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Abstract

‘We present characterization theorems for orthogonal polynomials obtained from & given
'y of orthogonal poly ials by a cubic pelynomial transformation in the variable.
Since such -polynomials are the denominators of the approximants for the expansion in
continued fractions of the z—transform of the moment sequences associated with the linear
functionals with respect to which such poly ials are orth I, we state the explicit
relation for the corresponding formal Stieltjes series. As an application, we study the
eigenvalues of a tridiagonal 3-Toeplitz matrix. Finally, we deduce the second order linear
differential equation satisfied by the new family of orthogonal polynomials, when the initial
family satisfies such a kind of differential equation.
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1 Inmtroduction and preliminaries

In this paper we analyze some problems related to cubic transformations in the variable of a
sequence of monic polynomials orthogonal with respect to some moment linear functional. The
first problem is the following:

PL. Let {Po}nxo be a fized sequence of monic orthogonal polynomials, 7s & fized cubic monic
polynomial and {@n}azo o simple sel (i.e., deg Qn =n for alln =0,1,2,...) of monic

polynomials such that
Qsn(z) = Py(ns(z)) ¢y
for alln=0,1,2,.... To find necessary and sufficient conditions in arder fo {Qy}nyo be
a seq of orthogonal paly ials. In such conditions, what s the relation between the
t linear functional: inted with the sequences {Pn}n>o and {Qn}nso?

This problem has been partially solved in [2] and [15] . In fact, in {2}, P.BARRUCAND and
D.DICKINSON have considered P1 under the assumption that {P,}n>s is 8 symmetric orthogo-
nal polynomial system and w3 2 general odd polynomial of degree 3, and requiring that {Qn}nyo
be also a symmetric orthogonal polynomial system; on the other hand, in [15}, F. MARCELLAN
and G.SANSIGRE studied the case x3(z) = £* without any restriction on {Py}az0 or {@n}n>e.
Nevertheless, in these contributions, only sufficient conditions were found and the relations
between the corresponding functionals were not studied.
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From aniother point of view, this problem was studied by J.GERONIMO and W.VAN Ass-
CHE [9] (for a general polynomial of degree k, instead of ¥ = 3) and also by J.CHARRIS,
M.B.H.IsMAIL and S.MONSALVE [4] (in the framework of families of orthogonal polynomials
defined by general blacks of recurrence relations).

1n connection with problem P1 two other similar problems arise in & natural way, eventually
with more useful applications. Thus, a second problem to be considered is the following:

P2. The same assumptions and guestions as in P1, but with (1) replaced by
Qani1(e) = (2 ~ a) Pa(ma(2))
for alin=0,1,2,..., wkere a is a fizred complex number.

The third problem can be stated as follows:

P3. The same iptions end questions as in P1, but 1;rith (1) replaced by
Qsnia(z) = (z — a){(z ~ b) Pu(ms(z))
for all n=0,1,2,..., where a and b are fized complex numbers.

In the remainder of the paper we will make use of some well known concepts and results in
the theory of orthogonal polynomials. We mention the most important for our purposes. First,
we recall the definition of an orthogonal polynomial system (OPS). Jf u is a linear functional
on P (the kinear space of all polynomials with complex coefficients) and {P,}n>o a sequence
of golynomials, {Pn}n>o is said to be orthogonal with respect to u if {Pn}npo is a simple set
an

(U., Pqu) = knbpm

foralln=0,1,2,..., where {ka}apo is & sequence of nonzero complex numbers ({,,.) means the
duality bracket). The functional v is said to be regular or quasi-definite when such a sequence
of orthogonal polynomials exists (cf. [5]). In this paper we will consider monic orthogonal
polynomial systems (MOPS). All MOPS are characterized by a three-term recurrence relation

TPy (z) = Poya() + BnPulz) + IaPpal(z), n2>1, o))
Pu($)=1, P1($)=I—ﬁo -

where {fa}nz0 and {74}n>1 are sequences of complex fumbers, with 4, # 0 foralln > 1. ¥
cisa complex number such that Py(c) # 0 for all n > 0, then the sequence of monic kernel
?olynomxa!s of K-parameter c associated with {P,},>0, which will be denoted by {P:(c;.}}np0,
is

Pi(9) = = L y [P,,+1(a:) - 1—’%&?3@)] , n>0. ®)

(Cf; s, P-35])-_ ¥ {Pp}uo is an MOPS associated with the moment linear functional u, then
{Pa(c; Yinzo is an MOPS sssociated with

u*(c) := (z ~ QJu,

Furthennor.e, the coeflicients 8} = B4(c) and -}, = 42(c) for the three-term recurrence relation
corresponding to {Pr(c;.)}nzo are given explicitly by

. Priale)  Pana(e) - Ppys(e)P,
Fambantp O P e 'ru+x~—‘;,33;(c—)(°—). n20. @



Given an MOPS {P, }n0 Which satisfies (2), the polynomials {P{"} . defined by the shifted
recurrence relation

=P{(z) = P} (z)+ﬂn+xP“’(z>+7n+1 POz , axl y
PP@=1 , PP@)=z-p4 )

are called the associated polynomials of the first kind of {Py}s>0. These polynomials are also
given by
P@E) =L (u Puga(z) - Pn+1(!/)) n>0
-y
where up := {u,1). For a fixed complex number X , the sequence {P)}npo defined by the same
recurrence relation (2) as {Pn}np0, but with a different initial condition, namely

zPMz) = F, X&)+ B PR (@) + P2y (z), n2>1
PMz)=1 , PMz)=z—fo—A, ©)

is the co-recursive sequence of {Py}n>0 for the modification A. These polynomials were intro-
duced and studied by T.S.CHIHARA in [6]. Notice that

PNz) = Pulz) = \PP (a). G
The following notation will be used:

P)z) P, +1($)
Pi(y) Prn()

for 2,y € C and n > 0. Notice that if Py(c) # 0 then D%%(c,z) = (z ~ Q)Pa(c)P:(e; 7).
Moreover, using the well known relation

Di(m,y) =

]

PO(2)Pa(z) — Pasa(2) B, (2) = H'r., 220,

(with the convention that the product over an empty set equals unity) we can show that
D%(z, x) is also independent of the choice of x:

n
Doz, 2y =—p][%, n20. {9)
i=1

The co-recursive polynomials are important in order to establish the regularity conditions for
a linear functional associated with an inverse polynomial modification of 2 regular functional.
In fact, if u is regular, for fixed ), ¢ € € and with u™® defined by the distributional equation
(z — jut*€ = —Au (recall that given 2 linear functional v and a polynomial g, then ¢v is the
linear functional defined by ($v, f) := (v,$f) for every polynomial f), i.e,,

u® = upd, — Az — )M, (10)

where §, means the Dirac functional at the point ¢, {6, f) 1= f(c) (f € P), and (z ~ ¢)tu is
the linear functional defined by

(-0t = 1Ty ep,
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then u© is regular if and only if A # 0 and PMe) #0 for alt n =10,1,2,... (MARONI [16}). In
such conditions the corresponding MOPS, {P2*}uzo , is given by

PMe)
Py

PMe(g) 1= Palz) - Po-ifz) , n20. an

The coeﬁic-ients {B2e, —y:fl }no for the three-term recurrence relation corresponding to {P}}n>0
are given explicitly by

Xi PMie)  PMe)

A8 A e ntl n
= By + Py (c € = fn + bty unr 3y 12
ﬁo ﬂO 1 ( )v n n P,’,\(C) Pv}—-l(c) 3 ( )

R 3+1(‘-‘)P 1):-4 (¢}
~niivg nolvy 13
PREP )
for all n = 1,2,.... Notice also that the moments of u™¢ can be obtained from the moments

1, := {u,z") of u according to the formula

AC=APM), RH=T

n—1
(uf\,c’mn) = uﬁcn - kz cn~1un—1—§ ,y N2 0
=0

{with the convention that summation over an empty set of indices is zero).

Finally, we recall the Stieltjes formal series, Su(2), corresponding to a given moment linear
functional u:

u 1
Sule) == 3 g = (e 2 i ®)
n20

where the subscript & in u, means that u acts on functions of the variable z. In fact, {formally)
we have

n , 2" 1 " 1
5 == 3 == SR = B ()= s>

n>0

The structure of the paper is the following. In Section 2 we give the characterizations for
the solutions of problems P1, P2 and P3 and in Section 3 we prove the statements on Section
2. In such & way we obtain the relation between the coefficients of the expansion in continued
fractions of two Stieltjes functions related by

5) = _____A(Z)S(fg(‘z))) + B(2)

where A, B and G are polynomials of degrees less than or equal to 2. As an application of
our results, in Section 4 we solve the eigenvalue problem for a tridiagonal 3-Toeplitz matrix.
In Section 5 we analyze the semiclassical case and we give the structure relation for the new
sequence {Qn}no in problem P3, from which the second order linear differential equation can
be deduced. Finally, we make the connection of this kind of problems with the sieved orthogonal
polynomials and we recover the structure relation and the second order differential equation for
a special case of the sieved ultraspherical polynomials of the second kind.

‘We notice that this paper deals with algebraic (or formal) orthogonal polynomials, so that
the important tool is the three-term recurrence relation that each sequence of orthogonal poly-

nf:mials satisfies. In & future paper [14] we will analyze the positive-definite case and we will
give the corresponding measures of orthogonality.



2 'I‘he Main Results

The solution of problem P1 can be characterized as follows.

Theorem 2.1 Let {Ps}n>0 be a system of ic orthogonal polynomials and {Qn}n>0 @ simple
set of monic polynomials such that

QI(O) = "ﬁ, QZ(ﬁ) ==, Qan(m) = Pn("3(z)) y NE= 0)1;2:' ey (14)
where w3 is o (monic) polynomial of degree 3 and B,~ € C. Consider the polynomial

plz) =7+ ———n(zl Zs(ﬁ) (15)

Let a; and ag be the zeros of p and put
a =m3(01), ¢2:=maz}.
Then, for a fized pair (8,7); {@n}nxo is an MOPS if and only if
7#0, Falar) 950 Poea) #0, Frlesea) #0, (16)

Qnsa(e) = {Pn+1(ws(z)>+vf-§‘%;—2—)°ﬁ (z-on- 2200 pmian] . an

1 Pn (3 -
(18)

hold for alln=0,1,2,
In such candmons, lf {Pn}ﬂ>o satisfies the three-term recurrence relation (2), then the

coefficients fi, and 7, for the corresponding three-term recurrence relation satisfied by {Qn},>0
are given by -

. - _ _ l Pn+1(02) - Pn+l(52)
Bsn=p, Bnnn=a 7 Pyler;ea)’ Ponsa =02t 7 Filesen)’ )
s o Baale)Proa(eio)
P = —T T Pu(ei)Pulea) e
Prer;ea) N _ 1 Pays{e)Pnia(ez)
Y1 =7 Pulca) ':Y3n+2 72 Pr{esi ) Prleasan) © (21)
Finally, denote by u the t linear functional such that {Pn}nyo is the corresponding

MOPS. Let {An}n>o be the bosis of P defined by
Asnf) = 13{@),  Asnia(e) = (@~ P75z}, Asmia(e) = (="~ fz —Naf(x)  (22)

forn=0,1,2,.... Then, under the above conditions, {Qn}nzo is an MOPS associated with the
moment linear functional v defined on the basis {An}npo by

{v, ASn(x)) = (u,z"), (v, Asnp1(2)) 1=0, (v, Asni2(z)) =0 (23)
foralln=0,1,2,....
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Corollary 2.1 Under the hypotheses of Theorem 2.1,

gln)n(-"") p(=) P (w3 (z)) ; (24)
holds for alin=0,1,2,. . Furthermore, the formal Stieltjes series corresponding to
ment linear functionals & and v g5 in Ti;eomm 2.1 are related by sponding to the mo-
Sv(z) = p(2)Su(ms(z)). 4 (25)
The solution for problem P2 is
Theorem 2.2 Let {Pu}npo be an MOPS and {Qr}az0 o simple set of monic polynomials such

that
Q) =z~ Bz ~a)~7, Qsns1() = (z ~ a)Pu(ms(z)) {26)

);?frd?:gr; ——1;0}:1123, ., where a, B and « are fived complex numbers and 13 a monic polynomial

bi=—la+B+e{O)2, c=ml), di=so). @)
Then:
(i) ifb# a, orb=a and x}{a) =0, for fized (8,7), {Qu}n>0 is an MOPS.if and only if
1#0, Palc)#0, PUd#0, dMed)s#0, (8)
. 5 _ded) Pria(9)P,
Qonsale) = 1 53 [Pt + 5 (e-o- 240D P

_ Pani(0)PE

Qunss(e) = 55 [( =+ BHETEDY by oy - O D p 1)

for alln =0,1,2,..., where

mlb-a), Q#ed) =] Dgiled/-a) if b
pr=lb-a), dcd) {D“"’(c,c) it ?—:aandi&n):ﬂ.

In such conditions, if we assume that {Po}nyo satisfies the three-term recurrence relation

(2), then the coefficients B and ¥, Jor the corres
by {Qn}n>o are given by " " ponding three'tem recurrence relation satisfied

ﬂ°=al ﬁ3n+1= B, n>0
5 - _Pn (C)P#(d) . -
ﬂ3,,+1—-8 ‘—‘-"—';?t'p(c,d) ' ﬂ3n+3=b+%17(§(§g_(ﬂ, ﬂZO
=7 A
dp(e,d) = dat{e,d)

Fants = 7"*‘W TPani2 = W’ n>0
Po(O)PE(d)Poya(Q)PE ()
(‘f‘:“(c’d))z ¥
(i) I b= a and x4(a) #0, for fized (B,7), {Qu}nzo is & MOPS if and only if
T#0, 840, RlJ#0, Ri()#0,

‘73n+s =

n2>0.



Qunta®) = 2 [Penatrs(a) ~ 5D (s -4 3220 R )|
Qonssle) = ia [(z-2- 3529) Pusstto) + i P

foralin=0,1,2,..., where
Bu(z) = Fez), 8:=7+m3(a), vi=vP(c)/d.
Under such conditions, . -
Bo=a, Pampr=4, n20

ﬂ3n+2——a+;i;:z£)c) Pongs =a-— IPE:E(;) n>0

Pplc [
=9, ’)’:n+4——5‘)‘n+1—313%ﬁ(-";§—), n20

v 2
Tontz = —5%:{%, Yania = — (% P;zzé)@) , n>0.

Furthermore, let u be the moment linear functional such that {P,}n>0 is the corresponding
MOPS, and consider the basis {Bn}n>o of P such that

By(z):=1, Bspyi(z):=(z— a)nf(s),
Binga(z) := (g — o)} (x),  Bsna(z) := (z - o)z — B)n}(z)

forn=0,1,2,.... Then, in any of the situations (i) or (i), {Qn}n>o is an MOPS associated
to the moment linear functional v defined by

(v, Bo(x)) :=ug, (v, B3n41(2)}:=0,
(¥, Bang2(@) = 7(w,3"), (v, Banys(a)) =0 29

forn=20,1,2,....

Remark 2.1 In the case a = b and w3{a) =0, we have P{d) = P,(c) and since, according to
(9), D%7(c,¢) = ~7 15y % > the conditions (28) reduce to

7#£0, Pule)#0.
Corollary 2.2 Under tﬁe hypotheses of Theorem 2.2,
Q8 (@) = Palms(a)) +7(z — HPL, (ra(2)) (30)
holds for alln =0,1,2,.... Moreover,

Sy(g) = - (= ; f)fu("a(z)) ) @1

Finally, we give the solution for problem P3:
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Theorem 2.3 Let {Pa}nsobe an MOPS and {Qn}noa simple set of monic polynomials such
that

Qont2(®) = (z — a)(z — B)Pulma(s)), n=0,1,2,... (32)
where & end b are fized complex numbers and x3 is a polynomial of degree 3. Without loss of
generality, write

Q@) =z—a, Qsz)=(z - pF)Qsz) — 1Q1(=)
and denote )
ci=ms(a), d:=msb), Ai=-7(e~a), pi=-~v(b-a).
Then,
(i) Ifb#a, or b a and 7}(a) =0, for fired (a,7), {Qn}n>o is an MOPS if and only if

MAp#0, f=—[a+b+5(0)/2], FMe)#0, PL(d) #0, di¥(ed) #0,  (33)

Onsal@) = Pasa(ms(e)) + aned (m —a- M) Pa(ms(e)),

ROFE@ P ed)
. A
Qnsale) = (x ~b+ P—"*d*;—,‘:(’c—"ﬁ—)‘i"—) Paya(ms(a)) - %%‘Jg)ﬂpn(ws(z))

forn=0,1,2,..., where

y - | Dy d)fa—b) i b#
"ﬁ"(c’d)'—{ D8r(ee) §f bea and cha) =0.

Under such conditions, if {Pa}npo satisfies the three-term recurrence relation (2), then the

coefficients Py and F, for the corresponding three-term recurrence relation satisfied by {Qn}n>0
are given by

Po=c, Fi=atb-a, Bumuz=8, n20
Ean+s=b—P aOPhd - ot n+1(C)P 4(d)

e T g 0 "0
= —'\#/72: Fo=q
o __hed &t (e, d) ~
T ELRL@ T T ReRG 3!
o = - PIQPL @RGP
(@)

() If b= a and w4(a) # 0, for fized (@,7), {Qu}nno is an MOPS if and only if
A?éoa 6'7601 ="‘[23+'K"(0)/2]1 P‘\(c)#(), R;(C);éo,
Qunsale) = Porrs(e) 020 (2 -0+ ;220 p )

1P
Qansalz) = (-'6' -e-3 RZZS)) Poyi(wa(z)) + ‘15 1(»(:)11,(;)() )P n(3(x))



forn=0,1,2,..., where
Ru(@) = [PA]"(Gi), 8:=7+m3(a), vi=aPNc)/s.
Under such conditions,
Fo=a, Fi=ta-a, Bua=f, 20

1R = _ 1PMi(9
ﬂ3n+a~—a+ PR ﬁ3n+4—a— TN n>0

Fr==2/7, Ba=q, Fngz= Jpggcg n>0

~ 1P2(0) ) L PMARY(0)
Pon4d = — (" ™ y Yanes = e -2 n2>0.
8 Eyle) (Phale)’

Purthermore, let u be the moment linear functional such that {P,}n>0 is the corresponding
MOPS ond consider the basis {Cn}nyo of P such that

Co(x) =1, Cin41(e):= (z~bafla),
Cantal®) = (= — @)z ~ D1F(2), Cansalz) = (= ~ a)(z — b)?af(z)

forn=0,1,2,.... Then, in any of the situations (i) or (ii), {Qn}no is eon MOPS with respect
to the moment linear functional v defined by

(Vr Co(z» UG, (VY CSn-H (1:)) = %(ux,c, zn) 3 )
(¥, Canga(@) =0,  (v,Canys(a)) =0 34

forn=0,1,2,....
Remark 2.2 In the case a = b and #4{a) = 0, conditions (33) reduce to
COA#0, B=-[a+m@/d, PXO#0.
Corollary 2.3 Under the hypotheses of Theorem 2.3,
Q) = (@~ a=b++0) Palms(a)) ~ == B2, (ms(a) (35)
holds for alln =0,1,2,..., and

Syl = - 2= IR, (39)

As a consequence of the previous results, we can state that if {P,}nyo is & semiclassical
MOPS then {Qn}nyo is a semiclassical MOPS too (for the definition of “semiclassical MOPS”
see MARONI {17, e.g.). In fact,

Corollary 2.4 If Su satisfies
#(z)Su(z) = C(2)Sulz) + D(z)
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where ¢, C and D are polynomials, then Sv satisfies
)84 () = G(2)Sv(2) + D(z)

where ~
3(2) = p(2)o(ms(2)
i) ¢ C()=p'(2)9(ms(2)) + p(2)m3(£)Cms(2))
D(2) = p*(2)x3(2)D(ms(2)
for problem P1;

B(z) = (2 - 6)(z — B)p(ms(2))
@ 1 C(2) = (b~ a)glms(2)) + (2 ~ a)(z - B} () C(xs(2))
D(z) = tiod(ms(2)) + (z — )y (2)fuoClms(2)) + (2 — B)D(ms(2))]

for problem P%; finally, for problem P8,

$(z) = (z — a)(z ~ B)(ms(2)
(iif) C(2) = —(22 — a — b)g(ms(z)) + (z — a)(z — B)my(2)C(xa(2))
B(z) = ~uo + mi(fuo(z - a — b+ a)Cls(2)) - (/) Dlms ()]
Moreover, if ¢, C and D have no common zeros, so that s := max {deg C — 1,deg D} is the

class of u, then the class of v is at most ¥ := max{deg C ~ 1,deg D} < 35+ 6 (for any of the
above three problems).

3 Proofs

We will only prove Theorems 2.1 and 2.3 and Corollaries 2.1 and 2.3. The proof of Theorem
2.2 follows using the same ideas as in the proofs of Theorems 2.1 and 2.3. In the same way, we

can prove Corollary 2.2 by using the same technique as in Corollaries 2.1 and 2.3. Corollary
2.4 is straightforward consequence of Corollaries 2.1, 2.2 and 2.3.

3.1 Proof of Theorem 2.1
Assume that {Qn}nyo is an MOPS. Thus, it satisfies a three-term recurrence relation

2Qa(z) = Qnia(z) + ﬂnQn(z) + ')‘nQn—l (®), n21 (37)
Qz) =1, Qiz)=z-F

with Jp 3£ 0 for n > 1. Tt is clear that fy = 8, and then also §; = . If
ry(z) =2 +pa® 4 gr v
notice that, with this notation, the polynomial p can be written
Az} =(z+B)x+p) + 8 +7+q.
In the three-term recurrence relation (2) for {Pn}ns0 replace by z° +px?+qu+rT, 50 that

(@ + 72" + 92 + 1)Qun(2) = Qanss(2) + fuQsn(z) + 1mQans(z), n21. (8

10



Now, use successively (37) to expand #Qsa(z), 22Q3n(z) and 23Q3.(x) as
2Q3a(2) = Qan+1(2) + B3nQsa(2) + F3nQan-1(2) ,

7Qsn(®) = Qansa(®) + (Bonia + Ban)Qsnar (=) + Fongr + B2, + Fan)Qanlz)+
+73n(B3n + Ban—1)Q3n—1{E} + F30¥3n—1 Qan—2{x)

and

23Qan(2) = Qans3(2) + (Banta + Bants + Ban) Qansa(z)+
+{Asnsz + Bonir + ﬂSn)ﬂSn-H + a1 + B, + Yan 1 Qens1(@)+
+[Fsnt1(Bsntr + Ban) + Bsn(Fants + By + Fan) + Fsn(Bsn + Fin—1) ] Qanlz)+
+AanfTants + B +Fsn + ﬁ3n~l {Ban + Pan-1) + Fan-1] Qan—1 (2)+
+73n—17sn(Ban + Ban-1 + Ban—2)Qan—2(z)+
+¥3n-273n-173nQsn-3(2} .

Substitution of these expressions in the left-hand side of (38) yields a linear combination of a
finite number of terms of the sequence {Qn}n>0 which vanish identically. Therefore, since this
sequence is g basis of IP, we find the following relations:

Bonsa 4 Bonga + Ban +0=0 (39)
Fantz + Tansd + s + Pinys + BanPanss + By + 2(Bsn + Banys) +g=10 (40)

Hant1(Bans1 + Pon) + ﬂSn('Y$n+1 + ﬁs,. +%sn) + Fan(Bsn + Ban—1)+ @)
+P(Fsns1 + B3a +n) + @Bon +1 = Pn

Fant1 + Bin + Fan + Ban-1(Ban + Pancs) + Fano1 + P(Bsn + fan—a) + ¢ =0 (42)
Ban + Bany + Bana +p=0 (43)
FsnTan—1Ysn—2 = Tn . (44)

_ Combining equation (43) (after the change of indices n — n+1) with (39) leads to fapy3 =
By, for n > 0, so that ~ _
Pin=Fo=8 , n20 . (45)

Consequently, equation (40) can be rewritten as
Fanta +Fsnet +¥on + B+ (Bansa + BOBsnsr +p) Hg=0 ,
or, according to (39) and {45),
Fonsa +Font1 + Fsa + B2 + (Bansz + BYBans2 +p) +4=0 . (46)
Notice that (46) holds for n =0,1,2,..., with the convention %, = 0. Now, from {42), we get
Fsns1 + Fan + Fonet + B+ (Ban-1 + B) (Bt +P) +g=0 . (47)

If we change the indices 7 -+ n -+ 1 in (47) and then compare the resulting equation with (46),
it follows that Fsnsq + Fanis = Tanet + Faa. Hence

'73n+l+'73n='71=7 * ﬂZO . (48)
Now, from (42), (45) and (48) we have
7+ﬂ2+ﬁ3n—lw+ﬁ3n—l)+'~ﬁn—l +P(I3+I§an~1)+q=0 y

11
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so that, after the change of indices n =+ n+1,

Sansa + Fanse + B Bsnsa +p) = - +7+q) , n20 . (49)
Next, we will see how to define Qsnia and Qangz. We have
(2 — Ban+1)Qan41(2) = Qani2(2) + Van41Qsn(z) (50
and .
Qunsa(z) = Qanta(z) +'Y§n+2Qan+1(’—’) . 1) .
% — Pansz
Substitution of (51) in (50) yields
_ Pann (‘Ka(z)) +(=- ﬂ3n+2)13n+11’n(7fa($)) 5
Qunia(a) — Bsni1)(& = Bsnta) — Fonte (52)
But, using {39) and (49), we have
~ Bans1)(z — Banta) — Ponsz =
=z - (ﬂ3n+l + ﬂSn+2)z + ﬂ.’in+la33n+1 - Yans2 (53)
=2 +{p+ B +pB+ B +7+q
= plz)
and, therefore, (52) reduces to
Qsnta(z) = (x) —={ Paya(m3(2)) + (& — Banta) Fonsr Pulms(@))} . (54)
Moreover, substitution of (54) in (51) leads to
Qsnialz) = ( z) {(=- )33,.+1)P w1 (ma(z)) + Tint1PontaPulms()) } - (55)

Now, we will prove that conditions (16} must hold. We need to distinguish two cases:

_ Case 1: & # & According to (54), for each n the polynomial Paya(ms(a)) + (= =
Banta)Fant1 Pu(xa(x)) vanishes at the zeros of g, ie.,

Pagr{e:) + (8 — fanto)Fansr Pafe) =0, i=1,2. (56)
From (53) it follows that i B
APania) = ~Fansa (57

and then Bau.q.z is not a zero of p. Hence, we have a; — 53,‘.,.3 #0forallr and § = 1,2. Since
P, and Py, are coprime, we deduce from (56) that

Pafe)#0 , i=1,2 (58)
foralln=0,1,2,.... Now, write (56) for i =1,2:
A Ve o Pnaafer)
(a1 ﬁ§n+z)73n+x =" e (59)
> - P,
(a2 ~ Bant2)Tant1 =.*—-;,-—:%§—;l . (60)

12



Thus
a1 — fania = —gﬁi%;g%ﬁ—;(az ~ Banya) - (61)

Therefore, since a1 ;é ay, it follows that Payi(cs)Palca) # Pati(cz)Palc1), which is equivalent
to

Pn (c,, Cz) # 0. (62)

Notice that the conditlons a1 # az and ¢ # 0 yield ¢ # ¢. In order to verify this assertion,

use the relation #3(z) = (z — B)[p(z) — 7] + 73(B), put = = a; and = = a3 and then subtract
the above relations in order to find

oo =—v(a;—a). (63)

Hence, conditions (16) follow from (58) and (62).

Now, we will prove relations (19)-(21). In fact, formula (19} for /33,..,.2 is an easy consequence
of (61) and (63). The expression for Bans1 follows from fans1 + Panta = ay + ag (this last
relation can be easily obtained taking derivatives in (53)). We gei the first formula of (21)
subtracting (59) from (60). Now, from (59) and (60) we deduce

- . P Pn
B2} Tanss = _li’:%ﬁ%)@ ’

So, taking into account (57) and the first formula of (21), the second formula of (21} is obtained.
Finally, (20) follows from (21) and (44).

CASE 2: a; = a3. We will see that this is a limit situation of case 1 when a3 —+ a;. We
write a1 = @z = a and ¢; = ¢z = ¢. From (54) and (55) we can see that a is a double zero

of both polynomials Pt (73(z)) + (= ~ Bent2)¥ani1 Pa(ma(2)) and (2 — Bant1)Paya{ms(z)) +
Fsnt17ant+2 Ba(%3(z)). Then the relations

Poia(e) + (2 = Bsns2)Fansa Paf0) =0 (649
74(a)Phy1 (€) + Font1[Pa(0) + (6 — Banta) w5 (6)Pr(c)] = 0 (65)
(6 Bsni1) Pasr (€) + Fons1TsnsaPalc) =0 (66)

Poya(e) + m3(a)l(a~ Bant1)P, i1 (6) + Bns1FantaPo(Q] = 0 60

hold for n = 0,1,2,.

As in case 1, it follows that PBant2) = —Fsns, 50 that Psaye # @ and then from (64)
Polc) # O for n = 0,1,2,... follows. Since #3(a) = — (teke derivatives in the expression
ws(x) = (z = B)p(=) —-7] + xa(ﬂ), then put = = e and use p(a) = g'(a) = 0), from (64) and
(65), and taking into account that

P9 = Pha(0) - 2200p1g

we find Jan41Po(e) = 7P (e;c) . This proves Pp(g;¢) # 0 for n = 0,1,2,... and also the first
formula of (21) when a; = ag. The expression for ﬁan+g follows from (64) and the first formula
of (21) when a; = az. Now, by Yongz = ~p(Bsnsa) = —(a = fansa)?, we find the second
formula of (21). Fma]ly, the expression for Bana1 con be deduced from Bans1 + Pansz =28, as
well as the expression for Y3, from (44).

In any case, the representations (17) and (18), can be obtained by substitution of formulas
(19) and (21) in (54) and (55).
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To complete the proof, it remains to show that {Qn}n>o is an MOPS with respect to the
linear functional v defined by (23). First, notice that relations (23) yield

(@) = (u,f(=) , (68)
(viiz—HOf(m@))) = 0 , {69)
(v, (2 — Bz —Nf(ms(z))) = 0O (70)

for every polynomial f . To prove that {Qs}.>0 is an MOPS with respect to v, we only need
to show that .
(v, 1)#0 , (v,Qu(z)) =0,n21
(because we already know that {@n}n>0 is an MOPS). From (23), for 5 = 0 we get
{v, 1} = {v, AO) =u #0, (v, Q1(1')) ={v,z—f) = (V1 Al(z)) =
Using (68),

(v, Qan(z)) = (v, Pa(ms(z))) = (0, Pul2)} =0, n > 1. (71)
Moreover, from Qsn1(z) + T3n@3a-1(2) = (x ~ B)Qan(z) = (2 ~ 8) Pu(ns(z)) and (69), we get
(va Qangr (:L')) = "?Sn(\’» Qh-—l(z)) ,n>1. (72)

Now, since Q2(z) = (z — B)(z ~ B) — v = (2% — fz — ) — Bilz ~ B), from (23) we get
¥, Qale)) = (v,5% ~ fz —7) — fu(v,z — B) = 0.
Furthermore, from the three-term recurrence relation for {Qy}n>0 and applying (72) and (71),

v, Qsn42) = {v,5Qsn41) = Bans1{V, Qsnsr) = Fsns1{¥, Qan)

= (v,2l(z - B)Qan ~ TnQ@an-a]) + Brnt1¥sa (v, Qan—1)

= {v,2(z — £)Qsn) — Fn(V, Q2n + Bin-1Qan—1 + Fen-1Qan-a)+
+Bant17on{v, Qan1)

(v,(n: - Bz~ T)Qan)""('f %n)(":QSn) %nﬁan—l)("’y an—l)“
"'kn’YBn-—l (V, Qan—Z)

= _73n53n—1 (v;@sn-1) — ~ TonTan-1{v,Qan-2), n>1.

1l

Therefore, for n = 1 it follows that {v,Qs) = ~F382{v,Q2) ~ %%2{v, Q1) = 0; and, forn > 2,
since, by (72), {v,Qsn—2) = —Tan-3{v, Q3a_4), we deduce

v, Qnt2) = ~TsnBan-1{v: Qan-1) + FsnFen-1¥on_s{¥, Qan-a) .
Hence, since {v, Q) = {v,Qs} = 0, it follows by iteration that
(v,Q3np2) =0 , n>0.
This relation, together with (72) leads to
(v,Qans1) =0 , n>0.

"This completes the proof of the necessity of the conditions. Now, it can be easily verified that the
conditions are also sufficient, since them imply that {Qn}a>o satisfies the thres-term recurrence
relation (37), with the sequences {fn}n0 and {n}n21 defined by formulas (18)-(21).
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3.2 " Proof of Corollary 2.1

Put n
FAOED I R 9)
i=0
so that el i
Pu) - Paly) = (@~ 1) ), Y alByai~iy7 (14)
=0 j=0
and then also
n—-1 4
Pa(ms ()} — Palms(®)) = [rs(@) —ms@)] D O el @)mi() . (75)
i=0 §=0

One can easily check that
w3(x) ~ms(y) = - Nolz) + (T - — @)y - B +* - By -7 . (76)
Therefore, using (75) and (76), for n > 1 it follows that

(l) 1(:3) = }—(v QM)_ (

Sn—

y v, Palms(e) = Palmaa),
Yo z—Y . T—y
= %(v.,,[p(z) +(@-ay —aa){y ~ B) + (4 — By — ] x

nr—-1 i

x 33 ol wt (@) ()
=0 j=0
a-l i

= L35 Dl o)y, An )+

=0 =0
+z — a1~ a2){vy, Azj11 (¥)) + {vy, Aazra())}

n-1 i

= -ZZaE:’ws"(x)pu)(u,,yi)

U 320 =0

Po(ms(z)) — P,.(y)
w3z} —v
PP (nsf=))
which proves (24). Now, consider the representation

Su(@) = (ver -

and taking into account (from (76))

= p(z);o( Y by (74)

it

z) 2

I .0 (z—ay~wm)z—f)  a*—Pz—y
z—z m{z)~m(2) m(z) — 73(2) #3(z) - xalz)

we obtain

= S z — a; — ag){V. z—B 2 — Pz — '
8y(2) = p(2){vs, p—ve) —'ﬂz(z)) +(z - a1 —aa){ve, . 1r3(Z)) + vy, :3 - —~z1r3(1))'
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Since (formally) 1/[ms(z) — m3(2)] = 'Enzu ms™{(z)/n3+(2), according to the relations (23)
we have

T 1
Sulms(e)) = = 2 ey =~ 2 bl = o

n>0 n20

- (V: 3 (ﬂ: ﬁ)n’s"(.‘n»
{ves - (:t) Ws(z)) z

S n+l ( z) !
—fr—v, _ vz, (2~ Bz — 9)ma™(2))
(vmﬂ's(z) —1’3(2’)) 'é n+1(z) =0

Hence,
Su(2) = p(2)Sulms(2)}
3.3 Proof of Theorem 2.3

The first part of the proof is similar to the proof of Theorem 2.1 and thus we will be rather
sketchy, Hence, let

wa(z) =z +ps? + gzt
and assume that {Qn}nxo is an MOPS, so that
IQﬂ(x) = Qnu1(z) + EnQn(z) +’7nQn—!(I) , n>l (77)
Qlx)=1 , Q@)=z-f
with 4, # 0 forn > 1. Then, fy = @, 2 = and 53 =7 # 0. As in the proof of Theorem 2.1,
in the three-term recurrence relation (2) replace z by =® + px? + ¢z + r and then multiply by
(z — a)(z — b} to find
(=* + p2® + ¢z +7)Qansa(z) = Qants(e) + BQsns2(z) + 1mQanaa(z) , n21. (18

Then use successively (77) to expand 2Qsn42(x), 2*Qany2(z) and 23Qgnqa(z) as linear com-
binations of polynomials Q;. This leads to the following system:

Banta + Banis + Pansa +p=0 (79)

Fonst + Fanss + Fangz + Bnss + BovisaBanss + Basg + 0(finia + Bangs) +g=0  (80)
Bsnt3(Bansa + Bonta) + Bonta(Tants + Biuya + Fsnta) + Fanta(Bontz + Bonsa)+

+p{Fansz + ﬂ3n+2 +Fans2) + Qhanga + 7=, 1)

Fanes + Bz + Fense + Fin1(Banaa + Banir) + Fanat + p(Banga + Banr1) +g=0 (82)
Bsnsz + fangr + Ban +0=10 (83)

Yans2Van+1P3n = T - (84)

Aggin, notice that this system is very similar to the system (39)-(44) and then, using the
same technique as in the proof of Theorem 2.1, we easily get the following relations:

Bontz=Pa=p (85)
Ban-i-l +ﬁ3n =a+b (86)
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Yants + Yant2 =5+ o (€1)
Fant1 + Bansr + BYBonsr +9) = ~(B2 + % + T2 + ) (88)
Bn = w3(B) + (33 + F2)(B + P} + (B + Bant1)Fsn+2 — (P + Banta)Yonts (89)

for n > 0. Notice that from (z — B)(z — ﬁo) —% = Qu(z) = (z — a)(z — b), by identification
of coeflicients, we get

fi=a+b-fo=a+tb—-a , ’71=5'J.3~1—¢7'b="(0‘—")(‘1"b)=“'\I‘/’Y2
and then, since (by settingn:Oin(83))[§2+ﬁl + Fo +p =0, we find
B=h=—(a+b+p)=-[a+b+15(0)/2]
Also, from (88) for n = 0 one sees that
Fa+H ==[6"+(@+P)(a+p)+q . (90)

Therefore, in this problem, we can consider as free parameters only fy and 4y, i.e., @ and 7.
As in the proof of Theorem 2.1, for the representations of Qs and Qany1, e can find

(z—a)(z—-b)
(z = Bsn)(z — Bant1) — Fsnta

QSn(x) =

{ Pulms(2)) + (= — Bant1)Tsn Par(ms(z)) },

Qona(@) = Qsni2(z) +j‘an+1Q3n($) ,

T~ Pans1
and since (as in the deduction of (53))
(= — Bsn)(@ — Bant1) — Tans1 = (z —a)(z — b) (o1)
the above relations reduce to _
Qsn(z) = Palws(z)) + (% — Bant1)FenPrr(ms(2)) , (92)
Qsni1(z) = (2 = Ban)Pa(m3(2)) + FanTont1Pos (m3(z)) . (93)

If we compare with the proof of Theorem 2.1, we see that there is a difference between
the cofresponding situations. In fact, in this case the right-hand sides of (92) and (93} do not
appear divided by a polynomial and then we can't deduce any regularity condition immediately
from (92) or (93). So, we will work directly with the difference equations. First, notice that if
we replace in Qan4s = (€ — B)Q3n+2 — Fsnr2Q3n41 the expressions for Qanyz = (z — a)(z -
b)Pp(ms(z)) , Qanss and Qsnia given by (92) and {93), we deduce

Popa(m(@) = [(Z — )z~ a)(m — b) ~ (& — Bania)Vansa — (& ~ Esn)’?sr&z] Pu(ms(z))

Y Pr-1(m3(z))

from which, by comparison with the three-term recurrence relation (2), one obtains
wy{z) ~ B, = (z— Bz ~a)g—b)—(z— l§3n+4)'73n+8 —{z~ ﬁSn)’Yann , n20 . (94)
Setting z = a and z = b in this relation and according to (86), we find

Bn = c+ (6= Psnie)Tonts — (0= Fans1)Tansa (95)
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B = d+ (b — Bania)Tones — (8 — Bont1)ontz . (96)

From (91) we see that a # Ban 0 # /§3,,+| ,b# Ban and b# ﬁgn.H for all n. Now, from (91)
for z = a and using again {86}, we deduce

5 Y1
b— Py = ~—=— 97
m a— fBani ©n
and substituting in (95), we obtain
Brn=c+{a— ﬁ3n+4)’73n+3 + Yant1Yonid , n20. (98)
a—fant1
So, from (84),
2 z Tn
=c+ (6 — Banta)Ponts + —— n>1 ., 99
Bn ( nt-4)T3n - BomrsYiom y (99)
Now, introducing & sequence of auxiliary parameters, {6, }n>1,
Op:=—(a—- B3n+1 Yan , n21 (100)
it follows that 8, # 0 for all n = 1,2, ... and (99) can be rewritten as
Brtbupn+=c , n2l . (101)
n

To get the solution of this nonlinear difference equation we introduce the sequence of parameters
{ﬂn}nzo
vo:r=1 ; Ynt1:=0np1ln , n20 (102)
80 that
Wm#FE0 , n20 . (103)
Therefore, from (101) and (102) we get

a1 ={c= Bn)yn—~Taknr , n21 . (104)
For y1, we deduce .
p1= 6 =~(a~ B = ¢ —fo + el — fo)
where the last equality can be justified by using (98} and (97) for n = 0 and (86), so that
n=ce—(h+d , A=-hla—-Fh)=—1a-a) . (105)
We notice that A 5 0. It follows from (104) and (105) that

o= PHA=Pa(e) - 2P0 , n20 . (106)

Hence, the condition P)(c) # O holds for all n > 0. Moreover, since 8, = yp/yn.1 =
PMc)/P)_(c) for n > 1, we find from (100) the relation

P}e) a1

(o - Bans1)isn = g "2l (107)
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Notice that if we start again with (91), but now taking = = b , and change the roles of
and b in the previous reasoning, we also derive P{(d) #0 for alin > 0 and

- . pe
(b Bane1)¥on = '“-P—f,:'i-% , n>1 . (108)
Subtracting (107) from (108), we get

PL1(QPE(d) - PPy ((d) _ _ Dp¥i(c,d)

R - ST ) PLOPL@ "2t 00
Now, notice that, taking into account (94) and (87), the equality
#3(z) ~mp) = (- Yz - o)z - Y+ (z+y —a~b)y —B) -~ (Fa +4)] (110)

holds, from which it follows that
(d —c)/(b—a) tf b #a

—n4{a =a (113)

C==’"Ys+"{2={

Hence, we distinguish two cases:

CaSE 1: b # a. We conclude from (109) that the conditions D)"“(c, d) 7 0 hold for n > 0,
ie., di*(c,d) # 0 for n > 0. Then (109) also gives the expression for qs,, and following the
same steps as in_the proof of Theorem 2.1, it is easy to show that Qsa4.s and Qani4, as well as
the coeflicients f, and #,, are given by the expressions indicated in the Theorem.

CASE 2: b= . Then (109) reduces to a trivial equality. From (107), we have

2 1(6) + (6= BonsaVianssPM) =0 , n20. (112)
Thus, multiplying by a — Bansa (= Fens4/(@ — fsnsa), according to (91)),
(& ~ Pant3)Pais () + FonisTontaPa() =0 , n>0. (113)
Therefore, by (113), (86) and (112}, we have

PMY . o o & _ & o _ B 1
2 (c)'yan+s'rau+4 (@ Bsnss) =0~ fPants = P s

so that, taking into account (84) and (87), -

PMo) _mm  __Paulg 1
B}y (@) {—nis PMe) Yanas

n>0 {(114)

where { = 4 + %2 = ~n4(a)}, according to (111). Now, we analyze the followmg two sub-cases:

SuB-Casg 2.1: ( = 0. It follows from (114) that Janye = 7n+1[P (©)/ P21 (&) Asn4s and
by iteration of this equality we get Fsnts = {N72- .- a1 /[Pra ()] H, so that, since in this
sub-case 43 = ~4; = —1y and taking into account (9),

Do
In=ThG7 - »20.

Honss = ~ P

i=1

From this we can easily conclude the proof of the Theorem in this sub-case 2.1, i.e., b= a and
#4(a) = 0. This also finish the proof of part (i} of the Theorem.
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SuB-CASE 2.2: { # 0. Introduce a sequence of auxiliary parameters, {£x}n>0

fni= — A~ >0, (115)

- P9
Tni2 B +1(c) én4t 2 3‘+1 ©’

n>0. (116)

Introduce another sequence of auxiliary parameters, {fn}n>0, by
Pe) ]
R, f):\+1 (e
Then, by (116) also 7, # 0 for all n > 0, and substituting in (116) the expressions of {n and
£ny1 given by (117) - notice that { # 0 - we find, after multiplying by ¢,
Pra(dPe) 1, Phalg
[P 3+1 (oF 77n P; r'a\+1 ©

Thus, taking into account that YapaPya(6) = =Py s(e) + (€ — Bni2)Py2(c), as well as (4)
with P;(c) replaced by PM(¢),

N = —Tnt1 [(En - n>0. (117)

7n+2P1.+I( °)

+nt1 = —Tnt
n+2(c) "

7n-:~1
Tt + Bty +
T

=c, 120, (118)

where {82 }nzo and {1}}1}npe denote the sequences of the coefficients which appear in the
three-term recurrence relation for the MOPS of the kernel polynomials of K-parameter c,
{IP21"(¢; Y} n0, corresponding to the sequence {F2}npo. As indicated in the Theorem, we
will denote R (z) := [P2]*(c;) for n > 0. Notice that {Ra}nso is in fact an MOPS, since we
know that P2 (c) # 0 holds for all n > 0. In order to find the solution of the difference equation
(118) we consider the sequence {z,,},‘zn

%=1 , Zn =z , 120

Then 2, # 0 for all » > 0 and, by (118),

A
Zn31 = {e— B2 )2n —'y,’}‘z,.-l , n2>1.

For z;, we have:

- e @] _ [ ¢PRE91 1
o= = [Cﬁn P&(c)]— 'h[ TR _1_’1*—(3]

P). P, ¢
'73(6) P 1;’ 20) : '173(8) * ﬁo ﬁé* ser ﬂs‘ * g’%!—(fl - P?(C)

o

= o=+ SSERO == 6 +0),

with v = —yPMc}/ (¢ — 7) = 7PN}/ (n§(a) + 7). Therefore, we conclude that
z":}i;(c) ’ ﬂZO,

20



and then RY(c) # 0 for all n > 0. Consequently, going to back, we deduce successively

B _  __ _ PO %ers Phald) & _ PAa(0) Ganss
Ry T T [ce P*H(c)] Yot Py @ Enr PN Tomis

hence, P2, (¢}ante /RS 1{e) = Pa(c}ansa/RE(S) (n > 0), which leads to

Fanya = (- “()%8 = "511;8 n20,

where & := w4{a) + . From this we easily conclude the proof of part (ii) of the Theorem.
Finally, we show that {Qx}n>0 is an MOPS with respect to the linear functional v defined
by (34). First, notice that (34) implies
(v, (z — b) f(ms(z)))
v (z — o)z — B) f(ms(z)))
(v, (z — a)(z — b)*f(ms(z)))

for every polynomial f . Since {v,1) = ug # 0, to prove that {Q,.},,Zo is an MOPS with
respect to v, we only need $o show that

(v,@ulz)) =0 , n=12....

I

%(u“’ﬂf(z)) ,
g,
0

1l

In fact, it is obvious that
(%, Qant2(=)) = (Vi [z~ a)(z — O)Pu(ms(z))) =0 , n2>0.

Since Qsnya(z) = (2 — B)@sn+2(%) — Tnt2Qant1(2) = (= — a)}(z - b)* Po(ws(2)) + (0 — B)(z —
a)(z — B)Po(w3(2)) — Fan+2Qsn+1(2), it follows that

(v, Qani3(@)) = ~Tansa2{v, Qsn (@)} , n20. (119)

Now, notice that, from the expressions for Qans3(z) and Jsn4s (in the Theorem), and taking
into account (11), we can write

Qanss(@) = Pt (ma(@)) + Fanss(z — @) Palns(z)) , n>0
{in both cases (i) and (ii)). Hence, forn>1,

Qansiz) = (z—b)Qanlz) + (0~ ﬁh)@sn(z) ~ Y3nQan—1(z)
= (z—BPy(rs(z)) + (b~ Fsn)Qanlz)
and thus, since (v, (x — B)P*(x3(z))) = §{uMe, P)(z)) =0 forn 2 1, we find (v, Qany1) =
(b — Ban) (v, Qan), or, according to (119),
%, Qant1) = —Taa—1(b— BanHv,Qang) , n>1.

"Therefore, since

(vi Ql) (V, z - a) (Vv Gy (3)) + (b a)vo (uA,c‘ 1) + (b - a)ug

©
~+b-ajug =0,
G )

i

i
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it follows recurrently that
’ (V1Q3n+1)=0 , n20.

This relation, together with (119) leads to
(V:QSH-H) =0, n20,
which completes the proof of Theorem 2.3.
3.4 Proof of Corollary 2.3
We have

g-)+1(~'°) = —“(" g

(z ~ a)(z — B) Pul(ma(a)) — (y —a)y — b)Pn(rs(v)))

ey (120)

Put Po(z) = T2, iz, 50 that (74) and (75) hold. So, taking into account (116) and (75),
we deduce

Pa(xs(z)) — Pa(ms@)) = .
=e-Pllz—a)z-b)+{z+ty—a-by- B -+ -7:)}’?2__3: 2'3 ol 74 (myl(y) -
=0 3=

Since
(= — a)(x — B)Pa(ms(z)) — (v — a){y — B)Pulms(@)) =
= (@ — 9}z +y —a—b)Pa(ma(2)) + (¥ — a)(y — b) [Pu(ma(z)) — Palms(y))]

we obtain

3

s:-—au:-—b)l’,.]r;(z)!—h—aug—i}?n!l’s‘ﬂ! -
= (z+y— a5 Palms()) + (y - )y — )
x| — a)(z ~B) + (5 +y — a — B)(y - B)  Cis +«7,)]'}§; z:;o o @)
=i J-..

Therefore, from {120) and (vy, (y — a)(y — b)x(y)) = 0, we find

W@ = Zlopz+y-a- Pl +
n—-1 4
+—}:Zaﬁ’;’m I @)y (e + 3~ a— By — By — o)y — BYmilw))
¢=0:]—0
= (z—a—b+a)Pa(ns(z)) +
n—-l i
= ggaii’n;”(x)w, v - By - B — o)y - Byxi)) .

By (110) for z = a, we get {y — f){y ~ a)(y — b) = x3(y) — c+ (5 + Fo}{y — 0), s0 that

(vily - By - By — o)y — B)xd(x)) =
= (v, (y ~ B)fms(y) - rd @) = B, (o)) = 24,4y .
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Consequently,

"

(z —a— b+ )P (ms(z)) ~ -——-—-(uy, Z Z afi)lrg"’ (@))

i=0 j=0

{z ~a—b+ a)Pu(ms(z)) — —EP (1)1('"’3(:‘))

gz)ﬂ (=)

]

Using (110), it is straightforward to verify that
Gmolleh) = (5 — o)z - HEBLED — (z—a—b+a)—(z—a)+

—x3(z)

— - —, -5 e —
+ B+ (o - gl

Therefore, we deduce

(z-a)e-BS ) = (va, E=ED)

i

= —(z—a){z— b)z(‘”C’“’) ~wfz~a~b+a)—

n+l
= T (@)

~vo-a)-3 (v, (z — b)lws (@) —clms™(z))

n>0 "+ (z)
(V, C!n-!-S) + (b — ﬁ)(vt 03n+2)
—(z~ a) ,g) 1rﬂ,+1 (Z)
= —wolz—a-bta)+E DY (“jf
n>0 (z)

= —u{z—a—b+a)— %‘Su(""s(z)) '
which proves (36).

4 The eigenvalues of a tridiagonal 3-Toeplitz matrix

Theorem 2.3 can be applied to thé &etermination of the eigenvalues of a finite tridiagonal
3-Toeplitz matrix, which as the general form

(a; b 0 0O G 0 O
g 6 b 0 0 0 O .
0 € a3 b;'. g 0 06 .
0 0 ¢ ay b 0 0 -
Ba={0 0 0 ¢ as b 0 --- | €RO. (121)
0 0 0 0 ¢ a3 by .
0 0 0 0 0 e a -

It is assumed that B, is irreducible, i.e., bje; # 0 for i = 1,2,3. We mention that the corre-
sponding problem for 2 finite tridiagonal 2-Toeplitz matrix was solved by M.J.C.GovERr {10]
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(see also [12] as well as [7] where a more general situation for band matrices is considered).
Given B, define recurrently a sequence of monic polynomials {Pp}n>o by (2), with

Bn=bies +baco+bscs , Ynis = bibabsereacs , n20.

According to the Favard theorem (see [5, p.21}), {Pa}nzo is an MOPS. Furthermore, since

the coefficients S, and -y, are constant, then P, = P.(l ) 5o that PXz) = Pa(x) = APp1 ().
Furthermore, one easily see that

X o~ :I:—blcl—szQ—-bgca
P.,(:z:) = (2 b1b2b3010253) n ( 2 f—E;B————bl C1C20a ) , n20

where {17,.},.20 are the monic Tchebyshev polynomials of second kind, ﬁ,,(:c) = 27", (z), and

sin{n + 1)0

Un(z) = sind

, & =cosf.

The polynomials {U,,},,>o satisfy the three-term recurrence relation a:U,,(a:) Oopalz) +
10n-1(2) (n > 0), U_y(z) = 0, Uo(z) = 1. Remark that the zeros of U, are 2,2 = cos &,
k 1,2,...,n. Motivated by (91) and (94), let @ and b be the zeros of the quadratic polynomlal

(z—a1)(z—az) —bier (122)
and define
T~ 0y 1 1
by z—az 1
b;cs 6262 T —as

3(x) 1=

(123)

Choose o := ay and 7 := bace. Now, according to Theorem 2.3, let c = 73(a), d = m3(b),

1= ~baca{a — a1) and p = —bacz(b — @), With these notations, using induction and the
three-term recurrence relation {6), it is straightforward to prove that

PMc) = [bscalaz — )" #0, PA(d) =[bsca(az ~ B)]" #0,
D*(c,d) = {a — B){Bscsf" (—bicr)" #£0 if ba,

DY(e,¢) = ~byca(brcibacabses)™

for all n 0,1,2,... (We can infer the first two formulas from (107) and (108)). Furthermore,
fa=b= (a1 + az)/2 then biey = —(a1 ~a3)*/4 and #'{a) = —(bacs + bacs). Henceifa="b
and 1r'(a) # 0, we have § = 1 +#'(a) = —bycs , ¥ = YPM)[ = bocy(ay az}/2= X The
polynomial Ry, defined in (ii) on Theorem 2.3 coincides with Py, so that

Ri(c) = B{(e) = [bacs{aa — @) /2" # 0
for all n = 0,1,2,.... Therefore, if we define a sequence of polynomials {Qn}nzo such that
Qsalz) := Pu(ma(x)) + bacs(z — a2) Py (ms(x))

Qsny1(z) = (z — 61) Palns(x)) + breybacs Puoy (ms{a)) (129
Q3n42(z) = (z — a)(z.— B) Pa(ms(z)),

then Theorem 2.3 ensures that {Qn}axo is an MOPS and the parameters for the corresponding
three-term recurrence relation are

Ban = a1, Pant1 =0z, Pansa = a3, Foner = brcy, Fonsz = baca, Fangs = bacs.

24



It follows from a well known result of the theory of tridiagonal matrices that the eigenvalues
of By coincide with the eigenvalues of the triadiagonal Jacobi matrix of order n, loes? ey =15
corresponding to the MOPS {Qn}np0 — which, by definition, has entries oy 1= §;_;, iy =1,
@1, = 7;. Hence, the eigenvalues of By, are the zeros of Qy, and the following proposition
follows:

Theorem 4.1 Let B, be an irreducible tridiogonal 3-Toeplitz matriz, given by (121). Define o
polynomial w3 as (123) and denote a and b as in (122). For a firedn >0,

(i) the eigenvalues of By, are the zeros of Qy defined according to relations (124);

(i) #n particular, the eigenvalues of Banya ere a, b and the roots of the cubic equations

wg(z) = brey + baca + bses -+ 24/ bibgbsey ezcs cos ;‘g—l— , k=1,...,n.

5 Second order linear differential equation

According to Corollery 2.4, we know that if {Pn}npo is & semiclassical MOPS, then so is
{Qx}np0, in any of the above three problems. In particular, this means that if the polynomials
of the sequence {Py}np0 satisfy a second order differential equation, say

Ju(@)y" + Kn(2)y' + La(z)y =0 (= Pul2)) _ (125)

(n = 0,1,2,...) where J., K, and L, are polynomials in the variable z, whose coefficients
depend on n but whose degrees are uniformly bounded by a positive integer number independent
of n, then the polynomisls of the sequence {Qn}n>0 also satlsfy a second order differential
equation of the same type, say

Ta(@)y" + Ba(zly' + Lalzly =0 (v = Qu(2)) (126)

(n=0,1,2,...) with J,, K, and L, polynomials whose coefficients can be dependent on r but
whose degrees are also uniformly bounded by a number independent of n.

In fact, if {Pq}npo is semiclassical of class 5, so that the polynomials ¢, C and D which
appear in the first order linear differential equation satisfied by the Stieltjes function associated
o u (see Corollary 2.4) are co-prime and s = max{degC — 1, deg D}, then

degJ, <2s+2, degK,<2s+1, degL,<2s,

and analogous upper bounds can be given for the degrees of the polynomials J,,, Xy, and L,
which appear on equation (126) in terms of the class § of {Qn}nx0-

‘We want to determine the J,'s, Ky,'s and L,’s in terms of the J,)’s, K,,’s and L,,’s. We will
do that only for problem P3 (for the others it is similar),

In order to obtain the differential equation (125) for 2 given semiclassical MOPS {P,}nz0,
an important tool is the so called structure relation

#(@)Pa(z) = Ma(z)Pr1 () + Na(2) Pu(z) (127)

{n =0,1,2,...), where M, and NV, are also polynomials in the variable z, whose coefficients
can be dependent on n but whose degrees are uniformly bounded by a number independent of
n. In fact,

degM, <s, degN,<s+1.
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The structure relation (127) is also a characteristic property for a semiclassical OPS, and if we
know the above polynomials ¢, C and D, then the polynomials M, and N, in (127) can be
successively deduced from the mixed recurrence relations

n=~C — Nyo1~{z — Bn)Mp (128)
a1 Mpi1 = —¢+ TaMp1 + (2 ~ Bn)(Np-z ~ Np) (129)

(n=0,1,2,...), with initial conditions
Noy=C, M_1=0, My=uz'D (130)

(up := (u,1)). Now, the polynomials J,, K, and Ly, in (125) can be computed by means of the
relations

: n
Jp =¢Myn, Ko=W(M,¢)+CM,, L,=W(NyM,)-M, Z M; (131)
i=0

(n =0,1,2,...), where W{(f,g) := f¢' — f'g (the Wronskian). By combination of (128) and
(129) we can give the following alternative expression for Ln:

Ly = W(Np, My) — (Y41 MaMpyy — N: — CN, )M, /.

‘We remark that the previous results follow from the theory of semiclassical orthogonal polyno-
migls presented by P.MARroNI in {17}

The next result gives the structure relation for the polynomials of the sequence {Qn}nzo
corresponding to problem P3.

Theorem 5.1 Under the conditions of Theorem 2.3, if the polynomials {P.}n>o satisfy the
structure relation (127), then the polynomials {Qn}n>o satisfy

$(2)Q%(3) = Mu(2)Qn41(2) + Na(2)Qn() (132
(n=0,1,2,...), where §, M, ond N, are ezplicitly given by
#(z) = (= - a)(z — b)g(ma(z))

Mani1(z) = dlxs()) + 74E@N FanTans1Mao1(m3(2)) — (2 — Ban)x

* [C(ma(x)) + 2Nn—1(m3(2)) ~ Fans2(z — Ban) Ma(ms(z))}
Mnya(z) = (= — a)*(z — b)?w}(z) Mn(ma(z))
Mynia(z) = —9(ms(=)) + 7@ {FaneaTonss Masa (m3(2)) — (@ = Bansa) X

% [Clrs(2)) + 2Na(73(2)) — Fans3 (T ~ Bansd) Mn(ms(z))]}

Fns1(2) = (= - a)(z ~ )3 (=) N1 (m3(2)) = Fansa(z — Ban) Ma(ms(2))] (133)

Fans2(z) = (27 — o — b)¢(ms(z)) +
+ (= — a)(z — by () [Na(m3(x)) — Fans3(z — Banpa)Ma(ms(z))]
.ﬁ3n+3(3-') = (1' “ﬁ3n+3)¢(”3(3)) +
+x5(z) { (z — o) (= — B} Nnlw3(=)) — Fsnssa(x ~ Bansa) Malma(z))]+
+Fan+4lNn{F3(2)) — Fonss(@ ~ Banga) Mapy (mal{z))]—
~ Fant4lNn-1(73(2)) ~ Fans2(x — Ban) Malra(z))] } -
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Proof. Making the substitution  — m3(z) in (127), then multiplying the resulting equation
by (z — 0)2(9: — b)*x3(z) and using the relations Qszni2(z) = (2 — a)(z — b)Pp(ma(z)) and
Qint2(®) = (2 — a — )Pu(ms(z)) + (& — &)(z — bmh(z) Pl (ms(x)), we get

$(@)Qh12(2) = (= — )(& — Bl (2) Malms (2))Qanss ()t

+[(z — o)z — D) (@) N (ms (2)) + (22 — 6 — B)@(m3 (<)) ] Qana(z)-

But, using the three-term recurrence relation for {Qn}n>0 we can write, according to (91),

Qanis(z) = (1‘-" a)(z ~ B)Qsns3(2) — Fanta (e — Bonta)Qonsa(®)

and so the above equation reduces to
H(2)Qhrr2(2) = Mans2(2)Qan13(z) + Nonsa(2)Qsnsa(2),

with M3n+£ and Nynsz defined as'in (133). Now, since we have determined M,,,+z and N3qqg
for alln = 0,1,2,..., we can determine all the others My’s and Ni's, by using the relations
corresponding to (128) and (120) for the M;'s and Ny's. In fact, from (128) one immediately
find

Fspga(z) = —[C + Nansa(z) + (= — Bant2) Manialz)],
so that, using the expressions for M3z and Napio already determined as well as the expression

for C as in Corollary 2.4, one obtain the expression for Na41 given in (133). Now, combining
(128) and (129) one easily see that

7 Fan+4(C + Nanga) + (2 = Bana)l=6 + TsnssManin + (& — Bonss)Nanga]
3043 = = = — ,

(= — Pana3)(z — Banse) ~ Tante
and notice again that (z — Bsn13)(@ — Bsnia) — Fonsde = (& — a){z — b). Hence, using the
expressions for Nanpd, N3n+z and Ms,yo already calculated, after some simplifications we
get the expression for N3n+3 as in (133). Finally, since we know all the Ny’s, from (128) we
determine the remainder M;’s.

6 Connection with sieved orthogonal polynomials

Consider the sequence {C¥ }">0 of the Gegenbauer or ultraspherical polynomials, which is
usually defined by the three-term rectirrence relation

2n +)2C5(2) = (0 + DCLu () + (R + 2 - 1C4(e), n21,

with initial conditions C§(x) =1, C}(z) = 2vx (see [8, p.175]). Assuming that v # —nf2 (n=
0,1,...) one see that {C¥},. is an orthogonal polynomial sequence. The leading coefficient of
Cr(s) is 2"(v)n/nl, 50 one can define an MOPS {Fr},.5, by

n!

LIy o =0,1,2,.... © (134
23"(V+1),.G“ (4z), n 1y (139)

Py(x) :=

Then the coefficients of the three-term recurrence relation corresponding to {Pn} 50 are given
by

(n+l)n+2v+2)
64nt+v+dn+v+1)’

Ba=0, Y= n=90,1,2,....
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(see [8, p-175], with an appropriate normalization). Hence, from formulas (133) we find, up to
the factor LUs(z)r3(z),
) = 1 —=)Wa(z), Cle)=—al(Br +1)Ua(z) - 120],

Mian(z) = —[(6n 4 6v + 2)Ua(z) —6v], Non(z) = z[(3n + 6v + 2)Uz(z) — 6¢],

WManya(z) = —[(6n + 6v+ OUa(2) + 64},  Nansa(z) = (Bn +6v + 8)zla(z),

Mspia(z) = —(6n+6v +6)Ua(z), Nansa(2) = z[(3n + 6v + 4)Us(z) — 120,
where Up(x) = 4z — 1. Now, we get the second order linear differential equation that each
Q, satisfies from the formulas for the Ji's, Ki’s and Ly's corresponding to (131). Notice that
in [3] the authors considered the general case (not only k = 3), but there is a mistake in the

computation of the coefficients of the differential equation, 2s one of the authors confirmed to
us in a private communication. For k = 8, if we put

palz) = Bi(z;3),
we deduce (by the indicated way) that {p}azo satisfies

an ()Pl (2) + ba(@)Ph(2) + enlz)pn(z) =0, n=0,1,2...,

where
am{z) = (- a?)a(z){(3m + 3v + 1)Us(x) — 3]
bim(z} = 3z{~(2v+1@m + 3v+ DUZ(z) + 3v(dm + 6v + 3)Us(z) — 6v(2v + 1)}
caml{x) = 3m{(3m+ v+ 1)(3m +6v + 2)U{z) — 3v(3m + 6v + 4)Ua(z) — 61/}
asmia(z) = (1=z")0e(E)[(3m + 3v + 2Us(z) + 3v]
bamsrz) = 3z{—(2v+ 1){3m+ 3v + U (z) + 3v{dm + 2v + 1)Us(z) + 6v(2v + 1)}
cimir(z) = 3(m+ 20+ D{(3m+ 1)}{3m + 3v + DU(z) + 3v{3m ~ 1)Us(z) — 6}
agmia(E) = (1-2%)U3()
bamiz(z) = ~3aUz(z){(2v + 1)U, — 4]
Camial{z) = (Om+2)(3m+ 6v + H)UZ(2) — 120Us(z) ~ 24v,
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