , 

Q ( ) = (X- b+ P~l(C)P!:(d.)) P. (11' (x» - P;+1(C)P:+l(d.) p. (11' (x» 
3"+4 x d~'''(c,d.) ,,+1 3 ~'''(c,d.) n 3 

for n = 0, 1,2, ... , where 

d"'''(c d.) .- { D~·"(c,d.)/(a - b) if b f. a 
" , .- D~''1(c, c) if b = a and ~(a) = 0. 

Under such conditions, if {P,,} .. >o satisfies the three-term recurrence relation (2), then the 
coefficients p" and7n for the corresponding three-term recurrence relation 8at~fied by {Q,,}n?;O 
are given by 

::rl == -AJ.lh2 
, ::r2 = ')' 

_ _ ·~~l(C,d.) _ _ .. d~~l(C,d.) 
1'3" - P~-:l(C)P!'-l(d.)' 1'3,,+2 - -')'n p;.(c)P!:(d.) ' n ~ 1 

- P;-l (c)P!'_l (d.)P,Nc)P!:(d.) 
1'3n+1 == - ( )2 ,n ~ 1. 

~~l(C,d.) 

(il) If b = a and lI'Ha) f. 0, for fixed (a,'Y), {Qn}n?;O ~ an MOPS if and only if 

AIO, 510, P=-[2a+1f~(O)/2J, P;(c)f.O, R;;(c) 10 , 

Q3n+3(X) = Pn+l(1I'3(X» -5~~:~ (x -a+ ~ p~(~~) P"(1I'3(X») , 

Q () (lP;+1(C») 1 (p.A (C»2 
3"+4:1: == x-a-"6 R:(c) Pn+1(1I'3(X))+"6p;C;;R:(c/n(7rs(:I:)) 
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for n =. 0, 1, 2, ... , where 

R,.(x) := (P;j*(CjX) , 5:= 'Y + 1r~(a), v:= 'YPl'(cl/5. 

Under stlch conditions, 

1io = a, li, == 2a - a, Psn+2 = f3 , n 2': 0 

- 1 P;+l (c) - 1 P;+1 (c) 
Pan+3 == a + '6 R~(c) , PanH == a - '6 ~(c) , n ;::: 0 

2/ 2 _ _ <R~(c) 
:YI == ->. 'Y, 'Y' = 'Y, 'Y3n+3 = -u P~(c)' n 2': 0 

_ (1 P;+1(c»)
2 

- _ 5 P;(c)R~(c) 
'Y3nH = - '6 RVn(c) ,'Y3n+5 - 'Yn+1 (~ )2' n;::: O. 

Pn+1(c) 

FUrthermore, let u be the moment linear functional Stlch that {Pn}n:!O ;., the corresponding 
MOPS and consider the has;" {On}n;::o of JP Stlch that 

Oo(x) := 1, 03n+1(X) := (x - b)1I"~(x), 
C3n+.(x) :== (x - a)(x - b)1r~(x), C3n+3(X):= (x - a)(x - bj2..-~(x) 

for n == 0, 1,2, .... Then, in anll of the situations (i) or (ti), {Qn}n2:o is an MOPS with respect 
to the moment linear functional v defined by 

for n == 0,1,2, .... 

(v,Oo(x» := uo, (v,Can+1(x»:= ~(u.\.e,xn), 
(V,C3n+'(X» :== 0, (V,C3n+3(X»:= 0 

Remark 2.2 In the case a = b and 1I"~(a) == 0, conditions (33) reduce to 

Corollary 2.3 Under the hypothese$ of Theorem 2.3, 

Q~~+1 (x) == (x - a - b + al Pn(1r3 (x» - AP P~~l ("-3 (X» 
'Y 

holib for all n = 0,1,2, ... , and 

s (z) = _ tlo(z - a - b + a) + (>'ph)SU(1r3(Z» 
v (z - a)(z - b) 

(34) 

(35) 

(36) 

As a consequence of the previous results, we can state that if {Pn}n;::o is a semiclassical 
MOPS then {Qn}n2:0 is a semiclassical MOPS too (for the definition of "semiclassical MOPS" 
see MARoNI (171, e.g.). In fact, 

Corollary 2.4 If Su sat;"fies 

.p(z)sti.(z) = C(z)Su(z) + D(z) 

Oh 
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where tP., C and D are polunomials, then Sv satisfies 

~(z)S~(z) = G(%)Sv(z) + D(z) 

where 

{ 

~(z) = p(Z).p('J!"3(Z» 
(i) ~(z) = p'(Z)qI(W3(Z» + p(z)1I"~(Z)C('J!"3(Z» 

D(z) = p2(z)w~(z)D(1I"3(Z» 
for problem P 1; 

(ii) C(z) = (b - a).p(1I"3(Z» + (z - a)(z - b)1I"~(z)C('J!"3(z» 
{ 

~(z) = (z - a)(z - b)q\(2f3(Z» 

D(z) = 1io.p(w,(z» + (z - b)wHz)[tloC(2f3(z» + 'Y(z - b) D (11"3 (z»] 

for problem PE; finallll, for problem PS, 

{ 

~(z) = (z - a)(z - b).p(1I"3(Z» 
(iii) C(z) = -(2% - a - b)q\(2fs(z» + (z - a)(z - b)1I"Hz)C('lr3(Z» 

D(z) = -tlo + ~(z)[tlo(z - a - b + O)C(2f3(Z» - (>,ph)D(1I"3(Z»]' 

Moreover, if qI, C and D have no common zeros, so that 8:= max{degC -1,degD} is the 
class ofu, then the class ofv is at most 6:= max{degC -1,degD} ::; 3s+ 6 (for anll of the 
above three problems). 

3 Proofs 

We will only prove Theorems 2.1 and 2.3 and Corollaries 2.1 and 2.3. The proof of Theorem 
2.2 follows nsing the same ideas as in the proofs of Theorems 2.1 and 2.3. In the same way, we 
can prove Corollary 2.2 by nsing the same technique as in Corollaries 2.1 and 2.3. Corollary 
2.4 is straightforward consequence of Corollaries 2.1, 2.2 and 2.3. 

3.1 Proof of Theorem 2.1 

Assume that {Q .. } .. ~o is an MOPS. Thns, it satisfies a three-term reeurrence relation 

zO,.(z) = O,,+1(z) + P .. Qn(z) + t"Q"-l(Z), n ~ 1 
Qo(z) = 1, Q1(Z) = Z - Po 

with 1,. .-fi 0 for n ~ 1. It is clear that Po = p, and then also "h = 'Y' If 

1I"3(Z) = x 3 + p:t:2 + qx + r 

notice that, with this notation, the polynomial p can be written 

pCZ) = (z + P)(z + p) + p2 +'Y + q. 

(37) 

In the three-term recurrence relation (2) for {P"}n~O replace Z by Z3 + px2 + q:t + r, so that 

(x
3 + p:t:2 + qz + r)Oan(z) = Q3"+3(:I:) + PnQan(z) + 'YnQan-3(Z) , n ~ 1. (38) 
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Now, use successively (37) to expand :cQan(:C), :c2Qan(:C) and x3Qan(x) as 

X03"(:C) '" 03n+l(X) + PanQ3,,(X) + i3nOan-l(X) , 

and 

X2Q3,,(X) = 03n+2(X) + <Pan+1 + ,83n)Q3n+1(X)+ (ian+1 + i35n +i3n)Qan(X)+ 
+'i3,.(i33" + Pan-l)Qa,.-I(:C} +ian'i3n-1Qan-2(X) 

XSQan(X} = Q3,,+3(X) + (i33n+2 + thn+1 + P3n)Q3n+2(X)+ 
+[ 'Y3n+2 + (Ps,,+1 + thn)Pan+1 + 'Yan+1 + P1n + 'Yan 1 Qan+1 (x)+ 
+[ i3n+1(Pan+1_ + P3n) + P3!'('Y3n+.! + P1!.l + 'Yan) +'Yan(Pan + Pan-I) I Q3n(X)+ 
+ian['Y3n+1 + Pln + 'YSn + Pan-l (P3n + Pan-1} +'Y3n-t] Q3n-l(X)+ 
+'Y3n-1'Yan(i33n + i33n-l + Pan-2)Q3n-2(X)+ 
+'Y3n-2'Y3n-1'YSnQan-3(X) . 

Substitution of these expressions in the left-hand side of (38) yields a linear combination of a 
finite number of terms of the sequence {Qn}n?;O which vanish identic81ly. Therefore, since this 
sequence is a basis of JP, we find the follOwing relations: 

Pan+2 + Pan+1 + Pan + P = 0 (39) 

ian+2 + 'Y3n+! + ian + i3in+1 + Pani33n+1 + Pin +p(i33n + i33n+1) + q = 0 (40) 

'Y3n+1 (P3n+1 + Pan) + Pan('ian+1 + .8~" + 'Ya,,) + ian(Pan + thn-1)+ 
+P('Ysn+1 +1'31" +'Ysn) +qPan +r = Pn (41) 

ian+1 + P~n +'Yan + i33n-1<Pan + .83n-1) +ian-1 + P<Pa" + Pan-I) + q = 0 (42) 

Pan + Pan-l + I'3sn-2 + P = 0 (43) 

'Ysn'Ys,,-1'Yan-2 = 7n. (44) 

_ Combining equation (43) (after the change of indices n --+ n + 1) with (39) leads to 1'3sn+3 = 
Pa" for n ~ 0, so that 

I'3sn = .80 = P , n;,::O 

Consequently, equation (40) can be rewritten as 

'Y3n+2 + 'Ys,,+1 + 'Ysn + p2 + (i33n+1 + P)(P3n+1 + p) + q = 0 , 

or, according to (39) and (45), 

'Ysn+2 + 'Ysn+1 + 'Y3n + fP + (Pan+2 + P)(Psn+2 + p) + q = 0 

(45) 

(46) 

Notice that (46) holds for n = 0,1,2, ..• , with the convention 'iD = O. Now, from (42), we get 

'Ya,,+l + i3" + 'Ysn-1 + p2 + (Pan-1 + m (Pan-1 + p) + q = 0 . (47) 

If we change the indices n --+ n + 1 in (47) and then compare the resulting equation with (46), 
it follows that 'YsnH + 'Ysn+3 = iSn+! + 'Yan. Hence 

'Ysn+l +'Ysn ='Yl = 'Y , n ~ 0 (48) 

Now, from (42), (45) and (48) we have 

7 + p2 + Pan-1{{J + thn-1) +'Ysn-I + p({J + Pan-I) + q = 0 , 

Oil 

11

Rectángulo



so that,. after the change of indices n -+ n + I, 

'Y3n+2 -+= (P3n+2 + f3)(Pan+2 + p) = -(rP + 'Y + q) , n ~ 0 

Next, we will see how to define QSnH and Q3n+2' We have 

(x - .83nH)Q3nH (x) = Q3n+2(X) + 13nHQ3n(X) 

and 

Q ( ) _ Q3n+3(X) +'Y3n+,Q3nH(X) 
3n+2 X - - . 

X - fJ3n+2 

Substitution of (51) in (50) yields 

Q () _ PnH('lr3(X)) + (x - .83n+2)'Y3n+1P,,('lr3(X» 
3nH X - (x _ .83n+1)($ - Pan+2) - 'Y3nH . 

But, using (39) and (49), we have 

(x - PanH) (x - .83n+2) - 'Y3n+2 = 
= x' - <Pan+! + Pan+2)X + ,8an+lPanH - 'Y3n+2 
= x2 + (P+ fJ)x + pfJ + (J2 +r+q 
=p(x) 

and, therefore, (52) reduces to 

1 -
QSn+l(x) = p(z) {PnH('lr3(X» + (x - fJ3n+2)'Y3n+lPn('lr3(Z»} 

Moreover, substitution of (54) in (51) leads to 

(49) 

(50) 

(51) . 

(52) 

(53) 

(54) 

Q3n+2(X) = p~} {(x - Pan+l)P,,+l('lr3(X» + 'Yan+113n+2P,,('lr3(X»} (55) 

Now, we will prove that conditions (16) must hold. We need to distinguish two cases: 
_ CASE 1: al -I a2. According to (54), for each n the polynomial Pn+l (11"3($)) + (x -
.B3n+2}'Y3nHPn(1r3(X» vanishes at the zeros of p, i.e., 

Pn+!(C;) + (a; - .8an+2)'Y3n+lP,,(C;) = 0 , i == 1,2. (56) 

From (53) it follows that 
(57) 

and then Pan+2 is not a zero of p. Hence, we have al - Pan+2 1= 0 for all n and i = 1,2. Since 
P" and Pn+l are coprime, we deduce from (56) that 

(58) 

for all n = 0, 1,2, .... Now, write (56) for i = 1,2: 

(59) 

(60) 
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Thus 

(61) 

Therefore, since al ~ a2, it follows that Pn-tl(CI)Pn(C2) ~ Pn+l(C2)Pn(CI), which is equivalent 
to 

(62) 

Notice that the conditions al ~ a2 and r ~ 0 yield Cl ~ 0;1. In order to verify this assertion, 
use the relation 2I"s(x) '" (x - tJ)(P(x) - r1 + 21"3(13), put x = al and x := a2 and then subtract 
the above relations in order to find 

(63) 

Hence, conditions (16) follow from (58) and (62). 
Now, we will prove relations (19)-(21). In fact, formula (19) for Pan+2 is an easy consequence 

of (61) and (63). The expression for Pan+1 follows from Pan+l + .83n+2 := al + ~ (this last 
relation can be easily obtained taking derivatives in (53». We get the first formula of (21) 
subtracting (59) from (60). Now, from (59) and (60) we deduce 

(
Pa )-2 . _ Pn+1(Cl)Pn+1(C2) 

P n+2 rSn+1 - Pn(CI)Pn(C2) • 

So, taking into account (57) and the first formula of (21), the second formula of (21) is obtained. 
Finally, (20) follows from (21) and (44). 

CASE 2: al = a2' We will see that this is a limit situation of case 1 when a2 -7 al. We 
write al = a2 = a and Cl = C2 = Co From (54) and .(55) we can see that a is a double zero 
of both polynomials Pn+1(ws(x» + (x - Pan+2)'Y3n+IPn(W3(X» and (x - Pan+l)Pn+1 (W3(X» + 
'YanHYan+2Pn(W3(X)). Then the relations 

Pn+1 (c) + (a - .83n+2)'Yan+1Pn(c) = 0 

,.S<a)P~+1(c) + tan+l(Pn(C) + (a - .83n+2)'lrHa)~(c)1 = 0 

(a - .83n+1)Pn+1 (c) + tSn+113n+2P,,(C) := 0 

Pn+l(c) + 2I"3(a)[(a - .B3n+I)P~+l(C) +7Sn+l7an+2P"(C)J:= 0 

holdforn=O,1,2,.... _ _ 

(64) 

(65) 

(66) 

(67) 

As in case 1, it follows that p(Pan+2) = -73,,+2, so that P3n+2 ~ a and then from (64) 
P,,(c) ~ 0 for .n = 0, i, 2, ..• follows. Since w3(a) = -r (take derivatives in the expression 
'lra(x) = (x - p)(P(x) - 'YJ + 'lr3(i3), then put x = a and use pea) = [I(a) := 0), from (64) and 
(65), and taking into account that 

PO( ) pI () Pn+1(c)p' () 
n cic = n+! C - Pn(c) n C , 

we find "i'an+lP"(c) = 'YP':(CiC). This proves P':(~iC) ~ 0 for n = 0.1.2 •••• and also the first 
formula of (21) when al = a2. The expression for)~3n+2 follows fro.!U (64) and the first formula 
of (21) when al = a2. Now, by 13n+2 = _-p(fhn+2) = -(a - Pa"+2~2, we fi!!d the second 
formula of (21). Finally, the expression for {J3n+! can be deduced from fJ3n+l + {J3n+2 = 2a, as 
well as the expression for t3n from (44). 

In any case. the representations (17) and (18), can be obtained by substitution of formulas 
(19) and (21) in (54) and (55). 

1 ()(} 
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To ·complete the proof, it remains to show that {Qn}n!!o is an MOPS with respect to the 
linear functional v defined by (23). First, notice that relations (23) yield 

(v,1(1I"a(:c») (u,1{:c» 
(v,(:c - ,8)1(1I"3(:C») == 0 , 

(v, (:c' -,8:c - 'Y)1{1I"3(:C))) == 0 

(68) 
(69) 
(70) 

for every polynomial 1 . To prove that {Qn}n!!O Is an MOPS with respect to v, we only need 
to show that 

(v,I};60 , (v,Qn{x)}==O,n;::1 

{because we already know that {Qn} .. !!O is an MOPS). From (23), for n == 0 we get 

(v,l) == {v, An} == tlo ;6 0, (v, Ql{:C» == (v,:c - 13) == (v, Al (x)} == O. 

Using (68), 

(v,Qan+l(:C» == -bn(V, Qan-l(X» , n;:: 1. 

Now, since Q.(:c) == (:c - .81)(:C - (J) - '1 == (:c2 
- f3:c - '1) -.81 (x - ,8), from (23) we get 

(v, Q.(x» == {v,x2 
- {3x - '1) - P,(V,:c - {3) == 0 . 

(71) 

(72) 

l'Urthermore, from the three-term recurrence relation for {Q .. }n!!O and applYing (72) and (71), 

(v,:cQan+l) - .Ban+l{v,Qan+l} -13n+t<V,Qsn) 
(v,x[{x - f3)Qan -13nQan->1) +Pan+lbn(V,Qan-l) 
(v,:c(x - ,8)03n) - tan(v,Qsn + .8an-lQan-l + 13n-1Qan-')+ 
+,83n+lbn{V,Q3n-l) 
(v,{x' -,8x -'Y)OSn) + h - bn){V,Qan) -'Yan.8an-l){V, Q3n-l}­
-"Y3n"Y3n-l (v, 03n-') 
-13n.8an-l{V,QSn-l) -1an13n-l{V,Oan-'), n;:: 1-

Therefore, for n == 1 it follows that {v,Os} == -b.B:.{V,Q.) -1312{V,Ql) == 0; and, for n;:: 2, 
since, by (72), (v, Qa,,-2) '" -1an-S{V, Qan-t), we deduce 

(V,03n+2) == -1Sn.Ban-l {v, Oan-l} + 1an13n-l 13n-3{V, Q3n-() • 

Hence, since (v,O,) == (v, Os) == 0, it follows by iteration that 

(v,Qan+') == 0 , n;:: O. 

This relation, together with (72) leads to 

(v,Qan+l) == 0 , n;:: o. 

This completes the proof of the necessity of the conditions. Now, it can be easily verified that the 
conditions are also sufficient, since them imply that {Qn} .. >o satisfies the three-term recurrence 
relation (37), with the sequences {P..}n~o and {tn}n~1 dclIned by formulas (19)-(21). 
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3.2 . Proof of Corollary 2.1 

Put 

Pn(X) =: i:aln)xl , (73) 
i=O 

so that 
n-l i 

Pn(X)- Pn(lI) = (x -1I):L :Lal~lxi-iyi (74) 
;=0 j=o 

and then also 
n-l i 

Pn("a(X» - Pn("a(lI» = ["a (x) -"a(Y)] I: :Lal~l7r~-j(x)"~(lI) (75) 
1=01=0 

One can easily check that 

'lT3(X) - 11"3(11) = (x -lI)[P(X) + (x - al - a~)(II- (J) + (y2 - (J1I-1')] (76) 

Therefore, using (75) and (76), for n ~ 1 it follows that 

2.(v~, QSn(x) - Qan(Y» = 2.(v , Pn("3(X» - Pn (7ra(Y») 
"0 X-V "0 ¥ . X-lI 
1 
-(vv' [P(x) + (x - al - (2)(II- {J) + (y2 - {JII -1')] x 
uo 

n-l i 
~ ~ (n) I-i( )-1( )} 

XL..,L.., ai+l"S x"311 
1=0 j=O 

n-l i 

2. 2::E al~I1r;-:j (x) {p(x)(Vv,A3j(Y)}+ 
UO .=0 i=O 

+(x - al - (2)(vv,Aaj+1(II» + (vll ,A3j+2(1I»} 
n-l i 

2:.. :E :Eal~I1r;-i(x)p(x)(uv,yi) 
UO 1=0 i=O 

(x)2:..(u , Pn (1ra(z» - Pn(II» 
p UO v 1!:ll(X) -!I 

by (74) 

P(X)P!~1(7r3(X» , 

which proves (24). Now, consider the representation 

1 
Sy(z) = (v~,;;-:z) , 

and taking into account (from (76» 

1 p(z) (z - al - (2)(x - {J) x2 - fJx-1 
-x---z = Ira (x) -1r3(Z) + 1I"3(X) - 1I"3(Z) + 1r3(X) -"'3(Z) , 

we obtain 

l()'J 
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Since (formally) 1/["'3("') - "'3 (Z)] = - L:n;::o "'3"(,,,)/ ... :+1 (Z), according to the relations (23) 
we have 

( '" - f3 ) = _ '" (v. ,(x - (3)"'a
n

(x» = 0 
v., () ( ) L.J "+1( ) , 1l"3 X - 1r3 Z n~O '7f3 Z 

Hence, 

3.3 Proof of Theorem 2.3 

The first part of the proof is similar to the proof of Theorem 2.1 and thus we will be rather 
sketchy. Hence, let . 

'l<3(Z) = Z3 +P:l:2 +qz +r 

and assume that {Qn}"~O is an MOPS, so that 

",Q,,(z) = Q"+1(x) + PnQn(X) +'YnQn-l(X) , n;:: 1 

Qo(x) = 1 , QI("');: x - Po (77) 

with'Yn " 0 for n ;:: 1. Then, Po = a , ~ = {J and '12 = 'Y "0. A1J in the proof of Theorem 2.1, 
in the three-term recurrence relation (2) replace x by x3 + px2 + q'" + r and then multiply by 
(x - a}(", - b) to find 

(x3 + px2 + qx + r)Q3n+2(X) ;: Q3nH(X) + f3nQ3n+2(X) + ")'nQ3n-l(X) , n ;:: 1. (78) 

Then use successively (77) to expand XQ3n+2(X), x2QSn+2(X) and x3Qan+2(X) as linear com­
binations of polynol)lials Qi' This leads to the following system: 

Pan+4- + PanH + Pan+2 + p = 0 

'YSnH + "tan+3 + 'Y3n+2 + mnH + Psn+2PanH + P~n+2 + P(Pan+2 + Pan+3) + q = 0 

'Y3n+3(iJan+3 + Pan+2) + Pan+2(7anH + mn+2 + "tan+2) + 7an+2(iJan+2 + Pa"+I)+ 
+P("tan+3 + Pin+2 + "tan+2) + qPan+2 + r = Pn 

73nH + P~n+2 + "tan+2 + Pan+1(iJan+2 + Pan+l) + isn+1 + P(Pa,,+2 + Pa,,+1) + q = 0 

Pan+2 + P3n+1 + Pan + P = 0 

73n+27Sn+l "tan = ")'n . 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

Again, notice that this system is very similar to the system (39)-(44) and then, using the 
same technique as in the proof of Theorem 2.1, we easily get the following relations: 

P3n+2 =~ =/3 

Pan+1 + Pan = a+ b 

(85) 

(86) 
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'Y,,,+3 + 1an+2 = 1a + 12 (87) 

7an+1 + <Pan+1 + (3)(PSn+1 + p) = _({32 + 1s + 72 + q) (88) 

{3,. = 7f3({3} + (7a + 72)({3 + p) + ({3 + .83n+1)'73"+2 - (p + .BanH)7sn+3 (89) 

for n ~ O. Notice that from (x - .81)(X - Po) - 71 = Q2(X) = (x - a)(x - b), hy identification 
of coefficients, we get 

fh = a+b- Po = a+b-a , 1, = Pop, -ab= -(a -a)(a - b) = -).,p/r 

and then, since (by setting n = 0 in (83)) h + p, + Po + p = 0, we find 

{3 = 1h = -(a+ Hp) = - [a+b+'/I'~(0)/21 

Also, from (88) for n = 0 one sees that 

7a+'Y:z =_({32 + (a + (3)(a+p) +q] (90) 

Therefore, in this problem, we can consider as free parameters only Po and 'Y:z, i.e., a and 1" 
As in the proof of Theorem 2.1, for the representations of QSn and Q3n+1, we can find 

QSn(x) = ( P fc -a)Jx -~) _ {P .. (1I"3(X» + (x - .Ban+1li'anPn-l(1I"S(X»}, 
x - an x - an+1 - 1'Sn+1 

and since (as in the deduction of (53» 

(x - Psn)(x - .Ban+1) - 73 .. +1 = (x - a)(x - b) 

the above relations reduce to 

Q3n(X) = Pn(1I"S(x)) + (x - Psn+1)'73nPn-l(1I"a(x» , 

Qsn+1(x) := (x - Psn)Pn (1I"s (x» + '73n'Yan+,Pn- 1{1I"a(x» • 

(91) 

(92) 

(93) 

If we compare with the proof of Theorem 2.1, we see that there is a difference between 
the cofresponding situations. In fact, in thIs case the right-hand sides of (92) and (93) do not 
appear divided by a polynomial and then we can't deduce any regularity condition immediately 
from (92) or (93). So, we will work directly with the difference equations. First, notice that if 
we replace in Q3,,+3 = (x - P)Q3n+2 - '73n+2Qan+1 the expressions for Q3n+2 = (x - a)(x -
b)P ,,(1I"a(x» , Q3n+3 and Qan+l given by (92) and (93), we deduce 

Pn+1('1I's(x» = [(x - (3l(a; - a)(x - b) - (x - PanHli'snH - (a: - .83n)13n+2] Pn('1I'S(X» 
-1'nPn-' ('lr3(X» 

from which, by comparison with the three-term recurrence relation (2), one obtains 

'lrs(x) - Pn = (x - (3l(x - a)(x - b) - (x - .BanH)7sn+3 - (x - .Ban)7ant2 , n ;:: 0 . (94) 

Setting x = a and a; = b in this relation and ·according to (86), we find 

fJn = c + (a - .BanHl73n+3 - (b - .8sn+l)7s .. +2 , (95) 

104 

17

Rectángulo



(96) 

From (91) we see that a # 'hn , a # 'hn+! , b # 'hn and b # il3n+! for all n. Now, from (91) 
for z = a and using again (86), we deduce 

- 73n+! 
b - {Jan+! = ------ , 

a- {J3n+! 

and substituting in (95), we obtain 

( a_ ) - 73n+173,,+2 Pn=c+ a-f'3nH 13n+3+ - , 
a-flan+! 

So, from (84), 

n~O. 

- _ 1n 
Pn = c + Ca - flanH)r3n+3 + ( iL )_ ,n;::: 1 

a-f'3n+1 13n 

Now, introducing a sequence of auxiliary parameters, {On}n~l' 

On :== -(a - 'hn+1)'Ya" , n;::: 1 

it follows that On # 0 for all n = 1,2, .•. and (99) can be rewritten as 

p" + On+1 + ;: == c , n ;::: 1 . 

(97) 

(98) 

(99) 

(100) 

(101) 

To get the solution of this nonlinear difference equation we introduce the sequence of parameters 

{lIn}"~O 
110 := 1 , 1I,,+!:= On+ll1" , n;::: 0 

80 that 
lIn#O , n;:::O 

Therefore, from (101) and (102) we get 

11,,+1 = (c - Pn)lI" - 1,,11,,-1 , n;::: 1 . 

For 111, we deduce 
111 == 01 = -(a - ilt)'Ya = e -;,/30 + 'h(a - Po) 

(102) 

(103) 

(104) 

where the last equality can be justified by using (98) and (97) 'for n == 0 and (86),80 that 

111 == c - (Po +).) , ). :== -'h(a - Po) == -1(a - It) (105) 

We notice that). # O. It follows from (104) and (105) that 

11" == P~(c) :: Pn{e) - >.P~~1 (c) , n;::: 0 • (106) 

Hence, the condition P;(c) # 0 holds for all n ;::: O. Moreover, since 0 .. == lI,,/'IIn-l == 
P;(e)/P~_l(C) for n;::: 1, we find from (100) the relation 

( iL)- P;{c) 
a-,."n+l'Y3n=-p" () • n;:::l 

n.-1 C 
(107) 
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Notice that if we start again with (91), but now taking x = b , and change the roles of a 
and b in the previous reasoning, we also derive Pg (d) 'I 0 for all n ?: 0 and 

- - P!:(d) 
(b - P3n+1h3n = - pP (d) , n?: 1 

n-I 

Subtracting (107) from (108), we get 

( _ W - P;-I (c)P.':(d) - p,Nc)p::_1 (d) _ D~:!:l (c, d) 
a 1'3n - P;_1(c)P::_1(d) - P;"'1(C)P::_1(d) 

Now, notice that, takiug into account (94) and (87), the equality 

(108) 

(109) 

'lrs(x) -?r3(Y) = (x - y)[(x - a)(x - b) + (x + Y - a - b)(y - 13) - (ta +"i2») (110) 

holds, from which it follows that 

_ _ {-(d - cl/Cb - a) if b l' a 
,:= 'Y3 +1'2 = -?r~(a) if b = a (111) 

Hence, we distinguish two cases: 
CASE 1: b l' a. We conclude from (109) that the conditions D~'''(c, d) 'I 0 hold for n ?: 0, 

i.e., d~'''(c, d) l' 0 for n ?: O. Then (109) also gives the expression for i3n, and following the 
same steps as in the proof of Theorem 2.1, it is easy to show that Q3,,+3 and QanH' as well as 
the coefficients Pn and 1'n, are given by the expressions indicated in the Theorem. 

CASE 2: b = a. Then (109) reduces to a trivial equality. From (107), we have 

P~l(C) + (a - .83n+4)1'3n+3P;(C) = 0 , n?: o. 

Thus, multiplying by a - PanH (= 'YsnH/(a - hnH), according to (91», 

(a - hn+3)P;+l(C) +'YsnH1'an+4P;(C) = 0 , n?: O. 

Therefore, by (113), (86) and (112), we have 

P;(c) _ _ (p-) - P;H(C) 1 
P >. ()'Y3n+s'Y3n+4°= - a - 3n+3 = a - P3nH = - P.>'() --­

nH C n C 'Y3n+3 

so that, taking into account (84) and (87), 

P~(c) 7n+l P;+i(c) 1 
P;+l (c) ,-1'3,,+6 = - P,Ne) 1'3n+3 

, n?: 0 

(112) 

(113) 

(114) 

where ( = '13 + 12 = -?rHa), according to (Ill). Now, we analyze the following two sub-cases: 
SUB-CASE 2.1: ,= O. It follows from (114) that 'Ysn+6 = 7nH[p;(C)/P;H (c)J2"f3n+3 and 

by iteration ofthis equality we get 1'3n+6 = hl'Y2 "'7nH/[P;H(e)]2}1'3, so that, since in this 
sub-case 'Ys = -'Y2 = -7 and taking into account (9), 

_ l' n Jj!.,>,(c, c) 
'YSn+! = - [P,HC»)2ll'i = [P~(c)12 ' n ?: 0 • 

From this we can easily conclude the proof of the Theorem in this sub-case 2.1, i.e., b = a and 
?rHa} = O. This also finish the proof of part (i) of the Theorem. 

IN; 
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SUIl-CASE 2.2: < -I o. Introduce a sequence of auxiliary parameters, {e .. } .. ;::o 

e . ___ l_P:H(c)_l_ n>O. 
" .- '"(nH P,N c) 1"3n+3' -

(115) 

Then we have e .. -10 for all n ;:: 0 and (114) can be rewritten as 

__ 1_P:"2(C)..h- = <en _ ~:(c) , n;:: O. 
'Yn+2 P:+l (c) en+l Pn+l (c) 

(116) 

Introduce another sequence of auxiliary parameters, {l)n}n;::O, by 

I)n := -'1"H [<en - ;';:~~~J, n;:: o. (117) 

Then, by (116) also '1" -I 0 for all n ;:: 0, and substituting in (116) the expressions of en and 
t"H given by (117) - notice that < -I 0 - we find, after multiplying by (, 

Thus, taking into account that 'Yn+2P:"1(C) = -P:+3(e) + (e - Pn+2)P;+2(C) , as well as (4) 
with Pi(C) replaced by pNe), 

"'* 1'~+1 _ I)n+l+[:J,,+l+---e, n;::O, 
'In 

(l1S) 

where {f3~' } .. ;::o and h~+l}";::O denote the sequences of the coefficients which appear in the 
three-term recurrence relation for the MOPS of the kernel polynomials of K -parameter c, 
{[P;j*(c; .)}n;::O, corresponding to the sequence {P;},,;::o. AI; indicated in the Theorem, we 
will denote Rn(z) := [P;J* (c; x) for n ;:: O. Notice that {R,.}n>O is in fact an MOPS, since we 
know that P,Ne) "" 0 holds for all n ;:: O. In order to find the sOlution of the difference equation 
(llS) we consider the sequence {zn}n;::o 

ZQ:=l, zn+l:=T/nz" , n~O. 
:r~en z" -I 0 for all n ~ 0 and, by (llS), 

.t,,+l = (e - [:J!*)zn - 'Y!'Zn-l , n ~ 1. 

For ZI, we have: 

ZI [
PINe)] [( Pl'{c) 1 1] 

1)0=-'11 (eo- Pf(e) =-'11 -;y,-Po'(c)~- Pf(e) 

(Pt(c) + ~ _ (Pt(c) + [:J~ _ [:J>" _ ",>.. + (Pt(e) p,>.() 
73 Pf(c) - 7s 0 0 - c - f'O ~ - 1 C 

c- PS' + (-::7S Pf(c) = c- (f3S* +11), 
'13 . 

with 11:= -'YPf(c)/{( - '1) = '1Pt(c)/(-zrHa) +'Y). Therefore, we conclude that 

Zn = R;;(e) , n ~ 0, 
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and then R~(c) " 0 for all n <': O. Consequently, going to back, we deduce successively 

~tl(C) _ _ [({ P;(c) ] _ 'Yntl P':t2 (c) (n _ P,:t1 (c) iantG 
~(c) - f/n - -'Yntl n - P;t1 (c) - 'Ynt2 P;tl (c) (ntl - P;(c) 1'3nt3' 

hence, P;tl (C)-'Y3nts/.R::t1 (c) := P;(c)i3nt3/ ~(c) (n ~ 0), which leads to 

_ ~(c) R~(c) 
'Y3nt3 = « - "I) P;(c) == -0 P;(c) , n <': 0 , 

where (, := "Ha) + "I' From this we easily conclude the proof of part (H) of the Theorem. 
Finally, we show that {Qn}n~o is an MOPS with reSpect to the linear functional v defined 

by (34). First, notice that (34) implies 

(v, (x - b)!("3(x))) 

(v, (x - a)(x - b)!(1rs(x))) 
(v,(x - a)(x - b)2!("3(X») 

!:(u-'-·c f(x» 
'Y ' 
o , 
o 

for every polynomial! . Since (v,l) = uo " 0 , to prove that {Qn}n>O is an MOPS with 
respect to v, we only need to show that -

(v, Qn(x» == 0 , n = 1,2, .... 

In fact, it is obvious that 

(v, QSnt2(X)) = {v, (x - a)(x - b)Pn(1r3(x))) = 0 , n <': O. 

Since QSnt3(X) = (x - P)QSnt2(X) -i3nt2Q3ntl(x) = (x - a)(x - b)2 PR("s(x» + (b - p)(x­
a)(x - b)Pn(1rs(x» - 7snt2QSntl(X), it follows that 

(119) 

Now, notice that, from the expressions for Q3ntS(X) and'r3nts (in the Theorem), and taking 
into account (11), we can write 

Q3nt3(X) = P~+l(1rS(X» + 'r3nts{X - a)Pn(1rS(x» , n <': 0 

(in both cases (i) and (ii)). Hence, for n ~ 1, 

Qsntl(X) = (x - b)Qan(x) + (b - .Ban)Qsn(X) -73"Q3,,-I(X) 
= (x - b)P;·C(1fs(x» + (b - hn)Qsn(X) 

and thus, since {v, (x - b)P;,C(1rs(x))) = ~(u>.,c,P;,C(x» == 0 for n <': 1, we find (v, Q3ntl) == 
(b - .Ban)(V, Q3n) , or, according to (119), 

Therefore, since 

(v,Qs"tl) = -'rsn-l(b- Psn){V,Qan-2} , n ~ 1. 

(v,:z: - a) == (v, Gl(X)) + (b - a)Vo == ~(u,>"c ,I) + {b - a)uo 
"I 

(!: + b- a)uo == 0, 
"I 

lOR 
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it follow;s recurrently that 
n~O. 

This relation, together with (119) leads to 

(v,Qa"+3) =0 , n ~ 0, 

which completes the proof of Theorem 2.3. 

3.4 Proof of Corollary 2.3 

We have 

(1) () _ ~{ (x - a)(x - b)P,,(1I"a(x» - (y -a)(y - b)P"(lra(Y»} 
Q3,,+1 x - tIo v V' x-y . (120) 

Put Pn(x) == 2::=0 aln)x', so that (74) and (75) hold. So, taking into account (110) and (75), 
we deduce 

Since 

(x - a){x - b)P,,{1fs(x» - (y - a){y- b)P" (1fs{y)) = 

= (x -y){x+y - a - b)Pn(1f3(X» + (1I- a)(lI- 6) [P,,(1f3 (x)) - P,,(1I"3(1I») , 

we obtain 

(z-4J(z-6)P.( ... (zll-!r-4J(y-6)P.( ... (Y)1 _ 
z-l/ -

= (x + y- a - b)P,,(1r3(X» + (1I- a)(lI- b)x 
n-l i 

x[(x - a)(x - b) + (x + y - a - b}(lI- (3) - (oh + '12)] E E a\~ll!"~-i (X)1r'(lI) . 
i=0 ;=0 

Therefore; from (120) and {Vy, (1I- a)(lI- b)~(y» == 0, we find 

~1v"x +1I- a- b)P,,(1rs(x» + 
tIo 

1 .. -1, (nl ,_; '. 
+- 'E'Eai+11rS (x){v" (x +y- a- 6)(y- (3)(y - a)(lI- b)G(Y)} 

tIo i=O;=O 

(x - a - b + a)P .. (1I"a(x» + 
n-l i 

+~ ~~a\~l1r;-J{X){V'(lI- b)(y - (3)(1I- a)(y- b)~(y». 

By (110) for x = a, we get (11- (3)(1I- a)(y - b) "" 1I"3(y) - C + ('13 +'b)(y- a), 80 that 

(V.(II- b)(y- (3)(y- a)(y- b)"'~(II)} = 
= (v,(II- 6)[1I"3(Y) -c]~(y» = ~(u"'C,(~ - e)l/i) = -¥(u,yi). 
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Consequently, 

Using (110), it is straightforward to verify that 

(.-:~;-61 ~ (z - a)(z - b) £:~)~:~~» - (z - a - b + a) - (x - a)+ 

+ (",(s)-c(z-bl + (z - a) (z-a)«-b)'+fb-Pf<-·)«-b) 
'lI"a1:}-1I'J(z) X'3{X 11'3 z) • 

Therefore, we deduce 

(z - a)(z - b)Sv(Z) 

which proves (36). 

{ 
(z - a)(z - b)} v,,, 

:z;-z 

( )( ) '" {v, C3"+2} - z - a z - b L., - uo(z - a - h + a) -
"?co 1f~+l(z) 

{ } '" (v, (x - b)[1fs(x) -cJ1fS"(x» 
- v,:z;-a - L., .. +l( ) -

n?;O 11"3 Z 

( ) '" (V, C3n+3 ) + (b - .B){V, C3n+2) 
- z-a L., 

n?;O 1f~+1(z) 

-UO(z - a - b + a) + AI-' L (u,:z;n) 
'1 n?;O 1f~+1(z) 

-uo(z - a- b+a) - AI-'Su(1fs(z» 
'1 

4 The eigenvalues of a tridiagonal 3-Toeplitz matrix 

Theorem 2.3 can be applied to the determination of the eigenvalues of a finite tridiagonal 
3-Toeplitz matrix, which as the general form 

al bl 0 0 0 0 0 
Cl a2 ~ 0 0 0 0 
0 ~ as ba 0 0 0 
0 0 Ca al bl 0 0 

E JR.(n,n). B,,= 0 0 0 Cl a, !>2 0 (121) 

0 0 0 0 C, aa ha 
0 0 0 0 0 ~ al 

It is assumed that Bn is irreducible, i.e., bie; 1- 0 for i :=: 1,2,3. We mention that the corre­
sponding problem for a finite tridiagonal2-Toeplitz matrix was solved by M.J.O.GOYER [101 

110 
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(see also (12] as well as (7] where a more general situation for band matrices is considered). 
Given Bn, define recurrently a sequence of monic polynomials {Pn}n~O by (2), with 

Pn = blcl + b:!C2 + bsCa , 1n+1 = bl b2baclC2Ca , n ;:: O. 

According to the Favard theorem (see (5, p.21]), {Pn}"~O is an MOPS. Furthermore, since 
the coefficients Pn and 1n are constant, then Pn ;:: pJI), so that P~(x) = Pn(x) - >.Pn-l(x). 
Furthermore, one easily see that 

(, )n ~ (x -blcl - b:!c2 - baC3) 
Pn(X) = 2y'b,b:!bac,C2c3 Un 2v'blb2bacIC2Ca ,n ;:: 0 

where {Un}n~O are the monic Tchebyshev polynolnials of second kind, Un(x) = 2-nun(x), and 

sin{n + 1)0 
Un(x) := sin 0 ' x = cos 0 . 

The polynomials {Un}n~O satisfy the three-term recurrence relati.Qn xUn{x) ::: Un+1(x) + 
lUn-l(X) (n ;:: 0), U_l(X) = 0, Uo(x) = 1. Remark that the zeros of Un are Xn,k = cos :';1 ' 
k = 1,2, " . ,n. Motivated by (91) an~ (94), let a and b be the zeros of the quadratic polynomial 

(122) 

and define 

'll"s(x) := I Xb~C;1 x 2 a2 i I. (123) 
b3c3 b:!c2 x - aa 

Choose et := al and 1 := b:!C2. Now, according to Theorem 2.3, let c:= 'lI"a(a), d := "It"3(b), 
>. := -b:!C2(a - all and fl := -b:!C2(b - all· With these notations, using induction and the 
three-term recurrence relation (6), it is straightforward to prove that 

P~(c) = (baca(a2 - a)]" '" 0, P!:(d) == [baC3(a2 - h)l" '10, 

D~'I'(c,d) = (a - b) {baC3)2,,+1 (-bICI)" ;6 0 if b;6 a, 

D~"'(c,c) == -b:!c2(blclb:!c2baca)" 

for all n == 0,1,2, .... (We can infer the mst two formulas from (107) and (lOB)). Furthermore, 
if a = 11 ;:: (al + (2)/2 then blCI = -(al - (2)2/4 and 1.\"'(a) = ,-(b:!C2 + baca). Hence if a = b 
and "It"'{a) '" 0, we have 6 := 1 + 'lI"'(a) = -baCa , v := 1Pf(c)J6 = b:!c2{al - a2)/2 ;:: >.. The 
polynomial Rn defined in (iI) on Theorem 2.3 coincides with Pn , so that 

R!;{c) = P;(c) = [baCa(a2 - al)/2)n '10 

for all n = 0, I, 2, .... Therefore, if we define a sequence of polynomials {Qn} .. ~O such that 

Qa,,(x) := P,,{'II"3(X)) + baC2 (x - (2)P,,-1('II"a(x» 
Qan+1 (x) := (x - al)Pn('II"3(X» + b1ClbaCaPn_1 ('11"3(0:» 
Qan+2(X) := (x - a) (X, - b)P .. ('II"3(X)) , 

(124) 

then Theorem 2.3 ensures that {Qn}n~O is an MOPS and the parameters for the corresponding 
three-term recurrence relation are 

lkn = al , ihn+1 = a2, P3,,+2 = aa, 13,,+1 = hi Ct , 13n+2 = baC2, 13n+3 = baca . 
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It follows from a well known result of the theory of tridiagonal matrices that the eigenvalues 
of Bn cOincide with the eigenvalues of the triadiagonal Jacobi matrix of order n, [aiiJ~j=l' 
corresponding to the MOPS {Qn}n2:0 - which, by definition, has entries all := P'-it ai,'-H := 1, 
ai+1,i := 'Y;. Hence, the eigenvalues of Bn are the zeros of Q", and the following proposition 
follows: 

Theorem 4.1 Let Bn be an irreducible tridiagonal 9~Toeplitz matrix, given by (121). Define a 
polynomial 11"3 as (123) and denote a and b as in (122). For a fixed n ~ 0, 

(i) the eigenvalues 0/ Bn are the zeros of Q" defined according to relations (124),-
(ii) in particular, the eigenvalues of BSn+2 are a, b and the roots of the cubic equations 

k7r 
1I"3(X) = b1Cl +bzC2 + bsca + 2y!blbzbaC1C2cscos--1 ' k = 1, ... ,no n+ 

5 Second order linear differential equation 

According to Corollary 2.4, we know that if {Pn}n2:o is a semiclassical MOPS, then 80 is 
{Qn}n>o, in any of the above three problems. In particular, this means that if the polynomials 
of the sequence {Pn}n~O satisfy a second order differential equation, say 

(125) 

(n = 0,1,2, ..• ) where J". K" and Ln are polynomials in the variable x, whose coefficients 
depend on n but whose degrees are uniformly bounded by a positive integer number independent 
of n, then the polynomials of the sequence {Qn}n>O also satisfy a second order differential 
equation of the same type, say -

J,,(x)y" + Kn(x)y' + L,,(x)y = 0 (11 = Qn(x» (126) 

(n = 0, 1, 2, .•• ) with in, Kn and Ln polynomials whose coefficients can be dependent on n but 
whose degrees are also uniformly bounded by a number independent of n. 

In fact, if {P,,}n2:0 is semlclassical of class s, so that the polynomials rp, C and D whicl1 
appear in the first order linear differential equation satisfied by the Stieltjes function associated 
to u (see Corollary 2.4) are co-prime and B = ma:x{degC -1, degD}, then 

degJ" :S 28 + 2, degK,,:s 28+ 1. degL,.:S 28, 

and analogous upper bounds cau be given for the degrees of the polynomials J", K" and Ln 
whicl1 appear on equation (126) in terms oftbe class i of {Q,,},,>o. 

We want to determine the i .. 's, K,,'s and L .. 's in termsofthe),,'s, Kn's and Ln's. We will 
do that only for problem P3 (for the others it is similar). 

In order to obtain the differential equation (125) for a given semiclassical MOPS {Pn}n>O, 
an important tool is the so called structure relation -

(121) 

(n = 0,1,2, ..• ), where Mn and N" are also polynomials in the variable x, whose coefficients 
can be dependent on n but whose degrees are uniformly bounded by a. number independent of 
n. In fact, 

degMn:S s, degNn:S s + 1. 

11') 
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The structure relation (127) is also a characteristic property for a semiclassical OPS, and if we 
know the above polynomials 1>, G and D, then the polynomials M" and Nn in (127) can be 
successively deduced from the mixed recurrence relations 

N" = -G - Nn- 1 - (x - Pn},Mn 
1'n+lMn+l = -,p + 1' .. Mn- 1 + (x - Pn)(N .. - 1 - N .. ) 

(n = 0,1,2, ..• ), with initial conditions 

N_l=G, M_l=O, Mo=tcil1D 

(128) 

(129) 

(130) 

(uo := (u,I)). Now, the polynomials I n , Kn and L .. in (125) can be computed by means of the 
relations 

n 

J" = ,pM .. , K .. = W(M .. ,,p) + GMn , Ln = W(Nn, Mn) - Mn I: Mj (131) 
1=0 

(n = 0,1,2, ..• ), where W(f,9) := fg' - f'g (the Wronskian). By combination of (128) and 
(129) we can give the following alternative expression for Ln: . 

L" = W(Nn,Mn} - (1'n+IMnM .. +l - N~ - GN")M,,N. 

We remark that the previous results follow from the theory of semiclassical orthogonal polyno­
mials presented by P .MARONI in [17). 

The next result gives the structure relation for the polynomials of the sequence {Q"}n~O 
corresponding to problem P3. 

Theorem 6.1 Under the conditions of Theorem 2.3, if the polynomia18 {Pn}"~O lIati4jy the 
structure relation (127), then the polynomia/8 {Qn} .. ~o sati4jy 

~(x)Q~(x) = Mn(x)Qn+l(X) + Nn{x)Q .. (x) 

(n = 0, 1,2, .• . J, where ~, Mn and N n are explicitly given by 

~(x) = (x - a)(x - b)1>(7r3(X» 

MSn+I(x) = 1>(1I",(x» + 7rHx){"Y3n"Y3n+IMn-l(1I"3{X» - (x - ihn)x 

x [G(1<3(X» + 2Nn-1(7r3(X» - "Y3"+2(x - ihn) M,,(1I"s (x»)]} 

M3n+2(X) = (x - a)2{x - bj21<3{X)Mn(7r3(X» 

Msn+3(x) = -4>(1I"3(X» + 1I"HX){'YSnH"Y3n+sM"+l(lr,(x)}- (x ~ P3nH} X 

X [G(1I"a(x}) + 2Nn(1I",(x» -'Y3n+S(X - PsnH)Mn(1I"s(x»)} 

NSn+l(x) = (x - a)(x - b)~(x)[Nn_l(1<3(X)} -"Y3,,+2(x - Pan)Mn(1I",(x))) 

NSn+2(x) = (2x - a - b)1>(1I"s(x» + 
+ (x - a}(x - b}...a(x)[Nn(1I"3(X}) - 'Y3n+3(X - ihnH)Mn (1r3(X})} 

Nsn+s(x) = (x - .63n+3)4>(1I"3 (x» + 
+ lrHx) {(x - a)(x - b)[Nn(lrs(x» - "Y3nH(X - .6an+2)M,,("II"s(x»]+ 

+ "Y3n+C[Nn(1I"3 (x» - "Y3n+5(X - ihn+3)Mn+l(lrs(x»]­

- "Y3n+c [Nn- 1 (1I"s (x» -'YSn+2{X - PSn)M,,(1I"3 (x))} }. 

(132) 

(133) 
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Pro¥. Making the substitution x -t 1Ta(x) in (127), then multiplying the resulting equation 
by (x - :a)2(x - bj21rHx) and using the relations Q3n+2(X) =; (x - a)(x - b)Pn(1rs(x» and 
Q~n+2(x) = (2x - a - b)P,,(1r3(X» + (x - a) (x - b)1THx)P~(1ra(x», we get 

~(X)Q~"+2(X) = (x - a)(x - b)1rHx)Mn(1ra(x»Qan+5(x)+ 

+ [(x - a)(x - b)1r~(x)Nn(1r3(x» + (2x - a - b)if>(1TS(X))) QSn+2(X). 

But, using the three-term recurrence relation for {Qn}n~O we can write, according to (91), 

and so the above equation reduces to 

with Man+2 and NSn+2 defined as'in (133). Now, since w~ have det!lrmined M3n+2 and Nan+2 
for all n = 0, 1,2, ... , we can determine all the others M;'s and Ni'S, by using the relations 
corresponding to (128) and (129) for the Mi'S and Ni'S. In fact, from (128) one immediately 
find 

Nan+l(X):: -[0 + Nan+2(X) + (x - Pan+2)Man+2(X)] , 

so that, using the expressions for Man+2 and Nan+2 already determined as wellas the expression 
for 0 as in Corollary 2.4, one obtain the expression for NSn+1 given in (133). Now, combining 
(128) and (129) one easily see that 

N '13n+4(0 + NSnH) + (x - PanH)[-¥ + 7sn+3M3n+2 + (x - Pan+s)Nan+2) 
Sn+3 = (x - .8an+3)(X - .8anH) - 7anH ' 

and notice again that (x - .83n+3)(X - PanH) - 7snH :: (x - a)(x - b). Hence, using the 
expressions for NanH, Nan+2 and Man+2 already calculated, after some simplifications we 
get the expression for Nan+3 as in (133). Finally, since we know all the Ni'S, from (128) we 
determine the remainder Mi'S. 

6 Connection with sieved orthogonal polynomi~s 

Consider the sequence {O:;}n>O of the Gegenbauer or ultraspherical polynomials, which is 
usually defined by the three-term reciirrence relation 

2(n + v)xO:;(x) :: (n + 1) 0:;+1 (x) + (n + 2v -l)O:;_1(x), n ~ 1, 

with initial conditions Ol/(:c) :: 1 , Orex) :: 2vx (see [8, p.175j). Assuming that v :f -n/2 (n = 
0,1, ... ) one see that {O:;}n>O is an orthogonal polynomial sequence. The leading coefficient of 
O:;(x) is 2n(v},,/n!, so one am define an MOPS {Pn},,~o by 

Pn(:C):= S (nl ) 0:;+1(4x), n=0,1,2, ••.• 
2"v+1 n 

, (134) 

Then the coefficients of the three-term recurrence relation corresponding to {P"},,>o are given 
~ -

(n+l){n+211+2) 
Pn:: 0, 1'n+1:: 64(n+ 11 + 2)(n + 11+ 1)' n = 0,1,2, .... 
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(see [8. p.175). with an appropriate normalization). Hence, from formulas (133) we find. up to 

the factor iU2(X)"'~(x), 

~(x) = (1- :I02)U2(X) , C(x) = -x[(611 + 1)U2(x) - 1211], 

M3n(x) = -[(6n + 611 + 2)U2(X) - 611]. Nan(x) = x[(3n + 611 + 2)U2(X) - 611], 
Man+l(x) = -[(6n + 611 + 4)U2 (x) + 611], Nan+l(x) = (3n + 611 + 3)xU2(x). 

Man+2(X) = -(6n+ 611 +6)U2(X) , N3n+2(X) = x[(3n + 611 +4)U2(X) -1211], 

where U2(X} = 4:102 -1. Now, we get ~he ~nd or~er linear differential equation that each 
Q" satisfies from the formulas for the N5, KI's and L;'s corresponding to (131). Notice that 
in [3] the authors considered the general case (not only k = 3), but there is a mistake in the 
computation of the coefficients of the differential equation, as one of the authors confirmed to 
us in a private communication. For k = 3. if we put 

Pn(X} = B:(x;3} , 

we deduce (by the indicated way) that {Pn}n~O satisfies 

an(x)p~(x) + bn(x)p~(x) +c,,(x)P .. (x) = 0, n = 0,1,2 ... , 

where 

a3m(X) 
b3m(x} 
cam (x) 

G3m+l(X) 

bam+l(x} 
C3m+l(X} 

a3m+2{X} 
bam+2(x} 
Cam+2(x) 

(1- x2}U2(x){(3m + 311 + l)U2(x) - 311] 
3x{ -(211 + 1)(3m + 311 + 1)Ul(x) + 311(4m + 611 + 3)U2(X) - 611(211 + I}} 
3m{(3m+ 311 + l)(3m + 611 + 2)Ul(x) - 311(3m+ 6v+ 4)U2(X) - 6v} 

(1 - X2)U2(x)[(3m + 311 + 2)U2(X) + 311] 
3x{ -(211 + 1)(3m + 311 + 2)Ul(:IO) + 311(4m + 2v + l)U2(x) + 6v(2v + I)} 
3(m + 211+ 1){(3m+ 1)(3m+ 3v+2)Ui(x) +3v(3m -1)U2(X) - 6v} 

(1 - x2)Ul(x) 
-3XU2(X)[(2v + I)U2 - 411] 
(3m + 2)(3m + 6v + 4)£1 (x) -12vU2(x) - 2411. 
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