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1. Introduction

Let {Qn(x)}∞n=0 and {Rn(x)}∞n=0 be two sequences of monic orthogonal polynomials with respect
to quasi-de1nite moment functionals u and v, respectively.

It is well known [4] that such sequences of monic polynomials satisfy three-term recurrence
relations

Qn+1(x) = (x − �n)Qn(x)− 	nQn−1(x); n¿0; (1.1)

where Q−1(x) = 0; Q0(x) = 1; 	0 = 〈u; 1〉= 1; 	n �= 0 for n¿1, and

Rn+1(x) = (x − 
n)Rn(x)− �nRn−1(x); n¿0; (1.2)

where R−1(x) = 0; R0(x) = 1; �0 = 〈v; 1〉= 1; 
n �= 0 for n¿1.
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In Section 2, we consider a linear perturbation problem: Introduce a sequence {Pn(x)}∞n=0 of monic
polynomials given by

Pn(x) = Qn(x)− 
nRn−t(x); n¿0 (Rn(x) = 0; n¡ 0); (1.3)

where t is a positive integer and 
n ∈ C. Notice that the above conditions yield Pn(x) = Qn(x);
06n6t − 1.
The situation Rn(x) ≡ Qn(x) is considered in [6] where necessary and su2cient conditions for the

orthogonality of the sequence {Pn(x)}∞n=0 are obtained.
If t = 1 and Rn(x) = Q(1)

n (x), i.e., the sequence of monic associated polynomials of the 1rst kind,
then for 
n = 
=constant we obtain the so-called sequence of co-recursive monic orthogonal
polynomials (see [3,4,10,11]).
In Section 3, we consider a convex combination of {Qn(x)}∞n=0 and {Rn(x)}∞n=0:

Pn(x) = 
Qn(x) + (1− 
)Rn(x); n¿0; (1.4)

where 
 ∈ C. A similar problem for a convex combination of orthogonal polynomials on the unit
circle was analyzed in [2].
In the present contribution, our aim is to give necessary and su2cient conditions about the se-

quences {Rn(x)}∞n=0; {Qn(x)}∞n=0, and {
n}∞n=0 or 
 in order for {Pn(x)}∞n=0 as in (1.3) or (1.4) to be
a sequence of monic orthogonal polynomials with respect to a moment functional w, i.e., {Pn(x)}∞n=0

must satisfy a three-term recurrence relation,

Pn+1(x) = (x − bn)Pn(x)− cnPn−1(x); n¿0 (1.5)

with P−1(x) = 0; P0(x) = 1; cn �= 0 for n¿1.

2. Linear perturbation

In this section, we let {Pn(x)}∞n=0 be a sequence of monic polynomials given by the perturbation
(1.3) of {Qn(x)}∞n=0 by {Rn(x)}∞n=0.
Assuming that {Pn(x)}∞n=0 satis1es (1.5) and substituting (1.3) into (1.5), we obtain for n¿0

Qn+1(x)− 
n+1Rn−t+1(x)

= (x − bn)[Qn(x)− 
nRn−t(x)]− cn[Qn−1(x)− 
n−1Rn−t−1(x)]

=Qn+1(x) + (�n − bn)Qn(x) + (	n − cn)Qn−1(x)− 
nRn−t+1(x)

+
n(bn − 
n−t)Rn−t(x) + (
n−1cn − 
n�n−t)Rn−t−1(x)

or equivalently

(�n − bn)Qn(x) + (	n − cn)Qn−1(x)

=




(
n − 
n+1)Rn−t+1(x)− 
n(bn − 
n−t)Rn−t(x)
−(
n−1cn − 
n�n−t)Rn−t−1(x); n¿t;

−
t; n= t − 1;

0; 06n6t − 2;

(2.1)

where Qn(x) = Rn(x) = 0 for n¡ 0.
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Taking into account the diJerent choices for t, three diJerent situations appear.

Theorem 2.1. Assume t¿3. Then {Pn(x)}∞n=0 is a sequence of monic orthogonal polynomials (SMOP)
if and only if 
n = 0; n¿0; which means Pn(x) = Qn(x); n¿0.

Proof. ⇐) Trivial.
⇒) By (2.1), we have 
n = 
n+1 for n¿t and 
t = 0 so that 
n = 0 for n¿0.

Now we will assume t = 2. Then (2.1) is equivalent to

bn = �n; n¿0; (2.2)

c1 = 	1 + 
2 (2.3)

and

(	n − cn)Qn−1(x) = (
n − 
n+1)Rn−1(x)

−
n(bn − 
n−2)Rn−2(x)− (
n−1cn − 
n�n−2)Rn−3(x); n¿2: (2.4)

If we identify the leading coe2cients on both sides of (2.4), then

cn = 	n − 
n + 
n+1; n¿2: (2.5)

Thus, we obtain:

Theorem 2.2. Assume t = 2. Then {Pn(x)}∞n=0 is an SMOP if and only if


n − 
n+1 �= 	n; n¿1

and

(
n − 
n+1)Qn−1(x) = (
n − 
n+1)Rn−1(x)− 
n(�n − 
n−2)Rn−2(x)

+ [
n�n−2 − 
n−1	n + 
n−1(
n − 
n+1)]Rn−3(x); n¿2: (2.6)

Then; we have

bn = �n for n¿0 and cn = 	n − 
n + 
n+1 for n¿1:

We will analyze some particular cases.

Theorem 2.3. Assume t = 2 and 
n = 
 for every n¿2. Then {Pn(x)}∞n=0 is an SMOP if and only
if either 
= 0 so that Pn(x) =Qn(x); n¿0 or 
 �= 0;−	1 and 
n−2 − �n = �n−1 − 	n+1 = 0 for n¿2
so that Pn(x) = Qn(x)− 
Q(2)

n−2(x); n¿0.

Proof. Since 
n = 
 for n¿2, (2.6) becomes


(�n − 
n−2)Rn−2(x)− 
(�n−2 − 	n)Rn−3(x) = 0; n¿2;

which is equivalent to


(�n − 
n−2) = 
(�n−1 − 	n+1) = 0; n¿2:

3
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Hence, by Theorem 2.2, {Pn(x)}∞n=0 is an SMOP if and only if

	1 + 
 �= 0 and 
(�n − 
n−2) = 
(�n−1 − 	n+1) = 0; n¿2: (2.7)

If 
=0, then condition (2.7) holds trivially and Pn(x)=Qn(x); n¿0. If 
 �= 0, then condition (2.7)
is equivalent to


 �= −	1; 
n = �n+2 for n¿0 and �n = 	n+2 for n¿1;

so that {Rn(x)}∞n=0 = {Q(2)
n (x)}∞n=0 is the associated SMOP of the second kind for {Qn(x)}∞n=0.

In case 
 �= 0;−	1; {Pn(x)}∞n=0 ={Qn(x)−
Q(2)
n−2(x)}∞n=0 satis1es the three-term recurrence relation

(1.5), where

bn = �n for n¿0; c1 = 	1 + 
 and cn = 	n for n¿2:

Hence, {Pn(x)}∞n=0 is the co-dilated SMOP of {Qn(x)}∞n=0 at level 1(see [5]).

Remark 2.4. If 
n �= 
n+1 for every n¿2, then (2.6) becomes

Qn−1(x) = Rn−1(x) + snRn−2(x) + tnRn−3(x); n¿2;

where

sn=

n


n+1 − 
n (�n − 
n−2)

tn= 
n−1 +

n�n−2 − 
n−1	n

n − 
n+1

:

Hence, {Qn(x)}∞n=0 is quasi-orthogonal of order 62 relative to v.
Since both {Qn(x)}∞n=0 and {Rn(x)}∞n=0 are SMOPs with respect to u and v, respectively,

〈v; Qn〉= 0; n¿3;

〈v; Q2〉= t3;
〈v; Q1〉= s2:

(2.8)

Then

v=
(
t3

Q2(x)
〈u; Q2

2(x)〉
+ s2

Q1(x)
〈u; Q2

1(x)〉
+ 1

)
u;

so that

v= (ax2 + bx + c)u;

where a; b; c can be deduced taking into account (2.8)

t3 = 〈u; (ax2 + bx + c)Q2(x)〉;
s2 = 〈u; (ax2 + bx + c)Q1(x)〉;
1 = 〈u; ax2 + bx + c〉
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i.e.,

t3 = a〈u; x2Q2(x)〉= a	2	1;

s2 = 	1[b+ a(�0 + �1)];

c =
t3Q2(0)
	2	1

+
s2Q1(0)
	1

+ 1 =
t3(�0�1 − 	1)

	2	1
− s2�0

	1
+ 1:

Thus,

a=
1
	1	2

[

2 +


3�1 − 	3
2

3 − 
4

]
;

b=

2

	1(
3 − 
2)(�2 − 
0)− a(�0 + �1);

c= a(�0�1 − 	1)− �0[b+ a(�0 + �1)] + 1:

In this case

Pn(x) = Rn(x) + sn+1Rn−1(x) + (tn+1 − 
n)Rn−2(x); n¿0

so that {Pn(x)}∞n=0 is quasi-orthogonal of order 62 relative to v.
Since {Pn(x)}∞n=0 is an SMOP, from (1.5) we can easily obtain

bn = 
n + sn+1 − sn+2; n¿0;

cn = �n − bnsn+1 + sn+1
n−1 + tn+1 − 
n − tn+2 + 
n+1; n¿1;

sncn =−bn(tn+1 − 
n) + sn+1�n−1 + (tn+1 − 
n)
n−2; n¿2;

(tn − 
n−1)cn = (tn+1 − 
n)�n−2; n¿3:

(2.9)

Hence from the last equation in (2.9), either tn− 
n−1 = 0 for all n¿3 or tn− 
n−1 �= 0 for all n¿3.
In case t3−
2 =0 (so that tn−
n−1 =0 for all n¿3), Pn is quasi-orthogonal of order 1 relative to v.
Notice that necessary and su2cient conditions for the quasi orthogonality of order 1 of a sequence
of monic polynomials yield orthogonality can be found in [9, Theorem 2; 6 Theorem 4:2]. In case
t3 − 
2 �= 0 (so that tn − 
n−1 �= 0 for all n¿3) (i.e., {Pn(x)}∞n=0 is strictly quasi-orthogonal of order
2 relative to v). Notice that necessary and su2cient conditions for the quasi-orthogonality of order
2 of a sequence of monic polynomials yield orthogonality that can be found in [1, Theorem 9].

In these cases, {Pn(x)}∞n=0 is orthogonal relative to w = p(x)v, where

deg(p) =



0 if t3 − 
2 = 0 and s2 = 0;

1 if t3 − 
2 = 0 and s2 �= 0;

2 if t3 − 
2 �= 0:

Remark 2.5. Notice that sn = 0 for all n¿2 and t3 �= 0 yields, according to Theorem 4:7 in [6],


n = �n; n¿0;
5
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n = 
n−2; �n = 	n; n¿2;

�1 = 	1 + t3:

Hence,

Rn(x) = A(x)Qn(x) + B(x)Q
(1)
n−1(x):

Because of the initial conditions

R1(x) = Q1(x);

R2(x) = Q2(x)− t3;
Q1(x) = A(x)Q1(x) + B(x);

Q2(x)− t3 = A(x)Q2(x) + B(x)Q
(1)
1 (x);

we have

A(x) = 1 +
t3
	1
;

B(x) =
−t3
	1
Q1(x):

Thus,

Rn(x) =
(
1 +

t3
	1

)
Qn(x)− t3

	1
Q1(x)Q

(1)
n−1(x) = Qn(x)− t3Q(2)

n−2(x):

Finally, we deduce that

Pn(x) = Qn(x)− 
n[Qn−2(x)− t3Q(2)
n−4]

as well as (see [6, Theorem 4:7])

�n − tn+2 + tn+1 =
tn+1

tn
�n−2; n¿3;

i.e.,

	n − tn+2 + tn+1 =
tn+1

tn
	n−2; n¿4;

	3 − t5 + t4 = t3
t2
(	1 + t3);

together with

tn = 
n−1 +

n	n−2 − 	n
n−1


n − 
n+1
; n¿4

which gives the compatible values for {
n}∞n=0.

6
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Remark 2.6. If Qn(x) = Rn(x) for every n¿0, then we get from (2.6)


n(�n − �n−2) = 0; n¿2;


n	n−2 = 
n−1(	n − 
n + 
n+1); n¿3:

If there exists s¿2 such that 
s=0, then from the second identity we deduce 
s+1=0 and so 
n=0,
n¿s. On the other hand, 
s−1(	s + 
s+1) = 0, i.e., 
s−1 = 0. If we continue the process, then we
deduce that 
2 = 0. Thus 
n = 0 for every n¿2 so that Pn(x) = Qn(x) for all n¿0. If 
n �= 0 for
every n¿2, we have �n = �n−2; n¿2 as well as

	n + 
n+1 = 
n +

n

n−1

	n−2; n¿3:

In this case, according to Theorem 2.2, the sequence {Pn(x)}∞n=0 is an SMOP and the parameters in
the three-term recurrence relation (1.5) are

bn= �n; n¿0;

cn=

n

n−1

	n−2; n¿3;

c2 = 	2 + (
3 − 
2);
c1 = 	1 + 
2;

where we assume


1 �= −	1 and 
3 �= 
2 − 	2:
If Rn = Qn and 
n = 
(�= 0;−	1); n¿2, then by Theorem 2.3, Rn = Q(2)

n ; n¿0, i.e.,


n = �n = 
n+2 = �n+2; n¿0;

�n = 	n = �n+2 = 	n+2; n¿0:

Hence, {Qn(x)}∞n=0 and {Rn(x)}∞n=0 have 2-periodic coe2cients in the three-term recurrence relation.

Finally, we will assume t = 1. Then (2.1) becomes

(�n − bn)Qn(x) + (	n − cn)Qn−1(x)

=

{
(
n − 
n+1)Rn(x)− 
n(bn − 
n−1)Rn−1(x)− (
n−1cn − 
n�n−1)Rn−2(x); n¿1;

−
1; n= 0;
(2.10)

and taking into account the coe2cients of xn and the xn−1 on both sides we get

bn= �n + 
n+1 − 
n; n¿0;

cn= 	n + 
n(�n − 
n−1) + (
n+1 − 
n)(
(n)− �(n) + 
n); n¿1;

where �(n) :=−∑n−1
i=0 �i and 
(n) :=−∑n−1

i=0 
i are the coe2cients of xn−1 in Qn(x) and Rn(x),
respectively.

We now analyze some particular cases.
7
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Theorem 2.7. Assume t=1; 
n=
 �= 0 and �n=
n−1 for every n¿1. Then {Pn(x)}∞n=0 is an SMOP
if and only if 	n = �n−1; n¿2. In this case; Pn(x) = Qn(x)− 
Q(1)

n−1(x); n¿0 and

b0 = �0 + 
; bn = �n for n¿1 and cn = 	n for n¿1: (2.11)

Proof. Assume 
n = 
 �= 0 and �n = 
n−1; n¿1. Then (2.10) becomes

(�n − bn)Qn(x) + (	n − cn)Qn−1(x)

=

{−
(bn − �n)Rn−1(x)− 
(cn − �n−1)Rn−2(x); n¿1;

−
; n= 0:

Hence, if {Pn(x)}∞n=0 is an SMOP, then

�0 − b0 =−
; �n − bn = 0 for n¿1;

	n − cn =−
(bn − �n) = 0 for n¿1;

and

cn − �n−1 = 0 for n¿2;

so that 	n = �n−1; n¿2 and (2.11) follows.
Since 
n = �n+1; n¿0 and �n = 	n+1; n¿1; {Rn(x)}∞n=0 = {Q(1)

n (x)}∞n=0 is the associated SMOP of
the 1rst kind for {Qn(x)}∞n=0. Conversely, assume 	n = �n−1; n¿2. Then Rn(x) = Q(1)

n (x); n¿0 so
that Pn(x) = Qn(x)− 
Q(1)

n−1(x) = Qn(
; x); n¿0, are the co-recursive SMOP of {Qn(x)}∞n=0 [3].

Remark 2.8. If 
n = 
 for every n¿1 and 	n �= cn for every n¿1, then (2.10) becomes

Qn−1(x) = Rn−1(x) + 

�n−1 − cn
	n − cn Rn−2(x); n¿1:

Since both {Qn(x)}∞n=0 and {Rn(x)}∞n=0 are SMOPs, according to Theorem 4:2 in [6] if we assume
�1 �= c2, then (�n−1 − cn)=(	n − cn) �= 0 for n¿2 and

c = �+ 

�1 − c2
	2 − c2 − 
0 �= 0;

�=−�n 	n+1 − cn+1

�n − cn+1

1


− 
 �n+1 − cn+2

	n+2 − cn+2
+ 
n; n¿1:

In such a case, {Qn(x)}∞n=0 is the SMOP with respect to the moment functional

u= (x − �)−1v− 1
c

(x − �);

i.e.,

(x − �)u= v
and {Rn(x)}∞n=0 are the monic kernel polynomials for {Qn(x)}∞n=0 with K-parameter � ([4]), that is,

Rn(x) = Q∗
n (�; x) =

1
Qn(�)

Qn+1(x)Qn(�)− Qn+1(�)Qn(x)
x − � ; n¿0:

8
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Remark 2.9. If Rn(x)=Qn(x) for every n¿0 so that Pn(x)=Qn(x)−
nQn−1(x); n¿0, then {Pn(x)}∞n=0

is an SMOP if and only if either 
n = 0; n¿1 or 
n �= 0; n¿1; (	n=
n) + 
n+1 + �n = �; n¿1, and
c := �−
1−�0 �= 0. In the latter case, {Pn(x)}∞n=0 is the SMOP with respect to the moment functional

(x − �)−1u− 1
c

(x − �):

See [6,10].

Remark 2.10. Assume 〈u; Rn〉= 0 for n¿2 and 〈u; R1〉 �= 0. Then u= ’(x)v, where

’(x) =
�0 − 
0
�1

x +
�1 − (�0 − 
0)
0

�1
; �0 �= 
0:

Hence,

Qn(x) = R∗
n(�; x); n¿0

and

Rn(x) = Qn(x)− anQn−1(x); n¿0;

where �= ((�0 − 
0)
0 − �1)=(�0 − 
0) is the zero of ’(x) and

an =
Rn−1(�)
Rn(�)

�n �= 0; n¿1:

Therefore,

Pn(x) = Qn(x)− 
nQn−1(x) + 
nan−1Qn−2(x); n¿0:

Then, {Pn(x)}∞n=0 is quasi-orthogonal of order 62 relative to u. As in Remark 2.4, if {Pn(x)}∞n=0 is
an SMOP, then either 
2=0 or 
2 �= 0. In case 
2=0; 
n=0 for all n¿1 so that Pn(x)=Qn(x); n¿0.
In case 
2 �= 0, then 
n �= 0 for all n¿2 (but 
1 may or may not be 0) and {Pn(x)}∞n=0 is orthogonal
relative to w = p(x)u for some polynomial of degree 2 (see [1, Theorem 9]).

Remark 2.11. If 
n �= 
n+1 for every n¿0, then (2.10) becomes

Qn(x) +
	n − cn

n − 
n+1

Qn−1(x)

=Rn(x)− 
n bn − 
n−1


n − 
n+1
Rn−1(x)− 
n−1cn − 
n�n−1


n − 
n+1
Rn−2(x); n¿1:

This leads to the following problem. Given an SMOP {Rn(x)}∞n=0, 1nd necessary and su2cient
conditions for the existence of an SMOP {Qn(x)}∞n=0 such that

Qn(x) + snQn−1(x) = Rn(x) + tnRn−1(x) + unRn−2(x): (2.12)

The next problem to solve is to 1nd the relation between the corresponding linear functionals. An
analog of this problem for orthogonal polynomials on the unit circle has been analyzed in [8] in a
more general framework.

9
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3. Convex combination

In this section, we analyze an analogous problem of the one solved in [2] for orthogonal polyno-
mials on the unit circle: When is a convex linear combination of {Qn(x)}∞n=0 and {Rn(x)}∞n=0 again
orthogonal?

We now let {Pn(x)}∞n=0 be a sequence of monic polynomials given by (1.4). To avoid the trivial
situation, we always assume 
 �= 0; 1. We expand xPn(x) via (1.1) and (1.2) as

xPn(x) = 
xQn(x) + (1− 
)xRn(x)
= 
[Qn+1(x) + �nQn(x) + 	nQn−1(x)] + (1− 
)[Rn+1(x) + 
nRn(x) + �nRn−1(x)]

=Pn+1(x) + 
(�n − 
n)Qn(x) + 
nPn(x) + 
(	n − �n)Qn−1(x) + �nPn−1(x); n¿0:

Now, if

Qn(x) = Pn(x) +
n−1∑
i=0

an; iPi(x); n¿1; (3.1)

then

xPn(x) =Pn+1(x) + [
(�n − 
n) + 
n]Pn(x) + [
(�n − 
n)an;n−1 + 
(	n − �n) + �n]Pn−1(x)

+
n−2∑
i=0

[
(�n − 
n)an; i + 
(	n − �n)an−1; i]Pi(x); n¿2;

xP1(x) = P2(x) + [
(�1 − 
1) + 
1]P1(x) + [
(�1 − 
1)a1;0 + 
(	1 − �1) + �1]P0(x):

Thus we deduce the following:

Theorem 3.1. {Pn(x)}∞n=0 is an SMOP if and only if

(i) (�n − 
n)an; i + (	n − �n)an−1; i = 0 for i = 0; 1; : : : ; n− 2; n¿2.
(ii) 
(�n − 
n)an;n−1 + 
(	n − �n) + �n �= 0 for n¿1.

Remark 3.2. Notice that (i) in Theorem 3.1 means that

(�n − 
n)Qn(x) + (	n − �n)Qn−1(x)

= (�n − 
n)Pn(x) + [(�n − 
n)an;n−1 + (	n − �n)]Pn−1(x): (3.2)

Remark 3.3. Considering the coe2cients of xn−1 on both sides of (3.1)

�(n) = b(n) + an;n−1;

where b(n) and �(n) are the coe2cients of xn−1 in Pn(x) and Qn(x), respectively. But from (1.4)

b(n) = 
�(n) + (1− 
)
(n);
where 
(n) is the coe2cient of xn−1 in Rn(x). Thus,

an;n−1 = (1− 
)(�(n)− 
(n))
10
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and (ii) in Theorem 3.1 becomes

�n + 
(	n − �n) + 
(�n − 
n)(1− 
)(�(n)− 
(n)) �= 0:

Remark 3.4. If �s = 
s for some s, then from (i) in Theorem 3.1, 	s = �s or as−1; i = 0 for i =
0; 1; : : : ; s− 2, i.e., Qs−1(x) = Ps−1(x).

Remark 3.5. From (3.2) and (1.4), we have

(�n − 
n)Qn(x) + (	n − �n)Qn−1(x) = (�n − 
n)(
Qn(x) + (1− 
)Rn(x))
+[(�n−
n)an;n−1 +(	n− �n)](
Qn−1(x)+(1−
)Rn−1(x));

in other words

(�n − 
n)(1− 
)Qn(x) + [(	n − �n)(1− 
)− 
an;n−1(�n − 
n)]Qn−1(x)

= (�n − 
n)(1− 
)Rn(x) + (1− 
)[(�n − 
n)an;n−1 + (	n − �n)]Rn−1(x)

or, equivalently

(�n − 
n)Qn(x) +
[
(	n − �n)− 


1− 
an;n−1(�n − 
n)
]
Qn−1(x)

= (�n − 
n)Rn(x) + [(	n − �n) + (�n − 
n)an;n−1]Rn−1(x): (3.3)

Thus,

Theorem 3.6. {Pn(x)}∞n=0 is an SMOP if and only if {Qn(x)}∞n=0 and {Rn(x)}∞n=0 satisfy

(i) Eq. (3:3);
(ii) 
(�n − 
n)an;n−1 + 
(	n − �n) + �n �= 0; where an;n−1 = (1− 
)∑n−1

j=0 (
j − �j).

If �n = 
n for every n¿0, then from the above theorem

(	n − �n)Qn−1(x) = (	n − �n)Rn−1(x) (3.4)

together with 
	n + (1− 
)�n �= 0.
Two cases can be considered:

(1) 	n = �n for every n¿1. Then Qn(x) = Rn(x) for every n¿0 and thus Pn(x) = Qn(x) for every
n¿0.

(2) There exists at least one positive integer m such that 	m �= �m. Denote by s the minimum of
such numbers. Then Qn(x) = Rn(x) for n= 0; 1; : : : ; s− 1; s. Furthermore,

Qs+1(x) = (x − �s)Qs(x)− 	sQs−1(x)

= (x − 
s)Rs(x)− �sRs−1(x)− (	s − �s)Rs−1(x)

=Rs+1(x)− (	s − �s)Rs−1(x):

11
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Thus, Qs+1(x) �= Rs+1(x) and from (3.4) 	s+2 = �s+2. We will distinguish two situations:
(i) If 	s+1 = �s+1, then

Qs+2(x) = (x − �s+1)Qs+1(x)− 	s+1Qs(x)

= (x − 
s+1)[Rs+1(x)− (	s − �s)Rs−1(x)]− 	s+1Rs(x)

=Rs+2(x)− (	s − �s)(x − 
s+1)Rs−1(x):

Thus Rs+2(x) �= Qs+2(x) and from (3.4) 	s+3 = �s+3. Now

Qs+3(x) = (x − �s+2)Qs+2(x)− 	s+2Qs+1(x)

= (x − 
s+2)[Rs+2(x)− (	s − �s)(x − 
s+1)Rs−1(x)]

−	s+2[Rs+1(x)− (	s − �s)Rs−1(x)]

=Rs+3(x)− (	s − �s)(x − 
s+2)(x − 
s+1)Rs−1(x)

+	s+2(	s − �s)Rs−1(x):

Thus, Rs+3(x) �= Qs+3(x) and from (3.4), 	s+4 = �s+4. Then, an induction argument yields
	n = �n for n¿s+ 1 together with 	n = �n for n¡s.

(ii) If 	s+1 �= �s+1, then

Qs+2(x) = (x − �s+1)Qs+1(x)− 	s+1Qs(x)

= (x − 
s+1)[Rs+1(x)− (	s − �s)Rs−1(x)]− 	s+1Rs(x)

=Rs+2(x) + (�s+1 − 	s+1 + �s − 	s)Rs(x)
+ (
s−1 − 
s+1)(�s − 	s)Rs−1(x)− (	s − �s)�s−1Rs−2(x):

Notice that in this case, Qs+2(x) �= Rs+2(x) and thus 	s+3 = �s+3. Now since 	s+2 = �s+2,

Qs+3(x) = (x − �s+2)Qs+2(x)− 	s+2Qs+1(x)

= (x − 
s+2)[Rs+2(x) + (�s+1 − 	s+1 + �s − 	s)Rs(x)
+ (
s−1 − 
s+1)(�s − 	s)Rs−1(x)− (	s − �s)�s−1Rs−2(x)]

−	s+2[Rs+1(x)− (	s − �s)Rs−1(x)]

=Rs+3(x) + · · ·+ �s−1�s−2(�s − 	s)Rs−3(x):

Thus Qs+3(x) �= Rs+3(x) and then from (3.4), 	s+4 = �s+4. An induction argument yields
	n = �n for n¿s+ 2 and 	n = �n for n¡s.

As a conclusion:

Theorem 3.7. If �n=
n; n¿0; then the sequence {Pn(x)}∞n=0 of monic polynomials such that Pn(x)=

Qn(x) + (1− 
)Rn(x) is also an SMOP if and only if any one of the following holds:

12
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(1) Qn(x) = Rn(x) for all n¿0; i.e.; 	n = �n for all n¿1.
(2) There exists a positive integer s such that 	s �= �s and 	n = �n otherwise.
(3) There exists a positive integer s such that 	s �= �s; 	s+1 �= �s+1 and 	n = �n otherwise.

This statement can be given in an alternative way: at most two consecutive elements of sequence
{�n − 	n}∞n=1 are not zero.

Using standard arguments about the set of solutions of the diJerence equation xyn=yn+1 + cnyn+
dnyn−1, it is very easy to deduce the following:

Corollary 3.8. If 	s �= �s and 	n = �n otherwise; then

Qn(x) =
	s
�s
Rn(x) +

(
1− 	s

�s

)
R(s)
n−s(x)Rs(x); n¿s:

If 	s �= �s; 	s+1 �= �s+1 and 	n = �n otherwise; then

Qn(x) =
	s+1

�s+1
Rn(x) + R

(s+1)
n−s−1(x)

[(
1− 	s+1

�s+1

)
Rs+1(x)− (	s − �s)Rs−1(x)

]
; n¿s+ 1:

Here {R(s)
n (x)}∞n=0 is the associated SMOP of the sth kind for {Rn(x)}∞n=0.

This kind of perturbation has been introduced in [7].

Remark 3.9. Notice that if �n �= 
n for every n¿, (3.3) is a particular case of (2.12) for un = 0.
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