ORTHOGONAL POLYNOMIALS AND CUBIC POLYNOMIAL
MarpPINGS 11 : THE POSITIVE-DEFINITE CASE
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Abstract
Let {Pa}nyo bea of pol; ials orth ] with respect to some distribu-
tion function o and let {Qn}azo be a simple set (i.e., each @, has degree exactly n) of

polynomials such that
Qsnim () = Om{z)Palms(z)) forall n=0,1,2,...

where s is a fixed monic polynomial of degree 3 and &, a fixed polynomial of degree m
with0<m < 2 We gnve necessaty and sufficient conditions in order that {Q. },>o bea
of p Is orth ] with respect to some distribution function ¢. Under

these condmons, we prove that

) = 3 M (o) i+ (@) | S5 S22

=1

where x4 means the characteristic function of the set A, [£,9] is the support of do, 62_m
denote a polynomial of degree exactly 2 ~ m and, if m > 1, M; is a mass located at the
zero z; of O (z) = [~ (z — 2v), &z, (z) being the Dirac functional at the point ;.

Stieltjes
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1 Introduction

Let {L&“)}nzo be the sequence of the Laguerre monic orthogonal polynomials, characterized by
the orthogonality relation

o0
/ L (@)L (z)2%e~"dx = knbpm  (kn = const. > 0), n,m=0,1,2,...
;)

provided that & > —1. If we make the change of variables = — 2* and choose a = —-2/3, then
+oo 3 k,..
[ 0@t = P, mm=012,...

where we wrote Qsnlz) = LS 3(23). This leads to the following question: if we define
Qan(z) := L :’)(13) for all n = 0,1,..., can we complete the system {Qn}n30 (i-€., how to
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define Qans: aud Qsnqz 7) 50 that {Qn}n>o be a sequence of (monic) polynomials orthogonal
with respect to the weight function e—*" supported on the interval ]0, +o0o[ ? It can be a little
unexpected, but the answer to this question is negative (one of the reasons is that |0, oo is not
a bounded interval - see Remark after Th 3.1). More g lly, we consider the following
problem:

Problem: Let {P,}n>0 be a sequence of polynomials orthogonal with respect to some distri-
bution function o and let {Qu}n>0 be a simple set (i.c., each Q, has degree n) of polynomials
such that

Qanim(®) =0 (z)Pa(ms(z)) forall n=0,1,2,...
where x3 is a fived monic polynomial of degree 3 and 0, is a fized polynomial of degree m with
0<m < 2. To find necessary and sufficient conditions in order that {Qn}nze be a sequence of
polynomials orthogonal with respect to some distribulion function 5.

Notice that we must distinguish three cases, so we will refer as P1, P2 or P3 to the above
problem for the three possible choices m = 0, m = 1 or m = 2 (resp.). In {10} we analyzed
these three problems without the assumption that the given sequence {P,}a>0 and the required

sequence {Q,}azo be orthogonal in the positive-d sense (i.e., with respect to some dis-
tribution function), 80 that, {Pr}n>0 and {Qn}n>0 were considered orthogonal with respect to
some regular (or quasi-definite) linear functional {4, p.16]. In this paper we will assume

the results and the notations of [10]. We will ider monic orthog
{MOPS), which are characterized by a three-term recurrence relation

TF(2) = Pat1(z) + fnPalz) + YaPualz), n21,
By(z) =1, Pz)=z~po. 1

! polynomial sy

In the general case, {Bn}n>0 and {yn}ap1 are sequences of complex numbers, with v, # 0
for all n > 1; in the positive definite case each f, is a real number and v, > 6 for all n. In
the next it is important to have in mind the definitions of some useful MOPS’s (cf. also [10}):
{Px(c;)}nx0 (Where c is a real number such that P,(c) # 0 for all n > 0), the well known
sequence of monic kernel polynomials of K-parameter ¢ associated with {Pp}ns0 [4, p.35;
{P,(“) }np0, the sequence of the monic associated polynomials of the first kind of {Pa}nxo (4,
p.86}); {P,{‘},,ZU ) & fixed real number), which is called the co-recursive sequence of {P,.},.;o for
the modification A (CHIHARA, [5]); and {P2}}.50, (where A and ¢ are real numbers such that
X # 0 and P2(c) # 0 for all n > 0), which is the MOPS corresponding to the linear functional
u*< defined by (z — cJu™*® = —Xu, or uM = ug, — Az — c)~'n, where u is the regular linear
functional associated with {Pn}a>0, & is the Dirac functional at the point c, (5., £ = f(c) and
(x~c)"u is the linear functional defined by {(z —¢)~*u, ) := (u,{f(z) ~ f()}/(z ~ ), feP
{MARORI, [12}). Here, P denotes the set of polynomials with complex coefficients., Notice that

C P:
BMe) = Pae) = WP (@), PR(e) = Pale) — i Poa(o)

for altn =0,1,2.... Agin [10], for z,y,¢ € R, we will use the notations:
D;}"‘(z,y) = P,f‘(z) Pyﬁ(—l (z)

] R
Piy) Py |'"= 0,1,2...; P{):= Jim P00’

2 Two Preliminary Lemmas

In [10] we have idered “formal orthogonality”, in the sense that the orthogonal polynomials
{Pa}nzo are related to a numerical sequence t, := {u,2") , n=0,1,2,.. ., independently of the
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fact that these numbers are moments of some weight or distribution function on some support
or not. In order to study when this can occur, we must analyze when a regular linear functional
u i8 positive definite, i.e., (u, f) > 0 for all f € IP such that f(z) >0,Vz € Rand f #0. Bya
well known representation Theorem [4, Chap.Il] a linear regular functional u is positive definite
if and only if it admits a Stieltjes integral repr ion (u, f) = [*2° f(z)do(z), for every
polynomial f , where o is a distribution function [4, p.51]. Given a sequence of orthogonal
polynomials {P,}a>0 satisfying (1) with £, € R and v, > 0 for all n, it is possible to obtain
the corresponding distribution function, o, from the asymptotic behavior of F,{z) and P,Sl_)l (z),
according to Markov’s theorem (see [4, p.89), e.g.),

P9 (2 +09 do (¢
~uo lim —E—(‘é)—) = F(z0) = [_ N t—"_‘;) € C\supp(do),

uniformly on compact subsets of C\supp(do), provided that supp(do) is pact (the functi
F(.;0) is called the Stieltjes function of the distribution function ¢). The distribution function
o(z) can be recovered from the above limit relation by applying Stielties inversion formula: at
the poiuts ¢; and ¢, where o is a continuous function,

1t . .

olts) -~ ot} = lim 51 fh [F(z +ic;0) - Flz — is;0)] da.
Notice that, if X is real and {P,}n>o is an MOPS with respect to a positive definite linear

functional, then 50 is {P2},>0, as well as (Pf(.” }nzo0. We denote by sgn the sign function.

Lemma 2.1 Assume that {Pa}nzo 18 an MOPS with respect to a positive definite linear func-
tional and let [£,7] be the corvesponding true interval of orthogonality [4, p.29]. Then the true
interval of orthogonality of {P)}a30 is contained in €+ A,n] if X < 0 ond is contained in
[€,m+ A] if X > 0. As a consequence, for a fized pair (X, 1) of real numbers and n € Ny,

A<0, z<E+2 3 sg[P(@) = (-1
p20, y2n+p = sglPi@)]=+1
A<0, >0, z<E+A, y2n+p 2 sgu[Di(z,y)] = (-1)".

Furthermore, for any ), the zeros of P} are in |€,1{ for every n if and only if P(£) < A < P(n),
where P(£) (resp. P(n)) must be replaced by —co (resp. +00) if € = —00 (resp. 7= +00).

Proof. By using results from [5], was shown in [9] that if A < O then the true interval of
orthogonality of {F)}nyo is contained in [£,7 + A]. The proof is similar for A > 0. The last
statement in the Lemma is a result proved in [5].

Let {FPn}npo be orthogonal in the positive definite sense with respect to the distribution
function ¢ and let [€,7] be the corresponding true interval of orthogonality. Fix A\,c € R.
According to Favard’s Theorem, it follows from Lemma 2.1 and the explicit expressions for the
coefficients of the three-term recurrence relation for {P},>q (cf. [10]) that this MOPS is
orthogonal in the positive definite sense if one of the following four sets of conditions holds:

@ A<Oandegé+dor (i) A<O,POSASPhandcSgor
(i) A>Oande>n+A,or (iv) A>0,P(E)SASP()ende>y. @

Moreover, if [€,7)] is compact and one of the conditions (2) holds, then u™* is represented by
the distribution function o™ defined by

do™(z) = Mb.(z) - ;—i——;ka(r)da(z). M = ug + AF(g;0), €3]
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xr being the characteristic function of a set E. Notice that any set of conditions in (2) implies

"

/ EE_(EZ_ <400 and M :=ug+AF{ce)>0.
e le—d

Furthermore, in cases (i) and (ii) it is true that M > 0, and in cases (jii) and (iv) we also have

M >0if ¢ # £ or ¢ # 1, respectively. If ¢ = £ or ¢ = 7 it can occur M = 0. Hence, ¢*° i3, in

fact, a distribution function. The next proposition is motivated by the results of [7).

Lemma 2.2 Let o be a distribution function with supp(de) C [£,7], —00 < £ <5 < +o0. Let
T be o real and monic polynomial of degree k > 2 such that the derivative T' has k — 1 real
and distinct zeros, denoted in increasing order by y1 < y2 < ... < Yr—1. Assume that either
T{yzi1) 2 0 and T(yzs) < § (for all possible i) if k is odd, or T(yzi1) < € and T(ys) > n if
k is even. Let A and B be two real and monic polynomials such that deg(A) =k -1 —m and
deg(B) =m , with0 <m < k— 1. Assume also that the zeros of AB are real and distinct, AB
and T' have the same sign in each point of the set T~([¢, 7]} and, if m > 1,

7 _doly)

—_— 4
[ vt <t @

for j=1,...,m, where by, by, ... , by, denote the zeros of B. Let

1
F(z) = B [A)F(T(2);0) — Ln-1(2)], z € E\T([¢, 7)), 5)
where Ln_y(2) 1= 300, M;B(2)/(z - by), M; = A(b;)F(T(b;);0)/B'(b;) for j = 1,...,m
(Lo(z) =0), i.e., Lm—1 i5 the Lagrange interpolatory polynomial of degree m — 1 that coincides
with A(z)}F(T(z);0) at the zeros of B. Then, F is the Stieltjes function of the distribution T
defined by
de(T(z))

dr(z) == Xt e (@) e - ©

Ag)
B(z)

Proof. According to the hypothesis, one can write T-X(j¢, ]) = UL, E; where E,..., By
are k closed intervals in the real line such that E; and Ejy, have at most one common point.
Consider the functions T : D; = T(D;) (j = ..., k) such that = € D; = Ty(z) = T(z),
where Dy =} - 00,4}, Dy = [yy_1,45] G =2,...,k~ 1) and Dy := {yk—1,+0cof. Then, each
T; is bijective and T;(E;) = [£,9) for j = 1,...,k. Now, by hypothesis, AB and T' have the
same sign in each interval E; of T-'({¢,5]). This implies that the zeros of AB are located
between the intervals E;,...,E; |, hence the zeros 61,030k of Aand by,...,by, of B,
satisfy T(a:) g€, nl (i = 1,...,k—1—m) and T'(b;) e, n[ (G =1,.. -,m). We first prove that,
under the hypothesis of the Lemma, T given by (6} defines, in fact, 2 distribution function. For
that, it is sufficient to show that

do(T'(z))

/T"‘([E.n]) @) < o

{because [£, 7} is compact). Since the zeros of B and T" are real and simple, considering the sets
of indices J;, Jz and J; defined as J; := {l,-..,m}\{j: b =y: forsome i € {1,....,k—-1}},
Joi= (Lo B~ 1\ {f 295 = by for some i € {1,...,m}} and Ji := {1,...,m} N {5 : b = g,
for some i € {1,...,k — 1}}, one can write

1 o5 ag; ag;
ST = Y ¢ +y i,
B(z)T'(x) J'EZJ:I - b; }EZJ’ z —y; ;g:.l; (z — b;)?

A(z)
B(z)
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with a;;'s real numbers. But, T'(x) = T'(b;) + T"(b;)(x — b;) + Tl (g — b, i) H ot (2 - bj)F
(for a fixed j). Hence, if j € Ji then 7"(b;) # 0 and T'(z) — T(b,) = (z - b)(T"{B;) + Gy (s
where G;(z) is a polynomial of degree k — 1 such that Gy;(b;) = 0. Thus, it follows that
lonjA(z) Ky -1 :
< , =&T €,
kb = @ - TG0 (onl), €4
where K\ 1= sup_er-1¢,np 1 AT (b;)+Gr; (z)} < co. Similarly, if j € J; then T'(b;) = 0
and T"(b;) # 0 so that T{z)—-T(b;) = (x~8;)*[T"(b;)/2+Gs;(z)}], where G3;(x) is 2 polynomial
of degree k — 2 such that Gs5(b;) = 0. Then, we deduce
Iﬂz;,A(z)I Ksj —1 .
et T ), € J
G-by = T@-T6)1" e, g€ s

where Kaj == super-1(j¢,»p) 1035 AE@MNT" (8;)/2 + Ga;(z)| < o0. Finally, if j € Jz then y; # b
for all i € {1,...,m} and, therefore, if T(y;) = £ or T(y;) = n for some j then necessarily

vi mforsomez&{l Lk—1-— m} and we can conclude
Kaj 1= l‘ﬁi‘i(—:c)~]<oo, jek.

zer-1(al) 17— w5l
This is straightforward if T(y;) # £ and T(yj) # 5 for all j. Hence, for 2 € T3}, 7)),

Aw) 1 n N
B T@ | = ¥ X - T(b FD =76 * “K”K’jezbw(z)—r(b,-)]’

where K; = max;cy, Ky (i = 1,2,3} and ng = #J2. Thus, the integral in (7) becantes

A(z) 1 , sgn T'(z)
/T—‘ue " B_(:Jr'(z) s T @ao () < Ko ?,2[ ) — 2t TN+

+n,K,E / T (@oT@) + K 53 /E |T(Sf)an(~I(i o) =

j€Jy i=1
= kK, / A do(y) + knaKue + kK ] L aa(y)
‘,EZ, T(b,)l e ,;,, v — T3

(by making the substitution y = T'(z), = € E;). This proves (7), according to the hypothesis (4),
and we conclude that 7, defined by (6}, is a distribution function with supp(dr) C T-(J€, 1}).
Hence, for z € C\T'~([¢, n]), making the substitution s = T'(z) (notice that AB and T' have
the same sign in each interval E;) we get

e 1 do(T() 7 1 AT'(6)  do(s)
F(z,r)_j;/&z_z _/t

T'(z) T, (s) - 2 BT () T(T; (o)
Now, since T(b;) ¢l¢,n{ for 7 = 1,...,m, if s € I, 9] one can write

Az 1 z": AT\ (s)) . z”‘: A(B)
B(z)s ~T(z) ~ =4 UE BT NI o B'O)T(b;) — s)(by ~ 2)

A(z)
B(x)

Thus, for z € C\T~Y([¢,7]), we get

] "A) 1 Ay " ~
0= | Bys=1e° )ZB'(b,xz—bJ)gs-T(b)‘“(’)“”’"'
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3 The Pbsitive Definite Case

We are now in position to characterize the solution for problems P1, P2 and P3 (in the pos-
itive definite case). We mention that problem P1 has been studied by P.BARRUCAND and
D.DICKINSON {2] for a particular cubic transformation and for general k by J.GERONIMO and
W.VAN AsscHE [7]. In fact, these authors have proved that given a sequence {pn},>q of
polynomials orthonormal with respect to some positive measure po supported on the bounded
interval [~1,1] and a polynomial T'(z) of fixed degree k > 2 with distinct zeros and such that
[T(y;)f = 1, where y; (i = 1,...,k — 1) are the zeros of T”, then there exists a positive

pand a of poly ials {gy},p Orthonormal with respect to p such that
Bn(Z) = pa(T(2)) (n = 0,1,...). As we will see, the Stieltjes functions associated with the
orthogonal palynomials in problems P1, P2 and P3 satisfy relations of the form

F(x5) = 2+ B B(Cizf)("ﬁ(z); o)

where A, B and C are polynomials (o and & denote the distribution functions corresponding
to {Pn},>p and {Qn},~¢, respectively). This fact establishes the connection between this kind
of problems with problems involving sequences of orthogonal polynomials defined by general
blocks of recurrence relations studied by J.CHARRIS, M.E.H.IsMAIL and S.MONSALVE (3], in
e jon with sieved orth ] poly jals. Finally, we refer that such a kind of polynomial
transformations lead to orthogonal polynomials whose measure of orthogonality is supported
on several intervals. These kind of sequences of orthogonal polynomials have been the subject
of several investigations — among others, we refer the mentioned paper by J.GERONIMO and
W.VAN AsscHE {7}, as well as the contributions of M.E.H.TsmaAlL [8] and F.PERERSTORFER
[13}, [14]. Our main interest is to establish necessary and sufficient conditions in order to
characterize the positive definite case.

Theorem 3.1 Let {Pr}n>0 be an MOPS in the positive definite sense, orth l with respect

to some disiribution function o and let {§,7] be the true interval of orthogonality of {P,}
Let {Qn}npo be a simple set of monic polynomials such that

Q) =~8, Q) =~-7, Qun(z)=Pa(ms(z)}, n=0,1,2,..., @®

where %3 is a real (monic) polynomial of degree 3 and 8,7 are real numbers. Consider the
polynomial

n>0"

a(z) =7+ [ma(z) - O/ (= - B) , (9)
denote by a1 and az the zeros of p and put ¢, := n3(ay)} and ¢; == w3{ag).
Then, for a fized pair (8,7), {Qn}nz0 is an MOPS in the positive definite sense if and only

if a; and ay are real (we assume, without loss of generality, that a; < az) and the following
conditions hold

¥>0 , <& , n<e, (10)
1 Prler; 1P,
Qansi(z) = Fo) [Pnu(’rs(x)) + ’Y“}%";TZ) (z —a; — ;H.a%%) Pn("'S(I))] s (1)

]
R T ¥ U ¢ XL ) — LEnrr(e)Prsi(es)
Qsneale) = oy [(’ @t 3 ) Pt 3 PalenPrenicr) 7 "(”3‘””]

(12)
for alin = 0,1,2,.... Under these conditions, {@n}vo is orthogonal with respect to the
uniquely determined distribution function & N

d () = |p(=}| Xx{‘(le.v[)(z)hdu(wa(z)) .

e s
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Proof. First assume that a) and a; are real (6; < az) and that conditions (10)-(12) hold.
Since, for each n, the zeros of P, are in }€, 7], the conditions ¢c; < £ and 7 < ¢; yield Py(c1) #0
and Pp(cs) # 0 for all n =0,1,2,.... Moreover, condition ¢; < £ ensures that {P}(cz; )}u>0
also an MOPS in the positive deﬂmte sense and the correepondmg interval of orthogonalify is
contained in [¢,n] (cf. [4, Th.7.1, p.36]). Therefore Py(cp;c1) #0foralln =0,1,2,... and so
also Pl{ci;ea) = Palca)Pr(ca;cs)/Palci) # 0 for all n = 0,1,2,.... It follows from Theorem
2.1 in {10] that {Qn }r>0 is an MOPS. To conclude that it is an MOPS with respect to a positive
measure, we only need to show that the coefficients {15,,,7n3rl),,>0 of the three-term recurrence
relation correapondmg to {Qn}nyo satisfy the conditions ﬂ,, is real and Jn4; is positive for
every n =0,1,2,.... In fact, we have proved in [10] that

s . _ 1 Pypi(es) 5 1 Payife2)
Ban =B, Bsny1 = a1 7P;(c,,c;')’ﬂ3"“—a2+7P‘(c1,¢:g)
Pai(e)Py . (e1500) Pilaie) _1 Pun(e)Papi(e)

Pon = =T "n Pole) Palen) s Yan4r =7 Palca) ) Yotz = P Brler;en)Pr(eien)

Hence, it is clear that f, is real. Furthermore, using Lemma 2.1 (with A = 0 = 1), we see that
sgn P(cy) = sgnPr(caicr) = +1, sgn Pa(c) = sgn Py(cy;c2) = (—1)™ and then we deduce
Yp>0foralin=12,....

Conversely, assume that {Qy},,-, is an MOPS with respect to a positive definite linear func-
tional. It follows from Theorem 2.1 in {10} that (11) and (12) hold. Now, from the hypothesis,
Fa > 0 for n > 1; in particular, y = % > 0. To prove the remaining statements in (10), we
will show [4, p.108] that (i1} c2 < B, < ¢, for n = 0,1,2,.. ., and (i2) {a,.(c.)),.zl is a chain
sequence for i = 1,2, where an(z) = 7,./[(ﬁ,._1 —z){(Bn — z)] for n = 1,2,.... From [10} we
know that (z — a1 ){z ~ 82) = p(z) = (& — Banr1)(& = Bans2) = Fansa, 50 ﬂm Afanir) < @
and p(ﬂa,,+2) < 0, hence a1 < Banai < 02 for aln=20,1,...,i=1,2. Thus, (i1) follows from
B = € + Fans1(8; — Bant2) + Fanlo: = Bnz) (8 =06,1,...,i=1,2). To prove (i2) define

,__ Popife)  _ mPanile) _ . _

male) =1 = e @) = (o~ BayPatey M B hei =12 (Pa=0)-
Then an(e;} = mp(G)[L — mn-1(c:)} for n = 1,2,..., ¢ = 1,2. Now, using Pryy{e;}/Pulc:) =
—Y3n+1(a: — Binss) and taking into account a; < ﬁs...“ <az i =12 and (i1}, forn > 1
we have ma(ei) = 1 - Pasile)/llci = Pu)Palei)] = 1+ Fanyrlas ~ Bspia)/(ei — fa) < 1
and mn(c;) = YaPa-1(c)/{lei — Ba)Pa(ci)] = Mn/[Fsn—2 (Bn ~ &:} (@i — B3n-1)] > 0. Hence
mo(ci) = 0 and 0 < mp(c;) < 1forn =1,2,...,i = 1,2, It follows that {an(ci)}np: is 2
chain sequence (i = 1,2), {mn(c;)}npo being the corresponding minimal parameter
[4, p.110]. Thus (i2) is proved.

Now, under the above conditions, let & be the distribution function such that {Qn},,, is the
corresponding MOPS. Notice that conditions {10) imply that the true interval of orthogonality
of {Pa},50s [€; 1], must be bounded. Therefore, o is uniquely determined by the corresponding
sequence of moments and then it is easy to check that & is also uniquely determined by the
corresponding sequence of moments. Since Qg"” (z) = p(m)Pm(xa (x)) (cf. [10]), by Markov's
Theorem we deduce

23]
F(zi3) = ~u Jim 222t CD = i ptario), = ¢t gD,
hence (13) follows from Lemma 2.2. Notice that, since x3 is a real monic polynomial of degree
3 and satisfies 73(a3) < £ < 7 € m3(a1) with a1 < a3, then it is easy to see (using Rolle’s
Theorem) that #} has two real and simple zeros.
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Remarks. (i) Conditions (10} imply that in order to the existence of sequences {Qn}nzm
orthogonal in the positive definite sense and satisfying the conditions of the Theorem, we must
start with sequences {P,},,5o Such that the corresponding true interval of orthogonality, {£.7],
is bounded, and such that the condition ¢; # ¢z holds (or, equivalently, ay # az).

(ii) In [7}, the authors have imposed, a priori, the restrictions “supp(do) compact” and
“xa(y:)| = 1 on the zeros y; of a4 (i = 1,2)", which in our case corresponds to the condition
#3(y:) @E,nf. We have shown that the condition “supp(ds) compact” is necessary for the
orthogonality of {Qn},»o- Furthermore, assuming (without loss of generality) that y: < ys,
since in these points x3{y) attains its extremum values, we have m3(y) < mafaz) =3 £{ <
n < ¢1 = w3{e1) < w3(y1), hence again w3(y:} £]€, 7{ must hold necessarily for the orthogonality
of {Qu}n>0. We also mention that the measure (13) agrees with the results of {7].

(iii) In [11] it was pointed out that “there does not exist a pair of orthogonal polynomial
sequences {P},, and {Q..},,54 associated with positive definite symmetric functionals such
that Qsn(z) = Pa(z®)". We can generalize this observation, removing the restriction about the
symmetry of the functionals, since for any choice of the pair (8,7), with ¥ > 0, the polynomial
px) =74 (2® — %) /(z — B) = 2* + Bz + B2 + ~ has no real zeros.

The proof of the next Theorem 3.2 is similar to the proof of Theorem 3.3, 50 we omit it.
Theorem 3.2 Let {P,}a>0 be an MOPS in the positive definite sense, orthogonal with respect
to gome distribution function o, and let [€, 7] be the true interval of orthogonality of {Po},5o-
Let {Qn}nz0 be o simple set of monic polynomials such that -

Q) =z - B)z~6) -7, Qanni(z) = (z ~ &)Palms(z))

for alln =0,1,2,..., where a, B and ~y are fized real numbers and 73 a real polynomial of degree
3. Putb:= ~fa+ 8 +x5(0)/2], ¢ == 7x3(b), d := m3{a).

1.k {Qﬂ}nzo is an MOPS in the positive definite sense, then

7>0 and either p>0 if a<b, or p<0 if a>b; (14)
1 1
Qowte) = 215 [Pt + il (-0 - P OB ]

__1 _ o Pan(Q)PE(d) Pasi{e) Py, (d)
Qanesle) = —5 [(1 at m) Frsa(ms(z)) ~ —mi;“?n(ﬁs(z))]
(16)
Joralln=0,1,2,..., where p ;= v(b— a) and &¥(c,d) := D%#(c,d)/(b - a).
2. Conversely, if conditions (14)-(16) hold as well as one of the following: if @ < b, either
c<&d2ndp,ore<E d>y, —0 < P§) < u < P(y) < +oo; and, if a > b, either

d<Etpe2n ord<é e, —00 < P(£) € p < P(y) < +00. Then is an MOPS
in the positive definite sense, ort’hogonal with r;spe:t to”) {Qn}nza ne

do|
X';‘(le.n()(z)_,(é%;m v M :=us+pFido) > 0.

Theorem 3.3 Let {P,}nyo be an MOPS in the positive definite sense, orth I with respect

to some distribution funclion o, and let ¢ 0} be the true interval of ort &
; s s ¢ .
Let {Q,.},,zo e simple set of monic polynomials such that ut of orthogonality of (Pn}nzu

35(z) = M, () + 7‘;—:—2

Qansa(®) = (z - )z — B)P(ms(z)), n=0,1,2,... (17)
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where @ and b are fized real numbers and w3 is & polynomial of degree 3. Without loss of
generality, suppose a > b. Write Qy(z) = z — a, Qa(z) = (z — B)Q2(z) — YQ1(z) (o, real
numbers) and denote ¢ := n3(a), d:=m3(b), A := ~y(a~a) and p:= —y(b-a) .

L. If {Qn},5o is an MOPS in the positive definite sense, then

>0 , A<0<p , B=-la+b+x4(0)/2] , (18)

A
Qun1sla) = Pras (ra(e) + ot ( ~a- %é(—’%)—‘"—’) Palrs@),  (19)

Qonsale) = (z ~b+ P—‘é—ﬁ—(’%@) Prsa(me)) "“(,i)(c, ;;(")P () (20

hold for n =0,1,2,..., where d}*(c,d) := D}*(c,d)/(a ~ b) .

2. Conversely, if conditions (18)-(20) held and either (1) c<b+Mg+u<d or(iiyc<g,
d21, —00 < P(§) S A, p £ P(n) < +00, then {Qu},>q 5 an MOPS in the positive definite
sense, orthogonal with respect to

d5(z) = Méa(z) + Néy(z) ~ R?‘%.T(/TT){X*E‘GE-HD‘ )*,(—z(—)’ﬁ, (1)

where M := fj:}[un+/\F(c;¢7)]20 , N:= -—a_, AT fug + pF(d;0)] > 0.

Proof. Suppose that {Qn}n>e is an MOPS in the positive definite sense. It follows from
Theorem 2.3 in {10] that (19) and (20) hold, as well as 8 = —[a+b-+%5(0)/2]. To prove the first
two conditions of (18}, just notice that, by hypothesis, ¥, > 0 for every n, and so, using again
Theorem 2.3 in {10}, y =, > 0 and 0 < F; = ~Ap/y? = —(@ —a}{e — b), henceb< a < a

(because a > b}, which implies A <0 < p.
Conversely, assume that (18)-(20) hold as well as one of the conditions (i) or (ii). It is

straightforward to show, using Lemma 2.1 and the expressions given in [10] for Bn and J, that
B is real and 7, > 0 for every n, so that {Qn}ngu is an MOPS in the positive definite sense.

Finally, using Q{), () = (z — 6 — b+ @) Pa(ra(z)) — (/P (ma(2)) (see [10]) and
Markov’s Theorem, we find

- ky k2 Ap F(ms(z);0) -1
Fy = 2t B2 D S ATV ) N b
Fuo)= B e A TR g (b uted),

with k) s= uop/v(a — b), ks := —ug)/v{a - b). Hence, using Lemma 2.2, one can easily check
that (21) holds, which completes the proof.

As an example related with the last theorem, consider the set {Q, },,20 of monic polynomials
such that Q3(z) = z — a, Qa{x) = (z ~ H)Qa2{z) — 7Q:(z) and

1 3
Qanga(z) = (2% — Z)Pn(za - Zz), n=0,1,2,...,

with @, 8 and 7 real parameters, where P,.(z:) == W(TH-!F—!FC’:HHI)‘ {Ci}azo being the

quence of the Gegent or ultraspherical polynomials, where it is assumed that v > —1/2,
so that {C"}“>D i orthogonal in the positive definite sense on [~1,1] with respect to the
(L ~22)*~4dz {6, p.175}. Then, the sequence {Pa}uzo

abgolutely continuous measure do* (z) ==
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is an MOPS orthogonal on [--%, 1] with respect to the weight w(z) = 4(1 - 1627w+, This
example has been considered in [10], where we have shown how to define Qzn and Qszn41 in
order that {Qn}n>o be an MOPS (in the formal sense). Now, from Theorem 3.3 we hav;
ma(z) =2 — %z,_a = -b=Land ¢c= —d = -}, and choosing a =0 we have A = —p = —%
and then, since F(£5;0) = 4F(1; o¥ ) = :Fﬂ—%%luo (v > =1/2), Theorem 3.3 ensures that
{Qu} >0 i8 au MOPS in the positive definite sense fo<yg ﬁ{% and 8 = 0, with respect
to

4y [l - (4 — 32
f4z? — 1|

Notice that for 0 < v < ﬁ—:—‘j’_—b there exist mass points at £ = i%, interior to the interval

[-1,1). Fory= t’(ﬂ'—};, we get {up to a constant factor) d(z) = sind|sin 38> df (z = cosb),

30 that {Qu},»¢ i, up to normalization, the sequence of the sieved ultraspherical polynomials

of the second Kind, {BZ(.,3)} 5o, introduced by AL-SALAM, ALLAWAY and ASKEY in .

di(z) = % (1 - ﬂ;%n) (a_i(z) +6%(z)) dz+ Xj-1()dz .
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