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Abstract

In this paper we present a unified distributional study of the classical discrete g-polynomials (in the Hahn’s sense).
From the distributional g-Pearson equation we will deduce many of their properties such as the three-term recurrence
relations, structure relations, etc. Also several characterizations of such g-polynomials are presented.
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0. Introduction

The so-called g-polynomials constitute a very important and interesting set of special functions
and more specifically of orthogonal polynomials. They appear in several branches of the natural
sciences, e.g., continued fractions, Eulerian series, theta functions, elliptic functions, etc.; see [5,12],
quantum groups and algebras [19,20,30], discrete mathematics (combinatorics, graph theory), coding
theory, among others (see also [14]).

In 1884, Markov introduced a specific family of these g-polynomials. Later on, Hahn [16] analyzed
a more general situation. In fact Hahn was interested to find all orthogonal polynomial sequences
such that their g-differences, defined by the linear operator @ f(x) = (f(gx) — f(x))/(¢ — 1)x were

* Corresponding author. Tel.: +34-954-55-7997; fax: 954-55-7972.

E-mail addresses: jemedem@cica.es (J.C. Medem), ran@cica.es (R. Alvarez-Nodarse), pacomarc@ing.uc3m.es
(F. Marcellan).

"' Tel.: 434-954-55-7997; fax: 954-55-7972.

2 Tel.: (4-34)-91-624-94-42; fax: (4-34)-91-624-91-51.


Rectángulo

Rectángulo

Rectángulo

Rectángulo

Rectángulo

Nota adhesiva
Published in: Journal of Computational and Applied Mathematics, 2001, vol. 135, n. 2, p. 157-196


orthogonal. Notice that when ¢ — 1 we recover the characterization of the classical polynomials
given by Sonine in 1887 and rediscovered by Hahn in 1937 [15]. Thirty years later the study of such
polynomials has known an increasing interest (for a review see [6]). Indeed, this first systematic
approach for g-polynomials comes from the fact that they are basic (terminating) hypergeometric
series [14]. For a complete set of references on this see [7,14,18].

Another point of view was developed by the Russian (former Soviet) school of mathematicians
starting from a work by Nikiforov and Uvarov in 1983 [27]. It was based on the idea that the
g-polynomials are the solution of a second-order linear difference equation with certain properties:
the so-called difference equation of hypergeometric type on non-uniform lattices. This scheme is
usually called the Nikiforov—Uvarov scheme of g-polynomials [28]. For several surveys on this
approach see [3,4,7,26,29].

In this work we will present a different approach: It can be considered a pure algebraic approach
and constitutes an alternative to the two previous ones, and, in some sense is the continuation of the
Hahn’s work [16]. Furthermore, we will prove here that the g-classical polynomials are characterized
by several relations, analogue to the ones satisfied by the classical “continuous” (Jacobi, Bessel,
Laguerre, Hermite) and “discrete” (Hahn, Meixner, Kravchuk and Charlier) orthogonal polynomials
[1,13,21,22] and references therein. Besides, our point of view is very different from the previous ones
based on the basic hypergeometric series and the difference equation, respectively. In fact we start
with the distributional equation that the g-moment functionals satisfy and we will prove all the other
characterizations using basically the algebraic theory developed by Maroni [23]. So, somehow, this
paper is the natural continuation of the study started in [22,13] for the “continuous” and “discrete”
orthogonal polynomials, respectively. Another advantage of this approach is the unified and simple
treatment of the g-polynomials where all the information is obtained from the coefficients of the
polynomials ¢ and y of the distributional or Pearson equation (compare it with the method by the
American school [20] or the Russian ones [29]).

Let us point out here that the theory of orthogonal polynomials on the non-uniform lattices is based
not on the Pearson equation and on the hypergeometric-type difference equation of the non-uniform
lattices as it is shown in papers [7,26,28] and obviously it is possible to derive many properties of
the g-classical polynomials from this difference hypergeometric equation. Our purpose is not to show
how from the difference equation many properties can be obtained, but to show that some of them
characterize the g-classical polynomials, i.e., the main aim is the proof of several characterizations
of these g-families as well as the explicit computations of the corresponding coefficients in a unified
way. Some of these results on characterizations (e.g. the Al-Salam-Chihara or Marcellan et al.
characterization for classical polynomials) are completely new as far as we know.

Moreover, in our approach there is not any lattice function although the corresponding g-classical
polynomials that appear when there exists a positive weight are the corresponding polynomials on
g-linear lattices in the Nikiforov et al. approach. Only in this sense our approach is “similar” to
the Nikiforov et al. one and, up to now, it is covering only the polynomials corresponding to the
aforesaid g-linear lattice (see also [20]). Finally, let us to recall here that we have not dealt with any
integral involving these g-polynomials even we have not dealt in any moment with the norm of the
polynomials or the weight function. The main reason is that our approach is rather new with respect
to the aforesaid two methods since we are working not in the space of functions (or polynomials)
but also in its dual distributional space and for this reason it is, as we already pointed out, a pure
algebraic approach in the sense developed by Maroni [23].



The structure of the paper is as follows. In Section 1 we introduce some notations and definitions
useful for the next ones. In Section 2, starting from the distributional equation @(¢u) = yu that
the moment functional #, with respect to which the polynomial sequence is orthogonal, satisfies
we will obtain five different characterizations of these g-polynomials. They are quoted in Theo-
rems 2.1 and 2.2 and Propositions 2.9 and 2.10, respectively. In Section 3, we deduce the main
characteristics of the g-polynomials in terms of the coefficients of the polynomials ¢ and i of the
distributional equation, i.e., the coefficients of the three-term recurrence relations and of the other
characterization relations (those proved in Section 2). In Section 4, all g-classical, according to the
Hahn’s definition, families of polynomials of the g-Askey Tableu are studied in details including all
their characteristics.

1. Preliminaries

In this section we will give a brief survey of the operational calculus that we will use in the rest
of the paper.

1.1. Basic concepts and results

Let P be the linear space of polynomial functions in C (in the following we will refer to them
as polynomials) with complex coefficients and P* be its algebraic dual space, i.e., P* is the linear
space of all linear applications u:P — C. In the following we will call the elements of P* as
functionals and we will denote them with bold letters (u,v,...).

Let be (B,).>0 a sequence of polynomials such that deg B, <n for all n>0. A sequence defined
in this way is said to be a basis or a basis sequence of P if and only if degB, =n for all n=>0.
Since the elements of P* are linear functionals, it is possible to determine them from their actions
on a given basis (B,),>0 of P. We will use here, without loss of generality, the canonical basis of
P, (x"),>0- In general, we will represent the action of a functional over a polynomial by

(u,m), wePr, nelP.

Therefore, a functional is completely determined by a sequence of complex numbers (u,x") = u,,
n>=0, the so-called moments of the functional.
We will use the following definition for an orthogonal polynomial sequence:

Definition 1.1. Let (P,),>o be a basis sequence of P such that deg P, = n. We say that (P,),0 is
an orthogonal polynomial sequence (OPS in short), if and only if there exists a functional u € P*
such that

<u’PmPn> = knamn’ kn 7é Oa nZO,

where 0,,, is the Kronecker delta.

Definition 1.2. Let u € P* be a functional. We say that u is a quasi-definite functional if and only
if there exists a polynomial sequence (P,),>o, Which is orthogonal with respect to u.



Remark 1.3. Given two polynomial sequences, (P,),>o and (R,),=¢, orthogonal with respect to the
same linear functional, u, i.e.,
<uaPmPn> = knénma kn 7é 07 }120

(W ROR,) = dp, oy 0 n>0} then there exists ¢, € C\ {0}, P,=c,R,, n=>0.

Moreover, if (P,),so is orthogonal with respect to the functionals # and v,

<uaPmPn> = knénm: kn # Oa I’l>0

(v, P P)—lgé k20 n>0} then there exists ¢ € C\ {0}, cv,=u,, n=0,

where v, and u, are the moments corresponding to the functionals v and u, respectively. This means
that, if we “normalize” the OPS in any way, then we have a unique polynomial sequence orthogonal
with respect to a given functional.

Definition 1.4. Given a polynomial sequence (P,),»0, we say that (P,),>o is a monic orthogonal
polynomial sequence (MOPS in short) with respect to #, and we denote it by (P,),>¢ = mopsu if
and only if

P,(x) =x"+ lower degree terms and (u,P,P,) =k,0pm, k,# 0, n=0.

Since any MOPS (P, ),>0 is a basis of P’ then, any polynomial 7 of degree » is a linear combination
Of (Pn)nZO:

= ZciPi, ¢, 70 where ¢, =k u,nP), k= {(u,P?), 0<i<n.
i=0

Thus,

Theorem 1.5. Let u € P* and (B,).>o0 be a basis sequence of P. Then, the following statements
are equivalent

1. (u,B,B,) =0, n# m if and only if (u,x"B,) =0, 0<m < n, for all n>0
2. (u,B2) #0 if and only if (u,x"B,) # 0, for all n>0

Also the next theorem will be useful [9, p. 8].

Theorem 1.6. Let u € P* be a functional with moments u,= (u,x"), n=0. Then, u is quasi-definite
if and only if the Hankel determinants H,:=det(u;,;); ,_y # 0, n=0.

Notice that, given a functional # with moments (u,),>0, the nth monic orthogonal polynomial is

Uy UL ... Uy,
Uy Uy ... Uyy
P" = Hn_ll
Up_1 Uy «.. Ugp—1
1 x ... x"



Definition 1.7. Let u € P*, be a quasi-definite functional. We say that u is positive definite if and
only if H, > 0, Vn=0.

Theorem 1.8. Let (P,),>0 be a monic polynomial basis sequence. Then, (P,),=o is an OPS if and
only if there exist two sequences of complex numbers (d,),=o and (g,)u=1, with g, # 0, n=1 such
that

xpn:Pn+l+ann+gnPn71: Pfl:Oa P0:13 I’ZZO, (11)

where P_i(x) = 0 and Py(x) = 1. Moreover, the functional u with respect to which the polynomials
(P,)n>0 are orthogonal is positive definite if and only if (d,).>¢ is a real sequence and g, > 0 for
all n>1.

Remark 1.9. If (P,),>0 = mopsu, then the sequences (d,),>o and (g,),>; are given by
(u,xP3) (u,Py)

d,=-——"7"-, =0, and = >1.
wry " I=Twrpy "

Theorem 1.8 is usually called Favard Theorem [9,11].
1.2. Definition of the operators in P and P*

From now on we will use the following notation:

Definition 1.10. Let 7 € P and a € C, a # 0. The operator
H,:P— P, H,n(x)=mn(ax).
is said to be a dilation of ratio a € C \ {0}.

This operator is linear on P and satisfies H,(np) = H,n - H,p. Also notice that for any complex
number a # 0, H, - H,-» =1, where 1 is the identity operator on P, i.e., for all ¢ # 0, H, has an
inverse operator. In the following and for a sake of simplicity we will omit any reference to ¢ in
the operators H, and their inverse H,-1. So, H:=H,, H*I::qul.

Next, we will define the so called g-derivative operator, which constitutes a generalization of the
Hahn operator for ¢ € C\ {0}, see [16]. We will suppose also that |g| # 1 (although it is possible
to weaken this condition).

Definition 1.11. Let 7 € P and g € C\ {0}, |¢| # 1.
The g-derivative operator @, is the operator @ : P — P,

Hn—n Hn—m=
T Hx—x (g—1)x
The g~!'-derivative operator @*, is the operator O* : P — P
H'n—-n H'n—n
H'x—x (g7' =1’

On

O*n =




In this way, On and @*r will denote the g-derivative and g~ '-derivative of m, respectively.

Obviously, the above two operators @ and @* are linear operators on P. Moreover, since
_HX"—x" (¢"— 1x"
(g—1x  (¢—1)
then, @n € P. Here [n], n € N, denotes the basic g-number »n defined by
"—1
=" =1Hgt kg™ a= 0, [0]=0, (13)
It satisfies the following basic arithmetic rule [n] + ¢"[m] = [n 4+ m]. In the following we will also
use the ¢~ '-number [n]*, defined by
qg"—1
g ' —1

Ox" ="', n>0, O©1=0, (1.2)

[n]* = —q'""In.

Remark 1.12. The relation (1.2) is the g-analogue of the property Dx" = nx"~!, where D denotes
the standard derivative. For this reason it is natural to choose (x"),>o as the canonical basis of P.
Notice that @* is not the inverse of @. In fact they are related by
HO* =0, H'o=0".
Moreover, using straightforward calculations we get

OH =qHO, OH '=¢'H'0=q"'06%,

O*H = qHO* =¢q0, O*H '=q¢ 'H'O%*, (1.4)
and

OO*=PH 'O =q 'H '00 =q '0*06.
Furthermore, the g-derivative satisfies the product rule

O(np)=pOn+ Hr - Op =Hp - On + nOp.

Here we will also use the so-called g-factorial power or generalized g-factorial [n]” = [n][n —
1]---[n—i+1] as well as the g-analogue of the Pochhammer symbol [n—i+1]; = [n—i+ 1][n—
i+2]---[n].

Next we will transpose the operations in P to its dual space P*.

Definition 1.13. Let # € P* and n € P. We define the action of a dilation H, and the g-derivative
© on P* as follows:

H,:P*— P*, (Hu,n)= (u,H,m), O:P"— P, (Oun)=—(u0On).

Definition 1.14. Let # € P* and n € PP. The polynomial modification of a functional u, the func-
tional, i.e. mu, is given by

(nu, p) = (u,mp), Vp € P.



Notice that we use the same notation for the operators on P and P*. Whenever it is not spec-
ified the linear space where an operator acts, it will be understood that it acts on the polynomial
space [P.

2. Characterizations
2.1. Dual bases, g-derivatives, and orthogonality

Since any basis sequence of polynomials (B,),~o generates a unique basis in P*, (b,),>¢ (the
so-called dual basis of (B,),=0), i.€., a sequence of linear functionals (b,),>, such that
(by, By) = Opms  1,m =0,
then, any element of P* can be represented in the following way:
V= Z v.b,, v, = (v,B,), n=0.
n>0

This leads to the following

Proposition 2.1. Let u, u € P* be a quasi-definite functional. If (P,),>0 is the corresponding monic
OPS, and (p,) CP* the dual basis of (P,)n>0; then, p, =k, 'P,u, where k, = (u,P?), n>0.

Proof. It follows from the fact that (P,u,P,) = (u,P,P,) = k,0um, n,m=0. O

Proposition 2.2. Let (B,),=o be a basis sequence of monic polynomials (not necessary orthogonal)
and let (D,),=o be the sequence of their monic g-derivatives, D,=(1/[n+ 1])OB,.1. If (b,),>0 and
(d,),>0 are the respective dual basis of (B,),>o and (D,),>¢, then

Od, = —[n+ 1]b,.,.

Proof. It follows from the fact that (©d,,B,.,) = —(d,,OB,.,) = —[n+ 1){d,,,D,) = —[n + 110,
and Od, =3",.,(0d,,B,)b, O

Corollary 2.3. Let (P,),>o =mopsu and (Q,),=0 be the sequence of their monic gq-derivatives. If
(¢:)n>0 is the dual basis of (Q,),>0 then,

@qn:_[n+1]k_lpn+lu: kn:<u’P5>’ I’ZZO

n+1

Moreover, if (Q,).=0 are orthogonal with respect to the functional v, with vy = (v,1), then Qv =
—1
—vok; ' Pyt

As an immediate consequence of Corollary 2.3: @v = yu, where y = —vok; 'P, and degy = 1.
Next we will show that v = ¢u, being deg ¢ <2. Notice that u = uypy, v = voqo.

Proposition 2.4. Let (P,),>o = mopsu and (Q,).=0 be the sequence of monic g-derivatives. If
(Q))n=0 = mops v, then there exists a polynomial ¢, deg p <2 such that v= ¢u.



Proof. Since O(xP,) =P, + gxOP,, and Corollary 2.3 (Ov = yu,degyy = 1), we get
<vaPn> = <va @(XPH) - qxgpn> = _<@v:xpn> - Q<vax®Pn> = —<",XW : Pn> - Q[n]<v5xQn71>-

Now, taking into account the orthogonality of (P,),>o With respect to # as well as the orthogonality
of (Q,).>0 With respect to v, we obtain

(v,P,)=0 if n—(degyy+1)>0 and (n—1)—1>0 if and only if n > 2.
Therefore,

2 2 2
V= Z <v,Pn>pn = Z <v:Pi>pi = Z <v:Pi>ki_1Piu = ¢”, where d) = Z <v:Pi>ki_1Pi-
i=0

n=0 i=0 i i=0

Thus, degp<2. O

So, it is natural to define a g-classical functional as follows:

Definition 2.5. Let u € P* be a quasi-definite functional. We say that u is a g-classical functional
and its corresponding MOPS (P,),>o a g-classical MOPS, if and only if there exists a pair of
polynomials ¢ and v, deg ¢ <2, degys = 1, such that

O(¢pu) = yu. 2.1)

Remark 2.6. Given the pair of polynomials (¢, ), the distributional equation (2.1) defines, up to
a constant factor, the functional u. Thus (2.1) completely determines the corresponding MOPS, and
it is also unique.

Furthermore, if
O(¢u) = yu
O(¢u’) = Yu

Conversely, if u is g-classical, then polynomials ¢ and y associated to its distributional equation
are uniquely determined up to a constant factor, i.e., if

} then there exists ¢ € C so that u' = cu.

gggflu))::l/:;" } then there exists ¢ € C so that ¢’ =c¢ and /' = cyk

Notice that the distributional equation (2.1) yields the difference equation that the moments (u,),>0
of the functional satisfy. In fact, if we write the polynomials ¢ and y in (2.1)

dx)=ax> +ax+a,  Yx)=bx+b b+0 (2.2)
for all =0, we get
O(Pu) =yu< (u,pOx" + Yx") =0, n=0
& (u,([n]d + b + ([n]a + b)x" + [n] - ax"~') =0,

& ([nd + b,y + ([ma + by, + [nlau, , =0, u_,=0. (2.3)



Therefore, the moments (u,),>o of u satisfy a second-order linear difference equation whose coeffi-
cients are polynomials of first degree in [n], with the initial condition u,. Indeed,
u_, =0, I;ul +bhuy=0 & u = —13/15 - Up.

If [n]a +b # 0 for every value n>0, then (2.4) is a non singular second-order difference equation
and the moment u,, as well as the polynomials ¢ and iy completely determine the sequence (u,),>1.
In this way, the distributional equation is very useful in order to generate the moments (u,),>0,
while all the information about u is contained in the pair of polynomials (¢, ).

Remark 2.7. Notice that the condition [n]d + b # 0, for n>0 is satisfied by every quasi-definite
functional. In fact it will be a necessary condition for the quasi-definiteness of a g-classical functional
u. We will prove it later (see Proposition 2.8 and Remark 2.9). Also notice that if ¢ = 0, then

¢ =0= buy, +bu,=0, n=0, (2.4)

which yields H, =0, for n>2. This fact is not compatible with the quasi-definiteness of u.
2.2. The orthogonality of the sequences of derivatives

In this section, we will prove that our definition of g-classical polynomials, which is exclusively
developed in the dual space P*, is equivalent to the Hahn’s one for ¢ € (0,00) \ {1}.

Proposition 2.8. Let u € P* be a quasi-definite functional and (P,),s=o=mopsu. Then the following
Statements are equivalent:
(a) u is a g-classical functional (see Definition 2.5), (b) (OP,,,) is an OPS (Hahn).
Moreover, if u satisfies O(pu) = yu, then (Q,),>o = mopsv, where Q, = (1/[n+ 11)OP,,| and
v = ¢u.

Proof. (a) = (b): We start from the monic sequence (0, ),>¢. Using Theorem 1.5 we will show
that (Q,),>0 is an MOPS associated to ¢ u:

1
u,x"Q,) = ——{(pu,x"OP, ).
(p5"Q,) = T (" OP, )
Taking into account that ¢"x"@P,,, = O(x"P,.,)— [m]x""'P,.,, as well as deg $ <2 and degyy =1,
we get

m _ 1
(u.x"0n) = g"[n+1]
1

T g+ 1]

(((,Z’)ll, @(xm n+1)> - [m]<¢u9xmilpn+l>)

(—(O(Ppu),x"Py1) + [m](pu, x" "' Pyr))

= o L ) e g R

deg=m-+1 deg<m—+1

=0 ifm+l<n+lsm<n n=0. (2.5)



Now we need to check that (du, Q?) # 0, or equivalently, (¢u,x"Q,) # 0, n=>0. In order to do this,
we will consider m =n in (2.5). Thus,

(00 = s (P + 1 BP0 26)
Thus two situations appear: (1) deg¢ < 2, (2) deg¢ = 2. In the first case

degp <2 = deg(x"y + [nx" ') =n+ 1= (¢u,x"Q,) #0, n=0.
In the second one, if ¢ =dax? +ax +d, Yy =bx + b, @ # 0 # b, then, assuming [n]d + b # 0, for
every n=0, from (2.6)

deg(x"y + [n]x" ') =n+ 1 = (¢u,x"Q,) # 0.
On the other hand, if there exists ny =0, such that [ng]a + b= 0, then

(0,x"0,) #0, n#ny and (v,x*Q,,) =0, 2.7)
and v is not quasi-definite. We will show that this fact yields # which is not a quasi-definite func-
tional. Let us consider the polynomial (¢Q0,)P, . Since (Q,),>o is a basis of P, Pszz;foz 2,10
Then,

n+2

<uv(¢Qn)Pn+2> = <¢uv Z an+2,iQi : Qn> - an+2,n<¢u: Qz) = an+2,n<¢u:ann>-

i=0
For n =ny we get

<ll, (¢Qno )Pnn+2> = Ano+2,n <¢u’xn0 Qno> =0. (28)
On the other hand, ¢Q,, is a polynomial of degree ny, + 2 with leading coefficient @ # 0. Thus,

<u’(¢)Qno )Pn0+2> = d<”,xn0+2pno+2> = dkno+2-
So (2.8) leads to <u,P20 +») = 0, contradicting the quasi-definiteness of u and the condition that

n

(P,)ns0 1s an OPS with respect to u. So (2.5) holds.
(b) = (a): This is a straightforward consequence of Corollary 2.3 and Proposition 2.4. [J

Remark 2.9. From the above proof follows that the condition [n]d + b#0, n=0 where ¢ =dx? +
ax+a, d# 0, y=bx+b, b+# 0, is a necessary condition for the quasi-definiteness of u, satisfying
the distributional equation (2.1).

Furthermore, the sequence of g-derivatives (Q,),>¢ 1s also a g-classical sequence since the func-
tional v, with respect to which they are orthogonal satisfies a distributional equation of the same
type (2.1) (see Definition 2.5). Furthermore,

Lemma 2.10. Let u € P* and ¢,y € P, degp<2 and degy = 1 such that O(¢u) = yu. If
v = ¢u then O(¢Hv) = yDv where ¢V = Hp and Yy = + Od. Moreover, if v©) = HO¢ . u,
H®¢:=¢-Hp -H*¢---H "¢ =TI_, H '), k=1, then O(¢*v®) = y®v®, where

k—1

¢® =H'gp, Y =y+0O0(p+HY+ - +H 'Q)=y+0O) H'¢.

10



Proof. We start from the expression
(O(¢"0), 1) = —(v,¢VOn), me P. (2.9)

We want to find polynomials ¢ and " such that @(¢"'v)=yVv holds. In order to do that we will
substitute in (2.9) ¢VO=0(¢d"V1)—Hr-O¢p), and without loss of generality put ¢’ =H ¢. Thus,

dVOr=Hd - On=0O(¢n) — 1O.
Then,
(0(¢V0), 1) = (v, 0(d7) — 1OP) = ~((v,6(¢m)) + (v, 76))
=—((Qv,¢m) + (0 v,1)) = ~((u,yn) + (0 - v,7)).
Yu
So if we impose that (f) =¢ and J)u =0 the distributional equation for v is
(0(¢"Vv), 1) = (Yu,n) +(O¢ - v,1) = (Y + Op)v,7), nEP,
Y
and therefore,
O )=y v, ¢V =Hp and Y =y + 64,

The second part of the lemma follows by induction just following an analogous procedure. [

Remark 2.11. The above lemma is the distributional analogue of the hypergeometricity of the
g-classical polynomials (see the next section Theorem 2.18).

Theorem 2.12. Let u € P* be a quasi-definite functional, (P,),=o = mopsu and Q% = (1/[n +
1](k))@kPn+k. The following statements are equivalent:
(@) (Py)uso is g-classical, (b) (O%)),= is g-classical, k>1.
Moreover, if u satisfies the equation O(pu) = yu, deg p <2 and degyy =1, then (Q")) is orthog-
onal with respect to v© =H® ¢ .u, H® =], H' ¢, and
O(PPv) = y®o®  degp® <2 and degy® =1 where

k—1

¢ =H¢ and YO =y +06 ZH’d).

i=0
If ¢ =dx+ax+a and \y = bx + b then
d® = g*ax® + gfax +a, Y® = ([2k)a + b)x + ([kla + b). (2.10)
Proof. The proof is a simple consequence of the previous lemma. Next, since
¢(k+l) :H¢(k) :H(Hd)(k_l)) — ... :Hk+l¢’

YED =y ® 1 @p® = (Y D 1+ @ DY £ PP = ... =f + Op + OV & - + OP®

=y +0¢+OHp+ - +OH'¢=y+ 0> H'¢,

i=0
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then, ¢ = H*¢p = aH"x* + aH*x + a = ¢**ax* + q*ax + a, and

k—1 k—1 k—1 k—1
YO =y + 0> Ho=y+> OH'¢=y+> ¢HOp=y+> ¢H([2lix+a)
i=0 i=0 i=0 i=0

k—1 k—1 k—1
=Y+ d(Rld'ax+a)=y+> ¢ [2lax + > _q'a= + [2klax + [K]a.

i=0 i=0 i=0

Therefore, y® = ([2k]d + b)x + ([k]a + b). O

Remark 2.13. From the above proposition, we get

(11 + 5 = [n] - *a + ([2K1G + b) = [2k + nla + b.
So, the condition [n]a™ + 5 # 0 for all k,n € N, for the quasi-definiteness of v*) follows from
the quasi-definiteness condition of u.

2.3. The g-Sturm—Liouville operator

In this section we will study another characterization of the g-classical polynomials: They are the
unique polynomial eigenfunctions of a certain Sturm—Liouville operator on P.

In the following we will use, among all possible g-analogues of the classical Sturm—Liouville
operator ¢D? + D, the operator

SLP—P, SL=pOO* +O*.
There are two reasons for this choice. First, when ¢ — 1 the operator &% becomes the classical
one ¢pD? + yD. Second, &% involves the same ¢ and y as in the distributional equation (2.1).
Lemma 2.14. Let u € P* and the g-Sturm—Liouville operator ¥ = pO@OO* +yO*, ¢,y € P. If
O(¢pu) = yu, then ($pu, OnOp) = —(u,nS Lp), n,p € P.
Proof. Since O(nO*p) =nOO*p + OnOp, ,p € P, then
(¢pu,010p) = (Ppu,O(nO*p) — 1OO* p) = —(O(du),1O* p) — (Ppu,nOO*p)
hip.
2 (Yu, 0% p) + (pu,nOO*p)) = —(u, ($OO*p + YO*p)). O

This lemma leads to a g-analogue of the Bochner’s characterization [8,9].

Proposition 2.15. Let u € P*, be a quasi-definite functional, (P,),o = mopsu, ¢,y €P,
deg ¢ <2,degy = 1. Then, the following statements are equivalent:

(a) u satisfies the equation

O(du) =yu (2.11)

12



(b) there exists Jn €C, Iy #0, n=1 and Jo =0, such that
POO*P, +y O*P,=i,P,, n=0,1,2,... . (2.12)

Proof. Let v:=¢u, and let (Q,),>o be the monic sequence of derivatives, Q,:=(1/[n + 1])OP, ;.
(a) = (b): First of all, according to the previous lemma

1
<v,me,,> = m<¢u, @me@PHQ = f<u,xm+l,7$P,,+1>, m,n?O

Since, (Q,).>0 = mops ¢u (see Proposition 2.8).
(0.5"0n) = kybuns  ky = (v,07) #0,
we get
— (U, x" S LP, ) =k S, k. # 0, n=0. (2.13)

Let now (R,),>0 be the sequence of polynomials R, =% ¥%P,, n=1, Ry=1. thice that [r]a +b #+
0, n=0, degR,=deg ¥ ¥P,=n, n=0 being (P,),>o=mops u. As before, a and b are the coeflicients
in x* and x of ¢ and V, respectively.
Moreover, since u is quasi-definite, (u, 1) =uy # 0, and
(u, S LP,) = (u, pOO*P, + Yy O*P,) = —(O(pu) — Yu,O*P,) = 0,
then,
(u,1-R,))=(u, Y ¥P,)=0, n=1. (2.14)

Thus, (R,).>0 is a basis sequence and according to Theorem 1.5, they are orthogonal with respect
to u. Therefore, there exists 4, € C, 4, # 0, such that R, = 4,P,, for n>1. Furthermore, since
R,=S%LP,, n=1, thus 4, # 0 for all n>1. On the other hand, for n=0 the equation ¢-0+-0=/,-1
leads to 4o = 0.

(b) = (a): To prove this part, we will consider the basis sequence (QF), not necessarily orthog-
onal, defined by

1
* — 7@*})" ,
Qn [I’l+ 1]* +1

and we will compute the action of the functional @(¢u) in this basis. Thus,

(O(du), OF) = —(u. pOQOY) =

1 .
TERIL (u,pOO*P, ) = m@l, ns1 Pt — W O* P, y)

N B . _ .
[n+1]*(’1"+1<ﬂ2«:1) (Yu, 0P, 11)) = (Yu, O;).

So, O(pu) =yu. 0O

Remark 2.16. Notice that if (P,),o is an MOPS then s and ¢ are coprime polynomials, i.c., they
have no common roots. In fact if there exists a real number a such that ¢(a)=1/(a)=0, then from
(2.12) we get that P,(a) =0 for all n>=1. Thus, the TTRR gives g; = 0 which is a contradiction
with the quasi-definiteness of the functional u.

13



Remark 2.17. Both the distributional equation (2.11) and the Sturm—Liouville equation (2.12), char-
acterize a g-classical functional and its corresponding OPS by means of ¢ and . The first one is
a differential equation of first order which is easier to use than the second one which is of sec-
ond order. Nevertheless, the Sturm—Liouville equation has the advantage that is an equation in the
space of polynomials and combined with the TTRR (1.1) gives an alternative method to prove the
quasi-definiteness of the functional instead of the analysis of the Hankel determinants (see Theorem
1.6) as we already pointed out in the previous remark.

Theorem 2.18. Let ¥ ¥ = ¢OO* + yO* be the q-Sturm—Liouville operator and ¢ and  the
polynomials ¢p=ax*~+ax+a and y=>bx+b, respectively. Then, (P,),>o=mopsu are the eigenfunctions
of &L corresponding to the eigenvalues 1, i.e.,

POO*P, + Yy O*P, = J,P,, n=0, (2.15)
and they are of the hypergeometric type, i.e., the sequence of their kth order g-derivatives (Q%®),
0% = % k>0,
7+ 1]
satisfies a second-order difference equation of the same type, namely
dDOO* 0" 1y ero® =iV ok  ux0 k>1, (2.16)

where %) = H*¢ and y® =y + O 1 H'¢.
Eq. (2.15) is usually called the second-order g-difference equation of hypergeometric type [26].

Proof. This theorem is the analogue of Theorem 2.12 but in P (see also Proposition 2.15).
Here, we will present its proof developed in [P.

The first part was already stated in Proposition 2.15. To prove the second part, we apply the
operator @ to P, So,

07¢Y =04" - 060* + HY® - 0606* + 6y" - HO* +y» . OO*
=q7'(O¢" - 0* + HPY - 00* +yPo*)0 + oy - 6
=q '(Hp® - 00* + (Y©' + 0¢“)0™)0 + 6y - 6.
Since the statement is valid for £ =0, and if we suppose that it is valid for some %, i.e.,

k—1
~(k X
FPOo® =100, nz0 with g0 =H'¢ and YO =y + 0 Hg,
i=0

then, applying in the above expression the operator @ we find
g7 (HYY - 00* + (Y + 09)6*)00% + 6y - 001 = 1, 00"

Al
A

(k)
&g (@"00% +yt1e")e0 = (1, - oy )eg)

(k)
& gLV =q(2, — OO
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Thus (Q%*+D) are the eigenfunctions of . #“*" and then the result follows for & + 1. Notice that
the polynomials ¢*) and y/® are those of the distributional equation @(p®PvE))=y®v® of Theorem
2.12. O

Remark 2.19. From Proposition 2.2 it follows that the condition of ¢* and yY* to be coprime
polynomials is a necessary condition for the quasi-definiteness of the functional. Moreover, this
condition together with the condition d[n] + & # 0 for all n>0 is also a sufficient condition for the
quasi-definiteness of u (see Appendix A).

Proposition 2.20. Let ¥ = pOO* + yO*, ¢,y € P be the q-Sturm—Liouville operator. Let
(B,)u=o be a basis sequence of eigenvectors of S L and (b,),o the dual basis of (B,),>0, i.e.,
(b,,B,y) = Oum. Then, the functional u = ch,, ¢ € C, satisfies the equation

O(pu) = yu.

Proof. Since (B,),>¢ is a basis sequence on P, then (Q¥),~, where Q* = ©*B,,, is also a basis
of P. Thus,

S LB, =B, = POO*B, +yO*B,=i,B, = $OO* , +y0*  =i,B, n=>l.
Next,

(0, ZB,) = (u,pO0) | + YO |) = (—O(du) +yu, 0y ), n=1,
and

(u, 2,B,,) = 2,(cho, B,) = 7,¢00, =0, n=1.

Therefore, (—O(Qu) + Yu,0* ) =0 n=>1< O(du) = yu. O

Remark 2.21. Notice that from the above proposition and Theorem 2.18 the only polynomial solu-
tions which are orthogonal with respect to a quasi-definite g-classical functional # are the solutions
of the hypergeometric-type difference equation (2.15).

The following proposition is very useful for the complete classification of the g-classical polyno-
mials [24,25].

Proposition 2.22. Let ¢, ¢* and y € P, deg p <2, deg ¢p* <2, degyy =1, such that ¢* =g~ '¢ +
(g7" = Dxyy or equivalently, ¢ = qdp* + (g — 1)xyp. Then, the following statements are equivalent
(a) $OO*n + YyO*n=/,m, Vn € P,

(®) ¢'¢-Hr— (¢ '+ qp*)m+q¢* -H 'n=(q— 1)1 — g "W A7, Vr € P,

(¢) ¢*O*On+ Yy On = ,n, Vn € P.
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Proof. To prove the equivalence of (a) and (b), notice that

“lg—n H'n—n

* *x__ 7 H _ 7
PO+ YO =11 < (b@(q—l—l)x—i_w(q—l—l)x_l"n
Hr—(1+q)n+qH 'n gl —g)x(H 'n—7m) -
SO T e T
& pHrn — (1 +q)p + q(1 — yp)n + (¢ + q(1 — Q)H ' =(q — 1’*Lm. (2.17)
P+q2d* > *

Multiplying the last expression by ¢! the equivalence (a) < (b) follows. The other equivalence
(¢) & (b) can be obtained in an analogous way. [

As an immediate consequence of Propositions 2.15 and 2.22 we have

Proposition 2.23. Let u € P* be a quasi-definite functional, (P,),=o = mopsu, , ¢*, € P, such
that ¢* =q '+ (g ' — xs deg p <2, deg ¢* <2 and degyy = 1. Then, the following statements
are equivalent:

(@) (P))u>o =mopsu is g-classical and O(Pu) = Ju,
(b) (P,),>0 = mopsu is g~ '-classical and O*(¢p*u) = yu.

Remark 2.24. The above proposition means that all g-classical polynomials are also g~' classical
and vice versa. There also exists a very simple distributional proof of this equivalence between ¢
and ¢! classical functionals and their corresponding monic OPS.

2.4. Structure relations and other characterizations

In 1972, Al-Salam and Chihara [2] proved that the relation, called structure relation (STR),
¢DPn:anPn+l+ann+cnPn71a deg¢<2, Cn?éoa I’l?l,

characterizes the classical OPS. One remarkable consequence of this characterization is that, inde-
pendently of the degree of the polynomial P,, the product ¢DP, can be represented as a linear
combination of three consecutive polynomials. Later on, Marcellan et al. [22], proved that a similar
relation involving three consecutive monic derivatives Q,,

Pn == Qn + enQn—l + thn—Za n 22 .

also characterizes the classical MOPS. This second relation will be also considered as a structure
relation. Finally, there is also a very useful characterization of classical polynomials, the so-called
Cryer’s characterization of the D-classical polynomials [10]. Here, we will give the g-analogue of
the distributional Rodrigues formula obtained by Marcellan et al. [22].
Next, we are going to prove that the g-analogue of these two structure relations characterizes our
g-classical polynomials.
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Proposition 2.25. Let u € P* be a quasi-definite functional, (P,),>0 = mopsu and Q, =

(1/[n+ 11)OP,,|. Then, the next three statements are equivalent:

(a) There exist two polynomials ¢,y € P, degp <2 and degy =1 such that O(du) = yu.

(b) There exist a polynomial ¢ € P, deg ¢ <2 and three sequences of complex numbers a,, b,, c,,
¢, 70, such that

¢@Pn:anpr1+l +ann+CnPn71, l’l?l, (218)
(c) There exist complex numbers e, h,, such that
Pn = Qn + enanl + thn72; l’l>2 (219)

Proof. We will prove the equivalences (a) < (b) and (a) < (c).
(a) = (b): Since deg pOP,<n+ 1, the polynomial ¢pOP, can be expanded in the basis (P,),>o

n+1

$OP, =" auPi, ay=k (u,pOP,-P;), k= (u,P})#0.
i=0

Furthermore,

api = k[_l<u5 d)@Pn : P1> = [n]ki_1<¢u:PiQn71> = [n]kik:fl—lénfl,ia ky/,_l = <d)ll, Q;21—1> 7é 0.
Thus, for any i <n — 1, a,, =0 while a,,_; # 0. Here we have used the fact that (P,),>o is

g-classical so (Q,),>0 = mops u.
(b) = (a): Let us represent the functional @(¢u) in the dual basis (p,),>0 of (P,).=o. Then,

(@(¢u),Pn> = _<”> ¢@P11> = _an<uapn+l> - bn<”>Pn> - cn<uaPn—1>

0 ifn—1>0 & n>1,
#20ifn—1=0 & n=1 (c,#0).
Now, using { = 23:0<@(¢u),Pi>kflP,», degy =1, we obtain

1 1

O(du)=>_(O(¢u),P,)p,=>_(O(¢u).P)p;="_(O(¢u),P)k " P = yu.

n>0 i=0 i=0
(a) = (c): Let now represent the polynomials P, in the basis (Q,),>¢ which is, by hypothesis,
orthogonal with respect to ¢u. Since deg ¢ <2, we get

n—1
Pn = Qn + Z bn,iQi’ bn,i = k;71<¢uaPnQi>a k[/ = <¢ua Q12> 7& Oa
i=0
and
(¢ou,P,0;) = (w,P,- ¢Q;) =0, Vi=0,1,....,n—3.
(¢) = (a): Finally, since (Q,),>o is a basis, for its dual basis (g,),>¢ We get

90 = Z (40> Pu)Pn-

n=0

Therefore, using (2.19)
<¢10,Pn> == <q07 Qn> + en<q05 Qn71> + hn<q07 Qn72> = 07 l’l>3,
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and, as a consequence,

2 2
qo= Z qo, P Z q0, Pk '\Piu= pu, k= (u,P?) #0. (2.20)
i=0 i=0

On the other hand, taking into account Proposition 2.2, as well as u = uypy, v = voqo, we have

Oqo=—[1lp =~k 'Pu=yu < O(¢pu)=yu, degy=1.

2

¢:Z<q0api>kiilpi> deg¢<2 U

i=0

Next, we will prove the g-analogue of the distributional Rodrigues formula.

Proposition 2.26. Let u € P* be a quasi-definite functional and (P,),so = mopsu. Then, the fol-

lowing statements are equivalent:

(a) There exist two polynomials ¢,y € P, deg p <2, degyy =1 such that O(¢u) = Yyu.

(b) There exist a polynomial ¢ € P, degp<2 and a sequence of complex numbers r,, r, #
0, n>=1 such that

Pu=r,0"(H"¢ -u), n=1 where H" ¢ =]] H "¢, (2.21)

i=1

Proof. (a) = (b): Keeping in mind that, by hypothesis
k=1
, 1
[[H® u=0v® and (QF)=mopsv®, QO =——-0O"P,;, nk>0,
i—0 [+ 1u
and writing @™ in terms of the dual basis of (P,),>o, the coefficients of this expansion vanish
up to one of them, i.e.,

(@0, P) = (=1 (v, 0"P)) = (—1)[i — k + 1], (0, 0F,) =0 if i # k.

Therefore, @*v®) and p, differ on a nonzero constant factor. From Proposition 2.1 p, is, up to a
factor, Pyu which concludes the proof.
(b) = (a): Putting £ =1 in (2.21) the result immediately follows. [I

Notice that there are other characterizations of the g-classical polynomials. The proof of the
following theorem will be done in a forthcoming paper in the framework of g-semiclassical and
g-Laguerre—Hahn polynomials [24].

Proposition 2.27. Let u € P* be a quasi-definite functional and (P,),=o = mopsu. Then, the fol-

lowing statements are equivalent:

(a) There exist two polynomials ¢,y € P,deg ¢ <2,degyy =1, such that O(du) = yu.

(b) There exist two polynomials ¢ and y, deg p <2, degy =1, and a complex number & such that
¢OS, = S, + &, where S, denotes the Stieltjes formal series corresponding to the functional
u, ie., S,(z)=—3,.0un/z""". Furthermore, y = qHy — O¢ and &= uo(gb — a).
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(c) There exist a polynomial ¢ € P, deg p <2, two sequences of complex numbers o,,s, and two
polynomial sequences m,,p, € P, degn,<1>=degp,, such that, for all n=1,

¢(Pn@Pnfl - Pnflgpn) == OnPnHPn + TCnPnlePn + pnPnHPnfl + SnPnlePnfl-

The expression P,OP, | — P,_OP, is usually called the g-Wronskian of P, and P, ;
Pn Pn—l
OP, OP,_,
Notice that, if we define the rational function f, = —P,/P,_;, we have
P, P,OP,_, — P, 0P,
Of,=—0—"=— ! o
Pnfl PnlePnfl

Then, dividing the equation in Proposition 2.27 by P,_;HP,_;, we obtain

¢@fn:0nanfn+(_Tcn)an+(_pn)fn+sm n=l.

The above equation is a g-Riccati equation. Moreover, it is the same equation that the Stieltjes series
S, satisfies [24], where u'®) is the functional with respect to which the associated polynomials of
order k are orthogonal.

WP, P,_1)= det( ) =P,OP,_, — P, OP,.

3. The main characteristics of the g-classical polynomials in terms of the coefficients of ¢ and

In this section we will compute all the coefficients which appear in the characterizations of the
g-classical polynomials given in the previous section in terms of the coefficients of the polynomials ¢
and Y of the distributional equation. In fact we will give an explicit representation for the eigenvalues

J,, of the g-Sturm—Liouville operator (2.12) as well as for the values /"Cik) in the g-Sturm-Liouville
equation for the derivatives (2.16). From these expressions we will obtain an extra information as
well as an expression for the coefficient 7, of the distributional g-analogue of the Rodrigues formula
(2.21). In fact, r, is the Fourier coefficient of the functional @"(H™¢ - u) in (P,u),so, the dual
basis of (P,).=o (see Proposition 2.1).

After that, we will determine all the coefficients in the three-term recurrence relation for (P,),>¢

(1.1)

xP, =P, +d,P, +g,P,oy, P_1=0,Pp=1, n=0, (3.1)
the structure relations (2.18)

$OP, = a,Py\ + b,Py +c,Pry, n=l, (3.2)
and (2.19)

P,=0,+e,0n1 + h0na, n=2, (33)
as well as the coefficients of the three-term for the their monic derivatives (Q,).>o0

X0, = Oui1 +d, 00 + 6,001 (3.4)

There are two methods for finding all of them. The first one, is by comparison of the coefficients
in (3.2), (3.3) and (3.4). These calculations are straightforward, but cumbersome, so it requires the
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use of a powerful symbolic algorithm. We have used Mathematica 3.0 [31] for finding them. The
other method is based in several relation among all these coefficients from their Fourier coefficients
with respect to an appropriate basis of P. Sometimes this procedure is very straightforward (like
for the structure relation II (3.3)), but usually it gives a lot of different relations and the method
becomes dark itself. Nevertheless this method gives many interesting relations between the aforesaid
coeflicients.

For example, since

(u,xP?)
(u,P2)”

(u,P?)
(w,P}_)

using the fact that the polynomials P, are monic, we have g, =k, /k,_1, where as before k, = (u, P?).
Thus

d,= n=0, and g¢g,= n=1, (3.5)

k,,:ng, go:=hko =up, n=1. (3.6)
j=0
For the structure relation (3.2), the Fourier coefficients of ¢©@P, in the basis (P,),o are
OP, P, ,0OP, - P, ,0OP, - P,_
a,= 0OP Put) -y, _(IOPP) - (0OP Fiy), G7)
<u’Pn+1> <u’P;%> <”>Pn71>
Then a, = a[n].
In structure relation (3.3) we get
<U,Pn . Qn—l> h _ <U,Pn ° Qn—2>
(v,00) =" (v,0: )
Finally, notice that the eigenvalue J,, is the nth Fourier coefficient of the polynomial . %P, in the
basis (P,),>0. So,
A (u, ¥ ¥P, - P,)

fon = Ty =—k, ' (¢pu,OP,0P,) = —k, '[n]*(v,0;_,) = —k, ' [nTk,_,.

(3.8)

e, =

The relation

by = — [Pk A

n °

n=1, (3.9)
is used in [17] to obtain g, (see Appendix B). Also it can be used for finding £,. In fact

[T N ) S £ T :
k, = — 5 ki, =(—1) P . f{("_l)ké kM = (o0 1) = (0, H ), (3.10)

n—1 1

which is an alternative expression for k, (3.6).
3.1. The coefficients of the q-Sturm—Liouville equation and the gq-Rodrigues formula

Here, we will provide a more careful study of the g-Sturm-Liouville equation that the g-classical
polynomials satisfy. To obtain the explicit expression for 4, we compare the coefficients of x" in
the g-Sturm-Liouville equation & %P, = 4,P,. This yields the expression

dw=[n*(n—11a+b)#0, n=1, J,=0. (3.11)
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Furthermore, the eigenvalues of the g-Sturm—Liouville operator for the kth derivatives Q, of the
g-classical polynomials are given by

AW [n* 2k +n— 1a + b). (3.12)

NG ~(k

To prove this, it is sufficient to use the expression ﬂvi) = [n]*([n — 118" — b( )), where (see
~(k A

Theorem 2.12) 4*) = ¢* and 5 = [2k]a + b.

Remark 3.1. Theorem 2.18 gives also an alternative algorithm for finding an explicit expression
of the eigenvalues A,. In fact, applying the same procedure as before it is easy to show that the
polynomials P*) = @*P, satisfy the same Eq. (2.16) but with the eigenvalues u given by

(k) — q('u(k n_ ¢(k—1))'

Therefore, u® = g*{ 1, — [k]*([k — 1]d+ b)}. But now, since P, is a polynomial, then @"P, = const,
Eq. (2.16) yields the condition p{™ =0, which leads to the same expression for the eigenvalues 4,.
The condition u{™ =0 is usually called the hypergeometric condition [26].

Proposition 3.2. Let /& = POO* + O be the q-Sturm—Liouville operator where ¢ =adx*+ax+a
and \y = bx + b. If J are the eigenvalues corresponding to a basis sequence of eigenfunctions of
S &L, then

[n]d—l—l;;éO, n=0 < ):,,;éim, n#m, n,m=0.

In other words, the condition 4, #* /. about the eigenvalues is equivalent to the necessary condition
for the quasi-definiteness of u.

Proof. The proof is based on the fact that

/1,\11 - im [n - ]

([n+m—1]a+b), nm=0.
Then /, # 4, for all n # m if and only if [k]d + b # 0, for all k=0. [

Starting from the expression for the eigenvalues of the operator %" (3.12) we get the coeffi-
cients 7, in the g-distributional Rodrigues formula (2.21) for the P,. In fact,

k, = (P,u,P,) = (r,0"H"$ - u,P,) = (—1)'r,(H"¢p -u, 0"P,) = (—1)"r,[n]'k{",

where £ is given in (3.10). Thus,

G P

KD = (- pETTL H([2n—z—1]a+b)

For monic sequences we deduce

rp= q(g) H([2n —i—1]a+ l;)_l.

i=1

21



Remark 3.3. The previous algorithm can be used in the representation of kl(") as a function of £, ;.
So,
n 5D

(n) _ k+i _ (— 1)lkn+l _ _
K = )anH[m] e )[1+11<n>,H]([2(" P+ (4D — 11+ B).

3.2. The coefficients of the TTRR

In this section we are going to compute the coefficients of TTRR (3.1). We will use the following
notation:

Pn = Z anixl7 Dni=0nn = 1: n>0, Spi=0nn—1, nz 1: tn::an,nfb l’l>2

First of all, comparing the coefficients in the TTRR, for the coefficient of x"~! we get
S,=S8S,+d, & d,=s,—58,41, nx=l, (3.13)

and for the coefficient of x"—2

tn = tn+l + dnSn + Yn ~ In = (tn - tn+l) - Sn(Sn - Sn+l)’ ’122 (314)

The above expression is also true for n=1 putting #,=0. On the other hand, comparing the coefficients
in the g-Sturm-Liouville equation we can express the second and third coefficients of P, in terms
of the coeflicients of ¢ and . Indeed, if

=[n*([n— 1a+b), Z,=[n*(n—1a+b) i =[n*n—1la n>0,

then
=t =1, = A(i}“”*lf }“”(f” — }:"*1), n=2. (3.15)
)Nn - in—l (/Ln - ;{n—l)(/hn - jvn—Z)
This yields the recurrence relations (p, = 1)
(i - :n I)Sn = ;-”npn’ I’l>1 (in - ,:11—2)tn = ;L_n—lsn + /;anm 1’122
Next, we substitute (3.15) in (3.13) to obtain
e _[n=Na+B)  [n+1)([na+b)
N =t A — e [2n—2]a+b [2n]d + b
_ [#l([n — 1]a + b)([2n]a + l;) — [n+ 1]([n]a + b)([2n — 2]a + b) 1
([2n — 21a + b)([2n)d + b) v
and after some straightforward calculations,
n712 —11a NS n _2_7171 A YA
R ) 3 (L ) R (e K A | R ) LR 16

([2n — 24 + b)([2n]d + b)
Notice that [n —2] —¢" '[n] = [n— 1] —¢" *[n+ 1] — —2 when g — 1 which corresponds to the
formula for d, in the D-classical case [22]. Finally, for dy, we first use the TTRR, P, =x —d,, and,
on the other hand, = /"Athl, (it follows from the equation ¥ P; = = ):1P1). So

Pi=x+b/b=x—d, d,=—b/b. (3.17)
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Now, to find g, we substitute (3.15) in (3.14). This yields
_ DBt + g = D) it Fog + A0 A 1yt — L) I
[ H TV R S S VIR 5 TH Y H T S A
A straightforward calculation (with the help of Mathematica 3.0 [31]) leads us to the expression
B q¢"'[n1([n — 214 + B)

([2n — 1]a+ b)([2n — 2]a + b)*([2n — 3]a + b)

d,, n=2.

n

In =

x(¢"'([n — 1a+ b)(g"'ab — a([n — 11a + b)) + a([2n — 2]a + b)*), n=2.  (3.18)

The above expression is also true for n =1 and it gives g; = —[b(ab — ba) + &52]/52(63 + b).
3.3. The coefficients of the STR

In this section we will determine the coefficients of the structure relations (3.2). In the following
we will refer to this structure relation as SRT L.

Obviously to find the coefficients we can substitute in (3.2) the explicit expression of P, and
compare the corresponding coefficients. This leads to the following system:

a,=[nla, [n—1]as,+ [n]a=a,s,+1 + by,

[n —2]at, 4+ [n — 1]as, + [n]a = a,t,s1 + bpSay1 + Co (3.19)
A simple calculation shows that (P, is monic)
ay=[nla, b, =a([n —1ls, — [n]sy1) + [n]a,
¢, =[n —2lat, + [n — 1las, + [nld — antys1 — Sp1{a([n — s, — [nls,1) + [nla}. (3.20)
The second equation can be easily solved (e.g. using Mathematica [31])
_[n)([n — 1]a + b){abq"~'[2] — @b — aaln)(1 — q"~")}
([2n]a + b)([2n — 2]a + b)

The coefficient ¢, can be derived by using Mathematica (although the computations are very cum-
bersome). So, from (3.20) we find

~ [nM{g" N (n— 1@ + b)(q" b — a([n — 11a + b)) + a([2n — 2]a + b)*}
C([n—21a+b)y"'([n— 11a+ b)~'([2n — 114 + b)([2n — 2]a + b)*([2n — 314 + b)’

Let us obtain ¢, also by the second method. We will start from (3.7). First of all, since (P,),>¢ and
(Qn)nZO are mOﬂiC, <v: Qﬁ> = k;; = <v,PnQn>9 SO,

by = (3.21)

n

(3.22)

1 1
k/: 1Pn A —— ,Pn'@Pn =\ @Pn 'Pn i —— kna
= (v,P,0,) 1+ 1]<¢” 1) 1+ 1]<” POP, ) [n+ 1]C +1
and then,
! Cntl
k = k. 3.23
" n+1] (3.23)
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Now we use Eq. (3.9) —A.k, = [n]’k/_,, to find

5 A
;"n

k, = —[rf] Lo el & gy = —[n]%, S = ———=0n (3.24)
Jn 1] on [n]

and then (3.22) immediately follows. Now we will obtain the coefficients of the structure relation
II (3.3). We start from (3.8)

1 —
= ki (G Py 1) =K =, GOP, - P, ) 2 kg, ﬁ b, 2 —[n13, b,

Then,
~_2 e o=, (3.25)

So,

. _ 4" {abg"'[2) = @b — aln)(1 —q" )} (326)
([2nla + b)([2n —2]a+ b)

Again, from (3.8)

’— /— 1 ’— 1 AN
hn :kn7£<¢u3PnQn*2> = kn—; [n _ 1] <u3 d)@P”l*l ' Pﬂ> = kn—12 [n _ 1] <u’ [n - l]ax : P”>
— — n—1 2 n
_kn ;kﬂ = (kn 12k" 1)( n— lkﬂ) [ i ] gna‘
n—1
In the last equality we have used g, = k,/k,_, and (3.9), respectively. This yields
n—2 — 114
PR e U Ly (3.27)
[n—2]a+b
Thus,
o ¢ 3n— 1[n){q" ([n — 11a + b)(qg"'ab — a([n — 1 a+b))—|—a([2n—2]a+b)2}

([2n — 11a + b)([2n — 2]a + b)2([2n — 314 + b)
(3.28)

3.4. The coefficients for the TTRR of the g-derivatives

Finally, we will obtain the coefficients g/, and d/, of the TTRR for the first g-derivatives (Q,),>o0
(3.4). First of all, we use the fact that g, =k,/k,—, and ¢, , =k,_,/k,_,. Then Eq. (3.9) gives

i, R )
n = ~ 1 = 9,= 7= Yn+l» >Oz
n—1p 4, T T g g,
and we get,
o - q"'[n)([n)é + b){q"([nla + b)(g"ab — a([n)d + b)) + a([2n)é + b>2} (3.29)

([2n+ 1]a + b)([2n]a + b)z([2n —1]a+ b)
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For the other coefficient d/, first we will take g-derivatives on the TTRR and then use TTRR for
(On)n=o- Thus,

XP, = Puiy +dyPy+ guPu_i > P, + qxOP, = OP,., + d,OP, + 4,0P,_,
& Py + qInxQ,y = [n + 110, + du[n]Q,_1 + galn — 110,
8P, =[n+ 110, + d,[n]0s-1 + guln — 10,2 — q[n)(Qy + d}_, Q1 + g1 0n-2)
= ([n+ 1] = q[n))O, + [n)(d, — gd,,_)Qu—s + ([n — 11g.q[n]g, ) Ou—2).

Now, comparing it with the structure relation II we get

= [n)(dy — qd,_, (3.30)
=[n— 11g, — qlnlg,_,. (3.31)
Thus, using (3.25) and (3.30) we find
d, —qd _, = _z" s d_ =q" (d,, + b”) : (3.32)
n /Ln

So,
q "{bb + ba(1 — g")[n + 11+ 2aa[n][n + 1] + ab([n] + [n + 1])}
(a[2n] + b)a[2n + 2] + b)

Notice that the second equation in (3.31) gives an alternative expression for the coefficient ¢/. In
fact from (3.31) we find

,_ Inl(2n —1)a+ )
gln+ ([ —21a+ )"

d, = (3.33)

Remark 3.4. To conclude this section let us point out that it is possible to show that the coefficients
gn, b, and e, can be expressed as follows [24] (see also Appendix B):

g"'[n)([n — 2]a + b) 0D _Im-la+b
([2n —3]a + b)([2n — 1]a + b) [2n —2]a + b

I I 3 g .
b= T Y+ A=)l 11a+b)d,), o= e )t o

In particular, the above representation of g, leads directly to the same condition of existence of an
infinite sequence or orthogonal polynomials as in Proposition A.1 (see Appendix A). In fact the
conditions (b) and (d) in Proposition A.1 mean that qﬁn(dg')) =% 0, n=0, which, keeping in mind
the necessary condition for the quasi-definiteness, guarantees us that g, # 0, n>1.

gn = —

Remark 3.5. Notice that in all cases, when ¢ — 1, we obtain the corresponding D-classical relation
[22].
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4. Some examples

In this section, we will study some special families of g-polynomials and we will compute all of
their principal characteristics. We will use the Proposition 2.22 to identify the families of g-classical
polynomials among all the families in the so-called g-Askey Scheme [18]. In fact comparing the
difference equation

d) -HP, — (d) + qzd)*)Pn + qzd)* 'H_lpn = (q - l)zxzjvnpm (434)

with those given in [18] one can easily see that the following g-polynomials are g-classical ones
[24]: The Big g-Jacobi, Big g-Laguerre, Little g-Jacobi, Little g-Laguerre (Wall), g-Laguerre, Al-
ternative g-Charlier, Al-Salam—Carlitz I, Al-Salam—Carlitz II, Stieltjes—Wigert, Discrete g-Hermite,
Discrete ¢ ~'-Hermite 1I, g-Hahn, g-Meixner, Quantum g-Kravchuk (Krawtchouk), g-Kravchuk, Affine
g-Kravchuk and g-Charlier.

Eq. (4.34) gives all the information about the g-classical functional (and then about the corre-
sponding MOPS). Moreover, it is summarized in the polynomials ¢ and ¢* instead of ¢ and .
Furthermore, the interest of the polynomials ¢ and ¢* is not reduced only to the aforesaid equation
but also because using them one can classify all families of g-classical polynomials [24,25]. Another
reason for taking into account both polynomials (and not only ¢, like in the continuous case) is the
fact that (see Proposition 2.23)) all g-classical families are g~ '-classical. In the following we will
assume that 0 < g < 1. In such a way, since ¢(0)=0 if and only if ¢*(0)=0, in a first step, it is
natural to classify the g-classical polynomials in two wide groups: the (-families, i.e., the families
such that ¢(0) # 0 and the O-families, i.e., the ones with ¢(0)=0.

The next step is, to classify each member in the aforesaid two wide classes in terms of the degree
of the polynomials ¢ and ¢* as well as the multiplicity of their roots in the case of O-families. In
fact, if ¢ has two simple roots, the polynomials belong to the 0-Jacobi/-family while if the roots are
multiple, then they are 0-Bessel/-family. So, we have the following scheme for the g-classical OPS
(for more details see [24,25]):

0-Bessel/Jacobi

()-Jacobi/Jacobi 0-Bessel/Laguerre

()-Jacobi/Laguerre

(-Jacobi/Hermite 0-Jacobi/Jacobi

0-families ¢ 0-Jacobi/Laguerre
0-Jacobi/Bessel

()-families

()-Laguerre/Jacobi
()-Hermite/Jacobi

0-Laguerre/Jacobi
0-Laguerre/Bessel

Here, for example, ()-Hermite/Jacobi means that the corresponding polynomials are such that ¢(0) #
0, where deg ¢ =0 (i.e., a g-analogue of the Hermite polynomials), deg ¢* =2 (i.e., a ¢~ '-analogue
of the Jacobi polynomials). Finally, let us point out that in all cases, except in the 0-Jacobi/Bessel
and 0-Laguerre/Bessel ones there exist positive-definite families, i.e., families orthogonal with respect
to a positive-definite functional.
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In the following we will follow the standard notation for basic polynomials [14]:

a,ay,...,a, - (ai; @)k (ar; gk z k _k(k—1)/29p—r+1
- 1q,z | = -1 P 4.35
q)”(bubzw-»bp 1 ) ;(bl;q)k"'(bp;q)k(q;Q)k[( yea : (4:33)

where

k-1
(@ @) = [[(1 —ag™). (4.36)
m=0
In this section we will give the main data for some of the above families. The Big g¢-Jacobi
polynomials p,(x;a,b,c;q) are defined by the following basic hypergeometric series [18]
(aq; Q)n(cq; q)n ( q_n, abq”“,x 7 q)
(abg™*';q)n aq,cq )
Their main data are shown in Table 1. Notice that for these polynomials ¢(0) # 0, deg ¢p=deg ¢p*=2.
According with the aforesaid classification they constitute a ()-Jacobi/Jacobi family.
Since the Big g-Laguerre polynomials p,(x;a,c;q) satisfy p,(x;a,c;q) = p.(x;a,0,c;q), then

C];CI>

_ (aq; 9)u(cq; 9), (q‘",aqx‘l ‘ .x)
g aq |Tc)
So, putting 5 =0 in the main data of the Big g-Jacobi, one obtains the data for the Big g-Laguerre.
So if in Table 1 we put b =0 we find the corresponding data for the Big g-Laguerre. Notice also
that they are a ()-Laguerre/Jacobi family.
The Little g-Jacobi polynomials p,(x;a,b|q) are defined by the following basic hypergeometric
1S ag g (q",abq"“

series [18]:
(abg"'; ), aq qm) '

Notice that, since for the Little g-Jacobi polynomials ¢(0) =0, deg ¢ = deg ¢p* = 2, then they are
a 0-Jacobi/Jacobi family. If we now put b = 0, the Little g-Jacobi polynomials become the Little
g-Laguerre or Wall polynomials p,(x;alg), i.e., p.(x;alg) = p.(x;a,0|g), so
e 0
pa(xialg) = (—1Y'¢C)(ag; 4201 (qaq ’q;qX> .
Then all their characteristics can be obtained from the ones in the Table 2 just putting b= 0. These

polynomials constitute a 0-Laguerre/Jacobi family.
The Al-Salam and Carlitz polynomials I and II are defined by the expressions [18]

a n n 7n’x71 x
U,ﬁ)(x;q)=(—a)q(2)z<pl<q 0 ’q;aq),

.61”)
q, — >
a

pu(x;a,b,c;q) =

—n

q",0,x
aq,cq

pa(x;a,¢;q9) = (aq; 4)u(cq; 4)n3P2 (

pa(x;a,b|q) =

and

—n

VO(x;q) = (—a)'q () 1, ( 1 O’x
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Table 1
The Big g-Jacobi polynomials

P, pal(x;a,b,¢;q)
¢ aq(x — 1)(bx — ¢)
* g *(x — aq)(x — cq)

l_abq2x+ albg — 1)+ c(aqg — 1)

(1—-q)q 1—¢
. o 1 — abg™!
An q [”]ﬁ
' (abg" " q)s
d ql+n{C + aqu"((l + b+ c)q‘+" —g—1D+a(l+c—cq" — CqH" +b(1 —q" —cq" — ql+n i Cq1+n + Cq1+2,,))}
' (1 — abg®)(1 — abg**+?)
gn _ag""'(1 = ¢")(1 —ag")(1 — bg")(1 — abq")(c — abg")(1 — cq")
(1 — abg®)*(1 — abg®—")(1 — abg**")

n abq(n]
b _ag[n](1 — abq" ") {c +ab’¢" ! + b(1 — cq" — g™ —ag"(1 +q —cq" "))}

(l _ aqun)(l — abqZVH»Z)
ag[n](1 — ag")(1 — bg")(1 — abg")(c — abg")(1 — cq")(1 — abg"*")
(1 — abqZVl)Z(l — abqZﬂ*l)(] _ abq2n+l)
aqn+1(1 _qn){c+ab2q2n+l +b(1 _an _an+1 _aqn(l +q_cqn+l))}
(1 _ aqun)(l _ abq2n+2)
5 @bg” "' (1 — ¢"~")(1 — ¢")(1 — ag")(1 — bq")(c — abg")(1 — ¢q")
n (1 — abg?)2(1 — abg?—1)(1 — abg'+>")
qn+1{c + aqun+2((l+qb+qc)ql1+l —q— 1)+a(1+cq_cqn+l_cqn+2+bq(1_qn_qn+1_cqn+1+cq2n+2_cqn+2))}
(1 _ abq2n+2)(1 — abq2n+4)
, 7aqn+l(1 _ qn)(l 7aqn+l)(1 _ bqn+l)(c _ abqn+l)(1 _ an+l)(1 7abqn+2)
(1 — abq2n+2)2(1 — abquH»l )(1 — abq2n+3)

respectively. Notice that in the first case ¢(0) # 0, degp = 0,deg p* = 2, so the Al-Salam &
Carlitz polynomials I are a ()-Hermite/Jacobi family. For the the Al-Salam and Carlitz II, ¢(0) # 0,
deg ¢ =2,deg ¢* =0, i.e., they constitute a ()-Jacobi/Hermite. If we substitute a = —1 in U“(x;q)
we obtain the Discrete g-Hermite polynomials I 4,(x;¢q). So, putting a = —1 in Table 3 we obtain
their main data. Obviously they are also a ()-Hermite/Jacobi family.

The Stieltjes—Wigert polynomials S,(x;¢) are defined by [18]

—n

S,a)=(-1rg " o (7

a; —xq”“) :

Their main characteristics are also given in Table 3. Moreover, they are a 0-Bessel/Laguerre family,
since ¢(0) =0, degd =2,deg p* = 1.
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Table 2
The Little g-Jacobi polynomials and g-Charlier polynomials

P, Pu(x;a,blq) Cu(x;a;q)
¢ ax(bgx — 1) x(x —1)
o* g x(x—1) g %ax
1 — abg? aqg—1 1 a+gq
x+ ——x+
v (-9}  (A—q)g l—¢  (I1—q)
3 —n 1 — abqn+l [n]
o q "= 7 -
, qn(n+1)/2(1 — q)"(ab; @In+1 q,,,(n,l)(q _ 1),,
(ab;q)2n+1
n l+a2b 2n+l+a1_ 1+b n__ 1+b) n+l+b 2n+1 o ;
d, q"{ q (1(7 abE]z")(l)z abq(Z"+2) q g )} —g (@ — 1)g"™" —a(l + q)}
2n—1 n n n n
ag” (1 —q")A —aq")(1 — bg")(1 — abq") —dnt1 n n
Gn (1 — abg® (1 — abg?—")(1 — abg?+") aq (I —g")a+q")
an abq[n] [n]
a[n](1 — abq”“)(l —bq"(1+4q - aq”“)) —2n—1 n+l
bn - (1 —aqu”)(l —aqu””) q [n](a+aq+q * )
_aln)q""'(1 —aq")(1 — bg")(1 — abq")(1 — abg"*") a1 .
Cn (1 — abg® (1 — abg=")(1 — abg®*") aq [n](a+q")
anlin lfbn1+ 7an+1 o . .,
o q"(1 —¢"){1 —bq"(1 + g —aq""")} (1 = g"Ya+ag + 4"

(] _ aqu")(l _ abq2n+2)
P @b (1 —¢" (1 = ¢")(1 —ag")(1 — bg")
! (1 — abg? (1 — abg>=1)(1 — abg?+!)
q"{1 +@’bg”"* + ag(1 — (1 + ¢)(1 + bg)q" + bg™**)}
(1 — abq2n+2 )(1 — abq2n+4)
anrl(] _ q")(l _aqn+l)(l _ bqurl)(] _ abqn+2)
(1 _ abq2n+1)(1 — abq2n+2)2(1 — abq2n+3)

aq—4n+l(1 _qn)(l _qnfl)(a_’_qn)
q—2n—3{qn+2 +a(1 +q _ qn+l)}

aq74n73(1 _qn)(a+qn+l)

The Discrete g-Hermite polynomials I /,(x; ) are related with V@(x;q) in the following way:

—n+1

};,,(X; Q) = iinVrgil)(X;Q) :x"chl (q ’(q)

2 4
qa_xz .

Their main characteristics are shown in Table 4. A simple inspection on this table gives ¢(0) # 0,
deg p =2, degp* =0, i.e., the g-Hermite polynomials 4,(x;q) are a ()-Jacobi/Hermite family.
The Alternative g-Charlier polynomials K,(x;a,q) are defined by [18]

—1) (;) —-n __ n
Kn(x;a;q)z()qz(pl(q , —aq

(—aq";q)n 0

o).
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Table 3

The Al-Salam and Carlitz and Stieltjes—Wigert polynomials

P, Ui (x: q) Vi (x:q) Su(x; q)
¢ a x—1)(x—a) x?
o* g (1 = x)(a—x) g 'a q ’x
1 14+a 1 14+a 1 1

¥ — x-— ——x+ —_—xt——

l—¢q l1—¢q l—¢ 1—g¢q l—q¢ q(1—¢q)
B q'""[n] _[n] _n]

l—g¢q 1—g¢q 1—¢q
. qn(n—l) 2(1 _ q)n qfn(nfl)(q _ l)n qfn(nfl)(q _ 1)}1
dy (1+a)q" (I +a)™" g A +q—q"")
I aqn—l(qn _ 1) aq—2n+1(1 _ qn) q74n+l(1 _ qn)
an 0 [n] [n]
by 0 (I +a)nlg™" [nlg>""'(1+ q)
Cn a[n] aq—2n+1 [}’l] q—4n+l [n]
e 0 (I +a)g™"(1—q") g ' A+ —q")
B 0 ag "M (1 —g")(1—¢"h) g "1 —gMH(1 —¢"")
d, (I +a)" (I +ayg " g +q—q"")
9 ag"'(¢" = 1) ag" ' (1 —¢") g " —q"

and the g-Laguerre polynomials L¥(x;q) = L,(x;a;q) are given by [18]

,”, —X q, aqn—H) .

L,(x;a;q)=(=1)'q " a "2 (q 0

Their main characteristics are presented in Table 4. Notice that the Alternative g-Charlier polyno-
mials K,(x;a;q) are 0-Bessel/Jacobi family, ¢(0) =0, deg ¢ = deg ¢* = 2, whereas the g-Laguerre
polynomials L%(x;q) are 0-Jacobi/Laguerre: ¢(0) =0, deg¢p =2, degp* = 1.

Finally we will study the g-analogue of the classical discrete polynomials: Hahn, Meixner, Kravchuk
and Charlier. In [18] such polynomials are the g-Hahn, ¢-Meixner, Quantum g¢-Kravchuk
(Krawtchouk), g-Kravchuk, Affine g-Kravchuk and g-Charlier, respectively. All of them are de-
fined as a basic terminating series and they are polynomials on ¢~ instead of x. The main reason
for such a choice is that, in the limit ¢ — 1— they become the classical discrete ones. Here we will
define them as polynomials in x. To recover the polynomials in [18] one needs to substitute just x
by ¢~*. This transforms y(x + 1) and y(x — 1) in [18] into H~'y and Hy, respectively, and divide
by x2.

We start with the g-Hahn family. The g-Hahn polynomials are defined by [18]

q;CI)-

(aq; )(qg™";9)n 0 (q‘”,abq”“,x

(abg™';q), -

L.(x;a,b,N|q) =
0.( 9) o
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Table 4
The alternative g-Charlier, g-Laguerre polynomials and discrete g-Hermite 11

Py Ki(xiaiq) Li(x;q), a=¢" ha(x; 9)
) ax? ax(x + 1) 1+x2
o* ¢ x(1-x) q %x g
1 +aq 1 a 1 —aq 1
v — X - X+ ——x
(I=q)  (1—q) (I-q)  (I—9g) 1—gq
5 (=g (1 +ag") __aln] I
(1—g) (1-¢q) (1—9q)
T a—nq—n(n—l)(q _ l)n a—nq—n(n—l)(q _ l)n q—n(n—l)(q _ l)n
q"(1 + aqn_l +aq" — GQZH) —1_—2n—1 n+1
d, 1 —(1 0
(1 + ag?=")(1 + ag?*1) a q (I+qg—0+a)")
3n—2 n n—1
aq (1 —q )(1 + aq ) —2 _—4n+1 n n —2n+1 n
n 1 — 1— 1 —
g (T ag? )1+ ag)2(1 + ag?) aq (I—¢")(1 —aq") q (I—¢")
an aln] aln] [n]
n—1 n
aq"” [n](1 + q)(1 + aq") —2n—1 ntl
by 1 — 0
(1 + aqlnfl)(l + aq2n+l) q [I’l]( + q aq )
2n—2 n n—1
ag” "[n](1 + aq")(1 +aq""") 1 —dntl n —2n+1
n 1—
@ T A sy —ag”) ¢ n)
2n—1 n
aq (I+¢)(1—q") —1_—2n—1 n nt1
n 1 - 1 — 0
e 0+ a1 +ag ) a q (I=¢")1+qg—aqg")
2 4n—3 n—1 n
aq (1 —q )(1 —q ) —2 _—d4n+1 n—1 n n —2n+1 n n—1
hy 1— 1 - 1-— 1-— 1-—
T+ ag?) (1 + ag (1 T a2 1) a“q (IT=¢" )1 —q")( —aq") q (I=¢"(1—g""")
n1 +aq"“(1 +q _qn+1)) o
d q"( 1,231 e n+l 0
n 1+ a1 + a2 a q (I+qg—U+agq)g")
3n n n+1
a 1— 1+a 2 n n —n— n
gl q"( q" X q") a2q4 3(1—q)(1—aq+1) q21(]_q)

(l + ann)(l + aq2n+l)2(1 + aq2n+2)

Just making the change ¢~ — x in the difference equation for the g-Hahn polynomials in [18] and
comparing it with Eq. (4.34) (or comparing with the definition of the Big g-Jacobi polynomials) we
notice that the g-Hahn polynomials are nothing else that Big g-Jacobi polynomials with parameter

—N—1

c=q

so they are a ()-Jacobi/Jacobi family and all of their characteristics can be obtained from

Table 1 just putting c=¢g"~!. Notice also that, since gy, =0, they are a finite family of g-classical
orthogonal polynomials (see Remark A.2 from the appendix).

M, (x;b,¢;q) = (=¢)'(bg; 0)ug ™" 201 <qbq

The next family is the g-Meixner one. They are defined by [18]

—n

, X

qn+1
q;— .
C

Their main data are in Table 5. Notice that they are a finite (}-Jacobi/Laguerre family.

m —ng, ,— —n? > X
K™ (x; p,N3q) = (p) (g ";9)0q™" 2001 (q N

The Quantum g-Kravchuck are defined by

—n

. n+1
q q; pq ) .
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Table 5
The g-Meixner and g-Kravchuk polynomials

P, M, (x;b,¢;9) K(x; p, N3 q)
¢ (x — 1)(x + bc) px(1 —x)
¢* g c(x — bq) g x(x—q™)
" 1 c+4q(1 — be) l+pg _ ptg ™!
l—g¢ (1 —9g)q (I —q)q l—g¢q
i [ _q "[nJ(1 + pg")
1—¢q l1—gq
" g """ D(g -1y p g1 —q)
- o 1= pg"(1—q") + pg" ™ (g + pg") + pq" "' (1 + q(1 — q"))
dn n 2n—1 1 —(1 b n+1
q " +cq (I+qg—(1+b)g") (1 + pg1)(1 + pg>+1)
2n—2N—2 n—1 _n n__ N+I n+N
o g (1 = g")e + g")(1 — bg") Pq (1+qu )1 2q)z(q q i )(112+ rq")
(I+ pg*)(1 + pg>=*)(1 + pg*~')
dan [}’l] _p[n]
IR o ~pll(+ pg" "L+ @) — ¢ (1 = pg*™)}
bn q [n](q +e(l+g—0>b4"")) gV (1 + pg>=1)(1 4 pg*+1)
n—2N-2 n—1 n n _ N+l n+N
Cn Cq74n+1[n](c +q)l)(1 _ bqn) _pq (1 + pqz )(1 + pzq 2)(q q - )512+ Pq )
(14 pg*)(1 + pg—2)(1 + pg*~1)
n—N-—1 1 — n)( n+ n+l N+l+ 2n+N+])
» —2n—1 1— n n+l1 1 —b n+l pq ( q q q q pPq
€ q ( q )(‘I +C( "F‘I q )) (1 + qun—l)(l + pq2n+1)
2 3n—2N-3 1 _qn—])(l _qn)(qn _qN+I)(1 4 pq)1+N)
hn 74/11_ nl_n nl_bn Pq (
cq~ (1 = ¢" )1 = ¢")c+q")1 —bg") A+ @0 + p 21 £ pg 1)
d q_zn_3(q"+2 bl tq— q"“ _ bq”z)) 1+ p2q2n+N+3 + pg(q” +qn+1 _ q2n+1 _ qN +qn+N +qn+N+1)
n qN—n(l +pq2"“)(1 +pq2"+3)
2(n—N) o n n+1 n__ N n+N+1
q g1 = g"Ye + ") (1 — bg™) rq (I—¢")A+ pg"" )gq" —¢" )1 + pq )
(1+ pg*)(1 + pg* ' (1 + pg*+?)
Notice that they are related with the g-Meixner ones by
. . . —N-1 —1.
K:?tm(x’ p7N>Q):Mn(x’q N »— P ]:q)'
So their main characteristics can be obtained from Table 5 just putting b=¢~! and ¢ = —p~ .

Notice that they are also a finite set of the ()-Jacobi/Laguerre family of g-classical polynomials.

The g-Kravchuk are defined by [18]

(a9 (

Ki(x; p,N;q)z(_pq”'q) 302

XN q)n
X i (x

(=Pq";q)n

q
q

q ", x,—pq"
g .0

b
N—n+1

q; Q)

X n
7, pg"* +1> )
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They also constitute a finite family of the 0-Jacobi/Jacobi g-classical polynomials. Their main data
are shown in Table 5.
The affine g-Kravchuck are defined by [18]
QQQ>
—N_—1

n — n(n— 7”) ‘x
=(—pg)' (@ ";q)q"" 10, (q ;_N

—n

~ 0,x
K" poN3g) = (a7 )u(pg: @ <q "
w5 DN g) =5 0(Pg;q)n 302 I

x>
q; — |-
p

Notice that they are the Big g-Laguerre polynomials with parameters a =g and c¢= p, or equiv-
alently, the Big g-Jacobi polynomial with a=¢~"~!, 5=0 and c= p, so they are a ()-Laguerre/Jacobi
family and their main characteristics can be obtained from Table 1 just substituting these values for
the parameters a, b, and c, respectively. They, as the g-Hanh polynomials, also constitute a finite
family of g-classical polynomials.

Finally, the g-Charlier polynomials are given by [18]

qn+l
ol
a

So they are related with the g-Laguerre polynomials L%(x) by

—N-1

—n

Cix;a;q9) = (—=1)'q " a" ¢, (q 0

X

Cu(x;a;q) = L(—x; —a™'; q).

They constitute a 0-Jacobi/Laguerre family. Obviously their main characteristics can be obtained
from Table 4 making the appropriate change of parameters and signs (since the change x — —x)
but we will include them in Table 2.
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Appendix A. A sufficient condition for the quasi-definiteness of a g-classical functional

Up to now, we only have obtained necessary conditions on the polynomials ¢ and s for the
quasi-definiteness of the functional u satisfying the distributional equation ©(¢u) = Yyu. Our aim
now is to find also sufficient conditions. Here we will follow the work by Héacker [17]. In fact, we
will work with the g-Sturm-Liouville equation. The main reason is that, using this equation it is easy
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to show that if 4, #* J for all n # m then [k]d + b # 0, for every k>0 (the necessary conditions
for the quasi-definiteness), the family of eigenfunctions P, of the g-Sturm—Liouville operator &%
are orthogonal. In fact we have

Proposition A.1. Let L = pOO* + yO* be the q-Sturm—Liouville operator. Let (B,),>¢ be a
basis sequence of polynomial eigenfunctions of the operator ¥ and (b,),¢ be the dual basis of
(By)nso and u = chy, ¢ € C. Then, (u,B,B,) =0 for all n # m.

Proof. From Proposition 2.20, u satisfies @(¢pu) = yu. Thus, by Lemma 2.14

(¢pu,©B,0B,) = —(u,B, - S LB, = —i(U,B,B,) | __irsi, B
- _<u’B” ) ygBWl) = _)“m <”,Ban> :>";£m <ll,B,7Bm> =0. |

Notice that in the proof of Propositions 2.20 and A.l the conditions deg ¢ <2, degys <1 are not
used. We next will show a sufficient condition for the quasi-definiteness of the functional.

Lemma A.2. Let L =¢pOO* +O* be the q-Sturm—Liouville operator with deg ¢ <2, degy=1,
let (B,).>0 be a basis sequence of eigenfunctions of & and let (b,),=¢ be the dual basis of
(B)uso. Then, for u=chy, c € C, ¢ #0, {(u, B?) # 0, holds if and only if ¢ and  are coprime.

Proof. In the following, and without loss of generality, we will assume that (B,),»o is a monic
sequence and therefore it satisfies the TTRR

XBn:Bn+l +dan+gan—la B—l :Oa BO: 1’ nZO

We will prove the following equivalent statements: There exists a € C with ¢(a) =0=1(a) if and
only if (u,B?) =0.

In this case, ¢(a)=0=y(a) = (¥ £B,)(a)=0, n=0. Since 4, # 0, n=1 (see Proposition 2.15),
thus B,(a) =0, n=1. In particular,

aBl(a) = Bz(a) + dlBl(a) + ngO(a)B°::>1 g1 = Ou(y:;;O k] =0.

Conversely,

w,B2) =0"2" g, =0 B, = (x — d)B, “2' Ja € C, By(a) = 0= B,(a).
Now, S L(B,)u=0, for n =1,2 gives 0 + y = 4B, S Y(a) =0, and [2]*¢ + Y O*B, = 1,B,, so
¢(a) =0, respectively. This completes the proof. I

Proposition A.3. Let u € P*, ¢,y € P, degp <2, degy=1 such that O(pu)=vyu, (B,),=0 is a se-
quence of eigenfunctions of ¥ L=¢pOO* +yO* and vO=H® $-u. If (O®) is a sequence of monic
kth order g-derivatives, k=1, O% = (1/[n + 1];))O*B,s, then, (80, 0000)) = ') (u, B,y By,
where

(k) _ (71)k (kfl)‘”/l(())
m,n [m+ 1](k)[n+ 1](k) n+1 n+k>

m,n=0.
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Proof. According to the Theorem 2.18, (Q¥)) are the eigenfunctions of the g-Sturm-Liouville op-
erator & " = qS“”@@* Yy®O*. Then,

gPob = Pow i e pxo, k1,

n

where )t;k) are the corresponding eigenvalues. If we use now the Lemma 2.14,
1
v(k) (k) (k) - g4 . kD @ (k 1) (k—1)

1

= O S L")

-1 - — k k—
= ek

(—1)f JE=D

. u,B,. B,
[m+ 1](k)[n+ 1](k) n+1 n+k< +k +k>

Snn<u Bm+an+k> U

Remark A.4. Notice that, if for ¢y, with deg ¢ =2 are such that
[nla+b+#0, n=0 < 1,40, n>1,

where /, are the eigenfunctions of the corresponding g-Sturm-Liouville operator. Then, the necessary
condition for the quasi-definiteness of u leads to the necessary condition for v¥), and therefore we
will have the orthogonality of the basis sequence (B, ),>o as well as the orthogonality of the sequence

Gk
of their derivatives. So, the above proposition together with the Lemma A.2 and the condition /11 ) #*
0, k=0, n>=1, yields

Y® are coprime ¢© = (0, 00N £0 o (u,Pl,)#0, k=1

In the next theorem we will summarize the main results of this appendix.

Theorem A.5. Let ¢ and W € P such that ¢ = ax* + ax + a, y = bx + b, with b # 0, [n]d + b #
0, n=0 and let u € P* be the solution of the distributional equation O(¢pu)=1yu, uy #= 0. Then, u
is quasi-definite if and only if y® =y +0O Y\~ H'$p and ¢ =H*¢ are coprime for all k=0, and
thus, u is g-classical. Furthermore, for any ¢ with deg ¢ <2, the following different restrictions on
the coefficients of Y should be added.

(a) deg ¢ =0, there are not restrictions on \;

(b) deg ¢ =1 the coefficients of W should satisfy [kla+ b # aa 'q~*b, k=>0;

(c) deg¢p =2, the coefficients of y should satisfy (¢ = a(x — a1)(x — az)),

[kla+b+# —q *a([2kla + b), i=1,2, k>0.
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Proof. The first part is a simple consequence of the previous propositions and the fact that u # 0.

(a) In this case ¢ is a constant, i.e., ¢ =c € C, ¢ # 0 and then, ¢ = ¢, k=0, so Yy*® and ¢®*
are coprime.
(b) Here ¢ =ax +a, a # 0. Thus, ¢ =qg*ax + d and ay = —d/aq" is its zero. On the other hand,

Yy ® = ([2k1d + b)x + ([kla+ b), a=0, b+0,

and the condition ¥/*)(ay) # 0 becomes

a

—b-— +[kla+b=0.

aqt
(c) Let ¢ be the polynomial ¢ = d(x — a;)(x — a,) = dx* — d(a, + a»)x + da,a,. The zero a, of Y®
is given by
_ [Kla(ay +a)—b  [Kla+b

[2k)d + b [2ka+b

Then, since ¢ = H*$ = a(¢*x — a,)(¢*x — a»), and ¢p* are coprime Y*) then g*ay # a, and
gd*ay # a,. O

Y® = ([2k1a + b)x — [kla(a, + ar) + b, ay

Remark A.6. Theorem A.5 says that if the quasi-definiteness condition holds, i.e., while there is
no ny >0 such that v, |¢,,, the sequence (P,),>o will be orthogonal, but if such n, being 4, |¢,,,
appears, then kl(”O) =0 and therefore,

kn0+1 = <”>P20+1> =0= Ino+1 = 0’

In this case the polynomials (P,),>o satisfy an TTRR where one of the coefficients g, vanishes.
This means that the sequence is orthogonal until the polynomial of degree ny + 1, i.e.,

Pno+1:(x_dnn)Pno_gnQPno—la gn#oa I’lo?l’l}l,

Then, the condition that ¢® and y® are coprime, together with the necessary condition [n]d+5 # 0,
guarantees the existence of an infinite sequence of orthogonal polynomials.

Appendix B

In this appendix we will show an alternative algorithm [17] for finding the coefficients g, in the
three-term recurrence relation (3.1) and b, in the structure relation (3.2).

A.1. The coefficient g,
To obtain g, we will follow [17]. First of all, since (3.9), the quantities g, = k,/k,_1 and g/, _, =
k_,/k._, satisty Eq. (3.29),
)
T

n
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Applying the previous result to g/ _,, we get

I (1) ~(n—2)
At A A
2 1 —2 1 —1
In = [n] ’i ,\’(11) e A(nfz)gll(n )' (Bl)
)v,, j'nfl }”2

~(k A
Next, since )é ' [i(1*([2k +i — 1]a + b), then almost all factors in (B.1) cancel out

A A(l) ~n— ~n— ~ A A
o g BTN -2 n-2la+b

e DI T e T Y [l (2n—3la+ by

n—1

and therefore the following relation holds:

n—1 _ A L
g = L ln =21a+0) ooy oy (B.2)
[2n—3]a+ b

Now we determine the coeflicient g(ln_l). First of all, we will obtain the coefficient g, = ky/ko, ko =
(u,1) = uy and

ki = (u,P}) = (u,x* — 2dox + d) = uy — 2dou; + dyuy. (B.3)
Using the difference equation (2.4) for the moments u, we have
b -1 _ - : -1 . = :
u, = —7u0:d0u0, Uy = — A(((1+b)1/l1 +(1M0): - A((a—i-b)do%-a)uo.
b a—+b a+b
Therefore, substituting in (B.3), we find
-1 _ - . —u —u
ki = ——=((@+ b)do + a)ug — 2d3uy + djug = —=(d(do) + do Y(do)) = —=P(do).
a+b a+b Hjo—/ a+b
The above gives g; = —(1/(a + b))¢(d,). Next, we apply this result to g(l"_l)
=(n—1)
n— —1 n— n— n—
g = sn—1) | 70=1) S pUNdgY), dyT = An=1)" (B4)
a""’+b b
Finally using the explicit expressions for the coefficients 4"~ ", ci(”_l)bA(nil) and 5" (see Theorem
2.12) we find
n—1) (B4) —1 e [n—1la+b
g/ "= 2-1) RN b i4+b) (B3)
q a+[2(n—1Dla+b [2n—2]a+b
[2n—1]1d+b d,(n—l)(dg’—”)

which gives
q"'[n]([n — 21d + b)

n = — ~ ~ " Wn— d(n_l) .
I T (20 —3la+ by([2n — 1a + b) Puilde™ )
Finally, from
- —1la+b
(=D (g=Dy = gn-1 _[717,\
ARG e ¢< [2n —2]a+b
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and doing some straightforward calculations, an explicit representation for g, in terms of the coeffi-
cients of ¢ and y, equivalent to (3.18), follows.

A.2. The coefficient b,

To obtain b, we start from the expression (3.7).
b,=k, '(u,¢OP,-P,) =k, (pu,OP, - P,) =k, ' (¢pu,OP> — HP, - OP,)

= —k, (O(pu),P}) — k' (u,pOP, - HP,).
) 2)

The first term in the above sum is
(1) =k "(yu, P?) =k, "(u,yP, - P,) = k' (b(u,xP, - P,) + b(u,x"P,)) = bd, + b = y(d,,).

For the second term, since there is a dilation, the calculations are more complicated. To avoid this
we will eliminate it by using the identity HP, = ©(xP,) — xOP,. Then,

(2) =k, ' (¢pu, OGP,) - OP,) — k;'(pu,xOP, - OP,)
= [nlk, ' (v, O(P,)0, 1) — [Tk, (0,30},
(3) C)]

where the orthogonality of (Q,) with respect to v = ¢u has been used. From the TTRR (3) becomes

[, (0, O(Puss + duPy + guPu1)Qur) = [l - [nd, (0, 05 ) = 0Tk dk, .
For (4), a straightforward calculation yields

(4) = [n]k, 'd\_ k.
Substituting (3) and (4) in (2) we finally obtain

(3.9)

)= [Pk, 'k y(dy = dy )= = Aaldy = ),
and therefore the following representation for b,,:
by = —(d,) + An(d, —d,_),

holds. As before, d/ denotes the coefficient of O, in the TTRR (3.4). Now we substitute the ex-
pression (3.33) for d’, in (3.32) to find

. b\ -
bn = _w(dn) + (dn - d;_l))”n = —‘//(dn) + (dn - q_l (dn + i)) }vn

n

=—y(d,)+(d,—q7'd)w — g by & [21%b, = —Y(d,) + (1 — ¢ )i,

If we now substitute the explicit expression for J,, and use the identity (1 —¢~")[n]*=q —q", we
finally obtain a very closed form for the coefficient b, in (3.2)

[21%b, = —y(d,) + (1 — ¢ " )[n = 11a + b)d, = b + ([n — 1] — g "([n — 1Ja + b))d,.
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