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~ 1l'r(')'+s) ~. J.lsr(-y+s) 
(p, q}s = L..Jp(s)q(s) res + I)r(-y) + ). L..J f)"p(s)f)"q(s) res + 1 )r(-y) , 
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2 1. AREA et al. 

1 INTRODUCTION 

Let JP be the linear space of polynomials with real coefficients. If we 
define an inner product on JP 

(f,g) = kf(x)g(X)dJ1,(X), (1) 

where dJ1,(x) is a signed measure on the real line; It IS known (see 
[5, pp. 21-22]) that there exists a sequence of polynomials {P"(x)},, 
such that 

degP" = n, 

(Pn, Pm) = knonm, k" =f. 0. 

We assume that the sequence {P,,(x)}n is manic, i.e. the leading 
coefficient of Pn(x) is one. In these conditions, the sequence {Pn{x)}n is 
cailed a Monic Orthogonal Polynomial Sequence (MOPS) with respect 
to the inner product (1). Such a MOPS {Pn(x)}n satisfies a three-term 
recurrence relation 

Po(X) = 1, P-I(x) = 0, en =f. 0, n = 1,2, ... 

The original motivation for considering Sobolev orthogonal poly­
nomials comes from the least squares approximation problems [10,15]. 
A given function f and its derivative f' are to be approximated 
simultaneously by a polynomial p of degree 12 minimizing 

IIp(x) - f(x) 112 = k [p(x) - f(x)]2 dJLo(x) + >'k[P'(x) - f'(x)]2 dltl(X) 

(2) 

over all p EJPn , dJ1,;(x), i = 0,1, being positive Borel measures on the real 
line ~ having bounded or unbounded support [8,19]. Expanding pin 
terms of the Sobolev orthogonal polynomials we obtain the usual 
Fourier approximation p(x) of f(x) and f'(x). This problem was 
considered in [15], but nothing was said there about the sequence of 
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IN1'<'ER PRODUCTS Th'VOLVING DIFFERENCES 3 

polynomials {Qn(x)}n orthogonal with respect to the inner product 

(I, g)s = l/(x)g(X) dtto(x) + All' (x)g' (x) d,ul (x), A ~ O. (3) 

Study of polynomials orthogonal with respect to (3), called non­
discrete or continuous case, can be found in [6,7,19,23]. Other kind of 
modifications of (1) are studied in [1,16,20]. A new attempt to the 
study of the non=discrete case was made in 1991 by Iserles et al. [11]. 
There the authors proved that if the Borel measures dJ.Lo and d,ul obey 
a specific condition (coherent pair) then the sequence of orthogonal 
polynomials {p~>')(x)}nwith respect to (3) can be expanded in terms of 
the polynomials orthogonal with respect to dJ.Lo in such a way that, 
taking into account an adequate normalization, the expansion coeffi­
cients, up to the leading one, are independent of n and are themselves 
orthogonal polynorrrials in A. They also explored several exanlples and 
showed how their theory can be used for an efficient evaluation of 
Sobolev-Fourier coefficients. 

The concept of coherent pair, initiaily defined for measures in [11] 
can be characterized in terms of the MOPSs {Pn(x)}n and {Tn(x)}n 
associated with d,uo and d,ut. respectively [11, Theorem 3] in the 
following way: there exists a sequence of non-zero complex numbers 
{O"n}n such that 

This concept has been extensively studied by several authors [17,18,22] 
and it has been recently adapted to the case of orthogonal polynomials 
of a discrete variable in [2], characterizing the MOPS {PnCx)}n and 
{Tn(x)}n such that 

'T' ( ) _ f1Pn+! (x) _ f1Pn(x) 
.1 n X-I O"n , 

n+ n 

where {O"n}n is a sequence of complex numbers and Ll stands for the 
forward difference operator (f1h(x) = hex + 1) - hex»~. 

In order to find the best polynomial approximation p(x) of a 
function f(x) where besides function values I(x;) , also difference 
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4 1. AREA et al. 

derivatives at the knots are given, the following minimization problem 
appears in a natural way: 

where Pk(X) are discrete weight functions on [ab bk), i.e., each Pk(X) is 
piece\vise constant function with jlLrnps Pk(Xt) at the points x == Xi for 
whichXi+l =Xj+ 1 and ak:S;xi:S;bk-l. 

Thus, it seems to be interesting the analysis of the polynomials 
which are orthogonal with respect to the inner product 

The aim of this paper is the study of polynomials which are 
orthogonal with respect to a particular case (r = 1, Po =- PI) of the 
above inner product: 

00 00 

(p, q)s = LP(s)q(s)p(s) + >. 2:: fl.p(s)fl.q(s)p(s); (4) 
s=o s=o 

>. 2:: 0 and pes) is the Meixner weight function [24]. We call (4) the 
Meixner-Sobolev inner product, by analogy with the continuous 
case [21]. 

The structure of the paper is as follows: Section 2 contains the basic 
relations for monic Meixner orthogonal polynomials {Mn1',p)(x)}n' In 
Section 3, we introduce the Meixner-Sobolev inner product, the 
monic Meixner-Sobolev orthogonal polynomials {Qn(x)}n and the 
limit polynomials {Rn(x)}n obtained from {Qn(x)}n when>. tends to 
infinity. We also give some relations among these three families of 
polynomials and a limit relation between Meixner-Sobolev and 
Laguerre-Sobolev polynomials. In Section 4, a linear difference 
operator S on JP> is defined. We prove it is a symmetric operator with 
respect to the Meixner-Soboiev inner product and we find a non­
standard four-term recurrence relation for the {Qn(x)}n polynomials. 
Finally, in Section 5, we study the properties of the zeros of Meixner­
Sobolev orthogonal polynomials. 
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INNER PRODUCTS Th'VOLVING DIFFERENCES 5 

2 MONIC MEIXNER ORTHOGONAL POLYNOMIALS 

The forward difference operator ~ and the backward difference 
operator \7 are defined by 

~J(x) = J(x + 1) - J(x), \7J(x) = I(x) - J(x - 1). (5) 

These difference operators satisfy the foHowing properties which will 
be useful in the next sections: 

~ = \7 + ~ \7, ~p(x) = \7p(x + 1), 

~(p(x)q(x)) = q(x)~p(x) + p(x + l)~q(x). 
(6) 

Monic Meixner orthogonal polynomials {M},')',I1) (x)} n are the poly­
nomial solution of a second order linear difference equation of 
hypergeometric type [9,25] 

a(x) = X, -r(x) = "YI-i - x(I - I-i), An = n(l - I-i). 
(7) 

These polynomials {M~,),'I1)(x)}n are orthogonal with respect to the 
inner product 

00 I-iT(-y +s) 
(p(x), q(x)) = ~p(s)q(s)p(s), pes) = res + l)r(-y)' 

(8) 

sE [0,+00), 0<j.L<1, ,>0. 

For monic Meixner orthogonal polynomials the following proper­
ties are known [3,9,25]. 

2.1 Three-term Recurrence Relation 

We have 

(10) 

with the initial conditions Mo"I1) (x) = 1, Mi,,/L) (x) = x - Bo. 

5
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6 1. AREA et al. 

2.2 Difference Representation 

We have 

2.3 Representation as Hypergeometric Function 

We have 

where (a)s denotes the Pochhammer symbol, (a)o= 1, (a)s= 
a(a+ 1),·· (0+5 -1). From the above hypergeometric representation 
of monic Meixner polynomials we get 

2.4 Squared Norm 

Let us denote 

(12) 

(13) 

The follo\\'i.ng relations can be easily derived from the definition of k,,: 

(14) 

6
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I~TNER PRODUCTS INVOLVING DIFFERENCES 7 

3 MEIXNER-SOBOLEV ORTHOGONAL POLYNOMIALS 

Let us consider the Sobolev inner product defined on JP' by 

(p(x), q(x))s = (p(x), q(x)) + )"(Ap(x), Aq(x)) 

~. , ttSr(r + s)~. ttSr(r + s) 
= ~p(S)q(s) s!f(r) + ).. ~AP(S)Aq(S) s!f(r) , 

(15) 

where 0<11< 1,1'>Oand)' 2 O. 
We shall denote bY{Q~1"J.<)(x;),)}n == {Qn(x)}n the MOPS associated 

with the inner product (.,.;s. Such a sequence is said to be the 
Meixner-Sobolev MOPS. 

Let us denote the moments associated with the inner product (8) for 
the basis {x[ni}n as 

DO DO 

Ui,j= (xli],x lJ ]) = I:>lllslJ]p(s) = .I: s[i]sIJ]p(s), (16) 
s=o s=max{i,j} 

with p(x) defined in Eq. (8), x[n] = x(x - 1)·· . (x - n + 1), x[O] = 1, and 
let us denote the moments associated with the inner product (15) for 
the basis {x[n]}n as Ci,j= (X[I], xUl)s. Since Ax[n] = nx[n-l], we get 

c·o = c· = {x!11 IJ' = u·o = 11,,· == U· l, I \ 'S Z, "'"V,l Z, 

C· . = (Xli] x IJ ])_ = U,' . + 'z;iU"_1 "-I z" J' > 1 I,] , , (; .,] A" I ,], ,_" 

(17) 

From the definition, 

but if ), > 0 the elements of these sequences are different for degrees 
greater than or equal to 2. 

7
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8 I. AREA et al. 

We can write the Meixner-Sobolev polynomials in the following 
detenninantal form: 

Qn(X) 

I 
Uo Ul 

Uj Ul,l + ),uo 
I 
I 

UI,n-1 + )..(n - 1 )Un-2 I Un-I 

~e: +U~U~~1 I 
Un,n-I + An~n - 1)Un-l,n-2j 

x[nj I 1 X 

UO UI Un-l 

Ul Ul,l + >.uo Ul,n-l + >.(n - 1 )Un-2 

Un-l UI,n-l + >'(n - 1)un-2 Un-l,n-l + A(n - 1)2un _ 2,n_2 

(18) 

where each coefficient of Qn(x) in terms of xU] is a rational function in 
A, the numerator and the denominator being of degree n - 1. Then, we 
can define a new sequence of monic polynomials {R~"!')(x)}n == 
{Rn (x)}n, 

Ro(x) = Qo(x) = Mo,,!'l(x) = 1, RI (x) = QI (x) = ~"!'\x), 
(19) 

Uo 
o 

o 
Rn(x) = Urn Qn(x) = 11 

A-+oo Ua 

I! 

UI 

Uo 

(n - l)un-2 

x 

(n - l)un-2 

Un 
nUn_I 

n(n - 1)Un-l,n-2 
x[n] 

Un-I ,. 
(n - 1)Un-2 

en - 1 )iUn _ 2,n_2! 

(20) 

8
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IN'NER PRODUCTS INVOLVING DIFFERENCES 9 

PROPOSITION 1 (a) For each n 2: 1 we have L::o Rn (s)p(S) = 0, where 
the weight p(s) is given in (8) and the polynomials Rn(x) are defined in 
(19) and (20). 

(b) If n 2: 2 and 0 ~ m ~ n - 2 then L:':o sIm)~Rn(s)p(S) = 0, where 
the polynomials Rn(x) are defined in Eqs. (19) and (20), and pes) is given 
in (8). 

Proof 

(a) L::o Rn (s)p(s) = L::o lim).~oo QIl(S)P(S) = lim).~cx>(Q,,(x), 1)s =0. 
(b) Apply the ~ operator in the definition of Rn(x). 

COROLLARY 1 The following two equalities hold: 

b..R IX) = nM:,,/t) (x) nl n-I' n 2: 1; (21) 

Rn(x) = M:.1,/t) (x) + n~~~~)(x) 
." 1 - J.L ,,-

= l~'Y,/t)(x) +~b.Rn(x), n 2: 2. 
I!. 1 - J.L 

(22) 

Remark 1 If 'Y> 1, then {Rn(x)}n == {M;r-1,il)(x)}n, i.e., Rn(x) is the 
monic Meixner polynomial of degree n associated with the weight 
function 

(r-l,/t)(X) = J.L
x
r(x+'Y- 1) 

P r(x + l)rb - 1)' 

If 0 < 'Y ~ 1, Rn(x) is a quasi-orthogonal polynomial [5, p. 64] of order 
on'''''l'th r"sp.,,..t to thp "l.1nps f i\1(r,/t) (.". n 

'"" y-y .I. "" ..... ""''' '" ... "" 1\........ l"~ It \""'1 J n' 

PROPOSITION 2 The following relation holds: 

Rn(x) = Qn(x) + dn-l ('x)Qn-l (x), n 2: 2, (23) 

where 

, '" j.£ kn-l 
an-l(AJ = n-

1 
- ---, 
- j.£ kn- 1 

(24) 

(25) 

9
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10 1. AREA et aL 

Proof If n ~ 2 we can expand the polynomial Rn(x) in tenus of 
Meixner-Sobolev polynomials in the following way: 

n-l 

R,,(x) = Q,,(x) + I:}i,,,(.\)Qi(X). 
i=1i 

By using (21) and (22) the coefficients/;.n(.\) can be computed as 

/;,n(.\) = {Rrh QjJs 
(Qi, Qi)S 

l{OO 00 1 
= k

i 
'-~ Rn (S)QiCS)P(S) +.\ ~ .6.Rn(S).6.QiCS)P(S) J 

= 1 {fRn(S)Qi(S)P(S) +.\ tn~:''i')(S).6.Qi(S)P(S) 1 
.1'=0 s=O ) 

= li~ {M1"!')(S) + n] ~ fL ~~'i')(s) }Q£(s)p(S) 

: (~'Y'!')(x), Qi(X)) + nJ-L _ (~~'i')(x), Qi(X», 
ki Cl - It )ki 

O::;i::;n-l. 

Thus, 

ji,n(.\) = ...!!.!!:..... k£ if i = n 1. {
o if O::;i::;n-2, 

I-It 

Then (26) becomes 

(26) 

COROLLARY 2 The Meixner-Sobolev orthogonal polynomials defined 
in (18) satisfy 

n 

Qn(x) = I:>j,nMj')"!') (x), n ~ 2, 
j=1 

10
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INNER PRODUCTS INVOLVING DIFFERENCES 11 

where 

en,n = 1, 

(27) 

Proof From Eqs. (23) and (22), we obtain 

(28) 

where repeating this substitution the result follows taking into account 
that QI (x) = M1,,/-t) (x). 

We can compute recursively the coefficients dn(.)") defined in (24) by 
means of 

PROPOSITION 3 The coefficients dn(>") satisfy the following two-term 
recurrence relation: 

dn (>") 

J.L2(n+ 1)(-y+n-1) 

(1 - JL){J.Lh' + n - 1) + n(JL2 + >..(1 - JLf) - J.L(1 - J.L)dn-1 (>..)}' 
(29) 

valid for n ~ 2, with the initial condition 

11
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12 1. AREA et al. 

Proof From (25) and using (11) we get 

Thus, from (24) 

dn(>\) = ((n+l)p/(l-p))kn . 

kn + kn- 1 (>..n2 + (nJi-/(l - Ji-))2 - (nJi-/(1 - Ji-))dn-l (>..)) 
\ , 

Finally from (14) we obtain (29), and from (24) we get the initial 
condition. 

Remark 2 Although the coefficients dn(>") appear in the previous 
results for n ~ 1, we can start the recurrence relation (29) with the 
initial condition d_ I (>..) = 0, obtaining the same coefficients for n ~ 1. 
Moreover, for each fixed n ~ 1 the coefficient dn(>") is a rational 
function in >.. of degree n - 1 in the numerator and of degree n in the 
denominator. Thus lim>._DO dn (>") = ° for all n ~ 1. 

Rerrzark 3 We can write the coefficients dn(>") given by (29) as 

d
n

()") = N,,_! (>..) = 'l9n 2 

Dn(>") (>"Wn + Vn) - Ji-(1 - Ji-) dn- 1 (>..) 
'l9n 

12
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INNER PRODuers INVOLVING DIFFERENCES 13 

Wn = (1- Ji/n, Vn = (1- /1)/1(r + n(/1 + 1) -- 1), 

{}n = /12 (n + l)b + n - 1), 

Thus, the denominators Dn(>') satisfy the following three-term 
recurrence relation: 

which in the monic case, E"C>') = D,{>')i(ni(p - li,,+l), can be written 

Eo(>') = 1, 

where 

/13(r+n-2) 
"'" = 4 . (J1-1) (n-l) 

If {p"ex)}" is a MOPS satisfying the three-term recurrence relation 

Pn(x) = (x - rp,,)P,,-1 (x) - 'ljJnPn-2(X), n 2:: 2, 

then the polynomials Sn(x) = o:-np,,(o:x+ w), with 0:#0, satisfy 
[5, p. 25] 

13
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14 1. AREA et al. 

In [5, p. 187, Eq. (5.18)] we find the Pollaczek polynomials r,,(x; 
d, b, c) == rn(x) satisfy the following three-term recurrence relation: 

_f •• \ f.. ~a-(n+a-1)b\_ f \ 

'nIJ'J = \ .... - 2(n + a)(n + a _ l))'n-nXj 

(n-l)(n+c-l) () 
- .~ rn-2 x, n 2: 2, 

4(n+a-lt .. 
h-P 

ro(x) = 1, rJ (x) = x + 2(1 + ~)' 

where ~ is either a root ofax2 + bx + a - c = O. If we choose 

then 

Il+l 
u..'=--2.Jii ' 

,-I 
b=---;:;:;, c=,,(-l, 

yJ..L 

a=O, 

n 2: 0, 

(30) 

which are orthogonal with respect to the weight function given in 
[5, p. 187, Eq. (5.20)]. Moreover, if "(= 1 the coefficients in the three­
term recurrence relation for En(>') are constant, and En(>') are 
co-recursive of monic second kind Chebyshev polynomials {UnCx)}n 
[5, p. 5]. Therefore En(>') can be computed explicitiy by means of 

( 

l~ • 

En(>') = o:-n Un(o:>. + w) - 112 Un-I (0:>. + w) ). n 2: 1, (31) 

where 0: and ware defined in (30). 
Monic Meixner orthogonal polynomials are related with monic 

Laguerre orthogonal polynomials {L~O:) (x)} n by means of the follow­
ing limit relation (see [5, p. 177, Eq. (3.8)]): 

lim(l - Il)"M~a+I,/L) (_x_) = L~a)(x). 
/L .... I 1 - Il 

(32) 

14
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INNER PRODUCTS INVOLVING DIFFERENCES 15 

A limit relation between monic Meixner-Sobolev orthogonal poly­
nomials {Q~1"J1) (x; A)}n and monic Laguerre-Sobolev orthogonal 
polynomials [21] appears in a natural way. 

PROPOSITION 4 The foilowing limit relation hoids: 

1 \ 

1;,.,.,(1 _ ,,\nn(a+l,J1) f_x_. A \ _ n(a)(Yl 
~·':i\' t""/ ~n \ I -11' (1 -11)2) -:Gn '.'}' 

n? 1, (33) 

where {Q~a)(x)}n are the Laguerre-Sobolev polynomials [21]. 

Proof From Eq. (28) we have for n ? 2 

( )n ( '1 .\ (I X A \ 1 - 11 Q UT ,/1-; --; ) 
n 1 - 11 (1 _ 11)2 

(, \n,¥(n+I.Hl( X \ , __ ./1 .. \n-I,,,{a+l,/1-)( X \ 
-"'- \i - 1-') .IV1 n \.1- J.1) '''1-''\' - J1-j lY.ln_l \1-="--;;') 

,. \, ( >.. \" \n-1da +1 ul ( x A ')\ 
- \1-I1)an-l \(1-11)2; P -11) ~-l ,. \1-11; (1- Jii . 

Since (1- J-L)dn(A/(1 - J-L)2) converges to the coefficients given in [21, 
Proposition 3.3] when J-L -->, 1, the result follows by using the limit 
relation (32) as well as the equality 

4 THE LINEAR OPERATOR S 

Even the inner product in (15) no longer satisfies the basic property 
(xp(x), q(x»)s = (p(x), xq(x»)s, i.e., {Qn(x)}n does not satisfy a three­
term recurrence relation, this inner product is symmetric with respect 
to the new operator S. 

PROPOSITION 5 If we define the polynomial 

h(x) = J.1(x + 'Y - 1), (34) 

15
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16 I. AREA et al. 

with 0 < J.L < 1 and I> 0, and the linear difference operator S by 

S == h(x)I + .\(x - h(x))tl- Axtl V 

== h(x)I - .A(X~ V' + (x(p. - 1) + /l.b - 1 ))tl), 
(35) 

where I is the identity operator, then 

(h(x)p(x), q(x))s == (p(x), Sq(x)), (36) 

Jor every polynomial p and q. 

Proof It is well known (see e.g. [25, p. 21, Eq. (2.1.17)]), that pes) 
defined in (8) satisfies 

p(s + 1) a(s) + r(s) 
= 

pes) a(s+1) , 

with 17 and 'I given in (7). Since I7(S) + res) = J.L( 'Y + s), we obtain 

spes) =J.L{r+s-1)p(s-I). (37) 

Now we can compute, by using (6) 

(h(x)p(x),q(x))s 
00 00 

= L: h(s)p(s)q(s)p(s) + A L tl(h(s)p(s))tlq(s)p(s) 
s=O s=O 

00 

= LP(s) (h(s)q(s) - Ah(s)b..q(s))p(s) 
s=O 

00 

+ A Lh(s + l)p(s + l)b..q(s)p(s) 
s=O 

00 

= LP(s)(h(s)q(s) - Ah(s)tlq(s))p(s) 
s=O 

00 

+ A Lh(s)p(s)V'q(s)p(s - 1). 
s=! 

16
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INNER PRODUCTS INVOLVING DIFFERENCES 17 

By using Eq. (37) we can write the above expression as 

00 

(h(x)p(x),q(x»)s = LP(s)(h(s)q(s) - )Jz(s)~q(s) + >svq(s»p(s) 
s=O 

and from (6) we obtain (36). 

Remark 4 Notice that the linear operator S maps polynomials of 
exact degree n in polynomials of exact degree n + 1. 

THEOREM 1 The linear operator S defined in Eq. (35) is symmetric 
with respect to the Sobolev inner product (15), i.e., 

(Sp(x) , q(x»)s = (p(x), Sq(x»)s. 

Proof 
00 00 

(Sp(x),q(x»)s = L Sp(s)q(s)p(s) +.A L ~(Sp(s»)~q(s)p(s) 
$=0 s=O 
00 

= I::Sp(s)(q(s) - :\~q(s))p(s) 
s=o 

00 

+.A LSp(s + l)Aq(s)p(s) 
$=0 

00 

= I:Sp(s)(q(s) - AAq(s))p(s) 
$=0 

00 

+ .ALSp(s)vq(s)p(s - 1) 
s=1 

00 

= LSp(s)(q(s) - .A~q(s»)p(s) 
<=0 

00 h(s) 
+ .A ~ Spes)\?' q(s)p(s - 1) h(s) , 

(38) 

since h(s) -:F 0 if s ;?: 1. At this point we must distinguish two situations: 
If "I =1= 1 we can write the above expression by using Eq. (37) as 

(Sp(x),q(x»)s = f'.sp(s) (q(s) - .AAq(s) + >s~~\(s)lp(s) 
;:0 \ rt~,») / 

= ~ Sp(s)Sq(s) () 
~ h(s) ps, 

and this leads to the result. 

17
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18 1. AREA et al. 

Moreover, if 'Y = 1 then pes) = Il, S == s(pI + >"(1 - J.L)D..->"D.. \1), 
jJ(s - 1) = p(s)/J.L. We can write 

(Sp(x), q(x))s = fSp(s) (q(s) - >"L':!.q(s) + >..\1,:(s))p(s) 
s=I' f" / 

= ~,Sp(s)Sq(s) () 
L.t h{ r\ pS, 
=1 '\") 

and the result holds. 

Remark 5 If, = 1 the difference operator S reduces to S == 
s(j.1I + >"(1 - J.L) D.. - >"D.. \1) and we arrive to the analogous situation of 
Laguerre-Sobolev polynomials Zbl 0944.33012 with parameter Q = 0 studied by 

Brenner [4]. 

PROPOSITION 6 We have 

h{~\·..t'"Y,Ji-)(~\_"Q .(v\.la Q(x)+a Q (x) n>2 (~9) \""JIY.l~ V") - f" n+l\~/ I n,n n\ n-l,n n-l - , ' :... , \-

where 

(
,+n-l ) 

an,n = J.L 1 _ J.L + dn (>..) , (40) 

an-I,n =-1!.L b+n- i)d,,_I(>"), 
-J.L 

(4i) 

with hex) and dn(>") introduced in (34) and (24), respectively. 

Proof By using the three-term recurrence relation satisfied by 
Meixner polynomials (9) we have 

h(x)W,?,/L)(x) = J.Lb+x-l)~1'/L)(x) 

= J.LM;,~~)(x) + 1 ~ J.L b + n - 1 + J.l(n + l))M~'Y,/L)(x) 

112n +,.. ('V + n - 1)M:'Y,/L) (x) 
(1 _ J.l)2 I n-I 

= u(M:'"Y'~)(x) + ~ (n + l)Mb,/L) (X») 
, . n+ •. , i - J.l ' " 

+ _J.L_ (, + n - 1) (w.-t'/L) (x) + ~ M:::,/L) (X)) . 
I-J.L n I-J.L nl 

Using (21)-(23), the result holds. 

18
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From Propositions 2 and 6, we obtain a non-standard four-term 
recurrence relation for Meixner-Sobolev orthogonal polynomials. 

COROLL.\RY 3 The Meixner-Sobolev orthogonal polynomials {Qn(x)}n 
defined in (18) satisfy the follolving ;eCUiience relation: 

where dnCA) are dej1ned in (24), with the conventions d_ 1 (A) = 0 and 
do(>,) = ;4(1- p) and the initial conditions Q-i(X) = 0, Qo(x) = 1 and 
QI (x) = }vt)l',/L) (x). 

Proof Multiplying Eq. (23) by hex) and using Eq. (39) we obtain the 
four-term recurrence relation. 

PROPOSITION 7 We have 

where 

/1
2 (n + 1) (' b + n - 1) )' 

bn,n = (1 _ /1) , 1 + d,,(>')(l - p,) , 

Proof Ifwe expand SQn(x) in terms of {M},1"/-L) (x)}n we can write 

n 

SQn(x) = /1M~;:;'~\x) + Lbi,nM)1',fL)(x), 
i=O 

(44) 

(45) 

19

Rectángulo



 

 

    

         

    

    

            

 

           
 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
d
a
d
 
G
r
a
n
a
d
a
]
 
A
t
:
 
1
5
:
0
8
 
1
7
 
D
e
c
e
m
b
e
r
 
2
0
0
9

20 I. AREA et al. 

where 

Hence bi .n = 0 for i = 0, 1, ... , n - 2, and 

Finally we can compute 

PROPOSITION 8 We have 

where 

(47) 

- 2 kn (11) ()( ) dn- I (>.) Cn-l,n=J.L---= t=- n+l "Y+n-l d(>.)· kn- I 11 n 
(48) 

Proof If we expand the polynomial SQix) in terms of polynomials 
{Qn(x)}m 

n 

SQn(x) = J.LQn+l (x) + L Ci,nQi(X), 
i=O 

20
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INNER PRODUCTS INVOLVING DIFFERENCES 21 

by using the symmetric character of the linear operator S we get 

(SQn(X), Qi(X))S (Qn(X), SQi(X»S 
Ci,n = (Q;(x), Qi(X))S = k

i 
. 

Thus Ci,n= 0 for i=O, 1, ... ,n - 2, and 

i,.... I \ ro'" 1_ \\ 1-

\~n\X), 0~n-l \X))s Kn 
Cn-l n = - = J1.---. 

, kn-l kn-l 

Finally, 

So we must compute (Mn+1(x), Qn(x)S' Since h(x)=J1.(x+,-l) 
from (9) we get 

where Bn is given in (10). So we obtain 

. (Qn{x), Mn+l (x»s _ (b ~. kn (B -L~, _ 1)\ kn 
J1. - - n,n i-L 1r \n' I '1_ 

kn \ n'n / kn 

= an,n - J1.(Bn +, - 1), 

and then the result holds. 

21
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22 1. AREA et al. 

5 ZEROS 

It is well known that the zeros of Meixner polynomials 111,;'1,/1) (x) are 
real and distinct. They also lie on the interval of orthogonality 
[0, +(0) and they separate the zeros of ~'!.:~)(x) (see (26] and the notes 
of Fejer at the end of[12]). In this section we study the location of the 
zeros of Meixner-Soholev orthogonal polynomials {Qn(x)}n and an 
interlacing property which relates the zeros of Qn(x) to the zeros 
of M},,,!,/1) (x). 

LEMMA 1 ffn ~ 0 and if 'Y ~ 1 we have (-ltQnCO) > O. 

Proof We shall prove that Qn(O) and M},,,!,/1) (0) have the same sign or, 
equivalently, Qn(O)/Mn,,!,/1)(O) > 0 for all n ~ O. Then, by using the 
value of M},,,!,/1) (0) given in Eq. (12) the result follows since 0 < J.L < 1. 

If we write Eq. (28) for x = 0 we obtain a recurrence relation for 
QnCO): 

(49) 

By using Eq. (12) we get 

Thus, from the above equation we can write Eq. (49) as 

From Eq. (12) we can also deduce 

22
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INNER PRODuers INVOLVING DIFFERENCES 23 

So, taking into account the last expression we get 

Qn(O) =( _ll_f..L_M,::':~)(O)_d (,\) Qn-l(O) 
M},"r,/") (0) "( , f..L - 1 At}?'/") (0) n-l· M},"r,/")(O) 

= "( - 1 _ d ),) (f..L - 1) Qn-I (0) 
"( + n - 1 n-I ( f..L("( + n - lL~::::~)(O) . 

If we denote An = Q,,(O)/ M~"r'/"\O) the above expression can be 
written 

Finally, from Eq. (24) we obtain 

1 ({ _. 1\, _ kn- l A ') I U - i) T rl-_-oMn_1 , n 2: 2. 
"(+ n -1 \ kn-I 

Since kl/fl 2: 0, A2 is positive for "( 2: 1, and then An> 0 for all n 2: 1. 
Thus sgn(Qn(O)) = sgn(M},"r,/l) (0)) = sgn((f..L -In, for all n 2: 1, so 

we get Q2ll0) > 0 and Q2k+I(0) < O. The case n = 0 follows from 
Qo(O) = Mo'Y,/")(O) = 1. 

LEMMA 2 Let p(x) be a polynomial of degree k. If ), = 0 or "( = 1 there 
exists a unique polynomial PI (x) of degree k such that SPl (x) = h(x)p(x), 
where Sand hex) are defined in Proposition 5. 

Proof If ),=0 the linear operator S becomes S:=h(x)I, where I 
stands for the identity operator. Then it is sufficient to take 

PI (x) = p(x). 
If "( = 1, the linear operator S can be written 

S:= f..LxI + ),(1 - f..L)x6. - ),x6. V'. 

Let us expand 

k 

PI (x) = Lbi(X+ l)liJ, 
i=O 

k+l 
h(x)p(x) = f..LXp(x) = Laix[/l. 

i=O 

23
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24 I. AREA et al. 

The following basic properties will be useful in the proof: 

xx[ml = xlm+ll +mxlml, ~x[ml = mx[m-Il, \1xlml = m(x _l)lm-ll, 

h(x)(x + l)[ml = ll(xim+11 + 2mxlm] + m(m _ 1)X1m- 11 ), 

'>"h(x)~(x + l)[mj = .Am1l(x1ml + 2(m - 1)x1m- 1j 

+ (m - l)(m - 2)xlm-21), 

..\x&lmJ = .>..m(x1m1 + (m _ 1)x1m- II ). 

Hence, the action of the operator S on PI (x) yields 

SPI (x) = t hi (llx[i+ll + i(.>.. + 1l(2 - .>..))x[zl 

+ i(i - 1)('>" + 1l(I - 2'>"))X[i-l j - f(i - J)(i - 2)'>"J.Lx[i-21). 

From the equality SpJ(x)=h(x)p(x) we obtain a system of (k+ 1) 
linear equations with (k + 1) unknowns. It has a unique solution which 
can be obtained using the forward substitution method. 

COROLLARY 4 Let p(x) be a polynomial of degree k and assume 'Y = 1. 
Let PI (x) be the polynomial of degree k such that SPI(X) = h(x)p(x). Then 

Vq(x) E lP. (50) 

Proof We have 

24
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INNER PRODUCTS INVOLVING DIFFERENCES 25 

LEMMA 3 Let p(x) be a polynomial of degree k. If>" =1= 0 and ~f / =1= 1 
there exists a unique polynomial PI(X) of degree k as well as a unique 
constant cp (depending on p) such that 

SPI (x) = h(x)(p(x) + (x + / - 2)cp ). (51) 

Proof Let us write the polynomial PI(X) in tenns of the basis 
{(x+/i'1}i as 

k 

Pl ex) = I:'>i(X + 1')['1. 
i=O 

For such a basis we have 

Hence, if we apply S to any element of the above basis we obtain 

or, equivalently, 

Sex + /)[/1 =J.L(x + / - 1)[i+J] + (x + / - 1)['1 (i(>.. + J.L(2 - >..))) 

+ (x + / - 1)[i-IJ(J.Li(i - I) - 2>"J.Li(i - I) + >..i(i - I)) 

- (x + 'Y - 1)[i-2J>"J.Li(i - l)(i - 2). 

Let us expand the polynomial h(x)p(x) in the basis {(x + / - 1 i'lh: 
k+1 

h(x)p(x) = I:>i(X+/-I)[4. 
i=O 

From SPI (x) = h(x)(P(x) + (x + 'Y - 2)cp) we obtain the following 
system of (k + 2) linear equations with (k + 2) unknowns: 

J.Lbk = ak+h 

J.Lbk-1 + k(>" + J.L(2 - >"))bk = ak, 

25

Rectángulo



     

                 
            

 

              
              

         

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
d
a
d
 
G
r
a
n
a
d
a
]
 
A
t
:
 
1
5
:
0
8
 
1
7
 
D
e
c
e
m
b
e
r
 
2
0
0
9

26 I. AREA et al. 

phk-2 + (k - 1)(A + f.L(2 - A))bk-I + k(f.L(k - 1)(1 - 2A) 

+ A(k -,))bk = ak-I, 

J.Lbi-3 + (i - 2)(A + f-l(2 - A))bi- 2 + (i - 1)(J.L(i - 2)(1 - 2A) 

ph] + 2(), + J.L(2 - A))b2 + 3(j1(2)(1 - 2),) 

+ ..\(4 -,- 1))b3 - 24Af.i,b4 = U2 + cP' 

I J /\ I i., \\\L I "1/ .. t1 'i\'\ J.Loo T ~A T j-L~£. - A}}Vj I £.~J.L~1 - £./\} 

+ A(3 -,- 1))b2 - 6Aj-Lb3 = aI, 

A(1 -,)bl = ao· 

This linear system has a unique solution (bo, b], . .. ,bk , cp) which can 
be found using the forward substitution method. Moreover, if , # 1 
and A # 0 then b l = 0 since ao = O. 

COROLLARY 5 Let p(x) be a polynomial of degree k and let Pl(X) be 
the polynomial of degree k and cp be the constant given in the previous 
lemma such that Eq. (51) is verified. Then 

(q(x),PI (x))s = (q(x),p(x)) + cp(x +,- 2, q(x)), "Iq E lP. (52) 

Proof We have 

(q(X),Pl (x))s 

co 00 

= L q(s)PI (s)p(s) + A L ~q(S)~pl (s)p(s) 
$=0 $=0 

00 00 

= L q(s)(PI (s) - A~Pl (s))p(s) + A Lq(s + 1)~PI (s)p(s) 
s=o s=o 

co 00 

= L q(s)(PI (s) - A~PI (s))p(s) + A L q(s)\7PI (s)p(s - 1) 
s=o s=1 

co 00 hW 
= L q(S)(pl (s) - A~Pl (s))p(s) + A L q(s)\7PI (s) h( ~) pes - 1) 

s=O s=1 .,\-; 

26
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where the last equality is a consequence of (37). Thus 

(q(x),PI (x))s 

~ ,,(, .... As __ ,,\ " 
= ,L, q(s) ~PJ (s) - )"D.Pl (s) + h(s) VPl (s) ) p(s) 

s=<l 

= ~ q(s) SPl (s) p(s) = f' q(s) h(s) (P(s) + (s + "f - 2)cp) p(s) 
~ h(s) to h(s) 

= (q(x),p(x)) + cp(x + "f - 2, q(x)). 

LEMMA 4 Let p be a polynomial of degree n. If .\:1 0 and "f:l 1 then 
J.l'e have (-ltcp>O, where cp is the constant obtainedfor p(x) by using 
Lemma 3. 

Proof If we write Eq. (52) for q(x) = Qn(x) it follows 

From Eq. (27) the above equation reads 

If p is a monic polynomial of degree n, then PI is also a monic 
polynomial of degree n. Thus kn = kn + Cpel,nk), or, equivalently, 

kn -kn cp = . 
el,nkl 

The coefficient el,n can be computed from (27) and (24): 

_ (_1)n-2 2AJ.L(1 - J.L) ilrr,-l (s + l)J.L ks 
el,n - 2 k ' 

.\(1 - J.L) + "fJ.L s=2 1 - J.L s 

so sgn(el,n)= (-1t-2
• 

Finally, from kn > kn it follows that sgn(cp)=(-lt-2 and then 
(-ltcp>O. 

THEOREM 2 For each .\ > 0 the polynomial Qn(x), n 2: 2, has exactly n 
real and distinct zeros, where at least n-1 of them are positive. 

27
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28 1. AREA et al. 

Moreover, if { ~ 1 then all the zeros and positive. If we denote by 
xn,! < Xn,2 < ... < xn,n the zeros of ~'l"!l) (x) and if we denote by 
Yn,! <Yn,2 < ... <Yn,n the n different zeros ofQnCx) then 

)'n,1 < xn,] < Yn,2 < Xn,2 < ... < Yn,n < xn,n' (53) 

Proof Let Xn,1 < Xn,2 < ... < xn,n be the zeros of M~1'!l) (x) and let us 
define 

n 

Wi(X) = IT (x - xn). 
j=I,Ni 

(54) 

• If {=f. 1 by using Lemma 3 we obtain a unique polynomial p,{x) 
of degree n - 1 as well as a constant Ci such that Sp,{x) = 
h(x)(w,{x) + (x + '"Y - 2)cj). From Corollary 5 we get 

00 00 

= 2:= l1;'i(S) Qn(s)p(s) + Ci I:(s + {- 2)Qn(s)p(s). 
s=o s=o 

The Gaussian tvoe quadrature formula based in the zeros of 
M},'l"4x) [25] leads t~ 

00 

= AiWi(Xn,i)Qi(Xn,i) + Ci 2:(s + {- 2)Qn(s)p(S). (55) 
s=o 

Let us compute the second term of the above sum by using (27), 

00 

Ci 2)s + '"Y - 2)Qn(s)p(s) = Ci(X + '"Y - 2, Qn(x)) 
s=o 

n 

= Ci 2:ej,n(X+ '"Y - 2, Mj'l',Jio) (x)) = Ciel,nkl. 
j=1 

Hence the sign of this second term is always negative since kl > 0, 
sgn(e!,n)=(-lr-2 and Sgn(Ci)= (_1)n-l (from Lemma 4 because 
deg w,{x) = n - 1). 
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INNER PRODuers INVOLVING DIFFERENCES 29 

Thus from Eq. (55) we deduce 

00 

AjWi(X",i)Qn(Xn,i) = -Cj I::(s + 1-- 2)Qn(s)p(s) > 0 
s=O 

and then QnCXn,i):j= O. Moreover sgn(Q"(x,,,i» = sgn(wz{xn,i» = (_l)n-l, 
so Qn(x) changes sign between two consecutive zeros of Mn'Y,JL) (x). 

Finallv. since Sgn(O"(X,,l))=(_l)n-l then Q,,(x) has n different real 
zeros, whlch sepa;at~-th~s~-'~f ~'Y',1) (x) as stated .. 

• If 1 = 1, we use the orthogonality of Qn(x), Corollary 5 and the 
Gaussian type quadrature formula for evaluating sums in order to 
obtain 

() _ If) (vI ".(v\\ _ If) (vI ""(.,,.1\ _ \ Qn(O)\7Pi(O) 
v ~ \~nV'-~)'l.rl\ . .A.;iIS - \~n\ . ..rv/, Hl\"rvll"''' J.1 

r'\ /1'\\'r"1_ ('\\ 
A . ( )Q' ) ,!,!AV} v Pi Y) = iWi X",i ,,(Xn,i -;. f-L ' 

where Wj(x) are the polynomials defined in (54). 

In this case we have AjWi(Xn,i)Qn(Xn,i) = (.AI jL)Qn(O)\7Pi(O). From 
Lemma 1 we have (-1 )nQn(O) > 0, and repeating the arguments in 
Lemma 4 we can obtain (-1)n-2\7p,{O) >0. Hence we obtain 
AjW.{Xn,i)Qn(Xn,i) > 0, and then Qn(X",i):j= 0 as well as sgn(Q,,(Xn,i» = 
(-lr-i

. The proof follows in the same way as in the case already 
discussed. 

Finally, if 12: 1 we have (-l)nQn(O) > 0, using Lemma 1, so we can 
deduce that all zeros are positive. 
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