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1 [INTRODUCTION

Let P be the linear space of polynomials with real coefficients. If we
define an inner product on P

(fig) = / J(0)g(x) du(x), (1)

where du(x) is a signed measure on the real line; it is known (see
{5, pp. 21-22]) that there exists a sequence of polynomials {P,(x)},
such that

We assume that the sequence {P,{x)}, is monic, i.e. the leading
coefficient of P,(x) is one. In these conditions, the sequence {P,(x)}, is
calied a Monic Orthogonal Polynomial Sequence (MOPS) with respect
to the inner product (1). Such a MOPS {P,(x)}, satisfies a three-term

recurrence relation

The original motivation for considering Sobolev orthogonal poly-
nomials comes from the least squares approximation problems [10,15].
A given function f and its derivative f’/ are to be approximated

~

simultaneously by a polynomial p of degree # minimizing

lp(x) - F@)IP = /R [p(x) — F) dpox) + A /R 17/ (0) — £/ () din ()
@

over all peP,, du;(x), i=0, 1, being positive Borel measures on the real
line R having bounded or unbounded support [8,19]. Expanding p in
terms of the Scbolev orthogonal polynomials we obtain the usual
Fourier approximation p(x) of f(x) and f'(x). This problem was
considered in [15], but nothing was said there about the sequence of
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polynomials {0.(x)}, orthogonal with respect to the inner product

fgs—/f(x x) dpo(x +/\/f g (x)du(x), A>0. (3)

Study of polynomials orthogonal with respect to (3), called non-
discrete or continuous case, can be found in [6,7,19,23]. Other kind of
modifications of (1) are studied in [1,16,20]. A new attempt to the

Si—ndu of the ="“S crete case was made in 1991 by Iserles ~l 111
1% J wl LL.l\.t uu.u WLLOWA Wi WAlSWw ¥YAO 11k u\.a 211 A S ) U] Aowiivo CL ul— Ll. 1_‘

There the authors proved that if the Borel measures djg and du; obey
a specific condition (coherent pair) then the sequence of orthogonal
polynomials {p,(,A) (x)},with respect to (3) can be expanded in terms of
the polynomials orthogonal with respect to dug in such a way that,
taking into account an adequate normalization, the expansion coeffi-
cients, up to the leading one, are independcn‘r of n and are themselves
(o) L-Lugﬁﬁaa pﬁi’y’ﬁﬁﬂ‘ﬁqxu in A Lhuv also ¢ wAl.uU.l red several c’xai‘upxu: and
showed how their theory can be used for an efficient evaluation of
Sobolev—Fourier coefficients.

The concept of coherent pair, initiaily defined for measures in [11]
can be characterized in terms of the MOPSs {P,(x)}, and {T,(x)},
associated with dyy and dy,, respectively [11, Theorem 3] in the
following way: there exists a sequence of non-zero complex numbers
{on}n such that

Pra(x) _ Bi(x)

n+1 n

Tp(x) =

This concept has been extensively studied by several authors [17,18,22]
and it has been recently adapted to the case of orthogonal polynomials
of a discrete variable in [2], characterizing the MOPS {P,,{x)},, and
{T(x)}, such that

APy (x) - AP, (x)

n s

Tn(x)= PES] n

where {0,}, is a sequence of complex numbers and A stands for the
forward difference operator (Ah(x) = A(x + 1) — A(x)).

In order to find the best polynomial approximation p(x) of a
function f(x) where besides function values f(x;, also difference
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derivatives at the knots are given, the following minimization problem
appears in a natural way:

r /b/,—k—-l \
: s Ak s N i, R -1,
minS(S (Afp(x) — A5 () Pel) |, AKG) = AFT(ARG),
k=0 \ xs=0; )

where p,(x) are discrete weight functions on [ag, b;), 1.e., each pg(x) is
piecewise constant function with jumps pg{x;) at the points x=x; for
which x; ;1 =x;+1and g, <x;< b, — 1.

Thus, it seems to be interesting the analysis of the polynomials

which are orthogonal with respect to the inner product

r by —k—-1 3
(P, hw = Z( Z Akp(xs)Ak‘Z(xs}ﬂk(xs))-

k=0 Xy=ay

The aim of this paper is the study of polynomials which are
orthogonal with respect to a particular case (r=1, po=p;) of the
above inner product:

oo o0
(P q)s = D_p($)a(s)p(s) + XY Ap(s)Aq(s)p(s); (4)
s=0 5=0
A > 0 and p(s) is the Meixner weight function [24]. We call (4) the
Meixner—Sobolev inner product, by analogy with the continuous
case [21].

The structure of the paper is as follows: Section 2 contains the basic
relations for monic Meixner orthogonal polynomials {Mf,w ) (%)}, In
Section 3, we introduce the Meixner—Sobolev inner product, the
monic Meixner—Sobolev orthogonal polynomials {Q,(x)}, and the
limit polynomials {R,(x)}, obtained from {Q,(x)}, when A tends to
infinity. We also give some relations among these three families of
polynomials and a limit relation between Meixner—Sobolev and
Laguerre~Sobolev polynomials. In Section 4, a linear difference
operator S on P is defined. We prove it is a symmetric operator with
respect to the Meixner—Sobolev inner product and we find a nosn-
standard four-term recurrence relation for the {Q.(x)}, polynomials.
Finally, in Section 5, we study the properties of the zeros of Meixner—
Sobolev orthogonal polynomials.
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2 MONIC MEIXNER ORTHOGONAL POLYNOMIALS

The forward difference operator A and the backward difference
operator V are defined by

Aflx) =fx+1)=f(x),  Vflx)=fx)-flx-1). (5
These difference operators satisfy the following properties which will
be useful in the next sections:
A=V +AV, Ap(x)=Vp(x+1),
A(p(x)q(x)) = q(x)Ap(x) + p(x + 1) Ag(x).
Monic Meixner orthogonal polynomials { M5 (x)}, are the poly-

nomial solution of a second order linear difference equation of
hypergeometric type [9,25]

(6)

() vt (1 — ) PR Q)
(%) =y —x(I—p)  An=n(l—p).

These polynomials {M,(,"’“ ) (x)}, are orthogonal with respect to the
inner product

(P340 = Pl o) =FiCrs,
5=0

sef0,+00), O<u<l, ~>0.

For monic Meixner orthogonal polynomials the following proper-
ties are known [3,9,25].

21 Three-term Recurrence Relation

We have

XM (x) = MO (x) + B,MOW (x) + CMT(x), n>1, (9)

n+1 n—

et Ut SN e et ) (10)
I=u (1-p)

with the initial conditions M{™ (x) = 1, MY (x) = x — B,.

B,
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2.2 Difference Representation
We have

M"YIJ- ! o
I\Jg”“)() _ay ( /+ M AM%M)(X)’ n>0. (]1)

n1 1——#

2.3 Representation as Hypergeometric Function

We have

1

p e L
ng’#) (x) = (ﬁ) (’Y\ ZFI( n, —X; ’)’,1 _'ﬁ)s

where (a), denotes the Pochhammer symbol, {(a)y=1, (a),=
ala+1)---{a+s5—1). From the above hypergeometric representation
of monic Meixner polynomials we get

w00 = (-45) 0, nz0 (12)

24 Squared Norm

Let us denote

ken = (M) (x), MOP (x)) = (M(mu)( )\ w Ty +5)
0

IEYON
- (13)
1 n
= n (7)";:’_’_ ) n 2
(1 —p)™™
The following relations can be easily derived from the definition of k,,:
1 (y+n—1)un
ko = —=, ky =~k y, > 1 14
(1—p) " Q—-p* (14
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3 MEIXNER-SOBOLEV ORTHOGONAL POLYNOMIALS

Let us consider the Sobolev inner product defined on P by

(P(x)a‘I(x)>s=<P(x) X))+/\<AP( » Ag(x))

(a(6) EEO L) L3 S Ap(syag(s) KT+

= N N s

Lp )q éa p(s STy
(15)

where 0< u<1,y>0and A > 0.

We shall denote by{Q{"*)(x; A)}, = {Qa(x)}, the MOPS associated
with the inper product {.,.)s. Such a sequence is said to be the
Meixner—Sobolev MOPS.

Let us denote the moments associated with the inner product (8) for

o angia [+l h ne
LL v asid 1—4/ G.D

=]
wi = (e, XUy = Zs["lslﬂp(s\— S S, (16)

5=0 s=max{i, j}

with p(x) defined in Eq. 8), X" =x(x—1)---(x —n+1), x¥=1, and
let us denote the moments associated with the inner product (15) for
the basis {x}, as ¢; ;= (x, xM)s. Since Ax" = nx"~1, we get

(LR —
cio = ¢ = (x", 1)g = uio = up; = w;,

17
ey = (o) = w4 Ny oy, 472 1 4

From the definition,

x) = A’I(()'Y’”)(x) =1, O1(x) = 1‘/1(17’“)()5) —x_ E

1—4’
L

but if A >0 the elements of these sequences are different for degrees
greater than or equal to 2.
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We can write the Meixner—Sobolev polynomials in the following
determinantal form:

On(x)
g Uy ‘e liy
u; uyy + A .- Uy + Aty
Unoy Uip—t + A — Dtz ... tpp—1 + An(n = 1jttp_10-2
1 X e xl
. Uy Ul . Up—1 i
Uy upy + Aug s Uy p1 + )\(n - l)u,,_z
l ) 2
bney a2 =D o o poy F AR = 1) U000

(18)

where each coefficient of 0,(x) in terms of x/? is a rational function in
A, the numerator and the denominator being of degree n — 1. Then, we
can define a new sequence of monic polynomials { R (x)}, =

{Rn(xX)},,

Ro(x) = Qo(x) = M{*(x) =1, Ri(x) = Qi(x) = M{™(x),

(19)
1y U ... Uy
0 U . nup_q
0 (n—Dup— ... n(n-— 1){1?,_1,,,__2
] 1 X - xt
R,,(x) - z\lilvgo Qn(x) - Uy uy .o Up_1
0 1 S (n—Duy_z
0 m-Dupa ... (n— I)Zun_zy,,_z
(20)
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PROPOSITION 1 (a) For eachn > 1 we have Yy .o Ru(5)p(s) = 0, where
the weight p(s) is given in (8) and the polynomials R,(x) are defined in
(19) and (20).

B Ifn>2and 0<m<n—2 then Y2 sMAR,(s)p(s) = 0, where
the polynomials R,(x) are defined in Egs. (19) and (20), and p(s) is given
in(8).

Proaf

(@) Yo Ru(8)p(8) = oo g imy oo On(8)p(s) = iMoo {On(x), 1)g=0.
(b) Apply the A operator in the definition of R,(x).

COROLLARY 1  The following two equalities hold:

AR,(x) = nMI¥(x), n>1; (21)

= MO (x) + T-‘i-AR,,(x), n>2.
— U

Remark 1 If v>1, then {Ry(x)}, = {MY "M (x)},, i.e., Ru(x) is the
monic Meixner polynomial of degree n associated with the weight
function

wWT(x+~y—1)

A = F T = 1)

If 0<y <1, R,(x) is a quasi-orthogonal polynomial [5, p. 64] of order
one with respect to the MOPS {M {re) ()},

PROPOSITION 2  The following relation holds:

Ry(x) = Qn(x) + dn-1(A)Qn1(x), n2>2, (23)
where
G =nt Tl s (24)
n— 1 _ ‘l, 1 H iy 3
En = (Qn(x), Qn(x)>S' (25)
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Proof If n> 2 we can expand the polynomial R,(x) in terms of
Meixner—Sobolev polynomials in the following way:

n—1
Ro(x) = Qulx) + 3 inNOI(R). (26)
=0

By using (21) and (22) the coefficients f; () can be computed as

. — (-Rm Qi>S
7=, 0
~z { D Ra(s)Qi(s)p(s) + AZ AR,(5)AQ; (s)p(s)}
L s=0 s=0
=7 {‘S‘RAs)QI ()n(s) + AEnMW D(s AQ,(sm(s)}
5=0 s=0
- xS‘{Mﬁﬂ)(s) tasds M‘”‘)(S)}Q (<0
(M{'*"‘) (), Qi(x)) + ———= - ) — (M (x), Oi(x)),
0<i g n—1.
Thus,
0 if 0<i<n-2,
fin(A) = {_fi‘.ﬂ_ K pimn—1.
1~ H kg
Then (26) becomes
nu ic -

Ry(x) = Qn(x) + Qn—l(x) nz2.

COROLLARY 2 The Meixner—Sobolev orthogonal polynomials defined
in (18) satisfy

0.%) =Y euM™(x), n>2,

=1

10
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where

€nn = 1,

T n—1
ein = (—1)"77! h{‘_ﬂ(ﬁl)—cg(x)} I 40, 1<i<n—1.

s=j+1

(27)
Proof From Egs. (23) and (22), we obtain

On(x) = M7 (x) + nl—‘_l—ﬁM,(l‘;) () = du1 (N Q-1 (x), 122,
(28)

where repeating this substitution the result follows taking into account

that 01 (x) = M{™ (x).

We can compute recursively the coefficients d,()\) defined in (24) by
means of

PROPOSITION 3 The coefficients d,(\) satisfy the following two-term
recurrence relation:

dn(A)

) R+ )y 51— 1)
(1= w{uly+n—1)+n( + 21— p)*) = p(1 = W (W)}
| (29)

valid for n > 2, with the initial condition

2 2
di(\) TH

T AW AE-D)

11
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Proof From (25) and using (11) we get

fon = (Qn(x), MU (x))g = kn + MAQn(x), AMD™M (x))
= kp + MAQ (%), nM) () — {—f‘— AMI) (x))

= Jep + APkt — J\T'—f_“—# (AG(x), AM) (x))

= ko Aty — { (0n(%), MEH) (x))g — (), MOP () |

=k, +)\n2k,, 1+ n,u <Qn( ) AJLIT)(X))
= ky + Pk, + 1_7
x (MOH)(x) + H M’(j_’i‘) %) = dyey (N) Qo (%), MUY ()

7 nn \2
= on + My + (| ket — dpet (A) oKy
1
\I—p 4

Thus, from (24)

(7 + D/ = )k, |
Jon - Fony (N2 4 /(1= )2 = (s (1 = ) das (X))

dn(N) =

Finally from (14) we obtain (29), and from (24) we get the initial
condition.

Remark 2 Although the coefficients d,()\) appear in the previous
results for n > 1, we can start the recurrence relation (29) with the
initial condition d_,(X) =0, obtaining the same coefficients for n > 1.
Moreover, for each fixed n > 1 the coefficient 4,()) is a rational
function in A of degree n— 1 in the numerator and of degree n in the
denominator. Thus lim) ., d;(A) =0 foralln > 1.

Remark 3 'We can write the coefficients d,()\) given by (29) as

Nn—l(/\) _ '1971
Dy(A)  (Awn +va) — (1 — p)drr ()
9y,
(A + va) — 1 = 1) N2 (A) /Dt (A)

d.(A\) =

12


Rectángulo


where

o= -p’n, v=01-pply+np+1)-1),
Op=p*n+1){y+n-1)

Np—1(N) _ FpDp1(A)
Da(A) (A + V) Dne1 (A) = p(1 - ) Nn2(A) A

Thus, the denominators D,()\) satisfy the following three-term
recurrence relation:

Dp(X) = (Awn + vn)Dp1(N)

2
—~ p(1 = u)Fp1Dpa(A), n22,
which in the monic case, E,(\) = D, (\)/(n!(u — 1Y**+), can be written

Eu(N) = (A = B)Eni(N) = KnEna(N), 722,

EN =1  EQ) =x+—F,
(1-p
where
3
+n—2
=1 ("_H) "=u(7 a 1)\'
d-p)y\ 7 / (-1 (=-1)
If {P,(x)}, is a MOPS satisfying the three-term recurrence relation
Pn(x) = (x - ¢n)Pn~l(x) - ":ann—2(x), n22,
then the polynomials S,(x)=a7"P,(ax+w), with a#0, satisfy
[5, p. 25]

5:0) = (x= 2295109 - B 5o n22

13
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In [5, p. 187, Eq. (5.18)] we find the Pollaczek polynomials r,(x;
4, b, ¢) = r,(x) satisfy the following three-term recurrence relation:

[ fa—-(n+a-1)b\_

" Z(n-ra)\n—ka-l)}'" 1)

‘(71-—1)\711-0—1)
4n+a—1)°

f-N
(x)=

T

rn2(X), n2>2,

re(x)=1, nx)=x+—-—

where £ is either a root of ax® + bx + a — ¢ = 0. If we choose

(1—w? p+1
= o= ..—_‘0
32 0 YT a="u
2u i 2\/‘ (30)
b_—~> C=7~1> é:, 5
N vE

then

-1
E, Q) = a‘"r,,(a/\-i—w;O, L_;,7~ l}, n>0,
\ VH /

which are orthogonal with respect to the weight function given in
[S, p. 187, Eq. (5.20)]. Moreover, if y=1 the coefficients in the three-
term recurrence relation for E,()\) are constant, and E,()\) are
co-recursive of monic second kind Chebyshev polynomials {U,(x)},
[5, p. 5]. Therefore E,(A\) can be computed explicitly by means of

1/2

E,(\) = a""( w(ad +w) — E?U,,_l(a)\ +w)) n>1, (31)

where o and w are defined in (30).

Monic Meixner orthogonal polynomlals are related with monic
Laguerre orthogonal polynomials {L )(x)},, by means of the follow-
ing limit relation (see {5, p. 177, Eq. (3.8)]):

iy (1 - M () = 203, )
u—1 — U

14
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A limit relation between monic Meixner—Sobolev orthogonal poly-
nomials {QS,”‘ )(x; A)}, and monic Laguerre—Sobolev orthogonal
polynomials {21] appears in a natural way.

PROPOSITION 4 The following limit relation holds:

. +1, X A
lim(1 - .,)"Q(a 1) {____ _____\ = lea)(xL n>1

where {Qﬁ,") (x)}, are the Laguerre—Sobolev polynomials [21].
Proof From Eq. (28) we have forn > 2

g F 2 )
0=\ i )

{1 AR AJ(IZH—L!L){ X \ e f1 o an—1 a o+l p) _{_ﬁﬂ,\,
== \1 ,u,/l l,Vln \m} 7 :E'u,\.& i*“} xuﬂ_} i\l _‘u

/oy N T A

’ \ g A Iz sn—1 ~la+1,u) A . ’\

~ (1 = wydpr | —=— |1 = w0 k-— ————)
\(1~p?) " L—p" (1-py

Since (1 — p)d.(A/(1 — u)?) converges to the coefficients given in [21,

Proposition 3.3] when u— 1, the result follows by using the limit

relation (32) as well as the equality

aw(_x A ) _ M<a+1,u)( x >

4 THE LINEAR OPERATOR S

Even the inner product in (15) no longer satisfies the basic property

(xp(x), g(x))s = (P(x), xq(x))s, i.e., {Qn(x)}» does not satisfy a three-
term recurrence relation, this inner product is symmetric with respect

to the new operator S.

PROPOSITION 5 If we define the polynomial

h(x) = p(x+7—1), (34)

15
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with 0 < u <1 and v> 0, and the linear difference operator S by

S = h(x)T + Mx — h(x))A — MxAV

(35)
= h(x)T — MxAV + (x(p — 1) + ply — 1)A),
where T is the identity operator, then
Bp(), 405 = (p(x), Sa)), (36)

Jor every polynomial p and q.

Proof 1t 1s well known (see e.g. [25, p. 21, Eq. (2.1.17)]), that p(s)
defined in (8) satisfies

pls+1) _o(s) +7(s)

\ ole 1) 7
/ */

O\w =

s
pls
with o and 7 given in (7). Since o(s) + 7(s) = u(y + 5), we obtain

sp(s) = p(y+s—1)p(s — 1). (37)

Now we can compute, by using (6)

(h(x)p(x),q(x))s
= h(s)p(s)g(s)p(s) + X > Ah(s)p(s))Aq(s)p(s)
5s=0 5=0

= 3 p5) (H($)a(s) — Me(s)Aq())0(s)
5=0 ,
+ Aih(s + )p(s + 1)Agq(s)p(s)
5=0

= 3 pls)(h($)a(s) — Ma(s) Ag(s))p(s)
s=0

+ X3 hs)p(5)Va(ols ~ 1)

s=1

16
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By using Eq. (37) we can write the above expression as
(h(x)p(x),q(x))s = Y _ p(s)(h(s)q(s) — Ma(s)Ag(s) + AsVq(s))p(s)
=.0

and from (6) we obtain (36).

Remark 4 Notice that the linear operator & maps polynomials of
exact degree n in polynomials of exact degree n+ 1.

THEOREM 1 The linear operator S defined in Eq. (35) is symmetric
with respect to the Sobolev inner product (15), i.e.,

(Sp(x), g(x))s = (p(x), Sq(x))s. (38)
Proof
(Sp(x),q(0))s = > Sp(s)g(s)p(s) + A D_ A(Sp(s))Ag(s)p(s)
5=0 s={
zSp(SM 5) = ADg(s))p(s)
s=0
+ )\iSp (s + 1)Ag(s)p(s)
§=0
=Y°-°“C_/-\/ TN YA A A o N
=2.° SI\GLS) — ARG\S) JnS)
s=0
+2Y _Spls)Vq(s)pls — 1)
s=1
= 3 5p(6)(a(s) — AAg())(s)
s=0
2 h(s)
+2A ;SP(S)VQ(S)P(S ~ DGy

since h(s) #£0if s > 1. At this point we must distinguish two situations:
If v+ 1 we can write the above expression by using Eq. (37) as

(Sp(x), q(x))s = Yop(b)( q(s) — AAg( ,\s’v,q\(s \ (s)
s—0
_ iSp(S)Sq ) p(s)

s=0

3

and this leads to the result.

17


Rectángulo


Moreover, if y=1 then p{s)=p’, S=s(uZ + M1 — p)A-XAV),
s — 1= p(s)/p. We can write

(Sp(), ()5 =§jsP s)(q _AAg(s) +

3 2L,
s=1

\

Wq( 5)
) p(s)

I

and the resuit holids.

Remark 5 If =1 the difference operator S reduces to S=
s(uT + A1 — py A — AAV) and we arrive to the analogous situation of
Laguerre—Sobolev polynomials with parameter a=0 studied by
Brenner [4].

PROPOSITION 6 We have

k(x};’%(“”“) (x> = ﬂQn+x( + nQn\x> + 8y 12Qn-1 (’f) n>2, (39)

where
+n—1
dnp = N(zT:—J— + dn(A)) , (40)
anp =7 (y+n= Dd,1(2), (41)

with h(x) and d,()) introduced in (34) and (24), respectively.

Proof By using the three-term recurrence: relation satisfied by
Meixner polynomials (9) we have

h(x)ME™) (x) = ply +x — l)wm (x)
= pMH (x) + #(v+n—1~run+1))M(“(
2
+ (1“ ”)2 (y+n— )M (x)
= w( M0+

+——('y+n—1)(M(”“ () +7— e MW) )

(n + 1) M) (x))

Using (21)—(23), the result holds.

18
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From Propositions 2 and 6, we obtain a non-standard four-term
recurrence relation for Meixner—Sobolev orthogonal polynomials.

COROLLARY 3 The Meixner—Sobolev orthogonal polynomials {Q,(x)},

orrtd e wolatinm.

oo i
dc/uu:u i i xo: auuS.’;'y mc:Juuuwin;s FECUTTENCE FeiGlion.

xQn(x)
= Ont1( {x ( i H(i ) + dr()\)) Q"(x>

\

+ (lmﬁ tn-2) - (# — Dt ply+n= 1)) xdn—l(”)

(-1
un{y +n—2)dy_2(N)
X Qn1(x) + ( (i — 1)2

>Q,,_2(x), n>1, (42)

where d,{\) are defined in (24), with the conventions d_(A\)=0 and

— .://1 — u\ and the initial conditions f) H{xX)=0, Os(x\=1 and

i
du\/\) e A% V3 AV_/ 7 l

Q] (x )= 1"1'(7’”) (Jx)

Proof Multiplying Eq. (23) by A(x) and using Eq. (39) we obtain the
four-term recurrence relation.

7

e s Y T PR AN
PROPOSITION We have

S0n(x) = pMIH (x) + bynMO® (x) + bpor MW (x), n 22, (43)

n

where
_Eerl) (e 1)
b =100 (1 2000 = ) (M)
3 —_
bprn=n(n+1) (1 f#) 7_6‘1_",(1)\) : . )

Proof If we expand SQ,(x) in terms of { MY (x )}, We can write

) n
SQn(x) = MU (x) + 3 biaM ™ (x),
i=0
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where

b, - (52n(x), M ()

_ {Qn(x), A M (x)
ki ki '

Hence b;,,=0fori=0,1,...,n—2,and

n—1

Q@MW) B n Dk

el Kt knt 7 0= (Mot

Finally we can compute

_ (0a(x), hx)IMI™ (x))

- .
n
Iy f. £-) 1 TRV N .
_\KniA), P/Qn+1 \A) T “n,nQn\—"«} + ﬁn~1ﬁngnmﬁ(—x}>5
kn
—UnnT "
4! kn

PROPOSITION 8 We have

SQ,,(JC) = uQns (x) + Cn,nQn(x) + Cn—l,nQn——l (x)» n>2,

where
2 1 —1
&m=“(a+)q+ﬁ\ )+M¢QL
(1 — p) dn(A)
]En H )2 dn—l()\)
== (n+1 +n—1 .
Cn—1n Mkn_l (1 — 4 ( )(7 ) d,,()\)

(46)

(47)

(48)

Proof 1If we expand the polynomial SQ,(x) in terms of polynomials

{Qn()}n;
80n(x) = uQni1(x) + Y cinQi(x)s

i=0
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by using the symmetric character of the linear operator & we get

o o (80n(%), 0ilx))s _ (2n(x), SQi{x))s
7). Qi(x))s 3 -

Thus ¢;,,=0fori=0,1,...,n—2,and

<Qn(x)s Ogn—l(xDS — 0y Ky

Cn—tn =

fen1 Koot
Finally,
(0,503
n,n i
— </—LMn+l (x> + bn,nMn(x) + bn——l,nMn—l {x), Qn(x»S
ky
(M, 1(x), On(x))g
:M A ”+1 \xz""\xl)\)_i_bnnl

So we must compute (M, 1(x), On(x))s. Since h(x)=pu(x+vy—1)
from (9) we get

. {Qn(x), A() Ma(x))s
n,n k,
— (Qn(X)sz:Wn(x»s +ply—1) <Qn(x),l:4n(X))s
=u (Qn(x),gnﬂ (x))S +/—4%(Bn oy — 1),

where B, is given in (10). So we obtain

n(x), Mye1{x En n
WM s (g )

~ I
Ky K,

wn

x

N\

=anp — (B + vy — 1),

and then the result holds.
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5 ZEROS

It is well known that the zeros of Meixner polynomials M5™ (x) are
real and distinct. They also lie on the interval of orthogonality
[0, +00) and they separate the zeros of M, "\’ (x) (see [26] and the notes
of Féjer at the end of [12]). In this section we study the location of the
zeros of Meixner—Sobolev orthogonal polynomials {Q,(x)}, and an
interlacing property which relates the zeros of Q,(x) to the zeros

of M (x).
LEMMA 1 Ifn > 0andif v > 1 we have (—1)"0,(0) > 0.

Proof We shall prove that Q,(0) and M (0) have the same sign or,
equivalently, 0,(0)/M"(0) >0 for all n> 0. Then, by using the
value of My (0) given in Eq. (12) the result follows since 0 < < 1.

If we write Eq. (28) for x=0 we obtain a recurrence relation for

0,(0):
0,(0) = <~"‘(0)+1 Mfl‘]“(())—dn_l(/‘\)g,,_l(()), n>2,
01(0) = Mﬁw (0). (49)

By using Eq. (12) we get

ny ,
M{H(0) + - MP(0)

= (ﬂ L 1>n(7),, +Tf;u— (—P_—I)n_l(’r)n-x

= (- )£ M )

Thus, from the above equation we can write Eq. (49) as

0n(0) = (7= D E7 MID(0) = it ()1 0)

From Eq. (12) we can also deduce

M{#(0) = === (y+n — )M (0)
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So, taking into account the last expression we get

__Q.&z _1\ H Mw‘ in()
w0 0 VTR ) 9 0)
:71;-{1_‘1”_1(»#’(“_1_)“ Q7:;‘(0) '

{(y+n 1)‘;‘4;1_1/(0)

If we denote A, = 0,(0)/M")(0) the above expression can be
written

A, =——1—:—1———d,,_1(>\)—(£i/1n_1.

y+nrn-1 uly+n—1)
Finally, from Eq. (24) we obtain
O (0
| = Zi1\Y) —
M{i’y’“)(ﬁ)
} I_/ _ln 1 \
A fmf 1N 1 gin=l 4 n> 0.
An 7+n_l\\y 1)""7En_1v‘ln—-l)a nzZe

Since k; /k, > 0, A, is positive for v > 1, and then 4, >0 foralln > 1.
Thus sgn(Q,(0)) = sgn(M¥(0)) = sgn((u — 1)), for all n > 1, so
we get 0(0)>0 and (5.1(0) <0. The case n=0 follows from

00(0) = M{™(0) = 1.

LEMMA 2 Lei p(x) be a polynomial of degree k. If A=0 or y=1 there
exists a unique polynomial p\(x) of degree k such that Sp,(x) = h(x)p(x),
where S and h(x) are defined in Proposition 5.

Proof If A=0 the linear operator S becomes S=h(x)Z, where T
stands for the identity operator. Then it is sufficient to take

pi(x) =p(x).
If v=1, the linear operator S can be written

S = pxT + M1 — p)xA — AxAV.

Let us expand

k . k+1
(0= b(x+ 1, h(x)p(x) = pxp(x) = Y axll.
i=0 i=0
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The following basic properties will be useful in the proof:
il = ] + A = =l g = (e — 1),
h(x)(x + DI = g (x4 2mxld (- 1)xim1),
Mr(x)A(x + 1) = dmps (x4 2(m — 1))
+ (m — 1)(m — 2)xI"7),
deAx™ = Xm(xl" + (m — 1)xtm=1),
Hence, the action of the operator S on pi{x) yields

Spi(x Z b; ( I O 4 (2 — A))xt

i=0
+ (i = DA+ (1 = 22)) 1 — (1 - 1) - z>/\ux“‘2]).

From the equality Spi{x)=/A{x)p(x) we obtain a system of &+ 1)
linear equations with (k + 1) unknowns. It has a unique solution which
can be obtained using the forward substitution method.

COROLLARY 4 Let p(x) be a polynomial of degree k and assume v=1.
Let pi(x) be the polynomial of degree k such that Sp,(x) = h(x)p(x). Then

(x)) — xM’ Vg(x) €P.  (50)

(), 21 =3 a()(21(5)~AAp ($))p(s) + A3 (s + 1)Api(5)o(s)

§=0 “=
— ZQ(S)(PI( ) — AAp1(s))p(s) + ,‘\Zq(s)vpl(s)p(s ~1)
s=0
=" a6 @1(5) = Ap1()e(s) +A24_@")_V’!;_S_>ILS)
s=0
=210 (”’ () = AApa(s) +Avp,l( )> (9~ 20 )Zpl =
=y SPi(s) o() = A 4(0)Vp1(0)
;qw) s AR
=3 q(s)p(s)a(s) - _(q)_v;&_(g)
s=0
ol o) — 20 VP1(0)
= (g(x),p(x)) — A PR
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LEMMA 3 Let p(x) be a polynomial of degree k. If A\5£0 and if v#1
there exists a unigue polynomial p(x) of degree k as well as a unique
constant ¢, (depending on p) such that

Spi(x) = h(x)(p(x) + (x + 7 = 2)cp). (531)

2N S-SR
X} 111 Werms Ol

S SO
LIIT  Dasid

©
=
)

For such a basis we have

At = ix b)Y, Ve ) =iy - DL

Hence, if we apply S to any element of the above basis we obtain

or, equivalently,

S+ =p+y =D+ (e 4y = DIEA+p2 - )
+ (e 4y — DF(ui(i — 1) — 22pi(i — 1) + Ai(i — 7))
— (x4 = DG - 1) - 2).

Let us expand the polynomial A(x)p(x) in the basis {(x+ v — DA

k+1
h(x)p(x) = Y ailx+y =D,
i=0

From Spi(x)=h(x)(p(x)+(x+y—2)c,) we obtain the following
system of (k + 2) linear equations with (k + 2) unknowns:

ub = ag41,
pbr—1 + k(A + (2 — X)bi = ax,
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phr—z 4+ (k= 1)(A + (2 = A))br—y + k(p(k - 1)(1 - 2))
+ Mk —7))br = a1,

by s+ (i = 2)( + (2 = Xbiz + (i = 1){u(i = 2)(1 = 23)

-+ /‘\\/i'- vz 1}}:’)5..1’ - /\y:i({- 1}\/1— Z}bl = di-3, i= k, sy 5,
pby + 200+ (2 = X))k + 3(u(2)(1 - 22)

+ A4 — 7~ 1))bs — 24Aubs = ar + ¢p,
pbo + (A + (2 = X))by + 2(u(1 = 2X)
+ A3 =7y —1))by — 6Aub3 = a,
M1 = y)b; = ay.
This linear system has a unique solution (bg, b1, ..., bx, c¢,) Which can

be found using the forward substitution method. Moreover, if v# 1
and A #0 then b, =0 since a3 =0.

COROLLARY 5 Ler p(x) be a polynomial of degree k and let py(x) be
the polynomial of degree k and c, be the constant given in the previous
lemma such that Eq. (51) is verified. Then

(g(x), p1(x))s = (g(x), p(x)) + cp{x +7—2,9(x)), YgeP. (52)

Proof We have
(g(x), pr(x))s

= i g(s)pr(s)p(s) + A i Aq(s)Api(s)p(s)
s=0

5s=0

= 30 4()(p1(s) — M1 (E)e(s) + 2 als + 1) Ap (5)(s)

s=0 5=0
= 3 g5~ AAp()els) + X3 a(5) Vi (s)ols ~ 1)
s=0 s=1
D SLCCICERYCIDEOREV SEOL B RE)

= S0 (p1(5) = ABp )R + A S a(5) V1 (5) s p(6),
=0 =1 h(s)
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where the last equality is a consequence of (37). Thus

{g(x),p1(x))s

= /,\ U ¥ S U
=> qls) \p 1(8) — AAp{s) +;(-§sz£5)}»9(5)
s=0
20) ) =3 gy 2O+ sty = D)
=0 =0 h(S)

= (q(X)=p(X)> +cp{x + v —2,9(x)).

LEMMA 4 Let p be a polynomial of degree n. If A0 and v+ then
we have (—1)"c, >0, where c, is the constant obtained for p(x) by using
Lemma 3.

Proof If we write Eq. (52) for ¢(x) = Q,(x) it follows
(Qn(x), p1(x))s = (@n(x), P(x)) + cp{x + 7 — 2, Qu(x))-
From Eq. (27) the above equation reads
(On(x), (X)) = (@n(x), P(x)) + cpe1,2k1 = kn -+ cper nky.

If p is a monic polynomial of degree n, then p; is also a monic
polynomial of degree n. Thus &, = k, + cpe1,k1, or, equivalently,
];n - kn

erpky

Cp=

[N

The coefficient ¢; , can be computed from (27) and (24):

s 22u(l—p) Hl(s+ 1)k
ern = (—1)"2 u( - H) H(l_)uk_s’
A1 —p)" +vp 5 K
s0 sgn(er,y=(-1)""%

Finally, from k, > k, it follows that sgn(c_,,)=(—1)"~2 and then
(—1)"c, > 0.

THEOREM 2 For each A > 0 the polynomial Q,(x), n > 2, has exactly n
real and distinct zeros, where at least n—1 of them are positive.
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Moreover, if v > 1 then all the zeros and positive. If we denote by
Ep) < X2 <:- < Xnn the zeros of My*(x) and if we denote by
Vn1 <Yn2 << Ynnthe n different zeros of Q,(x) then

It < Xnt < Yng < Xp2 < -0 < Yy < Xpp (33)

Proof Let x,1 < Xp2<:+<X,, be the zeros of M (x) and let us
define
wilx) = [ (x—x))- (54)
=1, ji
e If v#1 by using Lemma 3 we obtain a unique polynomial p{x)
of degree n—1 as well as a constant ¢; such that Sp{x)=
R wAx) + (x + v — 2)c;). From Corollary 5 we get

0 = (Qn(x), pi(x)}s = (wi(x), Qn(x)) + ci{x + 7 = 2, 0n(x))
o5 o0
= > wi(s)Qnls)p(s) + & D _(5+7 = 2)Culs)p(s).
s=0 s=0

The Gaussian type quadrature formula based in the zeros of
MY (x) [25] leads to

0= (Qn(x)!pi(x»s
= Awi(%n,)Qi(Xns) + i Y _ (5 +7 = 2)Cn(5)p(s)- (53)

5=0

Let us compute the second term of the above sum by using (27),

oQ

& (s 47— 20n(s)p(s) = cilx +7 = 2, 0a(x))

s=0

n
=¢ E en(x+v -2, Al}”’”)(x)) = cie1 uki.
=

Hence the sign of this second term is always negative since k; >0,
sgn(e; ) =(—1)""2 and sgn(c)=(~1)""" (from Lemma 4 because
degwix)=n-1).
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Thus from Eq. (55) we deduce

[e.2]

AW On(ing) =~ 3 (s + 7 = 2)0u(s)pls) > 0

=0

and then Qn(—xn,i) # 0. Moreover Sgn(Qn(xn,i)) = Sgn(w,{x,,,,-)) =(— 1)n_f,
50 0,(x) changes sign between two consecutive zeros of My™ (x).
Finally, since sgn(Qn(x, 1)) =( —1Y"! then Q,(x) has n different real

zeros, which separate those of M (x) as stated.

e If v=1, we use the orthogonality of @,(x), Corollary 5 and the
Gaussian type quadrature formula for evaluating sums in order to
obtain

= AWi(%Xn 1) On(3tns) — AZ2

where w;(x) are the polynomials defined in (54).

In this case we have Aw;(xn;)Qn(xn;) = (A/1)Qn(0)Vp;(0). From
Lemma 1 we have (—1)"Q,(0) >0, and repeating the arguments in
Lemma 4 we can obtain (—1)""2Vp{0)>0. Hence we obtain
AW{(Xn, ) On(Xn,) >0, and then Q,(x,;)#0 as well as sgn(Qn(x,))=
(=1)""". The proof follows in the same way as in the case already
discussed.

Finally, if v > 1 we have (—1)"Q,(0) > 0, using Lemma 1, so we can
deduce that all zeros are positive.
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